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Introduction
How to describe the kinetic situation of cosmic gases 
in an expanding universe

We start our theoretical considerations from the broadly accepted 
assumption of modern cosmology, that during the collision-
dominated phase of the cosmic evolution, just before the time of 
matter recombination, matter and radiation in the universe, due to 
frequent energy exchange processes, are in complete thermodynamic 
equilibrium. That implies the belief that matter and radiation 
temperatures at this phase of cosmic evolution are identical, i.e. 

0m sT T T= = . But in the following cosmic recombination era this 
equilibrium will certainly experience perturbations as had already 
been emphasized earlier in a paper by Fahr.1 

The following part of the paper shall demonstrate that, even if a 
Maxwellian distribution would have prevailed at the entrance to the 
collision-free cosmic expansion phase, it would not continue to exist 
for later times. After the recombination phase when electrons and 
protons recombine to H-atoms, and photons start propagating through 
cosmic space practically without further interaction with matter, the 
thermodynamic contact between matter and radiation at the times 
there after is stopped. For this reason the initial Maxwellian atom 
distribution function does not persist in an expanding universe over 
times of the ongoing collision-free expansion.

We consider a collision-free particle population in an expanding, 
spatially symmetric Robertson-Walker universe (i.e. the so-called 
RW-Friedman-Lematre universe, see e.g2–4 Under these guide lines 
it is clear that due to the cosmological principle or the requirement 
of spatial homogeneity, the velocity distribution function ( ),f v t  
of the cosmic particles must be isotropic in velocity space v  and 
independent on the local cosmic place x . Thus ( ),f v t  must be of 
the following general form

                          ( ) ( ) ( ), ,f v t n t f v t= ⋅                                 (1)

where ( )n t  denotes the time-variable, cosmic density, only 
depending on the worldtime t , and ( ),f v t  is the normalized, time-
dependent, isotropic velocity distribution function with the time-

independent property: 24 ( , ) 1f v t v dvπ =∫ . If we now for cosmic 

particles respect the fact that particles moving freely with their velocity 

v  into the direction v


 over a distance l  , at their new place have to 
be incorporated into the actual cosmic distribution there, despite the 
differential Hubble flow and the explicit time-dependence of ( ),f v t

, then a locally prevailing distribution function ' ' '( , )f v t  must exist 

there ensuring that the two associated functions ' ' '( , )f v t  and ( ),f v t  
are related to each other in an unequivocal, Liouville-conform way,5–7 
simply to guarantee the particle conservation in the universe. As has 
been shown recently in a lengthy derivation by Fahr8 this connection 
is expressed by the following relation:

                  ( )3 3' ' ' 3 3, ,) `( `d v d x f v t df xt vdv =                   (2)

When arriving at the place l  these particles, after passage over a 
distance l  are incorporated into a particle population which has as a 
bulk a relative Hubble drift with respect to the origin of the particle 
given by Hv l H= ⋅ , co-aligned with v



. Here /H R R=   denotes 
the Hubble parameter and characterizes the homologous, dynamic 
expansion of the universe. Thus the original particle velocity v  
registered at the new place x  is locally tuned down to `v v l H= − ⋅  
. This is because at the present place x , deplaced from the original 
place x  by the increment l , all velocities have to be judged with 
respect to the new local reference frame (standard of rest) with a 
differential Hubble drift of ( l H⋅ ) with respect to the particles origin. 
When taking all of that into account, it has been shown Fahr8 that one 
is lead to the following kinetic transport equation for the distribution 
function ( ),f v t :

                           f fvH H f
t v

∂ ∂ = ⋅ − ⋅ ∂ ∂ 
                                  (3)

The above partial Differential equation describes the evolution of 
the function ( ),f v t  in cosmic time t and velocity space v . It was 
shown already by Fahr8 that the above kinetic transport equation does 
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Abstract

In this paper, we derive a specific kinetic transport equation which as a partial differential 
equation describes the distribution function of cosmic H-gas (i.e. hydrogen atoms). We 
can infact solve this transport equation and find the gas distribution function as function 
( ),f v t  of the particle velocity v  and of the cosmic time t , with the surprising result 

that the effective temperature of these cosmic particles is not decreasing, but increasing 
with cosmic time. At the end of the cosmic recombination era, about 400000 years after 
the Big-Bang, electrons and protons are thought to recombine to neutral cosmic H-atoms. 
The question poses itself, what happens to this hydrogen (baryon) gas in thermodynamic 
terms, when it is exposed to the cosmic expansion dynamics of a Robertson-Walker Hubble 
universe. The result presented here is explained as due to the Hubble-induced velocity drift 
of the particles in velocity space.
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not allow for a solution in the form of a separation of variables, i.e. 
putting ( ) ( ) ( ), t vf v t f t f v= ⋅ , but one rather needs a different, non-
straightforward method of finding a kinetic solution of this above 
transport equation, i.e. of Equ.(3). Thus in the following we shall look 
for such a solution in a more complicated form.

A new access to the kinetic problem

In the aforegoing section we have briefly reviewed the mathematical 
procedure to describe the physical and thermodynamical behaviour of 
a cosmic baryon gas, i.e. essentially of the H-atom gas just after the 
process of recombination of cosmic electrons and protons at and after 
the recombination phase of cosmic matter roughly about 400000  years 
after the Big Bang. In Fahr8 the relevant kinetic transport equation has 
been derived given by Equ.(1) for this cosmic situation. This eqution 
in its original form, however, could not be solved by an associated 
kinetic distribution function ( ),f v t . Only the velocity moments of 
this function ( ),f v t , like the density ( )n t  and the pressure ( )P t
, could be precisely derived as function of the cosmic time t . With 
this knowledge of the excact form of the kinetic transport equation 
and the knowledge of the moments ( )n t  and ( )P t  as functions of 
cosmic time one could be seduced to now be more ambitious and to 
find out more about the kinetic situation of the cosmic gas under these 
conditions just after the recombination era.

The kinetic transport equation 

What kind of distribution function 0( , )f v t t>  and what kind 
of temporal change of it should be expected for that period? To 
answer this question we want to approach the problem here a little 
bit from an other direction and want to use here a new independent 
way to access this kinetic problem, namely to use a slightly different 
kinetic transport equation compared to that used by Fahr,8 however, 
nevertheless treating the identical cosmophysical situation as already 
envisioned there. Starting from a kinetic transport equation used by 
Fahr9 for a plasma physical scenario which, however, for the purposes 
here is directly transferable, since only of importance in both cases are 
the two terms for a temporal derivative of ( ),f v t  and for the particle 
redistribution in velocity space, in our case here due to the Hubble-
induced velocity space drift ( )H Hv v v=   of the particles. With 
these two terms the kinetic transport equation would then attain the 
following, surprisingly simple form describing the temporal change 
of the distribution function as due to the spherical Hubble drift of the 
particles on spherical shells in velocity space:

                  ( ) ( )2
2

, 1 ,H
f v t

v v f v t
t vv

∂ ∂  =  ∂ ∂


where the term on the left side denotes the explicit temporal 
change of the distribution function ( ),f v t  and the term on the right 
side describes the temporal change of the distribution function ( ),f v t  
under the Hubble-induced velocity drift migration Hv v H= − ⋅

, quite analogous to the velocity space drift which was formulated 
as due to wave-particle-induced velocity diffusion for a different, but 
analogously operating plasma-physical scenario in Fahr10 In this case 
here, this drift is connected with the fact that particles which move 
with a velocity v into the direction v



 within a time increment dt  
suffer a velocity change /Hv dv dt v H= = − ⋅  with respect to the new 
reference place which is reached by the particle at time 0`t t dt= +
. This consequently then allows to write the above kinetic transport 
equation after introduction of the normalized distribution in the form 

( ) ( ) ( ), ,f t v n t f v t= ⋅  by use of the explicit time-dependence of the 

density ( )n n t=  in the following form:

 
( ) ( ) ( ) ( ) ( ) ( )2 3

2 2
1, , ,Hn t f v t v vH f v t n t v t v

t v v
f

v v
∂ ∂ ∂    ⋅ = − = −    ∂ ∂ ∂

which can then be developed into the following form: 
 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 3

2 2, , , 3 , ,n H Hf v t n t f v t n t v v t n t v v t v f v t
t t v vv v

f f∂ ∂ ∂ ∂  + = − = − +  ∂ ∂ ∂ ∂ 

and further arranges into :

     
( ) ( )

( )
( )

( )1 1 , 3 , ]
, ,

n vf v t H f v t
n t t t vf v t f v t

∂ ∂ ∂
+ = − ⋅ +

∂ ∂ ∂

We now furthermore must take into account that the normalized 
distribution ( ),f v t  also, however, is indirectly dependent on cosmic 
time t, because of the action of the Hubble-induced temporal velocity 
change which particles experience while moving to a new reference 
place. This implies that also ( ),f v t , though being a normalized 
function, has to be indirectly differentiated with respect to t in the 
following way:

 

( )
( )

( )
( )

( )
( ) ( )1 1 1, , ,

, , ,
vf v t f v t f v t vH

t v t vf v t f v t f v t

 ∂ ∂ ∂ ∂
 = = −

∂ ∂ ∂ ∂  

 Putting these things together with the upper differential equation 
we then obtain the following equation:

                      

( ) ( )
( ) ( )

( )
( )1 1 , 3 ,

, ,
n Hvf v t vH H f v t

n t t v vf v t f v t

 ∂ ∂ ∂  + − = − − ∂ ∂ ∂   

consequently leading to the surprisingly simple equation:

                              
( )
1 3n H

n t t
∂

= −
∂

and leading to the following solution

                       ( ) ( )0 0exp 3n t n H t t = − − 

The Baryon distribution function 

In order to now solve for the rest of the remaining kinetics, we 
have to find the solution for the function ( ),f v t . In view of the fact 
that at time 0t t≤  (before the recombination) matter and radiation are 
expected to be in thermodynamical equilibrium, one may start with 
the assumption that ( )0,f v t  has a Maxwellian shape, i.e. at time 

0t t=  one can expect the following function:

          ( )
2

0 3/2 3/2
00

1, exp
( / )

mvf v t
KTKT mπ

 
= − 

  

where 0T  is the Maxwellian particle temperature at time ot

, and ( )0,f v t  in fact fullfills the normalization requirement as all 
Maxwellian do:

       
 

2
2 2

0 3 3
02 2

0

14 ( , ) 4 exp[ ]v 1
( / )

mvf v t v dv dv
KT

KT m
π π

π
= − =∫ ∫
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To look for times 0t t≥   we now have to pay attention to the 
dynamical action of the Hubble drift v v H= − ⋅  suffered by all 

particles and therefore may guess the following solution:

       
         
                        

( ) ( ) ( )(
2 2

0 2
0 03/2 3/2 3/2 3/2

0 00 0

( )1 1, exp exp[ 1 )
( / ) ( / )

m v vH t t mvf v t t H t t
KT KTKT m KT mπ π

 − − ≥ = − = − − −    

which for first glance looks reasonable, however, when reminding 
that we have required ( ),f v t  to be a normalized function at all times 

with the property 24 ( , ) 1f v t v dvπ =∫ , we shall have to check now 

whether the above representation does fulfill this request at all times 
t , and find, 

which at a first glance does perhaps not make it evident that 
the normalization condition is fulfilled, but one can easily arrange 
things to make that evident, when introducing a new time-dependent 
Maxwellian temperature ( )T t  given by:

                   ( ) ( ) 2
0 0(1 )T t T H t t −= ⋅ − −

One then can convince oneself that the normalization is fulfilled , 
because then the wanted normalized distribution function would lead 
to:

      

2
2 2

3 3
2 2

41 4 ( , ) exp[ ]
( )( ( ) / )

o
mvf v t t v dv v dv

KT tKT t m

ππ
π

= ≥ = −∫ ∫

Hence when putting things together we arrive at the final result for the wanted distribution function given in the following form:

                             ( ) ( ) ( ) ( ) ( ) ( )
2

0 0 0 3/2 3/2
1, , exp 3 exp

( / )
mvf v t n t f v t t n H t t

KT tKT t mπ

 
 = ⋅ ≥ = − − ⋅ −  

  

or in a more concise form given by:
                                      
( ) ( ) ( ) ( )(

3 2
0 2

0 0 03/2 3/2
00

(1 )
, exp 3 exp[ 1 )

( / )
H t t mvf v t n H t t H t t

KTKT mπ
− −  = − − ⋅ − − −  

Introduction of the mean thermal velocity 0v  at 0t t=  by:  
2
0 0 /v KT m=  then finally with 0/x v v=  leads to the following more 

usefull form:

( ) ( ) ( ) ( )(
3

0 2 2
0 0 03/2 3

(1 )
, exp 3 exp[ 1 )

o

H t t
f v t n H t t x H t t

vπ
− −  = − − ⋅ − ⋅ − −  

In Figures 1 & 2 we show the above distribution function 
normalized by the density, i.e. ( ) ( ), /f x t n t , and the associated 

differential velocity space density, i.e.  ( ) ( )2 , /x f x t n t  as function of 

the normalized velocity 0/x v v=  for different times 0t t≥ .

Figure 1 The baryon probability distribution ( ) ( ), /f x t n t  is shown as function of the normalized velocity 0/x v v=  for times 1, 2, 3, 4 Billion years after 
the recombination time at 0t t= .

2
2 2 2 3

0 0 0
0

0

44 ( , ) exp[ (1 ( )) ] .(1 ( ))3 3(KT / )
2 2

mvf v t t v dv H t t v dv H t t
KTm

ππ
π

≥ = − − − − −∫ ∫
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Figure 2 The differential velocity space distribution ( ) ( )2 , /x f x t n t  is shown as function of the normalized velocity 0/x v v=  for times of 1, 2, 3, 4 Billion 
years after the recombination point at 0t t= .

 

Conclusion
In this paper we have shown that the problem of the gas dynamic 

behaviour of a homogeneous cosmic baryon gas in an expanding 
universe can be solved on the basis of a special kinetic transport 
equation describing the temporal change of the kinetic distribution 
function ( ),f v t  due to the decelerated motions of the particles in 
velocity space as reaction to the Hubble migration drift which cares 
for a typical velocity change per time of each particle according to 
v v H= − ⋅ . The influence of these particle drifts we have described by 
a kind of spherical diffusion of the particles through spherical shells in 
velocity space and could find the solution of the particle distribution 
function ( ),f v t  as function of the velocity v  and the cosmic time t  
(see section above and our Figures 1 & 2. As these figures do show the 

original Maxwellian with a temperature 0 4000T T K= =  is changing 
in the billions of years following the matter recombination at time 

0t t=  by systematically transporting the particles from higher to lower 
velocities which, however in such a regularized way that it in fact 
corresponds to the increase of the accociated, effective temperature 
of the distribution function by ( ) ( ) 2

0 0(1 )T t T H t t −= ⋅ − − . This is 
shown in Figure 3 by means of the normalized, average kinetic energy 

4
0

0

( ) (4 / ) ( )
x

E xzt E mx f xt dxπ= ∫  as function of the upper integration 

border 0/x v v=  for different cosmic times of 1,2,3,4  Billion years 

after the recombination point at 0t t= . 
 

Figure 3 The average thermal energy, normalized with its value 0 0E KT=  at 0t t=  , i.e.  4
0

0

(4 / E ) ( )
x

mx f xt dxπ ∫  , is shown as function of the upper 

integration border 0/x v v= at times 1, 2, 3, 4 Billion years after the recombination point at 0t t= . 
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