Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 2

The coleman-weinberg potential and its application to the hierarchy problems

Likolo Anabiwa George, Manyika Kabuswa Davy

Mulungushi University, School of Natural and Applied Sciences, Department of Physics, Zambia

Correspondence: Manyika Kabuswa Davy, Mulungushi University, School of Natural and Applied Sciences, Department of Physics, Zambia

Received: March 28, 2023 | Published: April 26, 2023

Citation: George LA, Davy MK. The coleman-weinberg potential and its application to the hierarchy problem. Phys Astron Int J. 2023;7(2):104-107. DOI: 10.15406/paij.2023.07.00292

Download PDF

Abstract

The Coleman-Weinberg Potential has and is still being applied in so many areas in modern physics which include analysis of Spontaneous Symmetry Breaking (SSB). In the SM, SSB is attained by introducing an ad-hoc kind of modification resulting in the mass term of the of the classical potential assuming a tachyon-like characteristics. By analyzing all the terms in the classical potential, it is vivid that only the mass term possesses a dimensional constant. Thus, we can trace the Hierarchy Problem to the ad-hoc modification via the squired mass term. This paper does not only focus on the study of the Coleman-Weinberg mechanism but also shows why application of the same is likely to unveil a clue that may lead scholars to resolving the Hierarchy Problem.

Keywords: Coleman-Weinberg Potential, Hierarchy Problem, Spontaneous Symmetry Breaking

Introduction

In view of the SM, the Higgs mechanism has been proved to be the one responsible for originating masses for fermions and gauge bosons. Without this mechanism, gauge symmetry in the SM, which does not permit mass generation, would have left fermions and bosons massless.1 Such a scenario contradicts the Large Hadron Collider (LDC) accelerator facility’s measurements. In addition, one of the recipe for the Higgs mechanism, in line with experimental results, is an acquisition of a non-zero vacuum expectation value resulting in triggering SSB. Fermions and bosons’ interaction with the scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abew9aMbaa@39DC@ at the vacuum expectation value generates their masses. This entails that the ϕ 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abew9aM9aadaahaaWcbeqcfayaa8qacaaI0aaaaaaa@3B74@ theory with reference to a real scalar field serves as a classical example to study SSB in the SM.

To begin with, this theory is governed by the Lagrangian density

= 1 2 μ ϕ μ ϕ+V( ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHWKa eyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaeyOaIy 7damaaBaaaleaapeGaeqiVd0gapaqabaGcpeGaeqy1dyMaeyOaIy7a aWbaaSqabeaacqaH8oqBaaGccqaHvpGzcqGHRaWkcaWGwbWaaeWaa8 aabaWdbiabew9aMbGaayjkaiaawMcaaaaa@550C@   (1)

where

V( ϕ )= 1 2 m 2 ϕ 2 + λ 4! ϕ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaeqy1dygacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBa8aadaahaa Wcbeqcfayaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqajuaGbaWd biaaikdaaaGccqGHRaWkdaWcaaWdaeaapeGaeq4UdWgapaqaa8qaca aI0aGaaiyiaaaacqaHvpGzjuaGpaWaaWbaaeqabaWdbiaaisdaaaaa aa@4CBF@   (2)

is the classical potential. In this paper, we will refer to this potential as the Higgs potential.

It is vital to at this stage to mention that the realisation of the Higgs mechanism is only feasible when considering certain conditions.2 The most crucial one is that the quadratic mass term in the Higgs potential must be an ad-hoc tuned such that the classical potential becomes modified into

V( ϕ )= 1 2 μ 2 ϕ 2 + λ 4! ϕ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaeqy1dygacaGLOaGaayzkaaGaeyypa0Ja eyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaeqiVd0 wcfa4damaaCaaabeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqa juaGbaWdbiaaikdaaaGccqGHRaWkdaWcaaWdaeaapeGaeq4UdWgapa qaa8qacaaI0aGaaiyiaaaacqaHvpGzpaWaaWbaaSqabeaapeGaaGin aaaaaaa@4DE2@   (3)

In this paper, our ad-hoc choice takes the form

μ 2 = m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkHiTiabeY7aTLqba+aadaahaaqabeaapeGaaGOmaaaakiabg2da 9iaad2gajuaGpaWaaWbaaeqabaWdbiaaikdaaaaaaa@3FCE@   (4)

This deliberate choice makes it analytically convenient for the purpose of triggering SSB. Despite this great advantage, the same choice gives rise to the infamous gauge Hierarchy Problem. This is because in the SM, the Higgs mechanism’s ad-hoc adjusted mass term is the only one having a dimensional constant. Being problematic here entails the SM approach to the analysis of SSB particularly the understanding of fundamental electroweak scale.

The above conundrum makes us look for alternative approaches to SSB analysis which may be a good treatment for the short-comings described above. Other scholars have shown that via radiative corrections for vanishing μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeY7aTbaa@39C9@ , SSB can take place. In simple terms, the implication of implies that the Coleman-Weinberg mechanism provides us with a consideration of the squared mass term that is irrelevant in bringing about SSB. Above all, the groundbreaking works done by Coleman and Weinberg gave rise to an important tool into the arena of theoretical Nuclear and Particle Physics.

Mathematically, the Coleman-Weinberg Potential can be expressed as

V e ff ( ϕ v )=V( ϕ v ) i 2 d 4 k (2π) 4 ln[ k 2 V"( ϕ v ) k 2 +O( 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfajuaGpaWaaSbaaeaapeGaamyzaaWdaeqaa8qadaWgaaqaaiaa dAgacaWGMbaabeaakiaacIcacqaHvpGzpaWaaSbaaSqaa8qacaWG2b aapaqabaGcpeGaaiykaiabg2da9iaadAfacaGGOaGaeqy1dy2damaa BaaaleaapeGaamODaaWdaeqaaOWdbiaacMcacqGHsisldaWcaaqaai aadMgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab =9qi=dqaaiaaikdaaaWaa8qaaeaadaWcaaqaaiaadsgajuaGpaWaaW baaeqabaWdbiaaisdaaaGccaWGRbaabaGaaiikaiaaikdacqaHapaC caGGPaWaaWbaaSqabKqbagaacaaI0aaaaaaaaSqabeqaniabgUIiYd GccaWGSbGaamOBaiaacUfadaWcaaqaaiaadUgapaWaaWbaaSqabKqb agaapeGaaGOmaaaakiabgkHiTiaadAfacaGGIaGaaiikaiabew9aMn aaBaaajuaGbaGaamODaaWcbeaakiaacMcaaeaacaWGRbWdamaaCaaa leqajuaGbaWdbiaaikdaaaaaaOGaey4kaSIae8NdX=Kaaiikaiab=9 qi==aadaahaaWcbeqcfayaa8qacaaIYaaaaOGaaiykaiaac6caaaa@77D1@   (5)

Despite the Coleman-Weinberg Potential being a great tool in theoretical Nuclear and Particle Physics, documentations of its application to the field of study is marred with ambivalence leading slowly to fears for its redundancy. In this paper, we shall allay this fear via a demonstration that the Coleman-Weinberg Potential has a high likelihood to persist as a very important area of study especially in the field of theoretical Nuclear and Particle Physics. Firstly, we conduct a review of the application of the Coleman-Weinberg Potential in view of SSB analysis. Secondly, the paper considers prospects of resolving the gauge Hierarchy Problem using the Coleman-Weinberg Potential as an analytical tool.

Application of the Coleman-Weinberg potential in the analysis of SSB

In this section, we apply the Coleman-Weinberg Potential to the analysis of SSB by developing a formalism tailored at making our computations easier. By recalling Equation 5, it is clear that the second term on the right hand side of the equation reveals the divergence of the integral. This implies that, in order to progress in our computations, we need to employ dimensional regularization as a facilitating tool.3-6 This technique brings on board a convenient approach to circumventing divergence challenges.

Under dimensional regularization, the beginning point is to extend the dimensions to D, requiring that the integral measure d 4 k (2π) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacaWGKbqcfa4damaaCaaabeqaa8qacaaI0aaaaOGa am4AaaWdaeaapeGaaiikaiaaikdacqaHapaCcaGGPaWdamaaCaaale qajuaGbaWdbiaaisdaaaaaaaaa@413B@  is replaced by

d D k (2π) D M 4D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacaWGKbWdamaaCaaaleqajuaGbaWdbiaadseaaaGc caWGRbaapaqaa8qacaGGOaGaaGOmaiabec8aWjaacMcapaWaaWbaaS qabKqbagaapeGaamiraaaaaaGccaWGnbqcfa4damaaCaaabeqaa8qa caaI0aGaeyOeI0Iaamiraaaaaaa@457B@   (6)

where M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E5@ is the well-known renormalization scale. Furthermore, the Coleman-Weinberg potential is modified by the extension of dimensions to D and the result takes a structure under Equation 7.

V e ff ( ϕ v )=V( ϕ v ) i M 4D 2 d D k (2π) D ln[ k 2 V"( ϕ v ) k 2 ]+O( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfajuaGpaWaaSbaaeaapeGaamyzaaWdaeqaa8qadaWgaaqaaiaa dAgacaWGMbaabeaakiaacIcacqaHvpGzpaWaaSbaaSqaa8qacaWG2b aapaqabaGcpeGaaiykaiabg2da9iaadAfacaGGOaGaeqy1dy2damaa BaaaleaapeGaamODaaWdaeqaaOWdbiaacMcacqGHsisldaWcaaWdae aapeGaamyAamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae83dH8Vaamyta8aadaahaaWcbeqcfayaa8qacaaI0aGaeyOeI0 IaamiraaaaaOWdaeaapeGaaGOmaaaacqGHRiI8daWcaaWdaeaapeGa amiza8aadaahaaWcbeqcfayaa8qacaWGebaaaOGaam4AaaWdaeaape GaaiikaiaaikdacqaHapaCcaGGPaWdamaaCaaaleqajuaGbaWdbiaa dseaaaaaaOGaamiBaiaad6gadaWadaWdaeaapeWaaSaaa8aabaWdbi aadUgapaWaaWbaaSqabKqbagaapeGaaGOmaaaakiabgkHiTiaadAfa caGGIaWaaeWaa8aabaWdbiabew9aM9aadaWgaaWcbaWdbiaadAhaa8 aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiaadUgapaWaaWbaaSqa bKqbagaapeGaaGOmaaaaaaaakiaawUfacaGLDbaacqGHRaWkcqWFoe =tdaqadaWdaeaapeGaeS4dHG2damaaCaaaleqajuaGbaWdbiaaikda aaaakiaawIcacaGLPaaaaaa@7D08@   (7)

In order to ease our computations, we proceed via a scientific guess by arbitrarily defining the relation

V ( ϕ v ) k 2 =1+ m 2 k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qaceWGwbWdayaagaWdbmaabmaapaqaa8qacqaHvpGz paWaaSbaaSqaa8qacaWG2baapaqabaaak8qacaGLOaGaayzkaaaapa qaa8qacaWGRbWdamaaCaaaleqajuaGbaWdbiaaikdaaaaaaOGaeyyp a0JaaGymaiabgUcaRiaad2gapaWaaWbaaSqabKqbagaapeGaaGOmaa aakiabgkHiTiaadUgapaWaaWbaaSqabKqbagaapeGaaGOmaaaaaaa@497F@   (8)

which allows us to write

k 2 V ( ϕ v ) k 2 = k 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacaWGRbWdamaaCaaaleqajuaGbaWdbiaaikdaaaGc cqGHsislceWGwbWdayaagaWdbmaabmaapaqaa8qacqaHvpGzpaWaaS baaSqaa8qacaWG2baapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qa caWGRbqcfa4damaaCaaabeqaa8qacaaIYaaaaaaakiabg2da9iaadU gapaWaaWbaaSqabKqbagaapeGaaGOmaaaakiabgkHiTiaad2gapaWa aWbaaSqabKqbagaapeGaaGOmaaaaaaa@4B54@   (9)

By combining Equations 7 and 8 we obtain

V eff ( ϕ v ) =V( ϕ v ) i M 4D 2 d D k (2π) D ln( k 2 m 2 )+O( 2 ) =V( ϕ v ) M 4 2 (4π) D 2 Γ( D 2 ) ( m 2 M 2 ) D 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqabeGacaaaba aeaaaaaaaaa8qacaWGwbWdamaaBaaaleaapeGaamyzaiaadAgacaWG MbaapaqabaGcpeWaaeWaa8aabaWdbiabew9aM9aadaWgaaWcbaWdbi aadAhaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiabg2da9iaa dAfadaqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdae qaaaGcpeGaayjkaiaawMcaamaalaaapaqaa8qacaWGPbGaeS4dHGMa amyta8aadaahaaWcbeqcfayaa8qacaaI0aGaeyOeI0IaamiraaaaaO WdaeaapeGaaGOmaaaacqGHsisldaWcaaWdaeaapeGaamiza8aadaah aaWcbeqcfayaa8qacaWGebaaaOGaam4AaaWdaeaapeGaaiikaiaaik dacqaHapaCcaGGPaWdamaaCaaaleqajuaGbaWdbiaadseaaaaaaOGa aeiBaiaab6gacqGHRiI8daqadaWdaeaapeGaam4Aa8aadaahaaWcbe qcfayaa8qacaaIYaaaaOGaeyOeI0IaamyBa8aadaahaaWcbeqcfaya a8qacaaIYaaaaaGccaGLOaGaayzkaaGaey4kaSYefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuaacqWFoe=tdaqadaWdaeaapeGa eS4dHG2damaaCaaaleqajuaGbaWdbiaaikdaaaaakiaawIcacaGLPa aaa8aabaaabaWdbiabg2da9iaadAfadaqadaWdaeaapeGaeqy1dy2d amaaBaaaleaapeGaamODaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgk HiTmaalaaapaqaa8qacqWFpeY=caWGnbqcfa4damaaCaaabeqaa8qa caaI0aaaaaGcpaqaa8qacaaIYaGaaiikaiaaisdacqaHapaCcaGGPa WdamaaCaaaleqajuaGbaWdbmaalaaapaqaa8qacaWGebaapaqaa8qa caaIYaaaaaaaaaGccqqHtoWrdaqadaWdaeaapeGaeyOeI0YaaSaaa8 aabaWdbiaadseaa8aabaWdbiaaikdaaaaacaGLOaGaayzkaaGaaiik amaalaaapaqaa8qacaWGTbWdamaaCaaaleqajuaGbaWdbiaaikdaaa aak8aabaWdbiaad2eapaWaaWbaaSqabKqbagaapeGaaGOmaaaaaaGc caGGPaqcfa4damaaCaaabeqaa8qadaWcaaWdaeaapeGaamiraaWdae aapeGaaGOmaaaaaaaaaaaa@9828@   (10)

which satisfies

d D k (2π) D ln( k 2 m 2 ) = d dα d D k (2π) D 1 ( k 2 m 2 ) α | α=0 = i 2 1 (4π) D 2 Γ( D 2 ) ( m 2 ) D 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqabeGacaaaba aeaaaaaaaaa8qacqGHRiI8daWcaaWdaeaapeGaamiza8aadaahaaWc beqcfayaa8qacaWGebaaaOGaam4AaaWdaeaapeGaaiikaiaaikdacq aHapaCcaGGPaqcfa4damaaCaaabeqaa8qacaWGebaaaaaakiaadYga caWGUbWaaeWaa8aabaWdbiaadUgapaWaaWbaaSqabKqbagaapeGaaG OmaaaakiabgkHiTiaad2gajuaGpaWaaWbaaeqabaWdbiaaikdaaaaa kiaawIcacaGLPaaaa8aabaWdbiabg2da9maalaaapaqaa8qacaWGKb aapaqaa8qacaWGKbGaeqySdegaaiabgUIiYpaalaaapaqaa8qacaWG KbWdamaaCaaaleqajuaGbaWdbiaadseaaaGccaWGRbaapaqaa8qaca GGOaGaaGOmaiabec8aWjaacMcapaWaaWbaaSqabKqbagaapeGaamir aaaaaaGcdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaiikaiaadUgapa WaaWbaaSqabKqbagaapeGaaGOmaaaakiabgkHiTiaad2gapaWaaWba aSqabKqbagaapeGaaGOmaaaakiaacMcapaWaaWbaaSqabeaapeGaeq ySdegaaaaakiaacYhapaWaaSbaaSqaa8qacqaHXoqycqGH9aqpcaaI WaaapaqabaaakeaaaeaapeGaeyypa0JaeyOeI0YaaSaaa8aabaWdbi aadMgaa8aabaWdbiaaikdaaaWaaSaaa8aabaWdbiaaigdaa8aabaWd biaacIcacaaI0aGaeqiWdaNaaiyka8aadaahaaWcbeqcfayaa8qada WcaaWdaeaapeGaamiraaWdaeaapeGaaGOmaaaaaaaaaOGaeu4KdC0a aeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaWGebaapaqaa8qaca aIYaaaaaGaayjkaiaawMcaaiaacIcacaWGTbqcfa4damaaCaaabeqa a8qacaaIYaaaaOGaaiyka8aadaahaaWcbeqcfayaa8qadaWcaaWdae aapeGaamiraaWdaeaapeGaaGOmaaaaaaaaaaaa@83DD@   (11)

In order to detect the divergence that is still persistence in Equation 10, we make use of the gamma function shown in Equation 12.

Γ( D 2 ) 1 ( 4D ) γ 2 + 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfo5ahnaabmaapaqaa8qacqGHsisldaWcaaWdaeaapeGaamiraaWd aeaapeGaaGOmaaaaaiaawIcacaGLPaaacqGHijYUdaWcaaWdaeaape GaaGymaaWdaeaapeWaaeWaa8aabaWdbiaaisdacqGHsislcaWGebaa caGLOaGaayzkaaaaaiabgkHiTmaalaaapaqaa8qacqaHZoWza8aaba WdbiaaikdaaaGaey4kaSYaaSaaa8aabaWdbiaaiodaa8aabaWdbiaa isdaaaaaaa@4B02@   (12)

Here, in order to absorb the divergence, we use a substitution

D=42ϵ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadseacqGH9aqpcaaI0aGaeyOeI0IaaGOmamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaaiilaaaa@48F4@   (13)

followed by expansion in terms of ϵ. Thus, Equation 10 becomes

V eff ( ϕ v )=V( ϕ v ) 1 4 m 4 (4π) 2 ( 1 ϵ ˜ ln m 2 M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfapaWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8qa daqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iaadAfadaqadaWdaeaapeGaeqy1 dy2damaaBaaaleaapeGaamODaaWdaeqaaaGcpeGaayjkaiaawMcaai abgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaI0aaaamaalaaa paqaa8qacaWGTbWdamaaCaaaleqajuaGbaWdbiaaisdaaaaak8aaba WdbiaacIcacaaI0aGaeqiWdaNaaiyka8aadaahaaWcbeqcfayaa8qa caaIYaaaaaaakmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aadaWfGaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac fiWdbiab=v=aYdWcpaqabeaapeGaaii3caaaaaGccqGHsislcaWGSb GaamOBamaalaaapaqaa8qacaWGTbWdamaaCaaaleqajuaGbaWdbiaa ikdaaaaak8aabaWdbiaad2eapaWaaWbaaSqabKqbagaapeGaaGOmaa aaaaaakiaawIcacaGLPaaaaaa@6B6E@   (14)

which, after further manipulation, results in the renormalized effective potential of the form

V eff ( ϕ v )=V( ϕ v )+ 1 4 m 4 (4π) 2 ln( m 2 M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfapaWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8qa daqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iaadAfadaqadaWdaeaapeGaeqy1 dy2damaaBaaaleaapeGaamODaaWdaeqaaaGcpeGaayjkaiaawMcaai abgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaaI0aaaamaalaaa paqaa8qacaWGTbWdamaaCaaaleqajuaGbaWdbiaaisdaaaaak8aaba WdbiaacIcacaaI0aGaeqiWdaNaaiyka8aadaahaaWcbeqcfayaa8qa caaIYaaaaaaakiaadYgacaWGUbWaaeWaa8aabaWdbmaalaaapaqaa8 qacaWGTbqcfa4damaaCaaabeqaa8qacaaIYaaaaaGcpaqaa8qacaWG nbWdamaaCaaaleqajuaGbaWdbiaaikdaaaaaaaGccaGLOaGaayzkaa aaaa@5B93@   (15)

By evoking Equation 3 and plugging the modified classical potential into Equation 15 we obtain

V eff ( ϕ v )= 1 2 μ 2 ϕ v 2 + λ 4! ϕ v 4 + 1 4 m 4 (4π) 2 ln( m 2 M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfapaWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8qa daqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaapaqaa8qacaaI Xaaapaqaa8qacaaIYaaaaiabeY7aT9aadaahaaWcbeqcfayaa8qaca aIYaaaaOGaeqy1dy2damaaDaaaleaapeGaamODaaqcfa4daeaapeGa aGOmaaaakiabgUcaRmaalaaapaqaa8qacqaH7oaBa8aabaWdbiaais dacaGGHaaaaiabew9aM9aadaqhaaWcbaWdbiaadAhaaKqba+aabaWd biaaisdaaaGccqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG inaaaadaWcaaWdaeaapeGaamyBa8aadaahaaWcbeqcfayaa8qacaaI 0aaaaaGcpaqaa8qacaGGOaGaaGinaiabec8aWjaacMcapaWaaWbaaS qabKqbagaapeGaaGOmaaaaaaGccaWGSbGaamOBamaabmaapaqaa8qa daWcaaWdaeaapeGaamyBa8aadaahaaWcbeqcfayaa8qacaaIYaaaaa Gcpaqaa8qacaWGnbqcfa4damaaCaaabeqaa8qacaaIYaaaaaaaaOGa ayjkaiaawMcaaaaa@692E@   (16)

Furthermore, we define an effective mass of a scalar particle6 using the relation

m 2 = μ 2 +3λ ϕ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gapaWaaWbaaSqabKqbagaapeGaaGOmaaaakiabg2da9iabeY7a T9aadaahaaWcbeqcfayaa8qacaaIYaaaaOGaey4kaSIaaG4maiabeU 7aSjabew9aM9aadaqhaaWcbaWdbiaadAhaaKqba+aabaWdbiaaikda aaaaaa@46CC@   (17)

which simplifies to Equation 18 upon assuming a vanishing μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeY7aTbaa@39C9@ such that

m 2 =3λ ϕ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gapaWaaWbaaSqabKqbagaapeGaaGOmaaaakiabg2da9iaaioda cqaH7oaBcqaHvpGzpaWaa0baaSqaa8qacaWG2baajuaGpaqaa8qaca aIYaaaaaaa@4294@   (18)

Combining Equations 16 and 18 yields

V eff ( ϕ v )= λ 4 ϕ v 4 [ 1 3! + 9λ (4π) 2 ln( 3λ ϕ v 2 M 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfapaWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8qa daqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacqaH7oaBa8aa baWdbiaaisdaaaGaeqy1dy2damaaDaaaleaapeGaamODaaqcfa4dae aapeGaaGinaaaakmaadmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWd aeaapeGaaG4maiaacgcaaaGaey4kaSYaaSaaa8aabaWdbiaaiMdacq aH7oaBa8aabaWdbiaacIcacaaI0aGaeqiWdaNaaiyka8aadaahaaWc beqcfayaa8qacaaIYaaaaaaakiaadYgacaWGUbWaaeWaa8aabaWdbm aalaaapaqaa8qacaaIZaGaeq4UdWMaeqy1dy2damaaDaaaleaapeGa amODaaqcfa4daeaapeGaaGOmaaaaaOWdaeaapeGaamyta8aadaahaa Wcbeqcfayaa8qacaaIYaaaaaaaaOGaayjkaiaawMcaaaGaay5waiaa w2faaaaa@6421@   (19)

The result obtained in Equation 19 is a one-loop effective potential under the ϕ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abew9aMLqba+aadaahaaqabeaapeGaaGinaaaaaaa@3B68@ theory of a real scalar field with μ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeY7aTjabg2da9iaaicdaaaa@3B89@ . Now, for analytical convenience, we rewrite the result in Equation 19 as

V eff ( ϕ v )=A ϕ v 4 + ϕ v 4 ln[ C ϕ v 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfapaWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8qa daqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9mrr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8haXhKaeqy1dy2damaaDaaaleaapeGaam ODaaqcfa4daeaapeGaaGinaaaakiabgUcaRiab=Xsicjabew9aM9aa daqhaaWcbaWdbiaadAhaaKqba+aabaWdbiaaisdaaaGccaWGSbGaam OBamaadmaapaqaa8qacqWFce=qcqaHvpGzpaWaa0baaSqaa8qacaWG 2baajuaGpaqaa8qacaaIYaaaaaGccaGLBbGaayzxaaaaaa@6278@   (20)

where with A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8haXhea aa@4354@ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8hlHiea aa@42B1@ and C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpea aa@4358@ are arbitrarily given by

A= λ 24 ,    = 9 λ 2 64 π 2    and   C= 3λ M 2    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8haXhKa eyypa0ZaaSaaa8aabaWdbiabeU7aSbWdaeaapeGaaGOmaiaaisdaaa GaaiilaiaacckacaGGGcGaaiiOaiaacckacqWFSeIqcqGH9aqpdaWc aaWdaeaapeGaaGyoaiabeU7aS9aadaahaaWcbeqcfayaa8qacaaIYa aaaaGcpaqaa8qacaaI2aGaaGinaiabec8aW9aadaahaaWcbeqcfaya a8qacaaIYaaaaaaakiaacckacaGGGcGaaiiOaiaadggacaWGUbGaam izaiaacckacaGGGcGaaiiOaiab=jq8djabg2da9maalaaapaqaa8qa caaIZaGaeq4UdWgapaqaa8qacaWGnbWdamaaCaaaleqajuaGbaWdbi aaikdaaaaaaOGaaiiOaiaacckaaaa@6C44@   (21)

respectively. Armed with the new form of our result described in Equation 20, we can compute its extrema starting with its differential form with respect to ϕ v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abew9aM9aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@3B30@ leading to

V eff ( ϕ v ) ϕ v =4 ϕ v 3 ( A+[ ln( C ϕ v 2 )+ 1 2 ] ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcaWGwbWdamaaBaaaleaapeGaamyzaiaa dAgacaWGMbaapaqabaGcpeWaaeWaa8aabaWdbiabew9aM9aadaWgaa WcbaWdbiaadAhaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiab gkGi2kabew9aM9aadaWgaaWcbaWdbiaadAhaa8aabeaaaaGcpeGaey ypa0JaaGinaiabew9aM9aadaqhaaWcbaWdbiaadAhaaKqba+aabaWd biaaiodaaaGcdaqadaWdaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqba8qacqWFaeFqcqGHRaWkcqWFSeIqdaWadaWdaeaa peGaamiBaiaad6gadaqadaWdaeaapeGae8NaXpKaeqy1dy2damaaDa aaleaapeGaamODaaqcfa4daeaapeGaaGOmaaaaaOGaayjkaiaawMca aiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaGaay 5waiaaw2faaaGaayjkaiaawMcaaiaac6caaaa@6BAB@   (22)

In order to obtain the extrema, the derivative under Equation 22 must vanish. Thus, we have

V eff ( ϕ v ) ϕ v =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcaWGwbWdamaaBaaaleaapeGaamyzaiaa dAgacaWGMbaapaqabaGcpeWaaeWaa8aabaWdbiabew9aM9aadaWgaa WcbaWdbiaadAhaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiab gkGi2kabew9aM9aadaWgaaWcbaWdbiaadAhaa8aabeaaaaGcpeGaey ypa0JaaGimaaaa@4912@   (23)

The solutions to Equation 23 are

ϕ v =0,±V e W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abew9aM9aadaWgaaWcbaWdbiaadAhaa8aabeaak8qacqGH9aqpcaaI WaGaaiilaiabgglaXorr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfaGae8xfXBLaamyza8aadaahaaWcbeqcfayaa8qacqWFwe=v aaaaaa@4EBA@   (24)

With v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajyaGcaWG2baaaa@397D@ and w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajyaGcaWG3baaaa@397E@ respectively defined as

V= ( 1 C ) 1 2    and   W= 1 2 ( A + 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xfXBLa eyypa0Jaaiikamaalaaapaqaa8qacaaIXaaapaqaa8qacqWFce=qaa Gaaiyka8aadaahaaWcbeqcfayaa8qadaWcaaWdaeaapeGaaGymaaWd aeaapeGaaGOmaaaaaaGccaGGGcGaaiiOaiaacckacaWGHbGaamOBai aadsgacaGGGcGaaiiOaiaacckacqWFwe=vcqGH9aqpcqGHsisldaWc aaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaadaqadaWdaeaapeWaaS aaa8aabaWdbiab=bq8bbWdaeaapeGae8hlHieaaiabgUcaRmaalaaa paqaa8qacaaIXaaapaqaa8qacaaIYaaaaaGaayjkaiaawMcaaaaa@61E7@   (25)

It is vividly clear from our result in Equation 24 that the total number of vacuum expectation values is three, with one being a null vacuum expectation (local maximum) value and the other two non-zero being vacuum expectation values (two minima).     The occurrence of the non-zero expectation values described in Equation 26 triggers SSB.

ϕ v =±V e W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abew9aM9aadaWgaaWcbaWdbiaadAhaa8aabeaak8qacqGH9aqpcqGH XcqStuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=v r8wjaadwgapaWaaWbaaSqabKqbagaapeGae8NfXFfaaaaa@4D50@   (26)

This result can be graphically presented as illustrated in Figure 1.

Figure 1 Results for SSB.

These results obtained here point to something very important in Nuclear and Particle Physics. In order to trigger SSB, unlike the Higgs mechanism, the Coleman-Weinberg Potential does not need to take into account the squared mass term of the classical potential. This entails that the Coleman-Weinberg Potential has the capacity to undergo transformation without losing its applicability in SSB analysis. Therefore, this adds to the Coleman-Weinberg Potential a dimension of versatility leading to its persistence which is highly likely to render its relevant even in the emerging NP.

Hierarchy problem prospects

At one-loop correction and without considering an ad-hoc squired mass term, the Coleman-Weinberg mechanism gives mass to the Higgs boson. As a result, it is without exaggeration to mention that the possibility of solving the Hierarchy Problem using the Coleman-Weinberg Potential is not far-fetched. This is because in the Higgs potential, the only term with a dimensional constant is the squired mass term.

To begin with, the second derivative of the Coleman-Weinberg Potential is given by

2 V eff ( ϕ v ) ϕ v 2 =2 ϕ v 2 ( 6A+[ 6ln( C ϕ v 2 )+7 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITpaWaaWbaaSqabKqbagaapeGaaGOmaaaa kiaadAfapaWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8 qadaqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqa aaGcpeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqy1dy2damaaDa aaleaapeGaamODaaqcfa4daeaapeGaaGOmaaaaaaGccqGH9aqpcaaI YaGaeqy1dy2damaaDaaaleaapeGaamODaaqcfa4daeaapeGaaGOmaa aakmaabmaapaqaa8qacaaI2aWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaacqWFaeFqcqGHRaWkcqWFSeIqdaWadaWdaeaape GaaGOnaiaadYgacaWGUbWaaeWaa8aabaWdbiab=jq8djabew9aM9aa daqhaaWcbaWdbiaadAhaaKqba+aabaWdbiaaikdaaaaakiaawIcaca GLPaaacqGHRaWkcaaI3aaacaGLBbGaayzxaaaacaGLOaGaayzkaaaa aa@6E5D@   (27)

We can use Equation 27 to predict the Higgs mass by computing its values at minimum points as described in Equation 28.

2 V eff ( ϕ v ) ϕ v 2 | ϕ v =V e W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITpaWaaWbaaSqabKqbagaapeGaaGOmaaaa kiaadAfapaWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8 qadaqadaWdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqa aaGcpeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqy1dy2damaaDa aaleaapeGaamODaaqcfa4daeaapeGaaGOmaaaaaaGccaGG8bWdamaa BaaaleaapeGaeqy1dy2damaaBaaameaapeGaamODaaWdaeqaaSWdbi abg2da9mrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8xfXBLaamyza8aadaahaaadbeqcfayaa8qacqWFwe=vaaaal8aabe aaaaa@5EF4@   (28)

On one hand, by solving equation 28 we are able to determine that

m H ( 1 2 2 V eff ( ϕ v ) ϕ v 2 | ϕ v =V e W ) 1 2 10GeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gapaWaaSbaaKqbagaapeGaamisaaWcpaqabaGcpeGaeyisISRa aiikamaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaamaalaaapa qaa8qacqGHciITpaWaaWbaaSqabKqbagaapeGaaGOmaaaakiaadAfa paWaaSbaaSqaa8qacaWGLbGaamOzaiaadAgaa8aabeaak8qadaqada WdaeaapeGaeqy1dy2damaaBaaaleaapeGaamODaaWdaeqaaaGcpeGa ayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqy1dy2damaaDaaaleaape GaamODaaqcfa4daeaapeGaaGOmaaaaaaGccaGG8bWdamaaBaaaleaa peGaeqy1dy2damaaBaaameaapeGaamODaaWdaeqaaSWdbiabg2da9m rr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xfXBLa amyza8aadaahaaadbeqaa8qacqWFwe=vaaaal8aabeaak8qacaGGPa WdamaaCaaaleqajuaGbaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qa caaIYaaaaaaakiabgIKi7kaaigdacaaIWaGaam4raiaadwgacaWGwb aaaa@6E70@   (29)

On the other hand, experimental results at ATLAS ad CMS collaborators at the LHC, as indicated in Equation 30, have however shown a very huge disparity between experiments and theory.7

m H 125GeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gapaWaaSbaaKqbagaapeGaamisaaWcpaqabaGcpeGaeyisISRa aGymaiaaikdacaaI1aGaam4raiaadwgacaWGwbaaaa@414C@   (30)

The huge significant disparity of the results in Equations 29 and 30 is the main source of the gauge Hierarchy Problem.  This makes our probe to solve the Hierarchy Problem via the Coleman-Weinberg Potential to be futile. However, not all hope is lost yet and we must keep believing that the Coleman-Weinberg mechanism may provide a clue leading to a breakthrough solution to the Hierarchy Problem which is not completely enigmatic. Thus, the Coleman-Weinberg Potential must be revisited with a more complicated framework.

Conclusion

In this paper, firstly, we have  shown that SSB induced by the Coleman-Weinberg mechanism can occur even  when  is zero, contradicting SSB in SM. Secondly, we can conclude that the Coleman-Weinberg Potential has a higher chance of being a possible solution to the Hierarchy Problem.  Despite it being futile, abandoning this theory is far-fetched at the moment and persistence may lead to resolving the Hierarchy Problem. In a nutshell, the Coleman-Weinberg Potential will continue to maintain its status as a topic of sustained interest in the field of theoretical Nuclear and Particle Physics.

Acknowledgments

I wish to thank my supervisor, Dr. Davy Kabuswa Manyika, who has not only been an advisor but also an inspiration. My indebtedness to him is too great to be encapsulated in simple words. He was always available for consultations even during times when his schedule was congested. I should also extend my gratitude to other people whose roles in the development of this paper were latent but important.

Conflicts of interest

None.

References

  1. Aitchison I Jr, Hey AJG. Gauge theories in particle physics: a practical introduction. London: Taylor & Francis Group. 2013.
  2. S Coleman, E Weinberg. Radiative corrections as the origin of spontaneous symmetry breaking. Phys Rev. 1973;1888.
  3. Strickland M. Relativistic quantum field theory: canonical formalism. Kent: Morgan & Clayton Publishers. 2019.
  4. Fradkin E. Quantum field theory: an integrated approach. Oxford shire: Princeton University Press. 2021.
  5. Peskin ME, Schroeder DV. An introduction to quantum field theory. London: Taylor & Francis Group. 2018.
  6. Martinez AB. Coleman–Weinberg Symmetry Breaking and Higgs Physics. University of Barcelona. 2019.
  7. C Wetter–rich, M Yamada. Gauge hierarchy problem in asymptotically safe gravity – the resurgent mechanism. Physics Letters B. 2017;770.
  8. S Bhattacarjee, P Majumdar. Gravitational Coleman–Weinberg Potential and its Temperature counterpart. Physics Letters B. 2014;885.
  9. Weinberg S. Foundations of modern Physics. Cambridge. Cambridge: University Press. 2021.
  10. Srednicki M. Quantum field Theory. Cambridge: Cambridge University Press. 2007.
  11. OECD (Organisation for Economic Co–operation and Development). OECD Policy Brief No. 8, OECD, Paris, France, 2005.
  12. OECD (Organisation for Economic Co–operation and Development). The OECD Three–Year Project on Sustainable Development: A Progress Report, OECD, Paris, France, 2015.
  13. IEA (International Energy Agency). Key World Energy Statistics from the IEA – Data for 1996, IEA, Paris, France, 2018.
  14. Rhodes R, Beller D, The Need for Nuclear Power, in Foreign Affairs, Washington, United States, 2000;79(1).
  15. World–watch Institute. State of the World 1999, W.W. Norton &Company Inc., United States. 2009.
  16. IEA (International Energy Agency). World Energy Outlook, OECD, Paris, France, 2009.
  17. IEA (International Energy Agency). Energy Balances of Non–OECD Countries – 1999 Edition, OECD, Paris, France, 2001.
  18. NEA (OECD Nuclear Energy Agency). Nuclear Energy Data, Paris, France, 2000.9. IAEA (International Atomic Energy Agency), 2000, Nuclear Power Reactors in the World, Vienna, Austria.
  19. IIASA (International Institute for Applied Systems Analysis) and WEC(World Energy Council), (2008), Global Energy Perspectives to 2050and Beyond, WEC, London, United Kingdom.
  20. Nuclear energy and sustainable development.
  21. Cheng Zhang, Manyika Kabuswa Davy, Yu Shi, et al. Multiparticle azimuthal angular correlations in pA collisions. Physical Review D. 2019;99:034009.
  22. Manyika Kabuswa Davy, Cyrille Marquet, Yu Shi, et al. Two particle azimuthal harmonics in pA collisions. Nuclear Physics A. 2018;983(18).
  23. Manyika Kabuswa Davy, Matindih Kahyata Levy. On the Radiation of Gluon Jets: A Summary. 2019.
  24. Manyika Kabuswa Davy, Nawa Nawa. On the Future of Nuclear Energy and Climate Change: A Summary. 2019.
  25. Davy MK, Hamweendo A, Banda PJ, et al. On radiation protection and climate change – a summary. Phys Astron Int J. 2022;6(3):126–129.
  26. SR Coleman, EJ Weinberg. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys Rev. 1973;1888.
  27. Davy MK, Banda PJ, Morris MK, et al. Nuclear energy and sustainable development. Phys Astron Int J. 2022;6(4):142‒143.
  28. Matindih LK, Moyo E, Manyika DK. Some Results of Upper and Lower M–Asymmetric Irresolute Multifunctions in Bitopological Spaces. Advances in Pure Mathematics. 2021;11;611–627.
Creative Commons Attribution License

©2023 George, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.