Submit manuscript...
Open Access Journal of
eISSN: 2575-9086

Science

Mini Review Volume 4 Issue 3

Tunneling transmission coefficient from the external electric field barrier

Hasan Hüseyin Erbil

Department of Physics, Faculty of Sciences, Ege University, Turkey

Correspondence: Hasan Hüseyin Erbil, Department of Physics, Faculty of Sciences, Ege University, 35100 Bornova – İzmir, Turkey

Received: January 29, 2020 | Published: September 7, 2020

Citation: Erbil HH. Tunneling transmission coefficient from the external electric field barrier. Open Access J Sci. 2020;4(3):122-125. DOI: 10.15406/oajs.2020.04.00159

Download PDF

Abstract

According to classical physics theories, a moving particle cannot move to an environment with greater potential energy than its total energy during movement. But according to quantum theories, this event is well known. This event is called tunneling. Tunneling is a probability, and it is measured by a transmission coefficient. Correct calculation of this coefficient is very important because very sensitive and important instruments have been developed based on this event, and many events in nature can be explained by tunneling. This coefficient is generally calculated by semi-classical approaches (WKB) and the known formula is an approximate formula. In previous publications, the general transmission coefficient of a potential barrier with arbitrary form is calculated by a simple method without any approximation. The results are applied to calculate the half-life values of the nuclei that emit alpha particles. The half-life values obtained from our calculations and the classical method (WKB) have been compared, and it has been found that the new half-life values are exactly consistent with the experimental values. In this article, this general transmission coefficient is applied to calculate transmission coefficient for an arbitrary form external electrical field barrier (cold emission by the metal). The values obtained from our calculations and those of classical method (WKB) have been compared.

Keywords: tunneling, transmission coefficient, cold emission by metal, barrier of electrical field

Introduction

When a flowing particle or particle current is encountered with a potential energy barrier greater than its total energy, it cannot pass the potential barrier and returns to its environment or disappears within the potential according to classical physics. However, the observations indicate that such a particle or particle current may pass through the potential barrier. In quantum physics, this phenomenon is called tunneling. This phenomenon cannot be explained according to classical physics theories. One of the greatest achievements of quantum physics theory is that it can explain the tunneling or tunneling event. The probability of passing of the particles through the potential barrier is determined by the passing or transmission coefficient. This coefficient indicates the possibility of passing the potential barrier of the particle. Where and how this coefficient is used can be found in many publications. It is also a fact that some very sensitive instruments are based on the phenomenon of this formula. This well-known formula is obtained by a semi-classical calculation method called Wentzel-Kramers-Brillouin (WKB) Method in Quantum Mechanics and is an approximate formula as its name suggests. In previous articles,1–3 a new general formula is obtained without any approximation and this formula can be easily applied to any form of potential barrier. This formula is shown to be more accurate and realistic, applying to the alpha decay of some well-known atomic nuclei in nuclear physics.2

The field emitted current density is computed with the barrier transmission coefficient. The analytical method generally used is WKB which is not reliable especially at high fields (the barrier is not slowly varying).Many researchers and engineers are researching these topics, on the physics electron emission of electrons from metal under high electric and high temperature. They make use of tunneling in their researches such as tunnel diode, Josephson joint, scanning tunneling microscope, etc. It is possible for these researchers to get correct results in their studies by calculating the tunneling coefficient precisely.It can be thought that the results found with this study will be very useful for the researchers who make scientific and technological studies in the above mentioned subjects. With our formula of the transmission coefficient they will be able toimprove the analytical equation. For this purpose, this article was prepared. In this article, the general transmission coefficient is applied to calculate cold emission (radiation of an atom in the electric field) by the metals. The values obtained from our calculations and those of classical method (WKB) have been compared.

Transmission coefficient for an arbitrary potential barrier

The new transmission coefficient (or the barrier penetration probability)is given as follows:

T new = 2 cosh[ 2 K d ]+cos[ 2 P ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGubWdamaaBaaaleaapeGaaeOBaiaabwgacaqG3baapaqabaGc peGaeyypa0ZaaSaaa8aabaWdbiaaikdaa8aabaWdbiGacogacaGGVb Gaai4CaiaacIgadaWadaWdaeaapeGaaGOmaiaabckacaqGlbGaaeiO aiaabsgaaiaawUfacaGLDbaacqGHRaWkcaqGJbGaae4Baiaabohada WadaWdaeaapeGaaGOmaiaabckacaqGqbaacaGLBbGaayzxaaaaaaaa @4F3F@     (1)

m 1 = 2m 2 ;K= m 1 E ;Q( r )= m 1 U( r ) dr;P=Q( r 2 )Q( r 1 )= 2m 2 r 1 r 2 U( r ) dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqp daGcaaWdaeaapeWaaSaaa8aabaWdbiaaikdacaWFTbaapaqaa8qacq WIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaaaabeaakiaacUdacaWF lbGaeyypa0Jaa8xBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qada GcaaWdaeaapeGaa8xraaWcbeaakiaacUdacaWFrbWaaeWaa8aabaWd biaa=jhaaiaawIcacaGLPaaacqGH9aqpcaWFTbWdamaaBaaaleaape GaaGymaaWdaeqaaOWaaubiaeqaleqabaGaaGzaVdqdbaWdbiabgUIi Ydaakmaakaaapaqaa8qacaWFvbWaaeWaa8aabaWdbiaa=jhaaiaawI cacaGLPaaaaSqabaGccaWFKbGaa8NCaiaacUdacaWFqbGaeyypa0Ja a8xuamaabmaapaqaa8qacaWFYbWdamaaBaaaleaapeGaaGOmaaWdae qaaaGcpeGaayjkaiaawMcaaiabgkHiTiaa=ffadaqadaWdaeaapeGa a8NCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPa aacqGH9aqpdaGcaaWdaeaapeWaaSaaa8aabaWdbiaaikdacaWFTbaa paqaa8qacqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaaaabeaakm aawahabeWcpaqaa8qacaWFYbWdamaaBaaameaapeGaaGymaaWdaeqa aaWcbaWdbiaa=jhapaWaaSbaaWqaa8qacaaIYaaapaqabaaaneaape Gaey4kIipaaOWaaOaaa8aabaWdbiaa=vfadaqadaWdaeaapeGaa8NC aaGaayjkaiaawMcaaaWcbeaakiaa=rgacaWFYbaaaa@7390@

Here, U(r) is potential function of barrier; mass or reduced mass of particle that hits and leaves the potential barrier, respectively. are abscises of the points that the particle hits and leaves the potential barrier, respectively and they are found solving the equation E=U(r); d= r 2 r 1 ,( r 1 < r 2 ),d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hzaiabg2da9iaa=jhapaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaeyOeI0Iaa8NCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaGGSaWaaeWaa8aabaWdbiaa=jhapaWaaSbaaSqaa8qacaaIXaaa paqabaGcpeGaeyipaWJaa8NCa8aadaWgaaWcbaWdbiaaikdaa8aabe aaaOWdbiaawIcacaGLPaaacaGGSaGaa8hzaaaa@478C@ is the barrier width. E is the total energy of the particle passing through the obstacle.1–3 From the literature,4–8 the WKB transmission coefficient (or the barrier penetration probability) which is calculated by the method WKB is known as follows:

T WKB = e 2g ,[g= 2m 2 r 1 r 2 U( r )E dr= m 1 r 1 r 2 U( r )E dr] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=DfacaWFlbGaa8NqaaWdaeqa aOWdbiabg2da9iaa=vgapaWaaWbaaSqabeaapeGaeyOeI0IaaGOmai aa=DgaaaGccaGGSaGaai4waiaa=DgacqGH9aqpdaGcaaWdaeaapeWa aSaaa8aabaWdbiaaikdacaWFTbaapaqaa8qacqWIpecApaWaaWbaaS qabeaapeGaaGOmaaaaaaaabeaakmaawahabeWcpaqaa8qacaWFYbWd amaaBaaameaapeGaaGymaaWdaeqaaaWcbaWdbiaa=jhapaWaaSbaaW qaa8qacaaIYaaapaqabaaaneaapeGaey4kIipaaOWaaOaaa8aabaWd biaa=vfadaqadaWdaeaapeGaa8NCaaGaayjkaiaawMcaaiabgkHiTi aa=veaaSqabaGccaWFKbGaa8NCaiabg2da9iaa=1gapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeWaaybCaeqal8aabaWdbiaa=jhapaWaaS baaWqaa8qacaaIXaaapaqabaaaleaapeGaa8NCa8aadaWgaaadbaWd biaaikdaa8aabeaaa0qaa8qacqGHRiI8aaGcdaGcaaWdaeaapeGaa8 xvamaabmaapaqaa8qacaWFYbaacaGLOaGaayzkaaGaeyOeI0Iaa8xr aaWcbeaakiaa=rgacaWFYbGaaiyxaaaa@67CF@     (2)

Application to electron emissionby a metal

The energy gained by the atom in the electric field

When an atom is placed in a constant external electric field, the energy levels change. This phenomenon is called the Stark effect. The electric field interacts with the electrical dipole moment of atom. Considering a uniform electric field ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacqaH1oqzaSWdaeqabaWdbiablEniYbaaaaa@3B39@  along the z-axis, the energy gained from the interaction with the electric field is as follows:

E e = D . ε =εDcoscos( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xra8aadaWgaaWcbaWdbiaa=vgaa8aabeaak8qacqGH9aqp paWaaCbiaeaapeGaa8hraaWcpaqabeaapeGaeS41GihaaOGaa8Nla8 aadaWfGaqaa8qacqaH1oqzaSWdaeqabaWdbiablEniYbaakiabg2da 9iabew7aLjaa=reaciGGJbGaai4BaiaacohaciGGJbGaai4Baiaaco hadaqadaWdaeaapeGaa8hUdaGaayjkaiaawMcaaaaa@4E8C@       (3)

Here D is electrical dipole moment of atom; θ is the angle between the vectors of ε and D . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaeq yTdugaleqabaaeaaaaaaaaa8qacqWIxdICaaacbaGccaWFHbGaa8NB aiaa=rgapaWaaCbiaeaapeGaa8hraaWcpaqabeaapeGaeS41GihaaO Gaa8Nlaaaa@41E2@   The electric field can be strong or weak. If the electric field is taken in the direction of zaxis MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8NEaiabgkHiTiaa=fgacaWF4bGaa8xAaiaa=nhaaaa@3CDA@ , then θ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hUdiabg2da9iaaicdaaaa@3A35@ becomes and Equation (3) takes the following form:

E e =U(r)= D . ε =εD=eεr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xra8aadaWgaaWcbaWdbiaa=vgaa8aabeaak8qacqGH9aqp caWFvbGaaiikaiaa=jhacaGGPaGaeyypa0ZdamaaxacabaWdbiaa=r eaaSWdaeqabaWdbiablEniYbaakiaa=5capaWaaCbiaeaapeGaeqyT dugal8aabeqaa8qacqWIxdICaaGccqGH9aqpcqaH1oqzcaWFebGaey ypa0JaeyOeI0Iaa8xzaiabew7aLjaa=jhaaaa@4F9D@       (4)

Here e is the electrical charge of electron, is the radially variable in spherical coordinates.

Calculation of transmission coefficient

Emission of electrons from a metal surface is the basis of an important device known as scanning tunneling microscope (STM). An STM consists of a very sharp conducting probe which is scans over the surface of a metal (or any other solid conducting medium). A large voltage difference is applied between the probe and the surface. The surface electric field strength immediately below the probe tip is proportional to the applied potential difference, and inversely proportional to the spacing between the tip and the surface. Electrons tunneling between the surface and the probe tip cause a weak electric current. The magnitude of this current is proportional to the tunneling probability  It follows that the current is an extremely sensitive function of the surface electric field strength, and, hence, of the spacing between the tip and the surface (assuming that the potential difference is held constant). An STM can thus be used to construct a very accurate contour map of the surface under investigation. In fact, STMs are capable of achieving sufficient resolution to image individual atoms.

Suppose that a metal surface is subject to a large uniform external electric field of strength ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@38D7@ , which is directed such that it accelerates electrons away from the surface. The electrons just below the surfaceof a metal can be regarded as being in a potential well of depth W, where W is called the work function of the surface. Adopting a simple one dimensional treatment of the problem let the metal lie at r<0, and the surface at r=0. The applied electric field is shielded from the interior of the metal. Hence, the energy E, for example, of an electron just below the surface is unaffected by the field. In the absence of the electric field, the potential barrier just above the surface is simply U( r )E=W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xvamaabmaapaqaa8qacaWFYbaacaGLOaGaayzkaaGaeyOe I0Iaa8xraiabg2da9iaa=Dfaaaa@3E3B@ . The electric field modifies this to U( r )E=Weεr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xvamaabmaapaqaa8qacaWFYbaacaGLOaGaayzkaaGaeyOe I0Iaa8xraiabg2da9iaa=DfacqGHsislcaWFLbGaeqyTduMaa8NCaa aa@42A8@ . The potential barrier is sketched in Figure 1. It can be seen in Figure 1 that an electron just below the surface of the metal is confined by a triangular potential barrier which extends from r= r 1 to r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8NCaiabg2da9iaa=jhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaa8hDaiaa=9gacaWFYbWdamaaBaaaleaapeGaaGOmaaWdae qaaaaa@3F42@ , where r 1 =0and r 2 = W (eε) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8NCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqp caaIWaGaa8xyaiaa=5gacaWFKbGaa8NCa8aadaWgaaWcbaWdbiaaik daa8aabeaak8qacqGH9aqpdaWccaWdaeaapeGaa83vaaWdaeaapeGa aiikaiaa=vgacqaH1oqzcaGGPaaaaiaa=5caaaa@46B7@  In Equation (1), if the following values are taken,

d= r 2 r 1 = W ( eε ) ; m 1 = 2m 2 = 2m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hzaiabg2da9iaa=jhapaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaeyOeI0Iaa8NCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGH9aqpdaWccaWdaeaapeGaa83vaaWdaeaapeWaaeWaa8aabaWd biaa=vgacqaH1oqzaiaawIcacaGLPaaaaaGaai4oaiaa=1gapaWaaS baaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaa laaapaqaa8qacaaIYaGaa8xBaaWdaeaapeGaeS4dHG2damaaCaaale qabaWdbiaaikdaaaaaaaqabaGccqGH9aqpdaWccaWdaeaapeWaaOaa a8aabaWdbiaaikdacaWFTbaaleqaaaGcpaqaa8qacqWIpecAaaaaaa@516A@  ;  K= 2m 2 E = m 1 | E | =i m 1 W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83saiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaaGOm aiaa=1gaa8aabaWdbiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaa aakiaa=veaaSqabaGccqGH9aqpcaWFTbWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbmaakaaapaqaa8qacqGHsisldaabdaWdaeaapeGaa8 xraaGaay5bSlaawIa7aaWcbeaakiabg2da9iaa=LgacaWFTbWdamaa BaaaleaapeGaaGymaaWdaeqaaOWdbmaakaaapaqaa8qacaWFxbaale qaaaaa@4BC2@   ; W=|E| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83vaiabg2da9iaacYhacaWFfbGaaiiFaaaa@3BDD@  

Q( r )= m 1 eεr dr=i 2 2m eε 3 r 3 2 =i 8m eε 9 2 r 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xuamaabmaapaqaa8qacaWFYbaacaGLOaGaayzkaaGaeyyp a0Jaa8xBa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaavacabeWcbe qaaiaaygW7a0qaa8qacqGHRiI8aaGcdaGcaaWdaeaapeGaeyOeI0Ia a8xzaiabew7aLjaa=jhaaSqabaGccaWFKbGaa8NCaiabg2da9iaa=L gadaWcaaWdaeaapeGaaGOmamaakaaapaqaa8qacaaIYaGaa8xBaiaa =bcacaWFLbGaeqyTdugaleqaaaGcpaqaa8qacaaIZaGaeS4dHGgaai aa=jhapaWaaWbaaSqabeaapeWaaSGaa8aabaWdbiaaiodaa8aabaWd biaaikdaaaaaaOGaeyypa0Jaa8xAamaakaaapaqaa8qadaWcaaWdae aapeGaaGioaiaa=1gacaWFGaGaa8xzaiabew7aLbWdaeaapeGaaGyo aiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaaaaaeqaaOGaa8NCa8 aadaahaaWcbeqaa8qadaWccaWdaeaapeGaaG4maaWdaeaapeGaaGOm aaaaaaaaaa@6266@ ;   P=Q( r 2 )Q( r 1 )=i 8m W 3 3eε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8huaiabg2da9iaa=ffadaqadaWdaeaapeGaa8NCa8aadaWg aaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHsislca WFrbWaaeWaa8aabaWdbiaa=jhapaWaaSbaaSqaa8qacaaIXaaapaqa baaak8qacaGLOaGaayzkaaGaeyypa0Jaa8xAamaalaaapaqaa8qada GcaaWdaeaapeGaaGioaiaa=1gacaWFxbWdamaaCaaaleqabaWdbiaa iodaaaaabeaaaOWdaeaapeGaaG4maiaa=vgacqaH1oqzcqWIpecAaa aaaa@4DB1@

Figure 1 The potential barrier versus position for an electron in a metal. The potential energy is -U0 when the electron is in the metal (r<0) and is proportional to r outside the metal (r>0). An electron with energy E can escape the metal by tunneling from r1=0 to the point r2

The following transmission coefficient formula is obtained:

T new = 2 coshcosh[ 2K d ]+coscos[ 2P ] = 2 cos[ 2 2m eε W 3 2 ]+cosh[ 4 2m 3eε W 3 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=5gacaWFLbGaa83DaaWdaeqa aOWdbiabg2da9maalaaapaqaa8qacaaIYaaapaqaa8qaciGGJbGaai 4BaiaacohacaGGObGaci4yaiaac+gacaGGZbGaaiiAamaadmaapaqa a8qacaaIYaGaa83saiaa=bcacaWFKbaacaGLBbGaayzxaaGaey4kaS Iaci4yaiaac+gacaGGZbGaci4yaiaac+gacaGGZbWaamWaa8aabaWd biaaikdacaWFqbaacaGLBbGaayzxaaaaaiabg2da9maalaaapaqaa8 qacaaIYaaapaqaa8qaciGGJbGaai4BaiaacohadaWadaWdaeaapeWa aSaaa8aabaWdbiaaikdadaGcaaWdaeaapeGaaGOmaiaa=1gaaSqaba aak8aabaWdbiabl+qiOjaa=vgacqaH1oqzaaGaa83va8aadaahaaWc beqaa8qadaWccaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaki aawUfacaGLDbaacqGHRaWkciGGJbGaai4BaiaacohacaGGObWaamWa a8aabaWdbmaalaaapaqaa8qacaaI0aWaaOaaa8aabaWdbiaaikdaca WFTbaaleqaaaGcpaqaa8qacaaIZaGaeS4dHGMaa8xzaiabew7aLbaa caWFxbWdamaaCaaaleqabaWdbmaaliaapaqaa8qacaaIZaaapaqaa8 qacaaIYaaaaaaaaOGaay5waiaaw2faaaaaaaa@75D1@      (5)

Using the WKB approximation, the probability of such an electron tunneling through the barrier and consequently the probability of this electron being emitted from the surface is calculated as follows:

T WKB =exp[ 2 m 1 r 1 r 2 U( r )E ]dr=exp[ 2 m 1 r 1 r 2 Weεr ]dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=DfacaWFlbGaa8NqaaWdaeqa aOWdbiabg2da9iGacwgacaGG4bGaaiiCamaadmaapaqaa8qacqGHsi slcaaIYaGaa8xBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaGf WbqabSWdaeaapeGaa8NCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaS qaa8qacaWFYbWdamaaBaaameaapeGaaGOmaaWdaeqaaaqdbaWdbiab gUIiYdaakmaakaaapaqaa8qacaWFvbWaaeWaa8aabaWdbiaa=jhaai aawIcacaGLPaaacqGHsislcaWFfbaaleqaaaGccaGLBbGaayzxaaGa a8hzaiaa=jhacqGH9aqpciGGLbGaaiiEaiaacchadaWadaWdaeaape GaeyOeI0IaaGOmaiaa=1gapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peWaaybCaeqal8aabaWdbiaa=jhapaWaaSbaaWqaa8qacaaIXaaapa qabaaaleaapeGaa8NCa8aadaWgaaadbaWdbiaaikdaa8aabeaaa0qa a8qacqGHRiI8aaGcdaGcaaWdaeaapeGaa83vaiabgkHiTiaa=vgacq aH1oqzcaWFYbaaleqaaaGccaGLBbGaayzxaaGaa8hzaiaa=jhaaaa@6AAA@

T WKB =exp[ 4 2m 3eε W 3 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=DfacaWFlbGaa8NqaaWdaeqa aOWdbiabg2da9iGacwgacaGG4bGaaiiCamaadmaapaqaa8qacqGHsi sldaWcaaWdaeaapeGaaGinamaakaaapaqaa8qacaaIYaGaa8xBaaWc beaaaOWdaeaapeGaaG4maiabl+qiOjaa=vgacqaH1oqzaaGaa83va8 aadaahaaWcbeqaa8qadaWccaWdaeaapeGaaG4maaWdaeaapeGaaGOm aaaaaaaakiaawUfacaGLDbaaaaa@4C2C@      (6)

The above result given in Equation (6) is known as the Fowler-Northeim formula. This formula is the result of WKB approximation. The formula given in Equation (5) is exact formula because there is no approximation. It is seen that there are a lot of difference between them. If the ratio of Tnew TWKB to iscalculated, the following value is obtained:

T new T WKB 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSGaa8aabaacbaWdbiaa=rfapaWaaSbaaSqaa8qacaWFUbGaa8xz aiaa=Dhaa8aabeaaaOqaa8qacaWFubWdamaaBaaaleaapeGaa83vai aa=TeacaWFcbaapaqabaaaaOWdbiabgIKi7kaaisdaaaa@419F@      or T new 4 T WKB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=5gacaWFLbGaa83DaaWdaeqa aOWdbiabgIKi7kaaisdacaWFubWdamaaBaaaleaapeGaa83vaiaa=T eacaWFcbaapaqabaaaaa@4154@     (7)

Both values appear to be very different. It is necessary to accept that Tnew  is more accurate because no approximation was made while calculating this formula.

Numerical calculations and comparison of equations (5) and (6)

The barrier penetration probabilities or the transmission coefficients  have been calculated from Equations (5) and (6). In the calculations, the electron mass, m c 2 =0.511003MeV; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xBaiaa=ngapaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da 9iaaicdacaGGUaGaaGynaiaaigdacaaIXaGaaGimaiaaicdacaaIZa Gaa8xtaiaa=vgacaWFwbGaai4oaaaa@443F@  the electron charge, e=1.19999 ( MeV. fm ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xzaiabg2da9iaaigdacaGGUaGaaGymaiaaiMdacaaI5aGa aGyoaiaaiMdadaqadaWdaeaapeGaa8xtaiaa=vgacaWFwbGaa8Nlai aa=bcacaWFMbGaa8xBaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa daWccaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaaaaa@47C4@  have been taken. The obtained values for the different metals are seen in Table 1. In Table 1, it can be seen that the new method is more appropriate than the classical WKB method. In the calculations of the current-voltage characteristics of a diode in semiconductor physics, it is expected to have better results. In calculations, one has been taken c=197.329MeV.fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeS4dHGgcbaGaa83yaiabg2da9iaaigdacaaI5aGaaG4naiaac6ca caaIZaGaaGOmaiaaiMdacaWFnbGaa8xzaiaa=zfacaWFUaGaa8Nzai aa=1gaaaa@4488@ . Numerical calculations were made for three different electric fields, and the results are shown in Table 1. The values of work function (W).9 Calculations were done for three values of electric field. [ε( V cm )=5× 10 6 ,5× 10 7 ,1× 10 7 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4waiabew7aLnaabmaapaqaa8qadaWccaWdaeaaieaapeGaa8Nv aaWdaeaapeGaa83yaiaa=1gaaaaacaGLOaGaayzkaaGaeyypa0JaaG ynaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiaaiAdaaaGc caGGSaGaaGynaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbi aaiEdaaaGccaGGSaGaaGymaiabgEna0kaaigdacaaIWaWdamaaCaaa leqabaWdbiaaiEdaaaGccaGGDbaaaa@51C8@ .

Metals

Work function

 W (eV)

Transmission coefficient Tnew from equation (5)

Transmission coefficient TWKB from equation (6)

Electric field ε( V cm ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaaiikamaaliaapaqaa8qacaWHwbaapaqaa8qacaWHJbGa aCyBaaaacaGGPaaaaa@3D41@

Electric field ε( V cm ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaaiikamaaliaapaqaa8qacaWHwbaapaqaa8qacaWHJbGa aCyBaaaacaGGPaaaaa@3D41@

5x106

5x107

1x107

5x106

5x107

1x107

Na

2.46

5.12448x 10-23

0.0206

1.43171x10-11

1.28112x10-23

0.0051

3.57928x10-12

Al

4.08

5.07471x10-49

0.000052

1.42474x10-24

1.26868x10-49

0.000013

3.56185x10-25

Cu

4.70

1.40147x10-60

3.60174x10-6

2.36768x10-30

3.50368x10-61

9.00435x10-7

5.91919x10-31

Zn

4.31

3.25862x10-53

0.000020

1.14169x10-26

8.14656x10-54

4.91018x10-6

2.85422x10-27

Ag

4.73

3.68836x10-61

3.15165x10-6

1.21464x10-30

9.22090x10-62

7.87911x10-7

3.03659x10-31

Pt

6.35

4.59212x10-95

1.28249x10-9

1.35530x10-47

1.14803x10-95

3.20624x10-10

3.38826x10-48

Pb

4.14

4.19617x10-50

0.000040

4.09691x10-25

1.04904x10-50

0.000010

1.02423x10-25

Fe

4.50

9.20656x10-57

8.67486x10-6

1.91902x10-28

2.30164x10-57

2.16872x10-6

4.79754x10-29

Table 1 Comparison of the transmission coefficients values calculated with classical and new method

Conclusion

In previous articles,1–3 the general transmission coefficient formula for a potential barrier with an arbitrary form has been easily calculated without making any approximation. In the above calculation, the new method that we developed for the solution of the radial SE has been used. The general transmission coefficient obtained from the new method is given by the formula (1). In this formula, it could be difficult to calculate analytically the integral U(r) dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaavacabeWcbe qaaiaaygW7a0qaaabaaaaaaaaapeGaey4kIipaaOWaaOaaa8aabaac baWdbiaa=vfacaGGOaGaa8NCaiaacMcaaSqabaGccaWFKbGaa8NCaa aa@402C@ . If these calculations cannot be made analytically, they should then be performed by numerical calculation methods.

Hence, it is said that the results obtained using the new formula are more realistic. In the  method, the wave function is sinusoidal before and after the potential barrier. However, it is not a sinusoidal but an exponential function in the potential barrier. So, the wave function inside the potential barrier is not sinusoidal; after the potential barrier, it becomes sinusoidal again. However in the new method, the wave functions are sinusoidal everywhere both inside and outsides of the potential barrier. But, the wave functions have different phases inside and outside the potential barrier and it advances everywhere as sinusoidal functions. This is more reasonable. It can also be said that it is more accurate and realistic. Besides, the WKB method gives an approximate wave function. In the new method, the wave function is exact because there is no approximation. That is why the theoretical calculated half-life values match better with the experimental values. From these, we conclude that the transmission coefficient given in Equation (1) is more correct and realistic.

The new general transmission coefficient formula can be used to calculate the other tunneling phenomenon. Here in this short article, we have calculated the transmission coefficient for cold emission from the metals, and results were compared with the results obtained with those of the WKB method. We see that two results were not the same. I have to say that the newly discovered results are more realistic. Therefore, it is expected that this new coefficient will produce very realistic results.

Acknowledgments

I would like to express my sincere gratitude to my wife Özel and my daughters Işıl and Beril for their help in editing.

Conflicts of interest

Author declare that there is no conflicts of interest.

Funding

None.

References

  1. Calculation a New Transmission Coefficient of Tunneling for an Arbitrary Potential Barrier and Application to Alpha Decay of Photonic Materials and Technology. Journal of Photonic Materials and Technology. 2019;5(2):24–31.
  2. Ebrahim Shaikh, Md Sanaullah Murad, Taposh Ranjan Sarker, et al. Standard Procedure and Time Setting for Servicing of Single Jersey and Double Jersey Knitting Machie. GJOSFR. 2019;19(1).
  3. Erbil HH. General solution of the Schrödinger equation with potential field quantization. Turkish Journal of Physics. 2018;42:527–572.
  4. F Schwabl. Quantum Mechanics. 2nd edn. USA: Springer-Verlag, Berlin Heidelberg New York; 1995.
  5. L Powell, B Crasemann. Quantum Mechanics. USA: Addison-Wesley Publishing Company Inc; 1965.
  6. LD Landau. EM Lifstits. Quantum Mechanics. USA: Pergamon Press; 1958.
  7. J Griffiths. Introductory Quantum Mechanics. USA: Prentice Hall; 1994.
  8. HH Erbil. Analytics and Quantum Mechanics. Turkey: Nobel Academic Publishing; 2014.
  9. RA Serway. Physics For Scientists and Engineers with Modern Physics. 3rd edn. USA: Saunders College Publishing; 1992.
Creative Commons Attribution License

©2020 Erbil. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.