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Introduction
In Quantum mechanics, scattering involves alterations in particle 

trajectories or states during interaction essential for understanding 
phenomena like particle accelerations and light scattering by atoms.7,8 
At the core of this theory is the scattering amplitude, depicting the 
transition probability from an initial to a final state. Various theoretical 
frameworks and mathematical tools like the Born approximation and 
partial wave analysis facilitate the study of quantum scattering.9,10 
Recent advancements have enable sophisticated investigations into 
multi-particle interactions and resonant scattering, enhancing our 
understanding of quantum systems. Quantum Scattering Theory is 
fundamental, empowering us to predict experimental outcomes and 
delve deeper into the microscopic realm.11,12 Its applications extend 
to cutting-edge technologies like quantum computing and sensing, 
underscoring its significance in shaping our understanding of quantum 
phenomena. The objectives of the study.

Quantum scattering principles

The two key principles of quantum scattering theory are the 
wave-particle duality and the Schrödinger equation. A article with 
momentum p has an associated wavelengthl given by the de Broglie 
wavelength equation

h
p

l=                                                                                             (1)

Where h is Planck’s constant. 

The Schrödinger equation is given by:
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Quantum scattering formalism

An incident particle in state 0y ñ is scattered by a potential , 
resulting in a scattered state sy ñ . The incident state 0y ñnow becomes 
the eigenstate of the background Hamiltonian 0H with eigenvalue E
expressed mathematically as

( ) 0 0oE H y ñ- =                                                                            (3)

unless otherwise stated, the background Hamiltonian 0H should be 
taken as that of a free particle
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and the incident state taken as a plane wave
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Scattering theory therefore aims to solve the full energy-eigenstate 
problem

( )0 0E H V y- - ñ=                                                                         (6)

where 0E > , and yñ is the eigenstate of the full 0H H V= + with 
energy E .

The Lippmann-Schwinger equation

The Lippmann-Schwinger equation provides a formal solution for 
the scattering problem in terms of the scattering potential. .

The scattered state | sy ñ is defined as

0|sy y y= ñ-ñ ñ                                                                             (7)

With the above, the full Schrodinger equation in  can now 
be written as

0E H Vy y- ñ= ñ                                                                          (8)

considering 0 0E H y- ñ= , we have
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                                                                (9)

which is Lippmann-Schwinger equation. 

Scattering amplitudes

Scattering amplitudes are defined as the probability amplitudes 
for a particle to scatter from an initial state to a final state due to 
interactions with other particles or potentials.13-15 Mathematically, the 
scattering amplitude ( )f q describes the scattering of a particle by a 
potential ( )V r . In the Born approximation, ( )f q can be expressed as:

( ) ( )2

2 r    if V e dm
q ×=- ò k rr



                                                (10)

where m is the reduced mass of the scattering system,  is the 
reduced Planck constant, k is the wave vector of the incident particle, 
and r represents the spatial coordinates.

Since the Born approximation assumes that the scattering potential
( )V r is weak, it allows us to expand the exponential term in the 

integrand as a power series.. Thus, we have:
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Abstract

Quantum scattering, a fundamental phenomenon in quantum mechanics, is very important 
in understanding the interactions between particles at the microscopic level.1,2 Quantum 
scattering plays a pivotal role in various fields of physics, chemistry, and even beyond, 
influencing areas such as materials science, quantum computing, and nuclear physics among 
others.3,4 Theoretical concepts such as the Schrödinger equation, scattering amplitude, and 
scattering cross-section are highlighted in this, along with their significance in describing 
particle interactions with potential energy fields.5,6
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Substituting the approximation for  into the integral, we 
obtain:

( ) ( )2
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                                                                  (12)

Scattering cross-section area

The differential scattering cross-section area ( / )d ds W in quantum 
scattering describes the probability per unit solid angle of scattering 
into a particular direction. It is given by:

/d dN d
d F
s W
=

W
                                                                            (13)

H image

The incident flux ( )F is defined as
nvF
A

=                                                                                         (14)

where n is the number density of incident particles, v is the 
velocity of incident particles, and A is the area of the target. In terms 
of scattering amplitude, it is expressed as:
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                                                                              (15)

Scattering from a one-dimensional delta function 
potential

A one-dimensional delta function potential, often denoted as
( ) ( )V x g xd= , is a simplified model used in quantum mechanics 

to describe a potential energy profile that consists of a single point-
like potential located at 0x = . The delta function, denoted as ( )xd

, is a mathematical function that is zero everywhere except at 0x =
, where it is infinitely tall and integrates to unity over an infinitesimal 
interval around 0x = . The parameter g represents the strength of the 
potential.16,17

Mathematically, the Schrödinger equation is given by:

( )
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Let’s denote this infinitesimal range as [ ],e e- . Integrating this 
gives:
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The integrals involving the second derivative of ( )xy can be 
evaluated as:

2

2
d d

m dx dx
y y

e e
æ ö÷ç ÷- - -ç ÷ç ÷çè ø

                                                              (18)

Applying the boundary conditions, where ( ) ( )y e y e- = and

( ) ( )d d
dx dx
y y

e e- = for a symmetric potential, we can simplify the 

integrals. The integral of the wavefunction over the range [ ],e e-
approaches ( )2 0ey as e tends to zero. Therefore, we have:
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Taking the limit as 0e® , we obtain the following equation known 

as t ( ) ( )
2

0 0 0d g
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This boundary condition plays a crucial role in determining the 
behaviour of the wavefunction at 0x = in the presence of a delta 
function potential.

Scattering in two and three-dimensions

To solve a two-dimensional Helmholtz equation in polar 
coordinates, we start with the general form of the Helmholtz equation 
in Cartesian coordinates:

 ( ) ( ) ( )
2
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2
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m
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where 2Ñ is the Laplacian operator in two dimensions in polar 
form given by
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where r is the radial distance and q is the azimuthal angle.

Now, let’s express the wavefunction ( ),x yy in terms of polar 
coordinates r and q :

 ( ) ( ) ( ),x y R ry q= Q                                                                     (23)

Substituting this into the Helmholtz equation, we get:
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Dividing both sides by ( ) ( )R r qQ , we can separate the equation 

into two parts, one depending only on r and the other depending only 
on q :

( ) ( )
( )

2 2

2 2

1 1 1 1 ,
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Both r and q sides must be equal to a constant, which we’ll denote 
as 2k :

( ) ( )
( )( )

2
2

2 2 2

1 1 1 1 2 ,d dR d mr V r E k
R r r dr dr r d

q
q q
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We can solve these equations separately to find the radial and 
angular parts of the wavefunction, ( )R r and ( )qQ , respectively. The 
overall solution for the wavefunction in polar coordinates is then 
given by the product of these solutions:

( ) ( ) ( ),r R ry q q= Q .

Conclusion
In conclusion, this article has delved into the intricate realm 

of quantum scattering theory within the framework of quantum 
mechanics. Through a comprehensive review of the fundamental 
principles and mathematical formalism involved, we have explored 
how particles interact with potential energy fields, leading to 
phenomena such as scattering and tunneling.

By considering various scattering scenarios, including one-
dimensional delta function potentials, two-dimensional Helmholtz 
equations in polar coordinates, Scattering from a central potential, and 
2D and 3D scattering, we have gained insights into the probabilistic 
nature of particle interactions and the wave-particle duality inherent 
in quantum systems.
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This article underscores the importance of quantum scattering 
theory as a cornerstone of quantum mechanics. By continuing 
to explore and refine our understanding of quantum scattering 
phenomena, we can unlock new frontiers in technology and deepen 
our comprehension of the fundamental laws governing the universe.
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