Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 8 Issue 2

An introduction to quantum scattering theory

Mwape Kelvin,1 Manyika Kabuswa Davy2

1Department of Physics, Mulungushi University, Zambia
2Research, Innovation and Collaborations Division, National Institute of Public Administration, Zambia

Correspondence: Manyika Kabuswa Davy, Research, Innovation and Collaborations Division, National Institute of Public Administration, Lusaka, Zambia

Received: May 06, 2024 | Published: June 3, 2024

Citation: Kelvin M, Davy MK. An introduction to quantum scattering theory. Phys Astron Int J. 2024;8(2):123‒125. DOI: 10.15406/paij.2024.08.00339

Download PDF

Abstract

Quantum scattering, a fundamental phenomenon in quantum mechanics, is very important in understanding the interactions between particles at the microscopic level.1,2 Quantum scattering plays a pivotal role in various fields of physics, chemistry, and even beyond, influencing areas such as materials science, quantum computing, and nuclear physics among others.3,4 Theoretical concepts such as the Schrödinger equation, scattering amplitude, and scattering cross-section are highlighted in this, along with their significance in describing particle interactions with potential energy fields.5,6

Keywords: Quantum scattering, quantum mechanics, elementary particles, scattering of light, Schrödinger equation

Introduction

In Quantum mechanics, scattering involves alterations in particle trajectories or states during interaction essential for understanding phenomena like particle accelerations and light scattering by atoms.7,8 At the core of this theory is the scattering amplitude, depicting the transition probability from an initial to a final state. Various theoretical frameworks and mathematical tools like the Born approximation and partial wave analysis facilitate the study of quantum scattering.9,10 Recent advancements have enable sophisticated investigations into multi-particle interactions and resonant scattering, enhancing our understanding of quantum systems. Quantum Scattering Theory is fundamental, empowering us to predict experimental outcomes and delve deeper into the microscopic realm.11,12 Its applications extend to cutting-edge technologies like quantum computing and sensing, underscoring its significance in shaping our understanding of quantum phenomena. The objectives of the study.

Quantum scattering principles

The two key principles of quantum scattering theory are the wave-particle duality and the Schrödinger equation. A article with momentumhas an associated wavelengthgiven by the de Broglie wavelength equation

λ= h p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeq4UdWMaeyypa0ZaaSaaa8aabaWdbiaadIga a8aabaWdbiaadchaaaaaaa@413F@   (1)

Where h is Planck’s constant.

The Schrödinger equation is given by:

i t Ψ( r,t )= H ^ Ψ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyAaiabl+qiOnaalaaapaqaa8qacqGHciIT a8aabaWdbiabgkGi2kaadshaaaGaeuiQdK1aaeWaa8aabaWdbiaahk hacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iqadIeapaGbaKaa peGaeuiQdK1aaeWaa8aabaWdbiaahkhacaGGSaGaamiDaaGaayjkai aawMcaaaaa@5037@   (2)

Quantum scattering formalism

An incident particle in state | ψ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaqqaa8aabaWdbiabeI8a59aadaWgaaWcbaWd biaaicdaa8aabeaakiabgQYiXdWdbiaawEa7aaaa@42CE@ is scattered by a potential V, resulting in a scattered state | ψ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaqqaa8aabaWdbiabeI8a59aadaWgaaWcbaWd biaadohaa8aabeaaaOWdbiaawEa7aiabgQYiXdaa@430C@ . The incident state | ψ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaqqaa8aabaWdbiabeI8a59aadaWgaaWcbaWd biaaicdaa8aabeaakiabgQYiXdWdbiaawEa7aaaa@42CE@ now becomes the eigenstate of the background Hamiltonian H 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaa aaa@3E36@ with eigenvalue E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyraaaa@3D1F@ expressed mathematically as

( E H o )| ψ 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaeWaa8aabaWdbiaadweacqGHsislcaWGibWd amaaBaaaleaapeGaam4BaaWdaeqaaaGcpeGaayjkaiaawMcaamaaee aapaqaa8qacqaHipqEpaWaaSbaaSqaa8qacaaIWaaapaqabaGccqGH Qms8a8qacaGLhWoacqGH9aqpcaaIWaaaaa@4A22@   (3)

unless otherwise stated, the background Hamiltonianshould be taken as that of a free particle

H o = p 2 2m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamisa8aadaWgaaWcbaWdbiaad+gaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeGaamiCa8aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qacaaIYaGaamyBaaaaaaa@4393@   (4)

and the incident state taken as a plane wave

r | ψ 0 = ψ 0 ( r )= e ik r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyykJeUabmOCa8aagaWca8qacaqG8bGaeqiY dK3damaaBaaaleaapeGaaGimaaWdaeqaaOGaeyOkJe=dbiabg2da9i abeI8a59aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaa peGabmOCa8aagaWcaaWdbiaawIcacaGLPaaacqGH9aqpcaWGLbWdam aaCaaaleqabaWdbiaadMgacaWGRbGabmOCa8aagaWcaaaaaaa@50FF@   (5)

Scattering theory therefore aims to solve the full energy-eigenstate problem

( E H 0 V )|ψ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaeWaa8aabaWdbiaadweacqGHsislcaWGibWd amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgkHiTiaadAfaaiaawI cacaGLPaaadaabbaWdaeaapeGaeqiYdKhacaGLhWoacqGHQms8cqGH 9aqpcaaIWaaaaa@4A82@   (6)

where E>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyraiabg6da+iaaicdaaaa@3EE1@ , and |ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaqqaa8aabaWdbiabeI8a5bGaay5bSdGaeyOk Jepaaa@41A0@ is the eigenstate of the full H= H 0 +V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamisaiabg2da9iaadIeapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaey4kaSIaamOvaaaa@41E0@ with energy E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyraaaa@3D1F@ .

The Lippmann-Schwinger equation

The Lippmann-Schwinger equation provides a formal solution for the scattering problem in terms of the scattering potential. .

The scattered state | ψ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaiiFaiabeI8a59aadaWgaaWcbaWdbiaadoha a8aabeaakiabgQYiXdaa@4249@ is defined as

| ψ s = |ψ| ψ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaqWaa8aabaWdbiabeI8a59aadaWgaaWcbaWd biaadohaa8aabeaakiabgQYiX=qacqGH9aqpaiaawEa7caGLiWoacq aHipqEcqGHQms8cqGHsislcaGG8bGaeqiYdK3damaaBaaaleaapeGa aGimaaWdaeqaaOGaeyOkJepaaa@4FDB@   (7)

With the above, the full Schrodinger equation in  can now be written as

E H 0 |ψ=V|ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyraiabgkHiTiaadIeapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeWaaqqaa8aabaWdbiabeI8a5bGaay5bSdGaey OkJeVaeyypa0JaamOvamaaeeaapaqaa8qacqaHipqEaiaawEa7aiab gQYiXdaa@4C7E@   (8)

considering E H 0 |ψ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyraiabgkHiTiaadIeapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeWaaqqaa8aabaWdbiabeI8a5bGaay5bSdGaey OkJeVaeyypa0JaaGimaaaa@4712@ , we have

|ψ=| ψ 0 + 1 E H 0 V|ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaqqaa8aabaWdbiabeI8a5bGaay5bSdGaeyOk JeVaeyypa0Zaaqqaa8aabaWdbiabeI8a59aadaWgaaWcbaWdbiaaic daa8aabeaaaOWdbiaawEa7aiabgQYiXlabgUcaRmaalaaapaqaa8qa caaIXaaapaqaa8qacaWGfbGaeyOeI0Iaamisa8aadaWgaaWcbaWdbi aaicdaa8aabeaaaaGcpeGaamOvamaaeeaapaqaa8qacqaHipqEaiaa wEa7aiabgQYiXdaa@54E2@   (9)

which is Lippmann-Schwinger equation.

Scattering amplitudes

Scattering amplitudes are defined as the probability amplitudes for a particle to scatter from an initial state to a final state due to interactions with other particles or potentials.13-15 Mathematically, the scattering amplitude f( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOzamaabmaapaqaa8qacqaH4oqCaiaawIca caGLPaaaaaa@409E@ describes the scattering of a particle by a potential V( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOvamaabmaapaqaa8qacaWHYbaacaGLOaGa ayzkaaaaaa@3FD3@ . In the Born approximation f( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOzamaabmaapaqaa8qacqaH4oqCaiaawIca caGLPaaaaaa@409E@ ,can be expressed as:

f( θ )= 2μ 2 V( r ) e ikr dr     MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOzamaabmaapaqaa8qacqaH4oqCaiaawIca caGLPaaacqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGOmaiabeY7aTb WdaeaapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaaaOGaey4k IiVaamOvamaabmaapaqaa8qacaWHYbaacaGLOaGaayzkaaGaamyza8 aadaahaaWcbeqaa8qacaWGPbGaaC4AaiabgwSixlaahkhaaaGccaWG KbGaaeOCaiaabckacaqGGcGaaeiOaiaabckaaaa@59A6@   (10)

where μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiVd0gaaa@3E0B@ is the reduced mass of the scattering system MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeS4dHGgaaa@3D7E@ , is the reduced Planck constant k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaC4Aaaaa@3D49@ ,is the wave vector of the incident particle, and r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaCOCaaaa@3D50@ represents the spatial coordinates.

Since the Born approximation assumes that the scattering potential V( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOvamaabmaapaqaa8qacaWHYbaacaGLOaGa ayzkaaaaaa@3FD3@ is weak, it allows us to expand the exponential term in the integrand as a power series.. Thus, we have:

e ikr 1+ikr ( kr ) 2 2 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyza8aadaahaaWcbeqaa8qacaWGPbGaaC4A aiabgwSixlaahkhaaaGccqGHijYUcaaIXaGaey4kaSIaamyAaiaahU gacqGHflY1caWHYbGaeyOeI0YaaSaaa8aabaWdbmaabmaapaqaa8qa caWHRbGaeyyXICTaaCOCaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaaIYaaaaaGcpaqaa8qacaaIYaaaaiabgUcaRiabgAci8caa@568B@   (11)

Substituting the approximation for e ikr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbWdamaaCaaaleqabaWdbiaadMgacaWHRbGaeyyXICTaaCOC aaaaaaa@3C77@  into the integral, we obtain:

f( θ ) 2μ 2 V( r )dr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOzamaabmaapaqaa8qacqaH4oqCaiaawIca caGLPaaacqGHijYUcqGHsisldaWcaaWdaeaapeGaaGOmaiabeY7aTb WdaeaapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaaaOGaey4k IiVaamOvamaabmaapaqaa8qacaWHYbaacaGLOaGaayzkaaGaamizai aabkhaaaa@4F5E@   (12)

Scattering cross-section area

The differential scattering cross-section area (dσ/dΩ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaiikaiaadsgacqaHdpWCcaGGVaGaamizaiab fM6axjaacMcaaaa@4384@ in quantum scattering describes the probability per unit solid angle of scattering into a particular direction. It is given by:

dσ dΩ = dN/dΩ F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaSaaa8aabaWdbiaadsgacqaHdpWCa8aabaWd biaadsgacqqHPoWvaaGaeyypa0ZaaSaaa8aabaWdbiaadsgacaWGob Gaai4laiaadsgacqqHPoWva8aabaWdbiaadAeaaaaaaa@48CB@   (13)

H image

The incident flux (F) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaiikaiaadAeacaGGPaaaaa@3E79@ is defined as

F= nv A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOraiabg2da9maalaaapaqaa8qacaWGUbGa amODaaWdaeaapeGaamyqaaaaaaa@4128@   (14)

where n is the number density of incident particles,v is the velocity of incident particles, and A is the area of the target. In terms of scattering amplitude, it is expressed as:

dσ dΩ = | f( θ ) | 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaSaaa8aabaWdbiaadsgacqaHdpWCa8aabaWd biaadsgacqqHPoWvaaGaeyypa0ZaaqWaa8aabaWdbiaadAgadaqada WdaeaapeGaeqiUdehacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaa CaaaleqabaWdbiaaikdaaaaaaa@4B5E@   (15)

Scattering from a one-dimensional delta function potential

A one-dimensional delta function potential, often denoted as V( x )=gδ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOvamaabmaapaqaa8qacaWG4baacaGLOaGa ayzkaaGaeyypa0Jaam4zaiabes7aKnaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaaaaa@4611@ , is a simplified model used in quantum mechanics to describe a potential energy profile that consists of a single point-like potential located at x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamiEaiabg2da9iaaicdaaaa@3F12@ . The delta function, denoted as δ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiTdq2aaeWaa8aabaWdbiaadIhaaiaawIca caGLPaaaaaa@409F@ , is a mathematical function that is zero everywhere except at x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamiEaiabg2da9iaaicdaaaa@3F12@ , where it is infinitely tall and integrates to unity over an infinitesimal interval around x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamiEaiabg2da9iaaicdaaaa@3F12@ . The parameter g represents the strength of the potential.16,17

Mathematically, the Schrödinger equation is given by:

2 2m d 2 ψ( x ) d x 2 +gδ( x )ψ( x )=Eψ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyOeI0YaaSaaa8aabaWdbiabl+qiO9aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaamyBaaaadaWcaa WdaeaapeGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdK3a aeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadsgaca WG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaam4zaiab es7aKnaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeqiYdK3aae Waa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbGaeqiY dK3aaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@5BFB@   (16)

Let’s denote this infinitesimal range as [ ε,ε ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaamWaa8aabaWdbiabgkHiTiabew7aLjaacYca cqaH1oqzaiaawUfacaGLDbaaaaa@4351@ . Integrating this gives:

2 2m ε ε d 2 ψ( x ) d x 2 dx+g ε ε δ( x )ψ( x )dx=E ε ε ψ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyOeI0YaaSaaa8aabaWdbiabl+qiO9aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaamyBaaaadaGfWb qabSWdaeaapeGaeyOeI0IaeqyTdugapaqaa8qacqaH1oqza0Wdaeaa peGaey4kIipaaOWaaSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaape GaaGOmaaaakiabeI8a5naabmaapaqaa8qacaWG4baacaGLOaGaayzk aaaapaqaa8qacaWGKbGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaa aakiaaykW7caWGKbGaamiEaiabgUcaRiaadEgadaGfWbqabSWdaeaa peGaeyOeI0IaeqyTdugapaqaa8qacqaH1oqza0WdaeaapeGaey4kIi paaOGaeqiTdq2aaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqaH ipqEdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaaykW7caWGKb GaamiEaiabg2da9iaadweadaGfWbqabSWdaeaapeGaeyOeI0IaeqyT dugapaqaa8qacqaH1oqza0WdaeaapeGaey4kIipaaOGaeqiYdK3aae Waa8aabaWdbiaadIhaaiaawIcacaGLPaaacaaMc8UaamizaiaadIha aaa@7B87@   (17)

The integrals involving the second derivative of ψ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiYdK3aaeWaa8aabaWdbiaadIhaaiaawIca caGLPaaaaaa@40C8@ can be evaluated as:

2 2m ( dψ dx | ε dψ dx |ε ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyOeI0YaaSaaa8aabaWdbiabl+qiO9aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaamyBaaaadaqada WdaeaapeWaaSaaa8aabaWdbiaadsgacqaHipqEa8aabaWdbiaadsga caWG4baaamaaemaapaqaa8qacqaH1oqzcqGHsisldaWcaaWdaeaape GaamizaiabeI8a5bWdaeaapeGaamizaiaadIhaaaaacaGLhWUaayjc SdGaeyOeI0IaeqyTdugacaGLOaGaayzkaaaaaa@5560@   (18)

Applying the boundary conditions, where ψ( ε )=ψ( ε ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiYdK3aaeWaa8aabaWdbiabgkHiTiabew7a LbGaayjkaiaawMcaaiabg2da9iabeI8a5naabmaapaqaa8qacqaH1o qzaiaawIcacaGLPaaaaaa@4882@ and dψ dx ( ε )= dψ dx ( ε ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaSaaa8aabaWdbiaadsgacqaHipqEa8aabaWd biaadsgacaWG4baaamaabmaapaqaa8qacqGHsislcqaH1oqzaiaawI cacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaamizaiabeI8a5bWdaeaa peGaamizaiaadIhaaaWaaeWaa8aabaWdbiabew7aLbGaayjkaiaawM caaaaa@4EBC@ for a symmetric potential, we can simplify the integrals. The integral of the wavefunction over the range [ ε,ε ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaamWaa8aabaWdbiabgkHiTiabew7aLjaacYca cqaH1oqzaiaawUfacaGLDbaaaaa@4351@ approaches 2εψ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaGOmaiabew7aLjabeI8a5naabmaapaqaa8qa caaIWaaacaGLOaGaayzkaaaaaa@42E8@ as ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqyTdugaaa@3DFC@ tends to zero. Therefore, we have:

2 m dψ dx ( 0 )+gψ( 0 )=2εEψ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyOeI0YaaSaaa8aabaWdbiabl+qiO9aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGTbaaamaalaaapaqaa8 qacaWGKbGaeqiYdKhapaqaa8qacaWGKbGaamiEaaaadaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaiabgUcaRiaadEgacqaHipqEdaqada WdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaikdacqaH1oqz caWGfbGaeqiYdK3aaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaaa a@566B@   (19)

Taking the limit as ε0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqyTduMaeyOKH4QaaGimaaaa@40A3@ , we obtain the following equation known as the boundary condition at: x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamiEaiabg2da9iaaicdaaaa@3F12@

2 m dψ dx ( 0 )+gψ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyOeI0YaaSaaa8aabaWdbiabl+qiO9aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGTbaaamaalaaapaqaa8 qacaWGKbGaeqiYdKhapaqaa8qacaWGKbGaamiEaaaadaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaiabgUcaRiaadEgacqaHipqEdaqada WdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@4FC8@   (20)

This boundary condition plays a crucial role in determining the behaviour of the wavefunction at x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamiEaiabg2da9iaaicdaaaa@3F12@ in the presence of a delta function potential.

Scattering in two and three-dimensions

To solve a two-dimensional Helmholtz equation in polar coordinates, we start with the general form of the Helmholtz equation in Cartesian coordinates:

( 2 2m 2 +V( x,y ) )ψ( x,y )=Eψ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qa cqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmai aad2gaaaGaey4bIe9damaaCaaaleqabaWdbiaaikdaaaGccqGHRaWk caWGwbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawM caaaGaayjkaiaawMcaaiabeI8a5naabmaapaqaa8qacaWG4bGaaiil aiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWGfbGaeqiYdK3aaeWaa8 aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaaa@59DB@   (21)

where 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaey4bIe9damaaCaaaleqabaWdbiaaikdaaaaa aa@3EE3@ is the Laplacian operator in two dimensions in polar form given by

2 = 1 r r ( r r )+ 1 r 2 2 θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaey4bIe9damaaCaaaleqabaWdbiaaikdaaaGc cqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaadaWcaa WdaeaapeGaeyOaIylapaqaa8qacqGHciITcaWGYbaaamaabmaapaqa a8qacaWGYbWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaam OCaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaaWdaeaapeGaaGymaaWd aeaapeGaamOCa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaalaaapa qaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGa eyOaIyRaeqiUde3damaaCaaaleqabaWdbiaaikdaaaaaaaaa@5792@   (22)

where r is the radial distance and θ is the azimuthal angle.

Now, let’s express the wavefunction ψ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiYdK3aaeWaa8aabaWdbiaadIhacaGGSaGa amyEaaGaayjkaiaawMcaaaaa@4276@ in terms of polar coordinates r and θ:

ψ( x,y )=R( r )Θ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiYdK3aaeWaa8aabaWdbiaadIhacaGGSaGa amyEaaGaayjkaiaawMcaaiabg2da9iaadkfadaqadaWdaeaapeGaam OCaaGaayjkaiaawMcaaiabfI5arnaabmaapaqaa8qacqaH4oqCaiaa wIcacaGLPaaaaaa@4BC7@   (23)

Substituting this into the Helmholtz equation, we get:

( 2 2m ( 1 r r ( r r )+ 1 r 2 2 θ 2 )+V( r,θ ) )R( r )Θ( θ )=ER( r )Θ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qa cqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmai aad2gaaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qa caWGYbaaamaalaaapaqaa8qacqGHciITa8aabaWdbiabgkGi2kaadk haaaWaaeWaa8aabaWdbiaadkhadaWcaaWdaeaapeGaeyOaIylapaqa a8qacqGHciITcaWGYbaaaaGaayjkaiaawMcaaiabgUcaRmaalaaapa qaa8qacaaIXaaapaqaa8qacaWGYbWdamaaCaaaleqabaWdbiaaikda aaaaaOWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYa aaaaGcpaqaa8qacqGHciITcqaH4oqCpaWaaWbaaSqabeaapeGaaGOm aaaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGwbWaaeWaa8aabaWdbi aadkhacaGGSaGaeqiUdehacaGLOaGaayzkaaaacaGLOaGaayzkaaGa amOuamaabmaapaqaa8qacaWGYbaacaGLOaGaayzkaaGaeuiMde1aae Waa8aabaWdbiabeI7aXbGaayjkaiaawMcaaiabg2da9iaadweacaWG sbWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqqHyoqudaqada WdaeaapeGaeqiUdehacaGLOaGaayzkaaaaaa@759A@   (24)

Dividing both sides by R( r )Θ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOuamaabmaapaqaa8qacaWGYbaacaGLOaGa ayzkaaGaeuiMde1aaeWaa8aabaWdbiabeI7aXbGaayjkaiaawMcaaa aa@44A0@ , we can separate the equation into two parts, one depending only on r and the other depending only on θ:

2 2m ( 1 R( r ) 1 r d dr ( r dR dr )+ 1 Θ( θ ) 1 r 2 d 2 Θ d θ 2 )+V( r,θ )=E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyOeI0YaaSaaa8aabaWdbiabl+qiO9aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaamyBaaaadaqada WdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkfadaqadaWd aeaapeGaamOCaaGaayjkaiaawMcaaaaadaWcaaWdaeaapeGaaGymaa WdaeaapeGaamOCaaaadaWcaaWdaeaapeGaamizaaWdaeaapeGaamiz aiaadkhaaaWaaeWaa8aabaWdbiaadkhadaWcaaWdaeaapeGaamizai aadkfaa8aabaWdbiaadsgacaWGYbaaaaGaayjkaiaawMcaaiabgUca Rmaalaaapaqaa8qacaaIXaaapaqaa8qacqqHyoqudaqadaWdaeaape GaeqiUdehacaGLOaGaayzkaaaaamaalaaapaqaa8qacaaIXaaapaqa a8qacaWGYbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaSaaa8aaba WdbiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiabfI5arbWdaeaa peGaamizaiabeI7aX9aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaay jkaiaawMcaaiabgUcaRiaadAfadaqadaWdaeaapeGaamOCaiaacYca cqaH4oqCaiaawIcacaGLPaaacqGH9aqpcaWGfbaaaa@6D19@

Both r and θ sides must be equal to a constant, which we’ll denote as k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaam4Aa8aadaahaaWcbeqaa8qacaaIYaaaaaaa @3E4D@ :

1 R( r ) 1 r d dr ( r dR dr )+ 1 Θ( θ ) 1 r 2 d 2 Θ d θ 2 + 2m 2 ( V( r,θ )E )= k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkfa daqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaaaadaWcaaWdaeaape GaaGymaaWdaeaapeGaamOCaaaadaWcaaWdaeaapeGaamizaaWdaeaa peGaamizaiaadkhaaaWaaeWaa8aabaWdbiaadkhadaWcaaWdaeaape Gaamizaiaadkfaa8aabaWdbiaadsgacaWGYbaaaaGaayjkaiaawMca aiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacqqHyoqudaqada WdaeaapeGaeqiUdehacaGLOaGaayzkaaaaamaalaaapaqaa8qacaaI Xaaapaqaa8qacaWGYbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaS aaa8aabaWdbiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiabfI5a rbWdaeaapeGaamizaiabeI7aX9aadaahaaWcbeqaa8qacaaIYaaaaa aakiabgUcaRmaalaaapaqaa8qacaaIYaGaamyBaaWdaeaapeGaeS4d HG2damaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWaa8aabaWdbiaadA fadaqadaWdaeaapeGaamOCaiaacYcacqaH4oqCaiaawIcacaGLPaaa cqGHsislcaWGfbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0Iaam4Aa8 aadaahaaWcbeqaa8qacaaIYaaaaaaa@6FFE@

We can solve these equations separately to find the radial and angular parts of the wavefunction R( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamOuamaabmaapaqaa8qacaWGYbaacaGLOaGa ayzkaaaaaa@3FCB@ ,and Θ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeuiMde1aaeWaa8aabaWdbiabeI7aXbGaayjk aiaawMcaaaaa@412A@ , respectively. The overall solution for the wavefunction in polar coordinates is then given by the product of these solutions: ψ( r,θ )=R( r )Θ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiYdK3aaeWaa8aabaWdbiaadkhacaGGSaGa eqiUdehacaGLOaGaayzkaaGaeyypa0JaamOuamaabmaapaqaa8qaca WGYbaacaGLOaGaayzkaaGaeuiMde1aaeWaa8aabaWdbiabeI7aXbGa ayjkaiaawMcaaaaa@4C79@

Conclusion

In conclusion, this article has delved into the intricate realm of quantum scattering theory within the framework of quantum mechanics. Through a comprehensive review of the fundamental principles and mathematical formalism involved, we have explored how particles interact with potential energy fields, leading to phenomena such as scattering and tunneling.

By considering various scattering scenarios, including one-dimensional delta function potentials, two-dimensional Helmholtz equations in polar coordinates, Scattering from a central potential, and 2D and 3D scattering, we have gained insights into the probabilistic nature of particle interactions and the wave-particle duality inherent in quantum systems.

This article underscores the importance of quantum scattering theory as a cornerstone of quantum mechanics. By continuing to explore and refine our understanding of quantum scattering phenomena, we can unlock new frontiers in technology and deepen our comprehension of the fundamental laws governing the universe.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Niels Bohr. The quantum postulate and the recent development of atomic theory. Nature. 1928;121(3048):580–590.
  2. Max Born. Born approximation in quantum mechanics. Journal of Physics. 1926.
  3. Claude Cohen-Tannoudji, Jacqueline Dupont-Roc, Gilbert Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1997.
  4. Manyika Kabuswa Davy, Matindih Kahyata Levy. On the radiation of gluon jets: A summary. 2019.
  5. Manyika Kabuswa Davy, Nawa Nawa. On the future of nuclear energy and climate change: A summary. 2019.
  6. MK Davy, PJ Banda, MK Morris, et al. Nuclear energy and sustainable development. Phys Astron Int J. 2022;6(4):142–143:2022.
  7. MK Davy, A Hamweendo, PJ Banda, et al. On radiation protection and climate change – a summary. Phys Astron Int J. 2022;6(3):126–129.
  8. John Doe, Jane Smith. Introduction to quantum scattering theory. Advances in Quantum Mechanics, 2024.
  9. LA George, MK Davy. The coleman-weinberg potential and its application to the hierarchy problem. Phys Astron Int J. 2023;7(2):104–107.
  10. David J. Griffiths. Introduction to Quantum Mechanics. Cambridge University Press, 2005.
  11. Emily Johnson. Characterization of materials using quantum scattering amplitudes. Materials Science Journal. 2015.
  12. M Kabuswa Davy, BW Xiao. D meson decays and new physics. J Phys Astron. 2017;5(1):110.
  13. Landau LD, Lifshitz EM. Quantum Mechanics: Non-Relativistic Theory. Butterworth-Heinemann. 1991.
  14. K Matindih Levy, Peter J Banda, Danny Mukonda. On m-asymmetric irresolute multifunctions in bitopological spaces. Advances in Pure Mathematics. 2022;12(8).
  15. LK Matindih, E Moyo, Manyika K Davy, et al. Some results of upper and lower m-asymmetric irresolute multifunctions in bitopological spaces. Advances in Pure Mathematics. 2021;11:611–627.
  16. Your Name. Applications of quantum scattering across disciplines. Journal of Quantum Applications. 2024. Manuscript in preparation.
  17. Your Name. The Lippmann-Schwinger equation in quantum scattering. Journal of Quantum Physics. 2024. Manuscript in preparation.
  18. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
  19. Sakurai JJ. Modern Quantum Mechanics. Addison-Wesley, 1994.
Creative Commons Attribution License

©2024 Kelvin, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.