Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 3

Dispersion characteristics of guided waves in cylindrical porous media

Qingbang Han, Ziwen Tong, Jian Jiang

College of Internet of Things Engineering, Hohai University, China

Correspondence: Qingbang Han, College of Internet of Things Engineering, Hohai University, Changzhou, China

Received: September 14, 2017 | Published: October 5, 2017

Citation: Han Q, Tong Z, Jiang J. Dispersion characteristics of guided Waves in cylindrical porous media. Phys Astron Int J. 2017;1(3):89-96. DOI: 10.15406/paij.2017.01.00017

Download PDF

Abstract

In this paper, a model of elastic rod surrounded by porous media and a model of porous rod surrounded by elastic media are built. Based on the elastic-dynamic theory of liquid-saturated porous solid and numerical computation, the dispersion characteristic of guided waves in this structure with different cylinder radius and porous media parameters are discussed. Results show that the longitudinal guided wave propagation in this structure is dispersive and influenced by the radius of the rod and porosity of the porous media. It suggests that the dispersion curve of L (0,1) shifts to lower frequency with increasing rod radius. The dispersion is mainly influenced by the properties of internal rod. When the internal rod is porous media, the dispersion curves of guided waves gradually shift to low speed with the increasing porosity. The static permeability has little effect on dispersion.All these results can provide a theoretical reference for the non-destructive evaluation to the structure of a solid rod surrounded by infinite media.

Keywords: guided waves, porous media, dispersion

Introduction

Propagation of guided waves in a solid rod surrounded by infinite media is an interesting research topic of practical importance. One important application is ultrasonic non-destructive evaluation (NDE) of rock bolts. Rock bolts are inserted into the mixture of rock and concrete to ensure the stability of the groundwork. For this research topic, it is important to study the propagation of guided waves in a solid rod surrounded by infinite media. Currently, the topic already has certain research bases.15 However, when anchoring system appears broken rock, or anchor rusty, the elastic media is unable to simulate these situations. Porous media can simulate well. Thus the research of guided wave propagation in a cylindrical structure containing porous media is of great significance. The propagation of guided wave in a multilayer plane porous media has already been widely studied, Parra studied the dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media,6 Derible analyzed the transmission coefficient of a water-saturated porous plate7 and Fellah studied the time-domain model of transient acoustic wave propagation in layered porous media.810 However, few attentions have been focused on cylindrical waveguide in layered porous media. Most of studies were concentrated in well-logging detection, the structure of which is the internal liquid, external porous media.1113 In this paper, for anchoring system, porous media was used to simulate the two cases, one of which is rocks containing cracks and pores; the other is bolt corrosion. Through studying the propagation characteristics of guided wave in the elastic rod embedded in infinite porous media and porous media rod wrapped by infinite elastic media, the results can be a reference for the NDE of rod embedded in infinite media. In this paper, we study the propagation characteristics of guided waves in a solid rod embedded in infinite media with porous media. This paper is arranged as follows. First, the dispersion equations of two models are deduced. Second, the dispersion characteristics of guided waves in the two models are discussed, respectively. Third, we investigated the effects of different porosity parameters and rod radius on the guided waves.

Biot theory

In the description of propagation of elastic waves in porous media, Biot theory is a theoretical model has been widely recognized and applied. According to Biot theory, the porous media is homogeneous and isotropic media constituted by the solid skeleton and pore. The pore distribution is consistent, uniform pore size, communicate with each other. The pores are filled with viscous fluid, the fluid movement relative to the skeleton, the kinematic coupling between each other. The propagation of waves in fluid-saturated porous media meet the stress-strain relationship and the equations of motion, by which the fast P wave, the slow P-wave, S-wave these three kinds of body waves in porous media can be obtained. Fast longitudinal wave is due to the same phase motion between the solid and fluid, slow longitudinal wave is due to the inverting motion between the solid and the fluid.14,15 The wave number of three body waves are kp1=ωsp1,kp2=ωsp2, kt=ωst. sp1,sp2,st are as following.

s p1,p2 2 = γ 2 ( γ 2 ) 2 ρ ~ ρ ρ f 2 HM C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado halmaaDaaajuaGbaqcLbmacaWGWbGaaGymaiaacYcacaWGWbGaaGOm aaqcfayaaKqzadGaaGOmaaaajugibiabg2da9KqbaoaalaaabaqcLb sacqaHZoWzaKqbagaajugibiaaikdaaaGaeS4eI0wcfa4aaOaaaeaa daqadaqaamaalaaabaqcLbsacqaHZoWzaKqbagaajugibiaaikdaaa aajuaGcaGLOaGaayzkaaWcdaahaaqcfayabeaajugWaiaaikdaaaqc LbsacqGHsisljuaGdaWcaaqaamaaxacabaqcLbsacqaHbpGCaKqbag qabaqcLbsacaGG+baaaiabeg8aYjabgkHiTiabeg8aYLqbaoaaBaaa baqcLbsacaWGMbaajuaGbeaalmaaCaaajuaGbeqaaKqzadGaaGOmaa aaaKqbagaajugibiaadIeacaWGnbGaeyOeI0Iaam4qaKqbaoaaCaaa beqaaKqzadGaaGOmaaaaaaaajuaGbeaaaaa@693F@                                          (1)

s t 2 = 1 N (ρ ρ f 2 ρ ~ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado halmaaDaaajuaGbaqcLbmacaWG0baajuaGbaqcLbmacaaIYaaaaKqz GeGaeyypa0tcfa4aaSaaaeaajugibiaaigdaaKqbagaajugibiaad6 eaaaGaaiikaiabeg8aYjabgkHiTKqbaoaalaaabaqcLbsacqaHbpGC juaGdaWgaaqaaKqzGeGaamOzaaqcfayabaWaaWbaaeqabaqcLbmaca aIYaaaaaqcfayaamaaxacabaqcLbsacqaHbpGCaKqbagqabaqcLbsa caGG+baaaaaacaGGPaaaaa@536E@                                                              (2)

γ= ρM+ ρ ~ H2 ρ f C HM C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo 7aNjabg2da9KqbaoaalaaabaqcLbsacqaHbpGCcaWGnbGaey4kaSsc fa4aaCbiaeaajugibiabeg8aYbqcfayabeaajugibiaac6haaaGaam isaiabgkHiTiaaikdacqaHbpGCjuaGdaWgaaqaaKqzGeGaamOzaaqc fayabaqcLbsacaWGdbaajuaGbaqcLbsacaWGibGaamytaiabgkHiTi aadoeajuaGdaahaaqabeaajugWaiaaikdaaaaaaaaa@5296@                                                      (3)

Where H, M, C and N are four elastic constants of porous media.16 H, C, M can be expressed as

M= K f K s β K s +( αβ ) K f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2 eacqGH9aqpjuaGdaWcaaqaaKqzGeGaam4saKqbaoaaBaaajuaibaqc LbmacaWGMbaajuaGbeaajugibiaadUealmaaBaaajuaibaqcLbmaca WGZbaajuaibeaaaKqbagaajugibiabek7aIjaadUealmaaBaaajuai baqcLbmacaWGZbaajuaibeaajugibiabgUcaRKqbaoaabmaabaqcLb sacqaHXoqycqGHsislcqaHYoGyaKqbakaawIcacaGLPaaajugibiaa dUealmaaBaaajuaibaqcLbmacaWGMbaajuaibeaaaaaaaa@5533@                                                        (4)

C=αM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado eacqGH9aqpcqaHXoqycaWGnbaaaa@3AFE@                                                                          (5)

H= α 2 M+ K b + 4 3 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI eacqGH9aqpcqaHXoqyjuaGdaahaaqabKqbGeaajugWaiaaikdaaaqc LbsacaWGnbGaey4kaSIaam4saKqbaoaaBaaajuaibaqcLbmacaWGIb aajuaGbeaajugibiabgUcaRKqbaoaalaaabaqcLbsacaaI0aaajuaG baqcLbsacaaIZaaaaiaad6eaaaa@4995@                                                          (6)

α=1 K b K s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHjabg2da9iaaigdacqGHsisljuaGdaWcaaqaaKqzGeGaam4saKqb aoaaBaaabaqcLbmacaWGIbaajuaGbeaaaeaajugibiaadUealmaaBa aajuaibaqcLbmacaWGZbaajuaibeaaaaaaaa@4468@                                                                          (7)

Where Kf is the bulk modulus of the pore fluid, Ks is the bulk modulus of the elastic solid, Kb is the bulk modulus of the porous skeletal frame and N is the shear modulus of the composite as well as that of the skeletal, βis the porosity. ρis the density of the fluid saturated porous media can be got by solid skeleton density ρs and fluid density ρf.

ρ=(1β) ρ s +β ρ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 8aYjabg2da9iaacIcacaaIXaGaeyOeI0IaeqOSdiMaaiykaiabeg8a YLqbaoaaBaaajuaibaqcLbmacaWGZbaajuaGbeaajugibiabgUcaRi abek7aIjabeg8aYTWaaSbaaKqbGeaajugWaiaadAgaaKqbGeqaaaaa @4AEB@                                                            (8)

By introducing the dynamic permeability,17 the equivalent density ρ ~ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa qaaKqzGeGaeqyWdihajuaGbeqaaKqzGeGaaiOFaaaaaaa@3B6A@ associated with inertial force and resistance of the seepage flow can be expressed as

ρ ~ = iη ωκ(ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa qaaKqzGeGaeqyWdihajuaGbeqaaKqzGeGaaiOFaaaacqGH9aqpjuaG daWcaaqaaKqzGeGaamyAaiabeE7aObqcfayaaKqzGeGaeqyYdCNaeq OUdSMaaiikaiabeM8a3jaacMcaaaaaaa@47F9@                                                                        (9)

κ(ω)= κ 0 [ (1 4i α 2 κ 0 2 ρ f ω Λ 2 β 2 η ) 1 2 i ω α ρ f κ 0 βη ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeQ 7aRjaacIcacqaHjpWDcaGGPaGaeyypa0JaeqOUdS2cdaWgaaqcfasa aKqzadGaaGimaaqcfasabaqcLbsacaGGBbGaaiikaiaaigdacqGHsi sljuaGdaWcaaqaaKqzGeGaaGinaiaadMgacqaHXoqylmaaDaaajuai baqcLbmacqGHEisPaKqbGeaajugWaiaaikdaaaqcLbsacqaH6oWAlm aaDaaajuaibaqcLbmacaaIWaaajuaibaqcLbmacaaIYaaaaKqzGeGa eqyWdixcfa4aaSbaaKqbGeaajugWaiaadAgaaKqbagqaaKqzGeGaeq yYdChajuaGbaqcLbsacqqHBoatlmaaCaaajuaibeqaaKqzadGaaGOm aaaajugibiabek7aITWaaWbaaKqbGeqabaqcLbmacaaIYaaaaKqzGe Gaeq4TdGgaaiaacMcajuaGdaahaaqabeaadaWcbaqaaKqzGeGaaGym aaqcfayaaKqzGeGaaGOmaaaaaaGaeyOeI0IaamyAaKqbaoaalaaaba qcLbsacqaHjpWDcqaHXoqyjuaGdaWgaaqcfasaaKqzadGaeyOhIuka juaGbeaajugibiabeg8aYLqbaoaaBaaajuaibaqcLbmacaWGMbaaju aGbeaajugibiabeQ7aRLqbaoaaBaaajuaibaqcLbmacaaIWaaajuaG beaaaeaajugibiabek7aIjabeE7aObaacaGGDbqcfa4aaWbaaeqaju aibaqcLbmacqGHsislcaaIXaaaaaaa@8B44@                  (10)

α = 1 2 ( β -1 +1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHLqbaoaaBaaajuaibaqcLbmacqGHEisPaKqbagqaaKqzGeGaeyyp a0tcfa4aaSaaaeaajugibiaaigdaaKqbagaajugibiaaikdaaaGaai ikaiabek7aILqbaoaaCaaabeqcfasaaKqzadGaaeylaiaaigdaaaqc LbsacaqGRaGaaGymaiaacMcaaaa@4A27@                                                              (11)

Where κ0is static permeability, η is viscosity coefficient, Λ is pore feature size, α is porosity curvature. Equation (11) is an approximate formula proposed by Berryman.18

Dispersion equations

Elastic rod embedded in infinite porous media

The model1 of this paper is modelled as an infinite long elastic rod embedded in an infinite porous media as shown in Figure 1. It is convenient to solve this problem using cylindrical coordinate, where the z axis of the coordinate is the central axis of the solid rod. In elastic rod, the velocities of longitudinal wave and shear wave, density are denoted by Cl1, Ct1,ρ1 are respectively. In infinite porous media, the velocities of fast longitudinal wave, slow longitudinal wave and shear wave, solid density and fluid density are denoted by Cfl2,Csl2,Ct2,ρs,ρf are respectively. In this paper, only longitudinal modes are taken into consideration. In the frequency-wavenumber domain, the displacement components are given in terms of the potentials Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuOPdyeaaa@3859@  and Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiQdKfaaa@386E@ . These potentials satisfy the wave equations and respectively denote the compression (P), shear vertical (SV) waves. For elastic rod, the potentials can be expressed as

{ Φ 1 =[ A 1 I 0 ( α 1 r )+ K 0 ( α 1 r ) ] e i( kz-wt )   Ψ 1 = A 2 I 0 ( β 1 r ) e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqaaaaa aaaaWdbmaaceaak8aabaqcLbsafaqabeGabaaakeaajugibiaabA6a lmaaBaaajeaibaqcLbmapeGaamymaaqcbaYdaeqaaKqzGeGaamypaK qba+qadaWadaGcpaqaaKqzGeWdbiaadgeal8aadaWgaaqcbasaaKqz adWdbiaadgdaaKqaG8aabeaajugib8qacaWGjbWcpaWaaSbaaKqaGe aajugWa8qacaWGWaaajeaipaqabaqcfa4dbmaabmaak8aabaqcLbsa cqaHXoqyjuaGdaWgaaqcbasaaKqzadWdbiaadgdaaSWdaeqaaKqzGe WdbiaadkhaaOGaayjkaiaawMcaaKqzGeGaam4kaiaadUeal8aadaWg aaqcbasaaKqzadWdbiaadcdaaKqaG8aabeaajuaGpeWaaeWaaOWdae aajugibiabeg7aHTWaaSbaaKqaGeaajugWa8qacaWGXaaajeaipaqa baqcLbsapeGaamOCaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLb sacaWGLbWcpaWaaWbaaKqaGeqabaqcLbmapeGaamyAaSWaaeWaaKqa G8aabaqcLbmapeGaam4AaiaadQhacaWGTaGaam4DaiaadshaaKqaGi aawIcacaGLPaaaaaaak8aabaqcLbsapeGaaiiOaiaabI6al8aadaWg aaqcbasaaKqzadWdbiaadgdaaKqaG8aabeaajugib8qacaWG9aGaam yqaSWdamaaBaaajeaibaqcLbmacaWGYaaajeaibeaajugib8qacaWG jbWcpaWaaSbaaKqaGeaajugWa8qacaWGWaaajeaipaqabaqcfa4dbm aabmaak8aabaqcLbsacqaHYoGylmaaBaaajeaibaqcLbmapeGaamym aaqcbaYdaeqaaKqzGeWdbiaadkhaaOGaayjkaiaawMcaaKqzGeGaam yzaSWdamaaCaaajeaibeqaaKqzadWdbiaadMgalmaabmaajeaipaqa aKqzadWdbiaadUgacaWG6bGaamylaiaadEhacaWG0baajeaicaGLOa GaayzkaaaaaaaaaOGaay5Eaaaaaa@8D88@             (12)

Where α 1 2 = k 2 - k l1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHTWaa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaabaaaaaaaaa peGaamOmaaaajugibiaad2dacaWGRbWcpaWaaWbaaKqaGeqabaqcLb mapeGaamOmaaaajugibiaad2cacaWGRbWcpaWaa0baaKqaGeaajugW a8qacaWGSbGaamymaaqcbaYdaeaajugWa8qacaWGYaaaaaaa@4914@   β 1 2 = k 2 - k t1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcqaHYo GydaqhaaqcfasaaiaaigdaaeaaqaaaaaaaaaWdbiaadkdaaaqcfaOa amypaiaadUgapaWaaWbaaKqbGeqabaWdbiaadkdaaaqcfaOaamylai aadUgapaWaa0baaKqbGeaapeGaamiDaiaadgdaa8aabaWdbiaadkda aaaaaa@42CC@ , the wave numbers of the longitudinal and shear body waves of are k l1 =ω/ c l1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaam4AaSWdamaaBaaajeaibaqcLbmapeGaamiBaiaadgda aKqaG8aabeaajugibiaab2dapeGaeqyYdCNaae4la8aacaWGJbqcfa 4aaSbaaKqaGeaajugWaiaadYgacaWGXaaaleqaaaaa@43E0@   k t1 =ω/ c t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaam4AaSWdamaaBaaajeaibaqcLbmapeGaamiDaiaadgda aKqaG8aabeaajugibiaab2dapeGaeqyYdCNaae4la8aacaWGJbqcfa 4aaSbaaKqaGeaajugWaiaadshacaWGXaaaleqaaaaa@43F0@  and the wave number of the guided wave propagating along the z-axis k=ω/v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaam4Aa8aacaqG9aWdbiabeM8a3jaab+capaGaaeODaaaa @3C35@  is where x is the angular frequency and v is the unknown phase velocity of guided wave that is dependent on frequency and could be derived by solving the dispersion equation. Further, A1, A2 are the unknown coefficients to be determined by the boundary conditions.

Figure 1 The schematic of infinite long elastic rod embedded in infinite porous media.

For infinite porous media wrap layer, the expressions of potential are divided into two parts, solid and liquid phases. For solid phase, the potentials can be expressed as

Φ sf = B 1 K 0 ( α 21 r ) e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabA 6almaaBaaajeaibaqcLbmacaWGZbGaamOzaaqcbasabaqcLbsaqaaa aaaaaaWdbiaad2dacaWGcbWcpaWaaSbaaKqaGeaajugWaiaadgdaaK qaGeqaaKqzGeWdbiaadUeal8aadaWgaaqcbasaaKqzadWdbiaadcda aKqaG8aabeaajuaGpeWaaeWaaOWdaeaajugibiabeg7aHTWaaSbaaK qaGeaajugWa8qacaWGYaGaamymaaqcbaYdaeqaaKqzGeWdbiaadkha aOGaayjkaiaawMcaaKqzGeGaamyzaSWdamaaCaaajeaibeqaaKqzad WdbiaadMgalmaabmaajeaipaqaaKqzadWdbiaadUgacaWG6bGaamyl aiaadEhacaWG0baajeaicaGLOaGaayzkaaaaaaaa@5945@                                          (13)

Φ ss = B 2 K 0 ( α 22 r ) e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabA 6almaaBaaajeaibaqcLbmacaWGZbGaam4CaaqcbasabaqcLbsaqaaa aaaaaaWdbiaad2dacaWGcbWcdaWgaaqcbasaaKqzadGaamOmaaqcba sabaqcLbsacaWGlbWcpaWaaSbaaKqaGeaajugWaiaadcdaaKqaGeqa aKqba+qadaqadaGcpaqaaKqzGeGaeqySde2cdaWgaaqcbasaaKqzad WdbiaadkdacaWGYaaajeaipaqabaqcLbsapeGaamOCaaGccaGLOaGa ayzkaaqcLbsacaWGLbWcpaWaaWbaaKqaGeqabaqcLbmapeGaamyAaS WaaeWaaKqaG8aabaqcLbmapeGaam4AaiaadQhacaWGTaGaam4Daiaa dshaaKqaGiaawIcacaGLPaaaaaaaaa@5916@                                       (14)

Ψ s = B 3 K 0 ( β 21 r ) e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaaeiQdSWaaSbaaKqbGeaajugWaiaabohaaKqbGeqaaKqz GeGaamypaiaadkeal8aadaWgaaqcfasaaKqzadGaam4maaqcfasaba qcLbsacaWGlbWcdaWgaaqcfasaaKqzadWdbiaadcdaaKqbG8aabeaa juaGpeWaaeWaa8aabaqcLbsacqaHYoGyjuaGdaWgaaqcfasaaKqzad GaamOmaiaadgdaaKqbagqaaKqzGeWdbiaadkhaaKqbakaawIcacaGL Paaajugibiaadwgal8aadaahaaqcfasabeaajugWa8qacaWGPbWcda qadaqcfaYdaeaajugWa8qacaWGRbGaamOEaiaad2cacaWG3bGaamiD aaqcfaIaayjkaiaawMcaaaaaaaa@59A9@                                                (15)

Thus, the potential of solid compression (P) wave can be expressed as Φ s = Φ sf + Φ ss MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabA 6almaaBaaajeaibaqcLbmacaWGZbaajeaibeaajugibabaaaaaaaaa peGaamypa8aacaqGMoWcdaWgaaqcbasaaKqzadGaam4CaiaadAgaaK qaGeqaaKqzGeGaey4kaSIaaeOPdSWaaSbaaKqaGeaajugWaiaadoha caWGZbaajeaibeaaaaa@4709@ . Where α 21 2 = k 2 - k p1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHTWaa0baaKqaGeaajugWaiaadkdacaWGXaaajeaibaqcLbmaqaaa aaaaaaWdbiaadkdaaaqcLbsacaWG9aGaam4AaKqba+aadaahaaWcbe qcbasaaKqzadWdbiaadkdaaaqcLbsacaWGTaGaam4AaSWdamaaDaaa jeaibaqcLbmacaWGWbGaaGymaaqcbasaaKqzadWdbiaadkdaaaaaaa@4A3E@   α 22 2 = k 2 - k p2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHTWaa0baaKqaGeaajugWaiaadkdacaWGYaaajeaibaqcLbmaqaaa aaaaaaWdbiaadkdaaaqcLbsacaWG9aGaam4AaSWdamaaCaaajeaibe qaaKqzadWdbiaadkdaaaqcLbsacaWGTaGaam4AaSWdamaaDaaajeai baqcLbmapeGaamiCaiaadkdaaKqaG8aabaqcLbmapeGaamOmaaaaaa a@49CC@  , β 21 2 = k 2 - k t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek 7aITWaa0baaKqbGeaajugWaiaaikdacaaIXaaajuaibaqcLbmaqaaa aaaaaaWdbiaadkdaaaqcLbsacaWG9aGaam4AaKqba+aadaahaaqabK qbGeaajugWa8qacaWGYaaaaKqzGeGaamylaiaadUgal8aadaqhaaqc fasaaKqzadWdbiaadshaaKqbG8aabaqcLbmapeGaamOmaaaaaaa@49BB@ .The wave numbers of the fast longitudinal wave kp1 and slow longitudinal wave kp2 and shear wave ktcan be obtained by equation (1), (2). B1, B2, B3 are the unknown coefficients to be determined by the boundary conditions.

For liquid phase, the potentials can be expressed as

Φ f = η 1 Φ sf + η 2 Φ ss MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaqGMo WaaSbaaKqbGeaacaWGMbaajuaGbeaaqaaaaaaaaaWdbiaad2dacqaH 3oaAdaWgaaqcfasaaiaadgdaaeqaaKqba+aacaqGMoWaaSbaaKqbGe aacaWGZbGaamOzaaqcfayabaGaey4kaSIaeq4TdG2aaSbaaKqbGeaa caWGYaaabeaajuaGcaqGMoWaaSbaaKqbGeaacaWGZbGaam4Caaqaba aaaa@495B@                                                           (16)

Ψ f = η 3 Ψ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaaeiQdSWaaSbaaKqbGeaajugWaiaadAgaaKqbGeqaaKqz GeGaamypaiabeE7aOTWaaSbaaKqbGeaajugWaiaadodaaKqbGeqaaK qzGeGaaeiQdSWaaSbaaKqbGeaajugWaiaadohaaKqbGeqaaaaa@4484@                                                                    (17)

Where η1, η2, η3 are liquid participation factor of two longitudinal shear waves respectively.19 It is convenient to introduce displacement potentials. And the normal and tangential stress tractions are related to displacements using the Hooke’s law.

The expressions of displacement and stress tractions in elastic media are

{ u r1 = Φ 1 r + 2 Ψ 1 rz u z1 = Φ 1 z - 2 Ψ 1 r 2 - 1 r Ψ 1 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqaaaaa aaaaWdbmaaceaak8aabaqcLbsafaqabeGabaaakeaajugib8qacaWG 1bWcpaWaaSbaaKqaGeaajugWa8qacaWGYbGaamymaaqcbaYdaeqaaK qzGeWdbiaad2dajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaabA6a lmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaOWdaeaajugib8qacq GHciITcaWGYbaaaiaadUcajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi 2UWdamaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacaqGOoWcda WgaaqcbasaaKqzadGaaGymaaqcbasabaaak8aabaqcLbsapeGaeyOa IyRaamOCaiabgkGi2kaadQhaaaaak8aabaqcLbsapeGaamyDaSWdam aaBaaajeaibaqcLbmapeGaamOEaiaadgdaaKqaG8aabeaajugib8qa caWG9aqcfa4aaSaaaOWdaeaajugib8qacqGHciITcaqGMoWcdaWgaa qcbasaaKqzadGaaGymaaqcbasabaaak8aabaqcLbsapeGaeyOaIyRa amOEaaaacaWGTaqcfa4aaSaaaOWdaeaajugib8qacqGHciITl8aada ahaaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaaeiQdSWaaSbaaKqa GeaajugWaiaaigdaaKqaGeqaaaGcpaqaaKqzGeWdbiabgkGi2kaadk hajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaWGYaaaaaaajugibiaa d2cajuaGdaWcaaGcpaqaaKqzGeWdbiaadgdaaOWdaeaajugib8qaca WGYbaaaKqbaoaalaaak8aabaqcLbsapeGaeyOaIyRaaeiQdSWaaSba aKqaGeaajugWaiaaigdaaKqaGeqaaaGcpaqaaKqzGeWdbiabgkGi2k aadkhaaaaaaaGccaGL7baaaaa@867E@                                       (18)

 { σ rr1 =2 μ 1 u r 1 r + λ 1 ( u r 1 r + u r1 r + u z1 z ) σ rz1 = μ 1 ( u r1 z + u z1 r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabckajuaGdaGabaGcpaqaaKqzGeqbaeqabiqaaaGcbaqcLbsa cqaHdpWClmaaBaaajeaibaqcLbmapeGaamOCaiaadkhacaWGXaaaje aipaqabaqcLbsapeGaamypaiaaikdacqaH8oqBlmaaBaaajeaibaqc LbmacaWGXaaajeaibeaajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2k aadwhal8aadaWgaaqcbasaaKqzadWdbiaadkhaaKqaG8aabeaalmaa BaaajeaibaqcLbmacaWGXaaajeaibeaaaOqaaKqzGeWdbiabgkGi2k aadkhaaaGaam4kaiabeU7aSTWaaSbaaKqaGeaajugWaiaadgdaaKqa GeqaaKqbaoaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaam yDaSWdamaaBaaajeaibaqcLbmapeGaamOCaaqcbaYdaeqaaSWaaSba aKqaGeaajugWaiaadgdaaKqaGeqaaaGcbaqcLbsapeGaamOCaaaaca WGRaqcfa4aaSaaaOWdaeaajugib8qacqGHciITcaWG1bWcpaWaaSba aKqaGeaajugWa8qacaWGYbGaamymaaqcbaYdaeqaaaGcbaqcLbsape GaeyOaIyRaamOCaaaacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiab gkGi2kaadwhal8aadaWgaaqcbasaaKqzadWdbiaadQhacaWGXaaaje aipaqabaaakeaajugib8qacqGHciITcaWG6baaaaGccaGLOaGaayzk aaaapaqaaKqzGeGaeq4Wdm3cdaWgaaqcbasaaKqzadWdbiaadkhaca WG6bGaamymaaqcbaYdaeqaaKqzGeWdbiaad2dacqaH8oqBjuaGdaWg aaWcbaqcLbsacaWGXaaaleqaaKqbaoaabmaak8aabaqcfa4dbmaala aak8aabaqcLbsapeGaeyOaIyRaamyDaKqba+aadaWgaaqcbasaaKqz adWdbiaadkhacaWGXaaal8aabeaaaOqaaKqzGeWdbiabgkGi2kaadQ haaaGaam4kaKqbaoaalaaak8aabaqcLbsapeGaeyOaIyRaamyDaKqb a+aadaWgaaqcbasaaKqzadWdbiaadQhacaWGXaaal8aabeaaaOqaaK qzGeWdbiabgkGi2kaadkhaaaaakiaawIcacaGLPaaaaaaacaGL7baa aaa@9D83@             (19)

The expressions of displacement and stress tractions in porous media are

{ u rs = Φ s r + 2 Ψ s rz u zs = Φ s z - 2 Ψ s r 2 - 1 r Ψ s r u rf = Φ f r + 2 Ψ f rz u zf = Φ f z - 2 Ψ f r 2 - 1 r Ψ f r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGaba GcbaqcLbsafaqabeabbaaaaOqaaKqzGeaeaaaaaaaaa8qacaWG1bWc paWaaSbaaKqaGeaajugWa8qacaWGYbGaam4CaaqcbaYdaeqaaKqzGe Wdbiaad2dajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaabA6almaa BaaajeaibaqcLbmacaWGZbaajeaibeaaaOWdaeaajugib8qacqGHci ITcaWGYbaaaiaadUcajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2UWd amaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacaqGOoWcdaWgaa qcbasaaKqzadGaam4Caaqcbasabaaak8aabaqcLbsapeGaeyOaIyRa amOCaiabgkGi2kaadQhaaaaak8aabaqcLbsapeGaamyDaSWdamaaBa aajeaibaqcLbmapeGaamOEaiaadohaaKqaG8aabeaajugib8qacaWG 9aqcfa4aaSaaaOWdaeaajugib8qacqGHciITcaqGMoWcdaWgaaqcba saaKqzadGaam4Caaqcbasabaaak8aabaqcLbsapeGaeyOaIyRaamOE aaaacaWGTaqcfa4aaSaaaOWdaeaajugib8qacqGHciITjuaGpaWaaW baaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaaeiQdSWaaSbaaKqa GeaajugWaiaadohaaKqaGeqaaaGcpaqaaKqzGeWdbiabgkGi2kaadk hajuaGpaWaaWbaaSqabeaajugib8qacaWGYaaaaaaacaWGTaqcfa4a aSaaaOWdaeaajugib8qacaWGXaaak8aabaqcLbsapeGaamOCaaaaju aGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaabI6almaaBaaajeaibaqc LbmacaWGZbaajeaibeaaaOWdaeaajugib8qacqGHciITcaWGYbaaaa GcpaqaaKqzGeWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWG YbGaamOzaaWcpaqabaqcLbsapeGaamypaKqbaoaalaaak8aabaqcLb sapeGaeyOaIyRaaeOPdSWaaSbaaKqaGeaajugWaiaadAgaaKqaGeqa aaGcpaqaaKqzGeWdbiabgkGi2kaadkhaaaGaam4kaKqbaoaalaaak8 aabaqcLbsapeGaeyOaIyBcfa4damaaCaaaleqajeaibaqcLbmapeGa aGOmaaaajugibiaabI6almaaBaaajeaibaqcLbmacaWGMbaajeaibe aaaOWdaeaajugib8qacqGHciITcaWGYbGaeyOaIyRaamOEaaaaaOWd aeaajugib8qacaWG1bWcpaWaaSbaaKqaGeaajugWa8qacaWG6bGaam OzaaqcbaYdaeqaaKqzGeWdbiaad2dajuaGdaWcaaGcpaqaaKqzGeWd biabgkGi2kaabA6almaaBaaajqwaa+FaaKqzadGaamOzaaqcKfaG=h qaaaGcpaqaaKqzGeWdbiabgkGi2kaadQhaaaGaamylaKqbaoaalaaa k8aabaqcLbsapeGaeyOaIy7cpaWaaWbaaKqaGeqabaqcLbmapeGaaG OmaaaajugibiaabI6almaaBaaajeaibaqcLbmacaWGMbaajeaibeaa aOWdaeaajugib8qacqGHciITcaWGYbWcpaWaaWbaaKqaGeqabaqcLb mapeGaamOmaaaaaaqcLbsacaWGTaqcfa4aaSaaaOWdaeaajugib8qa caWGXaaak8aabaqcLbsapeGaamOCaaaajuaGdaWcaaGcpaqaaKqzGe WdbiabgkGi2kaabI6ajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaa aOWdaeaajugib8qacqGHciITcaWGYbaaaaaaaOWdaiaawUhaaaaa@DADB@                                    (20)

{ σ rrs =2N u r s r +A( u r s r + u rs r + u zs z )+Q( u r f r + u rf r + u zf z ) σ rrf =Q( u r s r + u rs r + u zs z )+R( u r f r + u rf r + u zf z ) σ rzs =N( u r s z + u zs r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGaba GcbaqcLbsafaqabeWabaaakeaajugibiabeo8aZTWaaSbaaKqaGeaa jugWaabaaaaaaaaapeGaamOCaiaadkhacaWGZbaajeaipaqabaqcLb sapeGaamypaiaaikdacaWGobqcfa4aaSaaaOWdaeaajugib8qacqGH ciITcaWG1bWcpaWaaSbaaKqaGeaajugWa8qacaWGYbaajeaipaqaba WcdaWgaaqcbasaaKqzadGaam4Caaqcbasabaaakeaajugib8qacqGH ciITcaWGYbaaaiaadUcacaWGbbqcfa4aaeWaaOWdaeaajuaGpeWaaS aaaOWdaeaajugib8qacaWG1bWcpaWaaSbaaKqaGeaajugWa8qacaWG YbaajeaipaqabaWcdaWgaaqcbasaaKqzadGaam4Caaqcbasabaaake aajugib8qacaWGYbaaaiaadUcajuaGdaWcaaGcpaqaaKqzGeWdbiab gkGi2kaadwhal8aadaWgaaqcbasaaKqzadWdbiaadkhacaWGZbaaje aipaqabaaakeaajugib8qacqGHciITcaWGYbaaaiabgUcaRKqbaoaa laaak8aabaqcLbsapeGaeyOaIyRaamyDaSWdamaaBaaajeaibaqcLb mapeGaamOEaiaadohaaKqaG8aabeaaaOqaaKqzGeWdbiabgkGi2kaa dQhaaaaakiaawIcacaGLPaaajugibiabgUcaRiaadgfajuaGdaqada GcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadwhalmaaBaaabaWd amaaBaaameaajugWa8qacaWGYbaam8aabeaalmaaBaaameaajugWai aadAgaaWqabaaal8qabeaaaOWdaeaajugib8qacaWGYbaaaiaadUca juaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadwhal8aadaWgaaqcba saaKqzadWdbiaadkhacaWGMbaal8aabeaaaOqaaKqzGeWdbiabgkGi 2kaadkhaaaGaey4kaSscfa4aaSaaaOWdaeaajugib8qacqGHciITca WG1bqcfa4damaaBaaajeaibaqcLbmapeGaamOEaiaadAgaaSWdaeqa aaGcbaqcLbsapeGaeyOaIyRaamOEaaaaaOGaayjkaiaawMcaaaWdae aajugibiabeo8aZTWaaSbaaKqaGeaajugWa8qacaWGYbGaamOCaiaa dAgaaKqaG8aabeaajugib8qacaWG9aGaamyuaKqbaoaabmaak8aaba qcfa4dbmaalaaak8aabaqcLbsapeGaamyDaSWdamaaBaaajeaibaqc LbmapeGaamOCaaqcbaYdaeqaaSWaaSbaaKqaGeaajugWaiaadohaaK qaGeqaaaGcbaqcLbsapeGaamOCaaaacaWGRaqcfa4aaSaaaOWdaeaa jugib8qacqGHciITcaWG1bWcpaWaaSbaaKqaGeaajugWa8qacaWGYb Gaam4CaaqcbaYdaeqaaaGcbaqcLbsapeGaeyOaIyRaamOCaaaacqGH RaWkjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadwhal8aadaWgaa qcbasaaKqzadWdbiaadQhacaWGZbaajeaipaqabaaakeaajugib8qa cqGHciITcaWG6baaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGsb qcfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qacaWG1bWc paWaaSbaaKqaGeaajugWa8qacaWGYbaajeaipaqabaWcdaWgaaqcba saaKqzadGaamOzaaqcbasabaaakeaajugib8qacaWGYbaaaiaadUca juaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadwhal8aadaWgaaqcba saaKqzadWdbiaadkhacaWGMbaajeaipaqabaaakeaajugib8qacqGH ciITcaWGYbaaaiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaeyOaIy RaamyDaKqba+aadaWgaaqcbasaaKqzadWdbiaadQhacaWGMbaal8aa beaaaOqaaKqzGeWdbiabgkGi2kaadQhaaaaakiaawIcacaGLPaaaa8 aabaqcLbsacqaHdpWCjuaGdaWgaaqcbasaaKqzadWdbiaadkhacaWG 6bGaam4CaaWcpaqabaqcLbsapeGaamypaiaad6eacaGGOaqcfa4aaS aaaOWdaeaajugib8qacqGHciITcaWG1bWcpaWaaSbaaKqaGeaajugW a8qacaWGYbaajeaipaqabaWcdaWgaaqcbasaaKqzadGaam4Caaqcba sabaaakeaajugib8qacqGHciITcaWG6baaaiaadUcajuaGdaWcaaGc paqaaKqzGeWdbiabgkGi2kaadwhal8aadaWgaaqcbasaaKqzadWdbi aadQhacaWGZbaajeaipaqabaaakeaajugib8qacqGHciITcaWGYbaa aiaacMcaaaaak8aacaGL7baaaaa@0A63@ (21)

Here λ1,μ1 are lame constants of the elastic media.A,N correspond to the familiar lame constants of the porous media, A=P-2N.P,Qand R are elastic constants defined by Biot, as shown in equation (22)-(24). The coefficient R is a measure of the pressure required on the fluid to force a certain volume of the fluid into the aggregate while the total volume remains constant. The coefficient Q is of the nature of a coupling between the volume change of the solid and that of the fluid.

P= (1β)(1β K b / K s ) K s + β K s K b / K f 1β K b / K s +β( K s / K f ) + 4 3 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc facqGH9aqpjuaGdaWcaaGcbaqcLbsacaGGOaGaaGymaiabgkHiTiab ek7aIjaacMcacaGGOaGaaGymaiabgkHiTiabek7aIjabgkHiTKqbao aalyaakeaajugibiaadUealmaaBaaajeaibaqcLbmacaWGIbaajeai beaaaOqaaKqzGeGaam4saSWaaSbaaKqaGeaajugWaiaadohaaKqaGe qaaaaajugibiaacMcacaWGlbWcdaWgaaqcbasaaKqzadGaam4Caaqc basabaqcLbsacqGHRaWkjuaGdaWcgaGcbaqcLbsacqaHYoGycaWGlb WcdaWgaaqcbasaaKqzadGaam4CaaqcbasabaqcLbsacaWGlbqcfa4a aSbaaKqaGeaajugWaiaadkgaaSqabaaakeaajugibiaadUealmaaBa aajeaibaqcLbmacaWGMbaajeaibeaaaaaakeaajugibiaaigdacqGH sislcqaHYoGycqGHsisljuaGdaWcgaGcbaqcLbsacaWGlbWcdaWgaa qcbasaaKqzadGaamOyaaqcbasabaaakeaajugibiaadUealmaaBaaa jeaibaqcLbmacaWGZbaajeaibeaajugibiabgUcaRiabek7aIjaacI cajuaGdaWcgaGcbaqcLbsacaWGlbWcdaWgaaqcbasaaKqzadGaam4C aaqcbasabaaakeaajugibiaadUealmaaBaaajeaibaqcLbmacaWGMb aajeaibeaaaaqcLbsacaGGPaaaaaaacqGHRaWkjuaGdaWcaaGcbaqc LbsacaaI0aaakeaajugibiaaiodaaaGaamOtaaaa@8106@ (22)

Q= (1β K b / K s )β K s 1β K b / K s +β( K s / K f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadg facqGH9aqpjuaGdaWcaaGcbaqcLbsacaGGOaGaaGymaiabgkHiTiab ek7aIjabgkHiTKqbaoaalyaakeaajugibiaadUealmaaBaaajeaiba qcLbmacaWGIbaajeaibeaaaOqaaKqzGeGaam4saKqbaoaaBaaajeai baqcLbmacaWGZbaaleqaaaaajugibiaacMcacqaHYoGycaWGlbWcda WgaaqcbasaaKqzadGaam4CaaqcbasabaaakeaajugibiaaigdacqGH sislcqaHYoGycqGHsisljuaGdaWcgaGcbaqcLbsacaWGlbWcdaWgaa qcbasaaKqzadGaamOyaaqcbasabaaakeaajugibiaadUealmaaBaaa jeaibaqcLbmacaWGZbaajeaibeaajugibiabgUcaRiabek7aIjaacI cajuaGdaWcgaGcbaqcLbsacaWGlbWcdaWgaaqcbasaaKqzadGaam4C aaqcbasabaaakeaajugibiaadUeajuaGdaWgaaqcbasaaKqzadGaam OzaaWcbeaaaaqcLbsacaGGPaaaaaaaaaa@69AF@                              (23)

R= β 2 K s 1β K b / K s +β( K s / K f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadk facqGH9aqpjuaGdaWcaaGcbaqcLbsacqaHYoGyjuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaajugibiaadUealmaaBaaajeaibaqcLbmaca WGZbaajeaibeaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aIjabgkHi TKqbaoaalyaakeaajugibiaadUealmaaBaaajeaibaqcLbmacaWGIb aajeaibeaaaOqaaKqzGeGaam4saSWaaSbaaKqaGeaajugWaiaadoha aKqaGeqaaKqzGeGaey4kaSIaeqOSdiMaaiikaKqbaoaalyaakeaaju gibiaadUealmaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaOqaaKqz GeGaam4saSWaaSbaaKqaGeaajugWaiaadAgaaKqaGeqaaaaajugibi aacMcaaaaaaaaa@5D77@                            (24)

At the interface (r = a), the displacement and stress are continuity. Taking into account the elastic solid impermeable material that restrict the outflow of fluid in porous media on the border, solid skeleton of normal displacement is equal to the fluid normal displacement.19 The boundary conditions can be written as

{ u r1 =(1β) u rs +β u rf u z1 = u zs σ rr1 = σ rrs + σ rrf σ rz1 = σ rzs u rs = u rf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGaba GcbaqcLbsafaqabeqbbaaaaOqaaKqzGeaeaaaaaaaaa8qacaWG1bWc paWaaSbaaKqaGeaajugWa8qacaWGYbGaaGymaaqcbaYdaeqaaKqzGe Wdbiaad2dacaGGOaGaaGymaiabgkHiTiabek7aIjaacMcacaWG1bWc paWaaSbaaKqaGeaajugWa8qacaWGYbGaam4CaaqcbaYdaeqaaKqzGe Gaey4kaSIaeqOSdi2dbiaadwhal8aadaWgaaqcbasaaKqzadWdbiaa dkhacaWGMbaajeaipaqabaaakeaajugib8qacaWG1bWcpaWaaSbaaK qaGeaajugWa8qacaWG6bGaaGymaaqcbaYdaeqaaKqzGeWdbiaad2da caWG1bWcpaWaaSbaaKqaGeaajugWa8qacaWG6bGaam4CaaqcbaYdae qaaaGcbaqcLbsacqaHdpWClmaaBaaajeaibaqcLbmapeGaamOCaiaa dkhacaWGXaaajeaipaqabaqcLbsapeGaamypa8aacqaHdpWClmaaBa aajeaibaqcLbmapeGaamOCaiaadkhacaWGZbaajeaipaqabaqcLbsa cqGHRaWkcqaHdpWClmaaBaaajeaibaqcLbmapeGaamOCaiaadkhaca WGMbaajeaipaqabaaakeaajugibiabeo8aZTWaaSbaaKqaGeaajugW a8qacaWGYbGaamOEaiaadgdaaKqaG8aabeaajugib8qacaWG9aWdai abeo8aZTWaaSbaaKqaGeaajugWa8qacaWGYbGaamOEaiaadohaaKqa G8aabeaaaOqaaKqzGeWdbiaadwhal8aadaWgaaqcbasaaKqzadWdbi aadkhacaWGZbaajeaipaqabaqcLbsapeGaamypaiaadwhal8aadaWg aaqcbasaaKqzadWdbiaadkhacaWGMbaajeaipaqabaaaaaGccaGL7b aaaaa@8CAF@                                            (25)

By substituting Equations (18),(19),(20),and (21) into Equation (25), the equations can be written as,

[ m 11 m 12 m 13 m 14 m 15 m 21 m 22 m 23 m 24 m 25 m 31 m 32 m 33 m 34 m 35 m 41 m 42 m 43 m 44 m 45 m 51 m 52 m 53 m 54 m 55 ][ A 1 A 2 B 1 B 2 B 3 ]=[ b 1 b 2 b 3 b 4 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWada GcbaqcLbsafaqabeqbfaaaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaaGymaiaaigdaaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaa qcbasaaKqzadGaaGymaiaaikdaaKqaGeqaaaGcbaqcLbsacaWGTbqc fa4aaSbaaKqaGeaajugWaiaaigdacaaIZaaaleqaaaGcbaqcLbsaca WGTbWcdaWgaaqcbasaaKqzadGaaGymaiaaisdaaKqaGeqaaaGcbaqc LbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGymaiaaiwdaaKqaGeqaaa GcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGOmaiaaigdaaKqa GeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGOmaiaaik daaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGOm aiaaiodaaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzad GaaGOmaiaaisdaaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaaGOmaiaaiwdaaKqaGeqaaaGcbaqcLbsacaWGTbqcfa4aaS baaKqaGeaajugWaiaaiodacaaIXaaaleqaaaGcbaqcLbsacaWGTbWc daWgaaqcbasaaKqzadGaaG4maiaaikdaaKqaGeqaaaGcbaqcLbsaca WGTbWcdaWgaaqcbasaaKqzadGaaG4maiaaiodaaKqaGeqaaaGcbaqc LbsacaWGTbWcdaWgaaqcbasaaKqzadGaaG4maiaaisdaaKqaGeqaaa GcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaG4maiaaiwdaaKqa GeqaaaGcbaqcLbsacaWGTbqcfa4aaSbaaKqaGeaajugWaiaaisdaca aIXaaaleqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGin aiaaikdaaKqaGeqaaaGcbaqcLbsacaWGTbqcfa4aaSbaaKqaGeaaju gWaiaaisdacaaIZaaaleqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaaGinaiaaisdaaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaa qcbasaaKqzadGaaGinaiaaiwdaaKqaGeqaaaGcbaqcLbsacaWGTbWc daWgaaqcbasaaKqzadGaaGynaiaaigdaaKqaGeqaaaGcbaqcLbsaca WGTbWcdaWgaaqcbasaaKqzadGaaGynaiaaikdaaKqaGeqaaaGcbaqc LbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGynaiaaiodaaKqaGeqaaa GcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGynaiaaisdaaKqa GeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGynaiaaiw daaKqaGeqaaaaaaOGaay5waiaaw2faaKqbaoaadmaakeaajugibuaa beqafeaaaaGcbaqcLbsacaWGbbWcdaWgaaqcbasaaKqzadGaaGymaa qcbasabaaakeaajugibiaadgealmaaBaaajeaibaqcLbmacaaIYaaa jeaibeaaaOqaaKqzGeGaamOqaSWaaSbaaKqaGeaajugWaiaaigdaaK qaGeqaaaGcbaqcLbsacaWGcbqcfa4aaSbaaKqaGeaajugWaiaaikda aSqabaaakeaajugibiaadkeajuaGdaWgaaqcbasaaKqzadGaaG4maa WcbeaaaaaakiaawUfacaGLDbaajugibiabg2da9Kqbaoaadmaakeaa jugibuaabeqafeaaaaGcbaqcLbsacaWGIbWcdaWgaaqcbasaaKqzad GaaGymaaqcbasabaaakeaajugibiaadkgalmaaBaaajeaibaqcLbma caaIYaaajeaibeaaaOqaaKqzGeGaamOyaSWaaSbaaKqaGeaajugWai aaiodaaKqaGeqaaaGcbaqcLbsacaWGIbqcfa4aaSbaaKqaGeaajugW aiaaisdaaSqabaaakeaajugibiaaicdaaaaakiaawUfacaGLDbaaaa a@DDA2@              (26)

When the right-hand side of Equation (26) is zero matrixes, the necessary and sufficient condition for the non-zero solutions of the equation is the coefficient determinant Δ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHuo arcqGH9aqpcaaIWaaaaa@398C@ . It is the dispersion equation whose solution corresponds to the guided wave. The matrix elements of the 5* 5 matrix for the dispersion equation of guided waves are listed in Appendix A.

Porous rod embedded in infinite elastic media

The model 2 is modelled as an infinite long porous media rod embedded in infinite elastic media as shown in Figure 2. In porous rod, the velocities of fast longitudinal wave, slow longitudinal wave and shear wave, solid density and fluid density are denoted by Cfl,Csl,Ct,ρs,ρf are respectively. In infinite elastic media, the velocities of longitudinal wave and shear wave, density are denoted by Cl2, Ct2,ρ2 are respectively. Similarly, only longitudinal modes are taken into consideration in this model.

Figure 2 The schematic of infinite long porous media rod embedded in infinite elastic media.

For infinite porous media wrap layer, the expressions of potential are divided into two parts, solid and liquid phases. For solid phase, the potentials can be expressed as;

Φ sf =[ C 1 I 0 ( α 11 r )+ K 0 ( α 11 r ) ] e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabA 6almaaBaaajeaibaqcLbmacaWGZbGaamOzaaqcbasabaqcLbsaqaaa aaaaaaWdbiaad2dajuaGdaWadaGcbaqcLbsacaWGdbWcpaWaaSbaaK qaGeaajugWaiaadgdaaKqaGeqaaKqzGeGaamysaSWaaSbaaKqaGeaa jugWa8qacaWGWaaajeaipaqabaqcfa4dbmaabmaak8aabaqcLbsacq aHXoqylmaaBaaajeaibaqcLbmapeGaaGymaiaaigdaaKqaG8aabeaa jugib8qacaWGYbaakiaawIcacaGLPaaajugibiabgUcaRiaadUeal8 aadaWgaaqcbasaaKqzadWdbiaadcdaaKqaG8aabeaajuaGpeWaaeWa aOWdaeaajugibiabeg7aHTWaaSbaaKqaGeaajugWaiaaigdacaaIXa aajeaibeaajugib8qacaWGYbaakiaawIcacaGLPaaaaiaawUfacaGL Dbaajugibiaadwgal8aadaahaaqabeaajugWa8qacaWGPbWcdaqada WdaeaajugWa8qacaWGRbGaamOEaiaad2cacaWG3bGaamiDaaWccaGL OaGaayzkaaaaaaaa@69D8@                   (28)

Φ ss =[ C 2 I 0 ( α 12 r )+ K 0 ( α 12 r ) ] e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabA 6almaaBaaajeaibaqcLbmacaWGZbGaam4CaaqcbasabaqcLbsaqaaa aaaaaaWdbiaad2dajuaGdaWadaGcbaqcLbsacaWGdbWcpaWaaSbaaK qaGeaajugWaiaadkdaaKqaGeqaaKqzGeGaamysaSWaaSbaaKqaGeaa jugWa8qacaWGWaaajeaipaqabaqcfa4dbmaabmaak8aabaqcLbsacq aHXoqylmaaBaaajeaibaqcLbmapeGaamymaiaadkdaaKqaG8aabeaa jugib8qacaWGYbaakiaawIcacaGLPaaajugibiabgUcaRiaadUeal8 aadaWgaaqcbasaaKqzadWdbiaadcdaaKqaG8aabeaajuaGpeWaaeWa aOWdaeaajugibiabeg7aHTWaaSbaaKqaGeaajugWa8qacaWGXaGaam OmaaqcbaYdaeqaaKqzGeWdbiaadkhaaOGaayjkaiaawMcaaaGaay5w aiaaw2faaKqzGeGaamyzaSWdamaaCaaabeqaaKqzadWdbiaadMgalm aabmaapaqaaKqzadWdbiaadUgacaWG6bGaamylaiaadEhacaWG0baa liaawIcacaGLPaaaaaaaaa@69F3@                   (29)

Ψ s = C 3 I 0 ( β 11 r ) e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaaeiQdSWaaSbaaKqaGeaajugWaiaabohaaKqaGeqaaKqz GeGaamypaiaadoeal8aadaWgaaqcbasaaKqzadGaam4maaqcbasaba qcLbsacaWGjbqcfa4aaSbaaKqaGeaajugWa8qacaWGWaaajeaipaqa baqcfa4dbmaabmaak8aabaqcLbsacqaHYoGyjuaGdaWgaaqcbasaaK qzadGaaGymaiaaigdaaKqaGeqaaKqzGeWdbiaadkhaaOGaayjkaiaa wMcaaKqzGeGaamyzaKqba+aadaahaaqcbasabeaajugWa8qacaWGPb qcfa4aaeWaaKqaG8aabaqcLbmapeGaam4AaiaadQhacaWGTaGaam4D aiaadshaaKqaGiaawIcacaGLPaaaaaaaaa@5A34@                                             (30)

Thus, the potential of solid compression (P) wave can be expressed as Φ s = Φ sf + Φ ss MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabA 6almaaBaaajeaibaqcLbmacaWGZbaajeaibeaajugibabaaaaaaaaa peGaamypa8aacaqGMoqcfa4aaSbaaKqaGeaajugWaiaadohacaWGMb aaleqaaKqzGeGaey4kaSIaaeOPdSWaaSbaaKqaGeaajugWaiaadoha caWGZbaajeaibeaaaaa@476D@ . Where α 11 2 = k 2 - k p1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHTWaa0baaKqaGeaajugWaiaadgdacaWGXaaajeaibaqcLbmaqaaa aaaaaaWdbiaadkdaaaqcLbsacaWG9aGaam4AaSWdamaaCaaajeaibe qaaKqzadWdbiaadkdaaaqcLbsacaWGTaGaam4AaSWdamaaDaaajeai baqcLbmacaWGWbGaaGymaaqcbasaaKqzadWdbiaadkdaaaaaaa@49AE@ α 12 2 = k 2 - k p2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHLqbaoaaDaaajuaibaqcLbmacaWGXaGaamOmaaqcfasaaKqzadae aaaaaaaaa8qacaWGYaaaaKqzGeGaamypaiaadUgajuaGpaWaaWbaae qajuaibaqcLbmapeGaamOmaaaajugibiaad2cacaWGRbqcfa4damaa DaaajuaibaqcLbmapeGaamiCaiaadkdaaKqbG8aabaqcLbmapeGaam Omaaaaaaa@4B67@ β 11 2 = k 2 - k t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek 7aITWaa0baaKqaGeaajugWaiaaigdacaaIXaaajeaibaqcLbmaqaaa aaaaaaWdbiaadkdaaaqcLbsacaWG9aGaam4AaSWdamaaCaaajeaibe qaaKqzadWdbiaadkdaaaqcLbsacaWGTaGaam4AaSWdamaaDaaajeai baqcLbmapeGaamiDaaqcbaYdaeaajugWa8qacaWGYaaaaaaa@4923@ .The wavenumbers of the fast longitudinal wave kp1 and slow longitudinal wave kp2 and shear wave ktcan be obtained by equation (1),(2). C1,C2, C3 are the unknown coefficients to be determined by the boundary conditions.

For liquid phase, the potentials can be expressed as

Φ f = η 1 Φ sf + η 2 Φ ss MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabA 6almaaBaaajqwaa+FaaKqzadGaamOzaaqcKfaG=hqaaKqzGeaeaaaa aaaaa8qacaWG9aGaeq4TdG2cdaWgaaqcbasaaKqzadGaamymaaqcba sabaqcLbsapaGaaeOPdSWaaSbaaKqaGeaajugWaiaadohacaWGMbaa jeaibeaajugibiabgUcaRiabeE7aOTWaaSbaaKqaGeaajugWaiaadk daaKqaGeqaaKqzGeGaaeOPdSWaaSbaaKqaGeaajugWaiaadohacaWG Zbaajeaibeaaaaa@53C1@                                                   (31)

Ψ f = η 3 Ψ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaaeiQdSWaaSbaaKqaGeaajugWaiaadAgaaKqaGeqaaKqz GeGaamypaiabeE7aOTWaaSbaaKqaGeaajugWaiaadodaaKqaGeqaaK qzGeGaaeiQdSWaaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaa@446C@                                                                    (32)

Where η1, η2, η3 are liquid participation factor of two longitudinal shear waves respectively.19 For infinite elastic media, the potentials can be expressed as

{ Φ 2 = D 1 K 0 ( α 2 r ) e i( kz-wt )   Ψ 2 = D 2 K 0 ( β 2 r ) e i( kz-wt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqaaaaa aaaaWdbmaaceaak8aabaqcLbsafaqabeGabaaakeaajugibiaabA6a lmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaad2dacaWGeb WcdaWgaaqcbasaaKqzadWdbiaadgdaaKqaG8aabeaajugib8qacaWG lbWcpaWaaSbaaKqaGeaajugWa8qacaWGWaaajeaipaqabaqcfa4dbm aabmaak8aabaqcLbsacqaHXoqylmaaBaaajeaibaqcLbmacaaIYaaa jeaibeaajugib8qacaWGYbaakiaawIcacaGLPaaajugibiaadwgal8 aadaahaaqcbasabeaajugWa8qacaWGPbWcdaqadaqcbaYdaeaajugW a8qacaWGRbGaamOEaiaad2cacaWG3bGaamiDaaqcbaIaayjkaiaawM caaaaaaOWdaeaajugib8qacaGGGcGaaeiQdSWdamaaBaaajeaibaqc LbmacaaIYaaajeaibeaajugib8qacaWG9aGaamiraKqba+aadaWgaa qcbasaaKqzadGaamOmaaWcbeaajugibiaadUealmaaBaaajeaibaqc LbmapeGaamimaaqcbaYdaeqaaKqba+qadaqadaGcpaqaaKqzGeGaeq OSdi2cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsapeGaamOC aaGccaGLOaGaayzkaaqcLbsacaWGLbWcpaWaaWbaaKqaGeqabaqcLb mapeGaamyAaSWaaeWaaKqaG8aabaqcLbmapeGaam4AaiaadQhacaWG TaGaam4DaiaadshaaKqaGiaawIcacaGLPaaaaaaaaaGccaGL7baaaa a@7C87@                                        (33)

Where α 2 2 = k 2 - k l2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHTWaa0baaKqaGeaajugWaiaaikdaaKqaGeaajugWaabaaaaaaaaa peGaamOmaaaajugibiaad2dacaWGRbWcpaWaaWbaaKqaGeqabaqcLb mapeGaamOmaaaajugibiaad2cacaWGRbWcpaWaa0baaKqaGeaajugW a8qacaWGSbGaaGOmaaqcbaYdaeaajugWa8qacaWGYaaaaaaa@491B@   β 2 2 = k 2 - k t2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek 7aITWaa0baaKqaGeaajugWaiaaikdaaKqaGeaajugWaabaaaaaaaaa peGaamOmaaaajugibiaad2dacaWGRbWcpaWaaWbaaKqaGeqabaqcLb mapeGaamOmaaaajugibiaad2cacaWGRbWcpaWaa0baaKqaGeaajugW a8qacaWG0bGaaGOmaaqcbaYdaeaajugWa8qacaWGYaaaaaaa@4925@ , the wave numbers of the longitudinal and shear body waves of are k l2 =ω/ c l2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaam4AaSWdamaaBaaajeaibaqcLbmapeGaamiBaiaaikda aKqaG8aabeaajugibiaab2dapeGaeqyYdCNaae4la8aacaWGJbWcda WgaaqcbasaaKqzadGaamiBaiaaikdaaKqaGeqaaaaa@4388@   k t2 =ω/ c t2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaam4AaSWdamaaBaaajeaibaqcLbmapeGaamiDaiaaikda aKqaG8aabeaajugibiaab2dapeGaeqyYdCNaae4la8aacaWGJbWcda WgaaqcbasaaKqzadGaamiDaiaaikdaaKqaGeqaaaaa@4398@ .D1,D2 are the unknown coefficients to be determined by the boundary conditions. The boundary conditions of this model can be written as;

{ (1β) u rs +β u rf = u r2 u zs = u z2 σ rrs + σ rrf = σ rr2 σ rzs = σ rz2 u rs = u rf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGaba GcbaqcLbsafaqabeqbbaaaaOqaaKqzGeaeaaaaaaaaa8qacaGGOaGa aGymaiabgkHiTiabek7aIjaacMcacaWG1bWcpaWaaSbaaKqaGeaaju gWa8qacaWGYbGaam4CaaqcbaYdaeqaaKqzGeGaey4kaSIaeqOSdi2d biaadwhal8aadaWgaaqcbasaaKqzadWdbiaadkhacaWGMbaajeaipa qabaqcLbsapeGaamypaiaadwhal8aadaWgaaqcbasaaKqzadWdbiaa dkhacaaIYaaajeaipaqabaaakeaajugib8qacaWG1bWcpaWaaSbaaK qaGeaajugWa8qacaWG6bGaam4CaaqcbaYdaeqaaKqzGeWdbiaad2da caWG1bqcfa4damaaBaaajeaibaqcLbmapeGaamOEaiaaikdaaSWdae qaaaGcbaqcLbsacqaHdpWClmaaBaaajeaibaqcLbmapeGaamOCaiaa dkhacaWGZbaajeaipaqabaqcLbsacqGHRaWkcqaHdpWClmaaBaaaje aibaqcLbmapeGaamOCaiaadkhacaWGMbaajeaipaqabaqcLbsapeGa amypa8aacqaHdpWClmaaBaaajeaibaqcLbmapeGaamOCaiaadkhaca aIYaaajeaipaqabaaakeaajugibiabeo8aZTWaaSbaaKqaGeaajugW a8qacaWGYbGaamOEaiaadohaaKqaG8aabeaajugib8qacaWG9aWdai abeo8aZTWaaSbaaKqaGeaajugWa8qacaWGYbGaamOEaiaaikdaaKqa G8aabeaaaOqaaKqzGeWdbiaadwhal8aadaWgaaqcbasaaKqzadWdbi aadkhacaWGZbaajeaipaqabaqcLbsapeGaamypaiaadwhal8aadaWg aaqcbasaaKqzadWdbiaadkhacaWGMbaajeaipaqabaaaaaGccaGL7b aaaaa@8D21@                                            (34)

When the right-hand side of Equation (34) is zero matrixes, the necessary and sufficient condition for the non-zero solutions of the equation is the coefficient determinant β 2 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek 7aITWaa0baaeaajugWaiaaikdaaSqaaKqzadaeaaaaaaaaa8qacaWG YaaaaKqzGeGaeyOpa4JaaGimaaaa@3ED9@ .It is the dispersion equation whose solution corresponds to the guided wave. By substituting the expressions of displacement and stress tractions, the equations can be written as,

[ m 11 m 12 m 13 m 14 m 15 m 21 m 22 m 23 m 24 m 25 m 31 m 32 m 33 m 34 m 35 m 41 m 42 m 43 m 44 m 45 m 51 m 52 m 53 m 54 m 55 ][ C 1 C 2 C 3 D 1 D 2 ]=[ c 1 c 2 c 3 c 4 c 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWada GcbaqcLbsafaqabeqbfaaaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaaGymaiaaigdaaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaa qcbasaaKqzadGaaGymaiaaikdaaKqaGeqaaaGcbaqcLbsacaWGTbWc daWgaaqcbasaaKqzadGaaGymaiaaiodaaKqaGeqaaaGcbaqcLbsaca WGTbWcdaWgaaqcbasaaKqzadGaaGymaiaaisdaaKqaGeqaaaGcbaqc LbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGymaiaaiwdaaKqaGeqaaa GcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGOmaiaaigdaaKqa GeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGOmaiaaik daaKqaGeqaaaGcbaqcLbsacaWGTbqcfa4aaSbaaKqaGeaajugWaiaa ikdacaaIZaaaleqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzad GaaGOmaiaaisdaaKqaGeqaaaGcbaqcLbsacaWGTbqcfa4aaSbaaKqa GeaajugWaiaaikdacaaI1aaaleqaaaGcbaqcLbsacaWGTbWcdaWgaa qcbasaaKqzadGaaG4maiaaigdaaKqaGeqaaaGcbaqcLbsacaWGTbWc daWgaaqcbasaaKqzadGaaG4maiaaikdaaKqaGeqaaaGcbaqcLbsaca WGTbWcdaWgaaqcbasaaKqzadGaaG4maiaaiodaaKqaGeqaaaGcbaqc LbsacaWGTbWcdaWgaaqcbasaaKqzadGaaG4maiaaisdaaKqaGeqaaa GcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaG4maiaaiwdaaKqa GeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGinaiaaig daaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGin aiaaikdaaKqaGeqaaaGcbaqcLbsacaWGTbqcfa4aaSbaaKqaGeaaju gWaiaaisdacaaIZaaaleqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaaGinaiaaisdaaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaa qcbasaaKqzadGaaGinaiaaiwdaaKqaGeqaaaGcbaqcLbsacaWGTbWc daWgaaqcbasaaKqzadGaaGynaiaaigdaaKqaGeqaaaGcbaqcLbsaca WGTbWcdaWgaaqcbasaaKqzadGaaGynaiaaikdaaKqaGeqaaaGcbaqc LbsacaWGTbWcdaWgaaqcbasaaKqzadGaaGynaiaaiodaaKqaGeqaaa GcbaqcLbsacaWGTbqcfa4aaSbaaKqaGeaajugWaiaaiwdacaaI0aaa leqaaaGcbaqcLbsacaWGTbqcfa4aaSbaaKqaGeaajugWaiaaiwdaca aI1aaaleqaaaaaaOGaay5waiaaw2faaKqbaoaadmaakeaajugibuaa beqafeaaaaGcbaqcLbsacaWGdbWcdaWgaaqcbasaaKqzadGaaGymaa qcbasabaaakeaajugibiaadoealmaaBaaajeaibaqcLbmacaaIYaaa jeaibeaaaOqaaKqzGeGaam4qaSWaaSbaaKqaGeaajugWaiaaiodaaK qaGeqaaaGcbaqcLbsacaWGebWcdaWgaaqcbasaaKqzadGaaGymaaqc basabaaakeaajugibiaadsealmaaBaaajeaibaqcLbmacaaIYaaaje aibeaaaaaakiaawUfacaGLDbaajugibiabg2da9Kqbaoaadmaakeaa jugibuaabeqafeaaaaGcbaqcLbsacaWGJbWcdaWgaaqcbauaaKqzad GaaGymaaqcbauabaaakeaajugibiaadogajuaGdaWgaaqcbasaaKqz adGaaGOmaaWcbeaaaOqaaKqzGeGaam4yaKqbaoaaBaaajeaibaqcLb macaaIZaaaleqaaaGcbaqcLbsacaWGJbqcfa4aaSbaaKqaGeaajugW aiaaisdaaSqabaaakeaajugibiaadogalmaaBaaajeaibaqcLbmaca aI1aaajeaibeaaaaaakiaawUfacaGLDbaaaaa@E0EE@       (35)

Numerical Results and Discussions

For waveguide mode propagating along a solid rod, the phase velocity must be less than the velocity of shear wave in wrapping media layer,1 which is β 21 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek 7aITWaa0baaKqaGeaajugWaiaaikdacaaIXaaajeaibaqcLbmaqaaa aaaaaaWdbiaadkdaaaqcLbsacqGH+aGpcaaIWaaaaa@3FDD@ , β 2 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek 7aITWaa0baaeaajugWaiaaikdaaSqaaKqzadaeaaaaaaaaa8qacaWG YaaaaKqzGeGaeyOpa4JaaGimaaaa@3ED9@ . When this condition is satisfied, the guided wave can propagate stalely along the solid rod with non-energy radial diffusion. As the dissipative effect of porous media in model1, 2, the roots of dispersion equation (27), (35) are complex, which means to attenuation. Thus it cannot be called guided wave strictly. However, as the imaginary part of the root is very small, equivalent to small attenuation coefficient, most people still called the case of the guided wave. In this paper, the dispersion equations of different porous media parameters and different internal cylinder radius were solved by numerical methods, and then the dispersion characteristics of guided waves were analyzed.

In this paper, the material properties are listed in Table 1. The material properties20 have been chosen that the two models do not satisfy the existence condition of a Stoneley wave.21

Model

Media

Longitudinal Wave Velocity/(m∙s-1)

Shear Wave Velocity/(m∙s-1)

Density/(kg∙m-3)

Model1

Elastic Rod

4100

2100

7800

Porous media wrapping layer

Solid skeleton

5370

3100

2700

Pore fluid

1483

 

998

Model2

Porous media rod

Solid skeleton

4100

2100

7800

Pore fluid

1483

 

998

Elastic media wrapping layer

5370

3100

2700

Table 1 Material parameters

The bulk modulus of the porous skeletal frame and the shear modulus of the porous skeletal frame can be obtained by self-consistent formula of composite media equivalent elastic modulus.19 Under different porosity, bulk modulus of solid skeleton Kb and shear modulus of solid skeleton N will change as shown in Figure 3. When the porosity is 0.5, the porous media22 becomes suspension, shear modulus is near to zero, and the bulk modulus is close to bulk modulus of fluid. For rock materials, the porosity of which is less than 0.2, so we only study the case of porosity less than 0.3. As can be seen, the bulk modulus and shear modulus of the porous skeletal frame decrease as the porosity increasing.

Figure 3 Bulk modulus and shear modulus of the porous skeletal frame with different porosity.

Dispersion properties

In this paper, the dispersion equation was solved with the method of local peak search, depending on the exact roots and tracking curve technology proposed by Lowe4,23 In order to verify the correctness of the above theory and calculation methods again, the porosity β of porous media was set to zero. The dispersion curves of this case were compared to dispersion curves with the same internal elastic rod material and external elastic material, which was Hanyin Cui’s result.2 As shown in Figure 4, the dispersion curves of these cases are fully consistent.

Figure 4 The dispersion comparison between elastic media, model1 and model2 of porosity 0.

Through numerical computing with parameters in Table 1 & Table 2 in which the porosity is 0 and the Static permeability is 10-12m2, the dispersion characteristics of phase velocity and group velocity are analysed. The dispersion curves of the longitudinal modes of model1 and model2 are presented in Figure 5.The model predicts that regardless of mode, both the phase and group velocity dispersion curves tend towards the same high-frequency asymptote as shown in Figure 5.This is the shear velocity of solid rod. For model1, it’s the shear velocity of elastic media (2100m/s). For model2, it’s the shear velocity of porous media (1980m/s). Any mode, whose high-frequency asymptote is shear velocity of the internal rod, is named as a normal mode. In model1 and model2, all the modes are normal modes. For normal modes, each one of the dispersion curves begins at its cutoff frequency where phase velocity is equal to the shear velocity of the wrapping layer that is 2880m/s in model1 and 3100m/s in model 2.The group velocity describe how fast the wave package is travelling through the rock bolt and the time distortion of the received pulse. For model 1, each mode of group velocity dispersion curves increases with the frequency. The group velocity reaches a minimum at the cutoff frequency. For model2, the group velocity with increasing frequency to drop to a minimum, and then increases with frequency and eventually approaches the shear wave velocity of porous media rod. Since the phase velocity is greater than shear velocity of solid rod, β1, β11 arepure imaginary. For acoustic field of internal rod, the displacement of SV wave in equation (12) and (13) oscillates with the radius, and approaches the maximum in the centre of the rod. As the phase velocity is less than shear velocity of wrapping layer,α21, β21, α2, β2 are real number. For acoustic field of wrapping layer, the displacement of fast longitudinal wave and shear wave in equation (13),(15) and (33) decays exponentially with increasing radius.

Porosity β
%

Porosity Curvature α

Static Permeability κ0 (m2)

Viscosity Coefficient η
(kg.s-1.m-1)

Pore Feature Size Λ
(μm)

Bulk Modulus of the Pore FluidKf(GPa)

10%

5.5

10-12

0.001

8

43.33

Bulk modulus of the elastic solidof model1 Ks(GPa)

Bulk modulus of the porous skeletal frameof model1 Kb(GPa)

Shear modulusof the porous skeletal frameof model1 N(GPa)

Bulk modulus of the elastic solidof model2
Ks(GPa)

Bulk modulus of the porous skeletal frameof model2
Kb(GPa)

Shear modulusof the porous skeletal frameof model2 N(GPa)

2.19

33.70

20.86

85.2

62.40

27.85

Table 2 Material parameters of porous media

The parameters of porous media when porosity is 0.1.

Figure 5 The dispersion curves of the longitudinal modes L (0,p). (a) and (b) present the dispersion curves of model1 and model2, respectively.

Impact of internal rod radius on the dispersion

Considering the model structure is an important factor to guided wave dispersion, the impact of internal rod radius on dispersion was analysed. By setting the parameters as Table 1 & Table 2, the dispersion curves of L (0,1) with different internal rod radius were shown in Figure 6. As can be seen from the Figure 6, either model1 or model2, the dispersion curve of L (0,1) shifts to lower frequency. The cut-off frequency decreases with the increasing radius. The phase velocity at cut-off frequency is still shear velocity of the outside layer without changing with rod radius.

Figure 6 Dispersion curves with different rod radius. (a) and (b) present the dispersion curves of model1 and model2, respectively.

Impact of porous parameters on the dispersion

Considering that the porosity and static permeability are important parameters of porous media, the impact of these two parameters on the dispersion were analysed in this section. In order to determine the effects of the porosity on dispersion, the dispersion characteristics with porosity of 0.1, 0.2, 0.3 were analysed by setting the static permeability κ0 = 10-12m2.As can be seen from Figure 7, the velocity of bulk wave in porous media changes with porosity for model1. The velocity of bulk wave in porous media of model 2 has the same variation. It also can be found that the frequency do little influence on the velocity of fast longitudinal wave and shear wave, while the velocity of slow longitudinal wave changes with frequency in the range of low frequency. It’s mainly due to the motion of the pore fluid and solid skeleton. The relative motion between the pore fluid and solid skeleton follows the Darcy law. It is influenced by the viscous force and the inertia force. In the range of low frequency, the viscous force of pore fluid plays a predominant role. That leads to velocity dispersion.

Figure 7 Bulk wave velocity of porous media with different porosity of model1.

Since the guided waves propagate along the solid rod, the phase velocity should be less than the velocity of shear wave of the wrapping layer.1 For model1, the phase velocity of guided wave should be in the range of [ct1,ct]. For model2, the phase velocity should be in the range of [ct,ct2]. The dispersion curves with different porosity were shown in Figure 8.

Figure 8 Dispersion curves with different porosity. (a) and (b) present the dispersion curves of model1 and model2, respectively.

Figure 8a Shows the dispersion with different porosity of model1.It can be found that the phase velocity at the cut-off frequency is the shear wave velocity of porous media. That is 2880m/s, 2617m/s, 2263m/s with porosity of 0.1,0.2,0.3 are respectively. The cut-off frequency of the same guided wave mode increases with the increase of porosity. Under the different porosity, the trend of dispersion curves remains unchanged. As shown in Figure 8a, dispersion curves under three kinds of porosity coincide within the corresponding range. The phase velocity of the lowest mode gradually approach to the shear-wave velocity (3260m/s) of the solid elastic rod with increasing frequency.

Figure 8b shows the dispersion with different porosity of model2.As can be seen, the phase velocity at the cut-off frequency remains unchanged when porosity changes. With the increasing porosity, dispersion curves of guided waves gradually shift to low speed. The phase velocity dispersion curve approach to the shear-wave velocity of the internal porous media with increasing frequency. The shear-wave velocity of the internal porous media is 1980m/s, 1822m/s, 1595m/s with porosity of 0.1, 0.2, and 0.3 are respectively. Comparing the dispersion characteristic of model1 and model2, the dispersion is mainly influenced by the properties of internal rod. When the porous media is in wrapping layer (model1), the porosity has little effect on the dispersion. When the porous media is in rod (model2), the dispersion curves make a great change with the changing of porosity. Permeability is an important parameter of porous media, which reflects the ability of porous media transfer fluid. In order to determine the effects of the static permeability on dispersion, the dispersion characteristics with static permeability κ0 of 10-11m2, 10-12m2, 10-13m2 were analysed by setting the porosity β=0.1.

The dispersion curves with different static permeability were shown in Figure 9. Figures 9a & Figure 9b present the dispersion curves of model1 and model2, respectively. As can be seen from the Figure9, the static permeability has little influence on the dispersion whether for model1 and model 2. By analysing the three bulk wave velocity under different static permeability as shown in Table 3, we found that the static permeability have little effect on the bulk wave velocity. Thus the impact on the dispersion curve is small.

Static Permeability
κ0(m2)

Fast Longitudinal Wave Velocity/(m∙s-1)

Slow Longitudinal Wave Velocity/(m∙s-1)

Shear Wave Velocity/(m∙s-1)

 

Model1

Model2

Model1

Model2

Model1

Model2

10-11

4981.86

3768.96

579.32

593.33

2880.52

1980.16

10-12

4981.86

3768.96

579.32

593.33

2880.52

1980.16

10-13

4981.86

3768.96

579.34

593.33

2880.52

1980.16

Table 3 Body wave velocity of porous media with different static permeability

Figure 9 Dispersion curves of longitudinal modes with different static permeability.

Conclusion

In this paper, based on the elastic-dynamic theory of liquid-saturated porous solid, the propagation characteristic of guided waves in a rod surrounded by infinite media with porous media is studied. The dispersion equations of an elastic rod surrounded by porous media and a porous rod surrounded by elastic media have been deduced via wave equation of the guided waves. The impact of the rod radius and porous parameters on dispersion are discussed. The results show that the longitudinal guided wave propagation in the two models of this paper is dispersive and the dispersion curves tend towards the same high-frequency asymptote which is shear velocity of solid rod. The dispersion curve of L (0,1) shifts to lower frequency with increasing rod radius.By comparing the dispersion characteristic of model1 and model2, the dispersion is mainly influenced by the properties of internal rod. When the internal rod is porous media, the dispersion curves of guided waves gradually shift to low speed with the increasing porosity. The static permeability has little effect on dispersion.

Acknowledgement

This work was supported by the Natural Science foundation of China Grant No 11574072 and 11274091, Key research project of Jiangsu Grant No BE2016056.

Conflict of interest

Author declares there is no conflict interest.

References

  1. Hanyin Cui, Bixing Zhang. Guided Waves in Cylindrical Multi-layered Media. IEEE International Ultrasonics Symposium Proceedings. 2008. p. 912–915.
  2. Cui HY, Zhang BX, Johnstone S, et al. Excitation and mechanisms and dispersion characteristics of guided waves in multilayered cylindrical solid media. The Journal of the Acoustical Society of America. 2012;131(3):2048–2062.
  3. MD Beard, MJS Lowe, P Cawley. Development of a guided wave inspection technique for rock bolts. AIP Conference Proceedings. 2012;615:1318–1325.
  4. MD Beard, MJS Lowe. Non-destructive testing of rock bolts using guided ultrasonic waves. International Journal of Rock Mechanics and Mining Sciences. 2003;40(4):527–536.
  5. MD Beard, MJS Lowe, P Cawley. Inspection of rock bolts using guided ultrasonic waves. AIP Conference Proceedings. 2001;557(1):1156–1163.
  6. Jorge O Parra, Pei-cheng Xu. Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media. The Journal of the Acoustical Society of America. 1994;95(1):91–98.
  7. Serge Derible. Debye-series analysis of the transmission coefficient of a water-saturated porous plate obeying Biot’s theory. The Journal of the Acoustical Society of America. 2005;118(6):3430–3435.
  8. ZEA Fellah, A Wirgin, M Fellah, et al. A time-domain model of transient acoustic wave propagation in double-layered porous media. The Journal of the Acoustical Society of America. 2005;118(2):661–667.
  9. ZEA Fellah, S Berger, W Lauriks, et al. Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America. 2003;113(5):2424–2433.
  10. ZEA Fellah, M Fellah, W Lauriks, et al. Solution in time domain of ultrasonic propagation equation in a porous material. Wave Motion. 2003;38:151–163.
  11. Guan W, Hu HS, He X. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. The Journal of the Acoustical Society of America. 2009;125(4):1942–1950.
  12. LI Wei, HU Hengshan, Zhang Bixing, et al. Simulation of acoustic well-logging wave field in a radially multilayered fluid-saturated porous formation. Acta Acustica. 2010;35(4):456–464.
  13. Wang X, Dodds K. Effects of the outermost boundary on acoustic waves in an artificial cased borehole. Exploration Geophysics. 2012;33:146–152.
  14. MA Biot. Theory of propagation of elastic waves in a fluid saturated porous rock I. Low frequency range. The Journal of the Acoustical Society of America. 1956;28(2):179–191.
  15. M Stern, A Bedford, HR Millwater. Wave Reflection from a Sediment Layer with depth-dependent properties. The Journal of the Acoustical Society of America. 1985;77(5):1781–1788.
  16. MA Biot. Mechanics of Deformation and Acoustic Propagation in Porous Media. Journal of Applied Physics. 1962;33(4):1482–1498.
  17. DL Johnson, J Koplik, R Dashen. Theory of Dynamic Permeability and Tortuosity in Fluid-saturated Porous Media. Journal of Fluid Mechanics. 1987;176:379–402.
  18. James G Berryman. Long-wavelength propagation in composite elastic media II.Ellipsoidal inclusions. The Journal of the Acoustical Society of America. 1980;68(6):1820–1831.
  19. ZHAO Chenggang, GAO Fuping. Boundary effect of propagating from liquid-filled porous media to solid media. Earthquake Engineering and Engineering Vibration. 1999;19(1):1–6.
  20. GWC Kaye, TH Laby. Acoustics in Tables of Physical and Chemical Constants. Chapter 2, Longman, England.
  21. JL Rose. Interface waves in Ultrasonic Waves in Solid Media. Chapter 9, Cambridge University Press, USA. 2004.
  22. Shvidler MI. Determination of self-consistent effective parameters in transport problems in porous media. Fluid Dynamics. 1981;16(3):374–380.
  23. MA Qi, HU Wenxiang. Methods for Analyzing and Solving Dispersion Characteristics of Leaky Modes of Layered Structures Immersed in Fluid. Technical Acoustics. 2013;32(4):513–516.
Creative Commons Attribution License

©2017 Han, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.