Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 5 Issue 3

A revisited study of the cosmic matter recombination in expanding universes

Hans J Fahr,1 Michael Heyl2

1Argelander Institute for Astronomy, University of Bonn, Germany
2Raumfahrt Management, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Germany

Correspondence: Hans J. Fahr, Argelander Institute for Astronomy, University of Bonn, Germany, Tel 49-228- 733677

Received: September 10, 2021 | Published: September 27, 2021

Citation: Fahr HJ, Heyl M. A revisited study of the cosmic matter recombination in expanding universes. Phys Astron Int J. 2021;5(3):78-81. DOI: 10.15406/paij.2021.05.00237

Download PDF

Abstract

It is generally believed by cosmologists that the universe back in its past was hot, and matter was completely ionized and in thermal equilibrium, while in the present era matter, due to a strong cosmic temperature decrease, has recombined to neutral atoms. As we argue here, contrary to general assumption, a non-equilibrium state predominates at this phase of the recombination and the usually used Saha-Eggert theorem hence is inapplicable. In a preceding paper, we had already derived a specific kinetic transport equation which describes the distribution function of cosmic baryon gas (i.e. hydrogen atoms) just after cosmic matter recombination. We could solve the relevant kinetic transport equation for that period and found the gas distribution function f(v,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG2bGaaiilaiaadshacaGGPaaaaa@3ADE@ as function of the particle velocity v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG2baaaa@3712@  and of the cosmic time . However here, in this paper, we shall go one important step further back in the cosmic evolution and do study in more detail, how in successive steps the recombination of cosmic electrons and protons did actually occur. We clearly show that matter and radiation in the phase of cosmic recombination is not anymore in a thermodynamic equilibrium state, since matter and radiation do cool off in different forms, and a thermodynamic situation predominates where protons, electrons and photons have different temperatures, and collision-based energy transfer processes operate between them. Hence cosmic recombination, thought to have occured about 400000 years after the Big-Bang, does not take place starting from a thermodynamic equilibrium state as generally presumed, and hence the standard Saha-Eggert assumptions and predictions on the ionization degree of cosmic matter as function of the system temperature can not be used. We follow in detail the processional track how the cosmic radiation and the cosmic matter behave in this critical non-equilibrium phase and show that the recombination of cosmic matter actually occurs, though there is a yet unrespected tendency that freely moving particles in an expanding universe become heated by the action of the differential Hubble drifts which, in a first glance, should impede their recombination.

Keywords: cosmic expansion, recombination, hydrogen gas, kinetic transport equation

Introduction

The thermodynamic state at the cosmic recombination point. In standard cosmology it is generally assumed that at the beginning of the cosmic evolution matter was at high temperature and in a fully ionized state, i.e. in a plasmatic phase with electrons and protons in unbound states (i.e. the plasma universe!,).1,2 Cosmic photons in their number density n ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaeqyVd4gapaqabaaaaa@391C@  ,3 if correctly derived from their redshifts, were strongly dominant by a factor of 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI5aaaaaaa@389B@  compared to particle number densities, like electron or proton densities n e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaa@384E@  or n p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamiCaaWdaeqaaaaa@3859@ 4. Due to the strong thermodynamic coupling between photons, electrons and protons at these pre-recombination phase, the temperatures of all these species were identical, i.e. T ν = T e = T p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaeqyVd4gapaqabaGcpeGaeyypa0Ja amiva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaWGub WdamaaBaaaleaapeGaamiCaaWdaeqaaaaa@3F87@ , i.e. all species did belong to the same thermodynamic system, and consequently "thermodynamic equilibrium" would be a perfect characterisation of this state. But in an expanding universe matter densities will systematically decrease, and the strengths of thermodynamic couplings, i.e. energy exchanges between electrons, protons and photons , become weaker and weaker, and temperatures consequently decouple from each other.5-9

In case thermodynamic equilibrium between electrons, protons and photons can be assumed, the degree ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEaaa@37DA@  of ionisation can be calculated with the help of the Saha-Eggert equation.10,11 In principle the actual degree of ionization ξ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEdaqadaWdaeaapeGaamivaaGaayjkaiaawMcaaaaa@3A5B@ is then obtained from the minimum of the Gibbs potential G=G( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaeyypa0Jaam4ramaabmaapaqaa8qacqaH+oaEaiaawIca caGLPaaaaaa@3C20@ by the request: dG/dξ=0! MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGKbGaam4raiaac+cacaWGKbGaeqOVdGNaeyypa0JaaGimaiaa cgcaaaa@3D90@ , where Gibbs potential is given by G( ξ )=U( ξ )+P( ξ ) V 0 + T 0 S( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMcaaiabg2da 9iaadwfadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzkaaGaey4kaS Iaamiuamaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGHflY1 caWGwbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRiaads fapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyXICTaam4uamaa bmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaaaa@5284@ , - U,P,S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbGaaiilaiaadcfacaGGSaGaam4uaaaa@39FE@  denoting the internal energy, the total pressure, and the total entropy of the system, T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3804@ and V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3806@  being the total volume of the system and the common equilibrium temperature with T 0 = T ν = T e = T p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa dsfapaWaaSbaaSqaa8qacqaH9oGBa8aabeaak8qacqGH9aqpcaWGub WdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiabg2da9iaadsfapaWa aSbaaSqaa8qacaWGWbaapaqabaaaaa@4294@ . But the whole of that classic Saha-Eggert theorem is based on the fundamental assumption

Thermodynamic equilibrium! If the latter is not guaranteed, and if temperatures T ν , T e , T p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaeqyVd4gapaqabaGcpeGaaiilaiaa dsfapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaaiilaiaadsfapa WaaSbaaSqaa8qacaWGWbaapaqabaaaaa@3EDB@  are different, then this theorem is not applicable.

In the following part of the paper we shall, however, clearly demonstrate that the equilibrium state is perturbed as soon as the energetic coupling between photons, electrons and protons becomes weaker, as it unavoidably occurs during the ongoing cosmic expansion due to permanent density decreases. Even if a Maxwellian distribution would have prevailed at the entrance to the collision-free cosmic expansion phase, it would not have continued to exist for later times as already shown in Fahr.12 After the recombination phase when electrons and protons should recombine to H-atoms, and photons start propagating through cosmic space practically without further interaction with matter, thereby establishing the cosmic radiation background, the CMB, the thermodynamic contact between matter and radiation at the following cosmic time is stopped. Both behave in principle independent of each other, in first order only reacting to the fact of the cosmic scale expansion. For this reason the initial Maxwellian atom distribution function does not persist in an expanding universe over times of the ongoing collision-free expansion. Herewith the preliminary aspects of the ongoing evolution have been touched and now in some more explicit considerations and calculations this thermodynamical point will be taken under a more microscopic view.

The kinetic transport equation of cosmic electrons and protons

In Fahr12 the mathematical procedure has been derived to describe the physical and thermodynamical behaviour of a cosmic baryon gas, i.e. essentially of the H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibaaaa@36E3@  -atom gas just after the process of recombination of cosmic electrons and protons at and following the recombination phase of cosmic matter - roughly about 400000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaI0aGaaGimaiaaicdacaaIWaGaaGimaiaaicdaaaa@3A76@ years after the Big Bang. The relevant kinetic transport equation has been derived therein as given by Equ.(1) for this cosmic situation. This equation in its original form, however, has not been solved there by the associated kinetic distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWaaeWaa8aabaWdbiaadAhacaGGSaGaamiDaaGaayjkaiaa wMcaaaaa@3B4E@ . Only the velocity moments of this function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWaaeWaa8aabaWdbiaadAhacaGGSaGaamiDaaGaayjkaiaa wMcaaaaa@3B4E@ , like the density n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@39AB@ and the pressure P( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@398C@ , could be precisely derived as function of the cosmic time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0baaaa@3710@ . With this knowledge of the excact form of the kinetic transport equation and the knowledge of the moments n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@39AB@ and P( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@398C@ as functions of cosmic time one could be seduced to now become more ambitious and find out more about the kinetic situation of the cosmic gas under these conditions just after or at the recombination era.

What kind of distribution function f(v,t> t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbGaaiikaiaadAhacaGGSaGaamiDaiabg6da+iaadshapaWa aSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiykaaaa@3E2E@ and especially what kind of temporal change of it should be expected for that period? To answer this question we want to approach the problem here a little bit from an other direction and want to use here a new independent way to access this kinetic problem, namely to use a slightly different kinetic transport equation compared to that used by Fahr,12 however nevertheless treating the identical cosmophysical situation as already envisioned there. Starting from a kinetic transport equation used by Fahr.13 for a plasma physical scenario which, however, for the purposes here is directly transferable as an analogon, since only of importance in both cases are the two terms for a temporal derivative of f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWaaeWaa8aabaWdbiaadAhacaGGSaGaamiDaaGaayjkaiaa wMcaaaaa@3B4E@ and for the particle redistribution in velocity space under collision-free conditions, in our case here due to the up to now completely unrespected Hubble-induced velocity space drift v ˙ H = v ˙ H ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG2bWdayaacaWaaSbaaSqaa8qacaWGibaapaqabaGcpeGaeyyp a0JabmODa8aagaGaamaaBaaaleaapeGaamisaaWdaeqaaOWdbmaabm aapaqaa8qacaWG2baacaGLOaGaayzkaaaaaa@3E4A@  of the particles, i.e. the electrons or the protons. With these two terms the kinetic transport equations would then attain the following, surprisingly simple form describing the temporal change of the distribution function, both of the protons as well as of the electrons, as due to the spherical Hubble drift v ˙ H ( v )=vH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG2bWdayaacaWaaSbaaSqaa8qacaWGibaapaqabaGcpeWaaeWa a8aabaWdbiaadAhaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaWG2b GaeyyXICTaamisaaaa@4104@  of the particles on spherical shells in velocity space:

f e ( v,t ) t = 1 v 2 v [ v 2 v ˙ eH f e ( v,t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaeyOaIyRaamOza8aadaWgaaWcbaWdbiaadwga a8aabeaak8qadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGLOa Gaayzkaaaapaqaa8qacqGHciITcaWG0baaaiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaa aaaOWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamODaaaa daWadaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaOGabm ODa8aagaGaamaaBaaaleaapeGaamyzaiaadIeaa8aabeaak8qacaWG MbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbmaabmaapaqaa8qaca WG2bGaaiilaiaadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@56D2@  

and

f p ( v,t ) t = 1 v 2 v [ v 2 v ˙ pH f p ( v,t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaeyOaIyRaamOza8aadaWgaaWcbaWdbiaadcha a8aabeaak8qadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGLOa Gaayzkaaaapaqaa8qacqGHciITcaWG0baaaiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaa aaaOWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamODaaaa daWadaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaOGabm ODa8aagaGaamaaBaaaleaapeGaamiCaiaadIeaa8aabeaak8qacaWG MbWdamaaBaaaleaapeGaamiCaaWdaeqaaOWdbmaabmaapaqaa8qaca WG2bGaaiilaiaadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@56F3@  

where the terms on the left side denote the explicit temporal change of the distribution functions f e,p ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamyzaiaacYcacaWGWbaapaqabaGc peWaaeWaa8aabaWdbiaadAhacaGGSaGaamiDaaGaayjkaiaawMcaaa aa@3E51@  and the terms on the right side describe the temporal change of the distribution function f ep ( t,v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamyzaiaadchaa8aabeaak8qadaqa daWdaeaapeGaamiDaiaacYcacaWG2baacaGLOaGaayzkaaaaaa@3DA1@  under the Hubble-induced velocity drift migration v ˙ eH = v ˙ pH =vH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG2bWdayaacaWaaSbaaSqaa8qacaWGLbGaamisaaWdaeqaaOWd biabg2da9iqadAhapaGbaiaadaWgaaWcbaWdbiaadchacaWGibaapa qabaGcpeGaeyypa0JaeyOeI0IaamODaiabgwSixlaadIeaaaa@438B@ , quite analogous to the velocity space drift which was formulated as due to wave-particle-induced velocity diffusion for a completely different, but analogously operating plasma-physical scenario in Fahr.13

The above transport equations would adequately regulate the kinetics of the electrons and protons, if all other interaction processes like elastic collisions between protons and electrons, or Thomson scattering processes between cosmic photons and electrons could be excluded and would in fact predict electron and proton temperatures to increase in an expanding Hubble universe.14 If those latter interaction processes for the cosmic era of interest, however, cannot be excluded, one needs additional terms for an adequate description a) for the energetic coupling between protons and electrons and b) for the coupling between electrons and photons, in the upper transport equations like those given in their basic forms by Sunyaev and Zel‘dovich,7 or later by Fahr and Loch.8 which, in their case, do lead to the following enlarged system of equations:

f e ( v,t ) t = 1 v 2 v [ v 2 v ˙ eH f e ( v,t ) ]+ f e f p τ e,p + f e τ e,ν [ ( m e v 2 /2 )K T e ( t ) ] K[ T e ( t ) T ν ( t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaeyOaIyRaamOza8aadaWgaaWcbaWdbiaadwga a8aabeaak8qadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGLOa Gaayzkaaaapaqaa8qacqGHciITcaWG0baaaiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaa aaaOWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamODaaaa daWadaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaOGabm ODa8aagaGaamaaBaaaleaapeGaamyzaiaadIeaa8aabeaak8qacaWG MbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbmaabmaapaqaa8qaca WG2bGaaiilaiaadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH RaWkdaWcaaqaaiaadAgadaWgaaWcbaGaamyzaaqabaGccqGHsislca WGMbWaaSbaaSqaaiaadchaaeqaaaGcbaGaeqiXdq3damaaBaaaleaa peGaamyzaiaacYcacaWGWbaapaqabaaaaOWdbiabgUcaRmaalaaapa qaa8qacaWGMbWdamaaBaaaleaapeGaamyzaaWdaeqaaaGcbaWdbiab es8a09aadaWgaaWcbaWdbiaadwgacaGGSaGaeqyVd4gapaqabaaaaO Wdbmaalaaapaqaa8qadaWadaWdaeaapeWaaeWaa8aabaWdbiaad2ga paWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaamODa8aadaahaaWcbe qaa8qacaaIYaaaaOGaai4laiaaikdaaiaawIcacaGLPaaacqGHsisl caWGlbGaamiva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qadaqada WdaeaapeGaamiDaaGaayjkaiaawMcaaaGaay5waiaaw2faaaWdaeaa peGaam4samaadmaapaqaa8qacaWGubWdamaaBaaaleaapeGaamyzaa WdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyOe I0Iaamiva8aadaWgaaWcbaWdbiabe27aUbWdaeqaaOWdbmaabmaapa qaa8qacaWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaaa@8932@  

and

f e ( v,t ) t = 1 v 2 v [ v 2 v ˙ H f p ( v,t ) ]+ f e f p τ e,p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaeyOaIyRaamOza8aadaWgaaWcbaWdbiaadwga a8aabeaak8qadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGLOa Gaayzkaaaapaqaa8qacqGHciITcaWG0baaaiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaa aaaOWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamODaaaa daWadaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaOGabm ODa8aagaGaamaaBaaaleaapeGaamisaaWdaeqaaOWdbiaadAgapaWa aSbaaSqaaiaadchaaeqaaOWdbmaabmaapaqaa8qacaWG2bGaaiilai aadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHRaWkdaWcaaqa aiaadAgadaWgaaWcbaGaamyzaaqabaGccqGHsislcaWGMbWaaSbaaS qaaiaadchaaeqaaaGcbaGaeqiXdq3damaaBaaaleaapeGaamyzaiaa cYcacaWGWbaapaqabaaaaaaa@6081@  

 Hereby the quantities T e = T e ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiabg2da9iaa dsfapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeWaaeWaa8aabaWdbi aadshaaiaawIcacaGLPaaaaaa@3E2C@  and T ν = T ν ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaeqyVd4gapaqabaGcpeGaeyypa0Ja amiva8aadaWgaaWcbaWdbiabe27aUbWdaeqaaOWdbmaabmaapaqaa8 qacaWG0baacaGLOaGaayzkaaaaaa@3FC8@  represent the actual, time-dependent electron and photon temperatures, τ e,p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qacaWGLbGaaiilaiaadchaa8aabeaa aaa@3AC5@ and τ e,ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qacaWGLbGaaiilaiabe27aUbWdaeqa aaaa@3B88@  denote typical electron-proton and electron-photon energy exchange periods which are given by:

τ e,ν = T ν T e T e t = 3 m e c 8 σ Th α T ν 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qacaWGLbGaaiilaiabe27aUbWdaeqa aOWdbiabg2da9maalaaapaqaa8qacaWGubWdamaaBaaaleaapeGaeq yVd4gapaqabaGcpeGaeyOeI0Iaamiva8aadaWgaaWcbaWdbiaadwga a8aabeaaaOqaa8qadaWcaaWdaeaapeGaeyOaIyRaamiva8aadaWgaa WcbaWdbiaadwgaa8aabeaaaOqaa8qacqGHciITcaWG0baaaaaacqGH 9aqpdaWcaaWdaeaapeGaaG4maiaad2gapaWaaSbaaSqaa8qacaWGLb aapaqabaGcpeGaam4yaaWdaeaapeGaaGioaiabeo8aZ9aadaWgaaWc baWdbiaadsfacaWGObaapaqabaGcpeGaeqySdeMaamiva8aadaqhaa WcbaWdbiabe27aUbWdaeaapeGaaGinaaaaaaaaaa@588C@  

with σ Th =( 8π/3 ) ( e 2 / m e c 2 ) 2 =0.66 10 24 c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCpaWaaSbaaSqaa8qacaWGubGaamiAaaWdaeqaaOWdbiab g2da9maabmaapaqaa8qacaaI4aGaeqiWdaNaai4laiaaiodaaiaawI cacaGLPaaacaGGOaGaamyza8aadaahaaWcbeqaa8qacaaIYaaaaOGa ai4laiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaam4ya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaaiyka8aadaahaaWcbeqaa8qa caaIYaaaaOGaeyypa0JaaGimaiaac6cacaaI2aGaaGOnaiabgwSixl aaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHiTiaaikdacaaI0aaa aOGaam4yaiaad2gapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@5765@  denoting the Thomson photon-electron scattering cross section and  being the Stefan-Boltzmann constant, and furthermore according to Spitzer15

τ e,p =11.4 m p m e (K T e ) 3/2 δ ee n e lnΛ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qacaWGLbGaaiilaiaadchaa8aabeaa k8qacqGH9aqpcaaIXaGaaGymaiaac6cacaaI0aWaaOaaa8aabaWdbm aalaaapaqaa8qacaWGTbWdamaaBaaaleaapeGaamiCaaWdaeqaaaGc baWdbiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaaWdbeqaaO WaaSaaa8aabaWdbiaacIcacaWGlbGaamiva8aadaWgaaWcbaWdbiaa dwgaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWdbiaaiodacaGGVa GaaGOmaaaaaOWdaeaapeGaeqiTdq2damaaBaaaleaapeGaamyzaiaa dwgaa8aabeaak8qacaWGUbWdamaaBaaaleaapeGaamyzaaWdaeqaaO WdbiGacYgacaGGUbGaae4Mdaaaaaa@5447@  

where Λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGBoaaaa@3738@  is the Coulomb logarithm, and δ ee MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH0oazpaWaaSbaaSqaa8qacaWGLbGaamyzaaWdaeqaaaaa@39EA@  denotes the mean energy transfer rate in electron-electron collisions.

The interesting thing now is that if photons, electrons and protons are only embedded in the cosmic expansion, without mutual interactions, then the cosmic photons are redshifted with time, and their temperature T ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaeqyVd4gapaqabaaaaa@3902@  is permanently reduced according to T ν = T ν0 ( R o /R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaeqyVd4gapaqabaGcpeGaeyypa0Ja amiva8aadaWgaaWcbaWdbiabe27aUjaaicdaa8aabeaak8qadaqada WdaeaapeGaamOua8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacaGG VaGaamOuaaGaayjkaiaawMcaaaaa@4352@ ,16 but also see alternative views by Fahr and Heyl,17,18 while, to the contrary, proton and electron temperatures purely reflecting the effect of the Hubble migration, as shown in Fahr,14 both are increasing, thus creating along the standard view evidently a strange, even escalating NLTE-situation with T ν T p,e . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaeqyVd4gapaqabaGcpeGaeSOAI0Ja amiva8aadaWgaaWcbaWdbiaadchacaGGSaGaamyzaaWdaeqaaOWdbi aab6caaaa@3F03@ This NLTE situation would probably not allow at all the recombination of electrons and protons to neutral H-atoms, suggesting that the recombination should not take place at all, and consequently keeping intergalactic matter impenetrable for stellar light till the present days. This latter point, however, is in contradiction to the present cosmic fact, since we are at present clearly seeing distant stars and galaxies!

To start a study of these multiple interactions, we are permitted to assume that photons are by far the dominant species by their number density (factor 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI5aaaaaaa@389B@  with respect to electrons). Hence the energetic interactions between photons and electrons energetically is a one-way interaction, communicating simply the lower temperature of the photon field to the electrons, i.e. cooling electrons. Photons thus are only subject to the cosmic expansion and are redshifted by the Hubble expansion, however, practically remaining untouched by the electrons. This then leads to the fact that the cosmic photon temperature is falling off with the scale of the universe by Goenner, Fahr and Zoennchen. 16,19

T v ( t )= T νo ( R 0 /R( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamODaaWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaGaeyypa0Jaamiva8aadaWgaaWcba Wdbiabe27aUjaad+gaa8aabeaak8qacqGHflY1daqadaWdaeaapeGa amOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGVaGaamOuam aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaa aa@4A21@   

The upper relation serves now as the initially fixed temperature scale for our following considerations: We assume that we safely know that the cosmic photon field, independent on all other interactions, is cooling down by cosmic photon redshifting according to T v ( t )= T νo ( R 0 /R( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamODaaWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaGaeyypa0Jaamiva8aadaWgaaWcba Wdbiabe27aUjaad+gaa8aabeaak8qacqGHflY1daqadaWdaeaapeGa amOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGVaGaamOuam aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaa aa@4A21@ , electrons by their effective, thermal coupling to photons on one hand are cooled by the cosmic photon field, on the other hand they are heated being freely exposed to the Hubble expansion.14  where by the outcome clearly depends on the actually prevailing cosmic coupling coefficients.

Starting from a mass density ρ 0 = 10 31 g/c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0Ja aGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaG4maiaaigdaaa GccaWGNbGaai4laiaadogacaWGTbWdamaaCaaaleqabaWdbiaaioda aaaaaa@42BD@  of the present universe, which converts to an actual proton density of n 0 =6.3 10 6 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa iAdacaGGUaGaaG4maiabgwSixlaaigdacaaIWaWdamaaCaaaleqaba WdbiabgkHiTiaaiAdaaaGccaWGJbGaamyBa8aadaahaaWcbeqaa8qa cqGHsislcaaIZaaaaaaa@44FF@ , and looking back in cosmic time thus leads us to a proton density n r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamOCaaWdaeqaaaaa@385B@  at the recombination era, assumed to have occured at a cosmic redshift of z=( R 0 /R( t r ) )+1= 10 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG6bGaeyypa0ZaaeWaa8aabaWdbiaadkfapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaai4laiaadkfadaqadaWdaeaapeGaamiDa8 aadaWgaaWcbaWdbiaadkhaa8aabeaaaOWdbiaawIcacaGLPaaaaiaa wIcacaGLPaaacqGHRaWkcaaIXaGaeyypa0JaaGymaiaaicdapaWaaW baaSqabeaapeGaaG4maaaakiaacYcaaaa@473A@ of:

n r = n 0 ( R 0 /R( t r )) 3 =6.3 10 3 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamOCaaWdaeqaaOWdbiabg2da9iaa d6gapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyXICTaaiikai aadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaai4laiaadkfa daqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaO WdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWdbiaaiodaaaGc cqGH9aqpcaaI2aGaaiOlaiaaiodacqGHflY1caaIXaGaaGima8aada ahaaWcbeqaa8qacaaIZaaaaOGaeyyXICTaam4yaiaad2gapaWaaWba aSqabeaapeGaeyOeI0IaaG4maaaaaaa@560E@  

The frequency ν Th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH9oGBpaWaaSbaaSqaa8qacaWGubGaamiAaaWdaeqaaaaa@39EF@  of Thomson scattering processes between photons and electrons at this recombination era would thus be given by:

ν Th =[ σ Th n e n ν c ] r =262c m 3 s 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH9oGBpaWaaSbaaSqaa8qacaWGubGaamiAaaWdaeqaaOWdbiab g2da9maadmaapaqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWGubGaam iAaaWdaeqaaOWdbiabgwSixlaad6gapaWaaSbaaSqaa8qacaWGLbaa paqabaGcpeGaeyyXICTaamOBa8aadaWgaaWcbaWdbiabe27aUbWdae qaaOWdbiabgwSixlaadogacaGGDbWdamaaBaaaleaapeGaamOCaaWd aeqaaOWdbiabg2da9iaaikdacaaI2aGaaGOmaiabgwSixlaadogaca WGTbWdamaaCaaaleqabaWdbiabgkHiTiaaiodaaaGccaWGZbWdamaa CaaaleqabaWdbiabgkHiTiaaigdaaaaakiaawUfacaGLDbaaaaa@5CF7@  

or meaning that each electron undergoes a Thomson collision with a CMB photon with an average frequency of ν e = ν Th / n e,r =0.042 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH9oGBpaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaeyypa0Ja eqyVd42damaaBaaaleaapeGaamivaiaadIgaa8aabeaak8qacaGGVa GaamOBa8aadaWgaaWcbaWdbiaadwgacaGGSaGaamOCaaWdaeqaaOWd biabg2da9iaaicdacaGGUaGaaGimaiaaisdacaaIYaGaeyyXICTaam 4Ca8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@4CAC@ .

Assuming that in average such collisions transfer an energy of ( K T e K T v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaam4saiaadsfapaWaaSbaaSqaa8qacaWGLbaa paqabaGcpeGaeyOeI0Iaam4saiaadsfapaWaaSbaaSqaa8qacaWG2b aapaqabaaak8qacaGLOaGaayzkaaaaaa@3ECB@  from the colliding electron to the photon field, would then express the fact that the electrons via Thomson scattering lose an energy per time of

Δ ϵ 1 = ν e ( K T e K T v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0Jaeq yVd42damaaBaaaleaapeGaamyzaaWdaeqaaOWdbiabgwSixpaabmaa paqaa8qacaWGlbGaamiva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8 qacqGHsislcaWGlbGaamiva8aadaWgaaWcbaWdbiaadAhaa8aabeaa aOWdbiaawIcacaGLPaaaaaa@5375@  

Average energy loss of electrons to the photons

This energy exchange rate should then be compared with the average energy gain of an electron per time due to being kinetically influenced at free motions in space by the Hubble expansion. In Fahr14 as a yet unrespected, new point it has been shown that without the influence of collisions the electron temperature in an expanding universe increases according to:

T e ( t )= T eo (1H( t t 0 )) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaads fapaWaaSbaaSqaa8qacaWGLbGaam4BaaWdaeqaaaGcbaWdbiaacIca caaIXaGaeyOeI0Iaamisamaabmaapaqaa8qacaWG0bGaeyOeI0Iaam iDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaa caGGPaWdamaaCaaaleqabaWdbiaaikdaaaaaaaaa@49DA@   

meaning that the average energy gain per time of an electron due to the Hubble migration is given by; Δ ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aaSbaaSqaaiaaikdaaeqaaaaa@39EB@

Δ ϵ 2 = d dt ( K T e ( t ) )=K T e0 ( 2 ) (1H( t t 0 )) 3 ( H )=2HK T e0 (1H( t t 0 )) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8paWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0ZaaS aaa8aabaWdbiaadsgaa8aabaWdbiaadsgacaWG0baaamaabmaapaqa a8qacaWGlbGaamiva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab g2da9iaadUeacaWGubWdamaaBaaaleaapeGaamyzaiaaicdaa8aabe aak8qadaqadaWdaeaapeGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiaa cIcacaaIXaGaeyOeI0Iaamisamaabmaapaqaa8qacaWG0bGaeyOeI0 IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGL PaaacaGGPaWdamaaCaaaleqabaWdbiabgkHiTiaaiodaaaGcdaqada WdaeaapeGaeyOeI0IaamisaaGaayjkaiaawMcaaiabg2da9iaaikda caWGibGaeyyXICTaam4saiaadsfapaWaaSbaaSqaa8qacaWGLbGaaG imaaWdaeqaaOWdbiaacIcacaaIXaGaeyOeI0Iaamisamaabmaapaqa a8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabe aaaOWdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWdbiabgkHi Tiaaiodaaaaaaa@7ADB@  

Average energy loss of electrons to the photons

This then evidently means that the electrons in this phase either would increase or decrease their temperature Δ ϵ 2 = d dt ( K T e ( t ) )=K T e0 ( 2 ) (1H( t t 0 )) 3 ( H )=2HK T e0 (1H( t t 0 )) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8paWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0ZaaS aaa8aabaWdbiaadsgaa8aabaWdbiaadsgacaWG0baaamaabmaapaqa a8qacaWGlbGaamiva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab g2da9iaadUeacaWGubWdamaaBaaaleaapeGaamyzaiaaicdaa8aabe aak8qadaqadaWdaeaapeGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiaa cIcacaaIXaGaeyOeI0Iaamisamaabmaapaqaa8qacaWG0bGaeyOeI0 IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGL PaaacaGGPaWdamaaCaaaleqabaWdbiabgkHiTiaaiodaaaGcdaqada WdaeaapeGaeyOeI0IaamisaaGaayjkaiaawMcaaiabg2da9iaaikda caWGibGaeyyXICTaam4saiaadsfapaWaaSbaaSqaa8qacaWGLbGaaG imaaWdaeqaaOWdbiaacIcacaaIXaGaeyOeI0Iaamisamaabmaapaqa a8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabe aaaOWdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWdbiabgkHi Tiaaiodaaaaaaa@7ADB@  dependent on whether Δ ϵ 2 < > Δ ϵ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8paWaaSbaaSqaa8qacaaIYaaapaqabaGcdaWcaaqaaiabgY da8aqaaiabg6da+aaapeGaaeiLdiab=v=aY=aadaWgaaWcbaWdbiaa igdaa8aabeaaaaa@4B15@ , i.e. whether Δ ϵ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8paWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@4442@ is larger or smaller than Δ ϵ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8paWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@4441@ , which means:

2HK T e0 (1H( t t 0 )) 3 ν e ( K T e K T v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaamisaiabgwSixlaadUeacaWGubWdamaaBaaaleaapeGa amyzaiaaicdaa8aabeaak8qacaGGOaGaaGymaiabgkHiTiaadIeada qadaWdaeaapeGaamiDaiabgkHiTiaadshapaWaaSbaaSqaa8qacaaI Waaapaqabaaak8qacaGLOaGaayzkaaGaaiyka8aadaahaaWcbeqaa8 qacqGHsislcaaIZaaaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGccqWF2jYOcqaH9oGBpaWaaSbaaSqaa8qacaWGLbaapa qabaGcpeGaeyyXIC9aaeWaa8aabaWdbiaadUeacaWGubWdamaaBaaa leaapeGaamyzaaWdaeqaaOWdbiabgkHiTiaadUeacaWGubWdamaaBa aaleaapeGaamODaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@62A5@  

The above relations, when putting in temperature values for electrons and photons, then delivers the following relation:

2H T e0 (1H( t t 0 )) 3 ν e ( T eo (1H( t t 0 )) 2 T v0 R 0 R( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaamisaiabgwSixlaadsfapaWaaSbaaSqaa8qacaWGLbGa aGimaaWdaeqaaOWdbiaacIcacaaIXaGaeyOeI0Iaamisamaabmaapa qaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aa beaaaOWdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWdbiabgk HiTiaaiodaaaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaakiab=zNiJkabe27aU9aadaWgaaWcbaWdbiaadwgaa8aabeaak8 qacqGHflY1daqadaWdaeaapeWaaSaaa8aabaWdbiaadsfapaWaaSba aSqaa8qacaWGLbGaam4BaaWdaeqaaaGcbaWdbiaacIcacaaIXaGaey OeI0Iaamisamaabmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWg aaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGPaWdam aaCaaaleqabaWdbiaaikdaaaaaaOGaeyOeI0Iaamiva8aadaWgaaWc baWdbiaadAhacaaIWaaapaqabaGcpeWaaSaaa8aabaWdbiaadkfapa WaaSbaaSqaa8qacaaIWaaapaqabaaakeaapeGaamOuamaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaaa@7253@  

and reminding that T e0 = T νo MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamyzaiaaicdaa8aabeaak8qacqGH 9aqpcaWGubWdamaaBaaaleaapeGaeqyVd4Maam4BaaWdaeqaaaaa@3DED@  will then lead to:

2H (1H( t t 0 )) 3 ν e ( 1 (1H( t t 0 )) 2 R 0 R( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaamisaiabgwSixlaacIcacaaIXaGaeyOeI0Iaamisamaa bmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaic daa8aabeaaaOWdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWd biabgkHiTiaaiodaaaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDOb cv39gaiuaakiab=zNiJkabe27aU9aadaWgaaWcbaWdbiaadwgaa8aa beaak8qacqGHflY1daqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8 aabaWdbiaacIcacaaIXaGaeyOeI0Iaamisamaabmaapaqaa8qacaWG 0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbi aawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWdbiaaikdaaaaaaOGa eyOeI0YaaSaaa8aabaWdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapa qabaaakeaapeGaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaaGaayjkaiaawMcaaaaa@6A0F@  

and with the Hubble parameter at the recombination phase given by H= H o = R ˙ 0 / R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaeyypa0Jaamisa8aadaWgaaWcbaWdbiaad+gaa8aabeaa k8qacqGH9aqpceWGsbWdayaacaWaaSbaaSqaa8qacaaIWaaapaqaba GcpeGaai4laiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@3FD1@ , and keeping Δt=t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHuoarcaWG0bGaeyypa0JaamiDaiabgkHiTiaadshapaWaaSba aSqaa8qacaaIWaaapaqabaaaaa@3D6E@  small enough, so that Δt H 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGuoGaamiDaiabgwSixlaadIeapaWaaSbaaSqaa8qacaaIWaaa paqabaGcpeGaeSOAI0JaaGymaaaa@3E83@ , will then lead to the relation:

2 H 0 ( 1+3 H 0 ( t t 0 ) ) ν e ( 1+2 H 0 ( t t 0 ) R 0 R 0 (1+ H 0 ( t t 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH flY1daqadaWdaeaapeGaaGymaiabgUcaRiaaiodacaWGibWdamaaBa aaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0bGaeyOe I0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcaca GLPaaaaiaawIcacaGLPaaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy 0HgiuD3BaGqbaiab=zNiJkabe27aU9aadaWgaaWcbaWdbiaadwgaa8 aabeaak8qacqGHflY1daqadaWdaeaapeGaaGymaiabgUcaRiaaikda caWGibWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8 qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaa aOWdbiaawIcacaGLPaaacqGHsisldaWcaaWdaeaapeGaamOua8aada WgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacaWGsbWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbiaacIcacaaIXaGaey4kaSIaamisa8aada WgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaapeGaamiDaiab gkHiTiaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOa GaayzkaaaaaaGaayjkaiaawMcaaaaa@725D@  

 or

2 H 0 ( 1+3 H 0 ( t t 0 ) ) ν e 3 H 0 ( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH flY1daqadaWdaeaapeGaaGymaiabgUcaRiaaiodacaWGibWdamaaBa aaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0bGaeyOe I0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcaca GLPaaaaiaawIcacaGLPaaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy 0HgiuD3BaGqbaiab=zNiJkabe27aU9aadaWgaaWcbaWdbiaadwgaa8 aabeaak8qacqGHflY1caaIZaGaamisa8aadaWgaaWcbaWdbiaaicda a8aabeaak8qadaqadaWdaeaapeGaamiDaiabgkHiTiaadshapaWaaS baaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaaaa@5FFA@  

or:

( 2/3 )( 1+3 H 0 ( t t 0 ) ) ν e ( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaaGOmaiaac+cacaaIZaaacaGLOaGaayzkaaGa eyyXIC9aaeWaa8aabaWdbiaaigdacqGHRaWkcaaIZaGaamisa8aada WgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaapeGaamiDaiab gkHiTiaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOa GaayzkaaaacaGLOaGaayzkaaWefv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiuaacqWF2jYOcqaH9oGBpaWaaSbaaSqaa8qacaWGLb aapaqabaGcpeGaeyyXIC9aaeWaa8aabaWdbiaadshacqGHsislcaWG 0bWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaa aa@5E5F@  

In case, the left side is larger than the right one, - electrons are heated, in case of the opposite, - electrons are cooled!

Let us assume here the time ( t t 0 )=0.1 τ 0 =0.1/ H 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaamiDaiabgkHiTiaadshapaWaaSbaaSqaa8qa caaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaaGimaiaac6 cacaaIXaGaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiab g2da9iaaicdacaGGUaGaaGymaiaac+cacaWGibWdamaaBaaaleaape GaaGimaaWdaeqaaaaa@47AD@  , then we obtain:

( 2/3 )( 1+0.3 ) ν e 0.1/ H 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaaGOmaiaac+cacaaIZaaacaGLOaGaayzkaaGa eyyXIC9aaeWaa8aabaWdbiaaigdacqGHRaWkcaaIWaGaaiOlaiaaio daaiaawIcacaGLPaaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab=zNiJkabe27aU9aadaWgaaWcbaWdbiaadwgaa8aabe aak8qacqGHflY1caaIWaGaaiOlaiaaigdacaGGVaGaamisa8aadaWg aaWcbaWdbiaaicdaa8aabeaaaaa@5721@  

delivering the request:

4.66 H 0 ν e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaI0aGaaiOlaiaaiAdacaaI2aGaeyyXICTaamisa8aadaWgaaWc baWdbiaaicdaa8aabeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaOWdbiab=zNiJkabe27aU9aadaWgaaWcbaWdbiaadwga a8aabeaaaaa@4BAB@  

If the CMB redshift can be assumed with z CMB =1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG6bWdamaaBaaaleaapeGaam4qaiaad2eacaWGcbaapaqabaGc peGaeyypa0JaaGymaiaaicdacaaIWaGaaGimaaaa@3DDA@ , then we have ν e =0.042 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH9oGBpaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaeyypa0Ja aGimaiaac6cacaaIWaGaaGinaiaaikdacaWGZbWdamaaCaaaleqaba WdbiabgkHiTiaaigdaaaaaaa@40BF@ , and the above relation requires: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaaqaaaaaaaaaWdbiab=zNi Jcaa@417A@

H 0 ν e /4.66=9 10 3 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaaGimaaWdaeqaamrr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGcpeGae8NDImQaeqyVd42dam aaBaaaleaapeGaamyzaaWdaeqaaOWdbiaac+cacaaI0aGaaiOlaiaa iAdacaaI2aGaeyypa0JaaGyoaiabgwSixlaaigdacaaIWaWdamaaCa aaleqabaWdbiabgkHiTiaaiodaaaGccaWGZbWdamaaCaaaleqabaWd biabgkHiTiaaigdaaaaaaa@54A2@  

Assuming for the value H 0 = H Today MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa dIeapaWaaSbaaSqaa8qacaWGubGaam4BaiaadsgacaWGHbGaamyEaa Wdaeqaaaaa@3ED9@  we then obtain

2.33 10 18 9 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaaiOlaiaaiodacaaIZaGaeyyXICTaaGymaiaaicdapaWa aWbaaSqabeaapeGaeyOeI0IaaGymaiaaiIdaaaGccqWIQjspcaaI5a GaeyyXICTaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaG4m aaaaaaa@4750@  

That means that the left side is much smaller than the right side, unless the Hubble parameter at the recombination era would have been about a factor ξ= 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEcqGH9aqpcaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI XaGaaGynaaaaaaa@3C1B@ larger than the present-day Hubble parameter H today MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaamiDaiaad+gacaWGKbGaamyyaiaa dMhaa8aabeaaaaa@3BF8@ . Otherwise one would in all cases have the left side smaller, i.e. the electrons would be systematically cooled by the photons. But when they are cooled and Coulomb collision are effective enough, then these electrons cannot be impeded from recombining with protons leaving neutral H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibaaaa@36E4@  -atoms for the rest of the cosmic evolution. However, drastically different from earlier approaches now these collision-less, interaction-free neutral atoms are solely subject to the effect of the Hubble-migration which slowly leads to a gas temperature increase again. Whether or not this heated cosmic gas will then later be able to form larger massive complexes like stars and galaxies thus needs to be answered from quite a new basis !

Conclusion

In an aforegoing paper14 it had been shown that after a recombination of cosmic matter, the remaining hydrogen atoms as a collision-free gas will be solely subject to the cosmic scale expansion of the universe, and, astonishingly, due to the kinetic action of the Hubble drift on the whole gas population the thermal spread , i.e. the temperature of this population, will increase, though embedded in an expanding universe. This latter effect, however, only takes place in this form after the recombination of electrons and protons to neutral gas atoms, since before this occurs, electrons, instead of being heated, are much stronger cooled by Thomson scatter processes with the cosmic photon radiation field, which itself is strongly redshifted and unavoidably cooled by the expansion of the universe. The cooled electrons on their side are then also effectively cooling the protons by Coulomb collisions, since it turns out that in the first collison-dominated phase this cooling by the cooled electrons is dominant over the Hubble-heating in the expanding universe. As we could show in this paper the electron cooling by Thomson scatter processes with the cooling CMB radiation field is much more effective compared to the Hubble-induced heating. Hence one can conclude that the recombination of electrons and protons is not impeded by the electron heating. However, when finally the recombination is finished and only neutral gases are left, then these neutral gases, when exclusively being subject to the Hubble expansion, will then again start being heated despite the expansion of the scale of the universe, since increasing at free motions in space their thermal spreads with cosmic time. The question then remains whether or not this heated cosmic gas would, or would not, impede cosmic matter in the expanding universe from the evolution to larger structures of cosmic matter in form of stars and galaxies, the so-called cornerstones of the present-day universe.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Sunyaev RA. Astron. & Astrophys. 1971;12:190.
  2. Sunyaev RA, Zel‘dovich, YB. The spectrum of primordial radiation, its distortions and their significance, Comments on Astrophysics and Space Physics.1970;2:66.
  3. Partridge RB. The cosmic microwave background radiation, Cambridge Astrophysics Series. 1995;280–295.
  4. Rees MJ. Origin of the pregalactic microwave background. Nature. 1978;275:35–38.
  5. Burbidge GR, Gould RJ, Pottasch SR. Astrophys J. 1963;138:945.
  6. Gould RJ. In Annual Review of Astronomy and Astrophysics. Intergalactic Matter.1968;6:195–215.  
  7. Sunyaev RA,  Zel‘dovich YB. Microwave background radiation as a probe of the contemporary structure and history of the universe,  Ann Rev Astron Astrophys. 1980;18:537–559.
  8. Fahr HJ, Loch R. Photon stigmata from the recombination phase superimposed on the cosmological background radiation. Astron & Astrophys.1991;246:1–9.
  9. Chluba J, Thomas RM. Towards a complete treatment of the cosmological recombination problem, MNRAS. 2011;412(2):748–764.
  10. Saha M. Ionization in the solar chromosphere, Philosoph. Magazine Series.1920;6:40.
  11. Rybicki GB, Lightman AP. Radiative Processes in Astrophysics, John Wiley & Son. New York. 1979.
  12. Fahr HJ. The thermodynamics of cosmic gases in expanding universes based on Vlasow–theoretical grounds. Adv Theoret Computat Physics. 2021a;4(2):129–133.
  13. Fahr HJ. Revisiting the theory of the evolution of pick–up ion distributions: magnetic or adiabatic cooling?, Annales Geophys.2007;25;2649–2659.
  14. Fahr HJ. The baryon distribution function in the expanding universe after the recombination era, Phys Astron Int J. 2021b;5(2):37–41.
  15. Spitzer L. Physics of fully ionized gases. Interscience Publishers. New York. 1956;10(1):40.
  16. Fahr HJ, Zoennchen J. The writing on the cosmic wall: Is there a straightforward explanation of the cosmic microwave background. Ann Phys. 2009;18(10–11):699–721.
  17. Fahr HJ, Heyl M. How are cosmic photons redshifted?. Advances Astrophys.2017;2(1);50–59.
  18. Fahr HJ, Heyl M. The electro–magnetic energy–momentum tensor in expanding universes. Advances Astrophys. 2018;3(3):198–203.
  19. Goenner HFM. Einführung in die Spezielle und Allgemeine Relativitäststheorie, Spektrum Akademischer Verlag. Heidelberg. 1996.
Creative Commons Attribution License

©2021 Fahr, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.