Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Forum Article Volume 2 Issue 1

Quantum of temperature necessary for the thermal electron excitation in a one–dimensional metal

Stanislaw Olszewski

Institute of Physical Chemistry, Polish Academy of Sciences, Poland

Correspondence: Stanislaw Olszewski, Institute of Physical Chemistry, Polish Academy of Sciences, Poland

Received: January 22, 2018 | Published: February 7, 2018

Citation: Olszewski S. Quantum of temperature necessary for the thermal electron excitation in a one–dimensional metal. Material Sci & Eng Int J. 2018;2(1):19-20. DOI: 10.15406/mseij.2018.02.00027

Download PDF

Abstract

An analysis of the electron specific heat of a quasi one-dimensional free-electron system leads to conclusion that some minimal quantum of temperature should be applied to the system in order to promote the excitation of an electron present on the Fermi level. The value of the minimal excitation temperature depends on the length of the one-dimensional potential box containing the electrons, the quantum state of the electron, and the actual temperature of the system as well as the fundamental constants of nature.

Keywords: temperature, thermal electron excitation, one–dimensional metal

Introduction

A one-dimensional metal is a well-known model applied both in quantum physics and chemistry; see e.g.1–4 We assume that electrons are enclosed in a tube of a constant potential which is so thin that for low energies the excitations along the tube length can be only admitted. In this case the transversal excitations are of much higher energy than the longitudinal ones and are usually neglected.

The energies dependent on the box length L are

E n = n 2 h 2 8m L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqbGeaacaWGUbaajuaGbeaajugibiabg2da9Kqbaoaa laaakeaajugibiaad6gajuaGdaahaaWcbeqcfasaaKqzadGaaGOmaa aajugibiaadIgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqa aKqzGeGaaGioaiaad2gacaWGmbqcfa4aaWbaaeqajuaibaGaaGOmaa aaaaaaaa@4942@ (1)

Where n is the electron quantum number. The lowest excitation energy of is

Δ E n = E n+1 E n = ( n+1 ) 2 n 2 8m L 2 h 2 = 2n+1 8m L 2 h 2 n h 2 4m L 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWGfbqcfa4aaSbaaKqbGeaajugWaiaad6gaaKqbagqaaKqzGeGa eyypa0JaamyraKqbaoaaBaaajuaibaqcLbmacaWGUbGaey4kaSIaaG ymaaqcfayabaqcLbsacqGHsislcaWGfbqcfa4aaSbaaKqbGeaajugW aiaad6gaaKqbagqaaKqzGeGaeyypa0tcfa4aaSaaaeaadaqadaqaaK qzGeGaamOBaiabgUcaRiaaigdaaKqbakaawIcacaGLPaaadaahaaqc fasabKazfa0=baqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamOBaKqbao aaCaaajuaibeqcKvaq=haajugWaiaaikdaaaaajuaGbaqcLbsacaaI 4aGaamyBaiaadYeajuaGdaahaaqabKazfa0=baqcLbmacaaIYaaaaa aajugibiaadIgajuaGdaahaaqcfasabKazfa0=baqcLbmacaaIYaaa aKqzGeGaeyypa0tcfa4aaSaaaeaajugibiaaikdacaWGUbGaey4kaS IaaGymaaqcfayaaKqzGeGaaGioaiaad2gacaWGmbqcfa4aaWbaaKqb Geqajqwba9FaaKqzadGaaGOmaaaaaaqcLbsacaWGObqcfa4aaWbaaK qbGeqajqwba9FaaKqzadGaaGOmaaaajugibiabgIKi7Mqbaoaalaaa baqcLbsacaWGUbGaamiAaKqbaoaaCaaabeqcfasaaKqzadGaaGOmaa aaaKqbagaajugibiaaisdacaWGTbGaamitaKqbaoaaCaaabeqcfasa aKqzadGaaGOmaaaaaaqcLbsacaGGSaaaaa@8D91@ (2)

where the last step in (2) holds for .

The electron specific heat of the electron ensemble is usually examined for a three-dimensional electron gas case.5–7 In such a study the contributions given by the individual electrons are regularly neglected and the quantum-statistical density of the whole electron ensemble is taken into account. However, because of the special boundary conditions applied to a one-dimensional metal, a different, i.e. partly non-statistical kind of approach, can be followed in calculating the electron specific heat done in the present paper.

Electron specific heat calculated from a quantum oscillator

Let us assume that electrons in the box are vibrating along the box length L with the frequency ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH9oGBaaa@3852@ .

This frequency is easy to calculate for any quantum state n.

For a free electron moving with the velocity υ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyXdu3aaSbaaKqbGeaajugWaiaad6gaaKqbagqaaaaa@3B5E@ we have the relation

m υ n 2 2 = E n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb qcfa4aaSaaaeaajugibiabew8a1LqbaoaaDaaajuaibaqcLbmacaWG UbaajuaibaqcLbmacaaIYaaaaaqcfayaaKqzGeGaaGOmaaaacqGH9a qpcaWGfbqcfa4aaSbaaKazfa0=baqcLbmacaWGUbaajuaGbeaaaaa@483A@ (3)

where

E n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaaWcpaqa baaaaa@3A97@ is taken from (1). This gives

υ n = ( 2 E n m ) 1/2 = ( n 2 h 2 4 m 2 L 2 ) 1/2 = nh 2mL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyXdu 3aaSbaaKqbGeaajugWaiaad6gaaKqbagqaaKqzGeGaeyypa0tcfa4a aeWaaeaadaWcaaqaaKqzGeGaaGOmaiaadweajuaGdaWgaaqcfasaaK qzadGaamOBaaqcfayabaaabaqcLbsacaWGTbaaaaqcfaOaayjkaiaa wMcaamaaCaaabeqaaiaaigdacaGGVaGaaGOmaaaajugibiabg2da9K qbaoaabmaabaWaaSaaaeaajugibiaad6gajuaGdaahaaqabKqbGeaa jugWaiaaikdaaaqcLbsacaWGObqcfa4aaWbaaeqajuaibaqcLbmaca aIYaaaaaqcfayaaKqzGeGaaGinaiaad2gajuaGdaahaaqabKqbGeaa jugWaiaaikdaaaqcLbsacaWGmbqcfa4aaWbaaeqajuaibaqcLbmaca aIYaaaaaaaaKqbakaawIcacaGLPaaadaahaaqabeaacaaIXaGaai4l aiaaikdaaaqcLbsacqGH9aqpjuaGdaWcaaqaaKqzGeGaamOBaiaadI gaaKqbagaajugibiaaikdacaWGTbGaamitaaaaaaa@6A20@ (4)

In the next step the speed υ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew8a1n aaBaaajeaibaqcLbmacaWGUbaaleqaaaaa@3AB7@ is coupled with the time period t pn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bqcfa4damaaBaaajeaibaqcLbmapeGaamiCaiaad6ga aSWdaeqaaaaa@3BBB@ necessary for an electron to travel from one of the box ends to another end, and back to the beginning electron position in the box. This velocity is represented by the formula

υ n = 2L t pn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHfp qDjuaGdaWgaaqcfasaaKqzadGaamOBaaqcfayabaqcLbsacqGH9aqp juaGdaWcaaqaaKqzGeGaaGOmaiaadYeaaKqbagaajugibiaadshaju aGdaWgaaqcfasaaKqzadGaamiCaiaad6gaaKqbagqaaaaaaaa@46BE@ (5)

An equality between (4) and (5) gives

t pn = 4m L 2 nh , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaKazfa0=baqcLbmacaWGWbGaamOBaaqcfayabaqcLbsa cqGH9aqpjuaGdaWcaaqaaKqzGeGaaGinaiaad2gacaWGmbqcfa4aaW baaeqajqwba9FaaKqzadGaaGOmaaaaaKqbagaajugibiaad6gacaWG ObaaaiaacYcaaaa@4ABD@ (6)

so the vibration frequency along L becomes

ν= 1 t pn = nh 4m L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH9o GBcaGI9aqcfa4aaSaaaeaajugibiaakgdaaKqbagaajugibiaaksha juaGdaWgaaqcfasaaKqzadGaaOiCaiaak6gaaKqbagqaaaaajugibi aak2dajuaGdaWcaaqaaKqzGeGaaOOBaiaakIgaaKqbagaajugibiaa ksdacaGITbGaaOitaKqbaoaaCaaabeqcfasaaKqzadGaaOOmaaaaaa aaaa@4C87@ (7)

A characteristic point is that the frequency in (7) can be referred to the energy difference in (2) by the formula

Δ E n = hν= n h 2 4m L 2  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgs5aejaadweajuaGpaWaaSbaaKqbGeaajugWa8qacaWG UbaajuaGpaqabaqcLbsapeGaeyypa0JaaeiiaiaadIgacqaH9oGBcq GH9aqpjuaGpaWaaSaaaeaajugib8qacaWGUbGaamiAaKqba+aadaah aaqcfasabKazfa0=baqcLbmapeGaaGOmaaaaaKqba+aabaqcLbsape GaaGinaiaad2gacaWGmbqcfa4damaaCaaajuaibeqcKvaq=haajugW a8qacaaIYaaaaaaajugibiaacckacaGGSaaaaa@54FF@ (8)

on condition the quantum number n is large.

The frequency v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhaaa a@3774@ of the one-dimensional motion in (7) can be coupled with the temperature T by the well-known Planck’s energy formula for the system of N one-dimensional oscillators8

E=N ε 0 +NE( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0JaamOtaiabew7aL9aadaWgaaqaaKqzadWd biaaicdaaKqba+aabeaapeGaey4kaSIaamOtaiaadweapaWaaeWaae aapeGaamivaaWdaiaawIcacaGLPaaaaaa@42D2@ (9)

where

E(T)= Nhν e hv/kT 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aacIcacaGGubGaaiykaiabg2da9maalaaabaGaaiOtaiaacIgacqaH 9oGBaeaacaWGLbWaaWbaaeqabaWaaWbaaeqajuaibaGaamiAaiaadA hacaGGVaGaam4AaiaadsfaaaaaaKqbakabgkHiTiaaigdaaaaaaa@4601@ (10)

and ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyTdu wcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3AED@ is a constant zero-point energy of the oscillator independent of T. The symbol ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 gaaa@3832@ is the frequency equal to (7), k is the Boltzmann constant. In Section 3 we calculate the specific heat of the electron oscillator on the basis of (9).

Specific heat of the planck’s one-dimensional oscillator

This kind of the electron specific heat can be obtained directly from the formula (10). We have

c V = 1 N E T = T ( hv e hv/kT 1 )= hv ( e hv/kT 1 ) 2 e hv/kT ( 1 T 2 ) hv k =k ( hv kT ) 2 e hv/kT ( e hv/kT 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yam aaBaaabaGaamOvaaqabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOt aaaadaWcaaqaaiabgkGi2kaadweaaeaacqGHciITcaWGubaaaiabg2 da9maalaaabaGaeyOaIylabaGaeyOaIyRaamivaaaadaqadaqaamaa laaabaGaamiAaiaadAhaaeaacaWGLbWaaWbaaeqajuaibaGaamiAai aadAhacaGGVaGaam4AaiaadsfaaaqcfaOaeyOeI0IaaGymaaaaaiaa wIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaadIgacaWG2baaba WaaeWaaeaacaWGLbWaaWbaaKqbGeqabaGaamiAaiaadAhacaGGVaGa am4AaiaadsfaaaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCa aabeqcfasaaiaaikdaaaaaaKqbakaadwgadaahaaqabKqbGeaacaWG ObGaamODaiaac+cacaWGRbGaamivaaaajuaGdaqadaqaaiabgkHiTm aalaaabaGaaGymaaqaaiaadsfadaahaaqcfasabeaacaaIYaaaaaaa aKqbakaawIcacaGLPaaadaWcaaqaaiaadIgacaWG2baabaGaam4Aaa aacqGH9aqpcaWGRbWaaeWaaeaadaWcaaqaaiaadIgacaWG2baabaGa am4AaiaadsfaaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaa aajuaGdaWcaaqaaiaadwgadaahaaqabKqbGeaacaWGObGaamODaiaa c+cacaWGRbGaamivaaaaaKqbagaadaqadaqaaiaadwgadaahaaqcfa sabeaacaWGObGaamODaiaac+cacaWGRbGaamivaaaajuaGcqGHsisl caaIXaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaaaaaa@86C4@ (11)

The result in (11) is the well-known Einstein’s formula for the specific heat of the vibrating atoms in a three-dimensional crystal,6,7,9 all atoms are having a definite frequency . The only difference from the Einstein’s result is dictated by the dimensionality of the oscillating system: the coefficient 3 before the formula in (11) is obtained in the Einstein case which corresponds to a three-dimensional oscillating object, for the one-dimensional electron oscillators considered in the present approach the number of 3 is replaced by 1. Evidently the frequency entering the Planck’s theory-is referred to the metal parameters by the formula (7).

Balance of energy Ddue to the temperature change with the excitation energy

In order to promote an electron from the Fermi level, the excitation energy from that level represented by (2) and (8)-where is the frequency characteristic for the oscillations on the Fermi level-should be equal to the energy supplied by the temperature change:

ΔE =  c V ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadweacaqGGaGaeyypa0JaaeiiaiaadogajuaG daWgaaqaaiaadAfaaeqaaKqzGeWdaiabfs5ae9qacaWGubaaaa@4080@ (12)

We obtain from (8) and (12) the result

hv c V =ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGObGaamODaaqaaiaadogadaWgaaqaaiaadAfaaeqaaaaacqGH 9aqpcqqHuoarcaWGubaaaa@3DA5@ (13)

By dividing the both sides of (13) by T we obtain

hv T c V = hv kT 1 x 2 ( e x 1 ) 2 e x = 1 x ( e x 1 ) 2 e x = ΔT T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGObGaamODaaqaaiaadsfacaWGJbWaaSbaaeaacaWGwbaabeaa aaGaeyypa0ZaaSaaaeaacaWGObGaamODaaqaaiaadUgacaWGubaaam aalaaabaGaaGymaaqaaiaadIhadaahaaqcfasabeaacaaIYaaaaaaa juaGdaWcaaqaamaabmaabaGaamyzamaaCaaajuaibeqaaiaadIhaaa qcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaajuaibeqaaiaa ikdaaaaajuaGbaGaamyzamaaCaaajuaibeqaaiaadIhaaaaaaKqbak abg2da9maalaaabaGaaGymaaqaaiaadIhaaaWaaSaaaeaadaqadaqa aiaadwgadaahaaqcfasabeaacaWG4baaaKqbakabgkHiTiaaigdaai aawIcacaGLPaaadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadwga daahaaqabKqbGeaacaWG4baaaaaajuaGcqGH9aqpdaWcaaqaaiabfs 5aejaadsfaaeaacaWGubaaaiaacYcaaaa@5FD8@ (14)

on condition an abbreviated formula

x= hv kT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEai abg2da9maalaaabaGaamiAaiaadAhaaeaacaWGRbGaamivaaaaaaa@3C48@ (15)

is applied. Evidently we have x tending to zero for very large T. This case is satisfied by equation (14).

A limiting value applicable for seems to be

ΔTT, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadsfacqGHfjcqcaWGubGaaiilaaaa@3BA0@ (16)

or

ΔT  T 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaqaaKqzGeGaeuiLdqKaamivaiaabccaaKqbagaajugi biaadsfaaaGaeyyrIaKaaGymaiaacYcaaaa@3EB9@ (16a)

where T is the Planck’s equilibrium temperature entering the energy (10) of the oscillator.

In this case also equation (14) is roughly satisfied on condition there is substituted the ratio (16a) and x = 1. For we obtain from (14) the equation:

( e x 1) 2 x e x = (e1) 2 e =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaqaaKqzGeGaaiikaiaadwgajuaGdaahaaqabKqbGeaa jugWaiaadIhaaaqcLbsacqGHsislcaaIXaGaaiykaKqbaoaaCaaabe qcfasaaKqzadGaaGOmaaaaaKqbagaajugibiaadIhacaWGLbqcfa4a aWbaaeqajuaibaqcLbmacaWG4baaaaaajugibiabg2da9Kqbaoaala aabaqcLbsacaGGOaGaamyzaiabgkHiTiaaigdacaGGPaqcfa4aaWba aeqajuaibaqcLbmacaaIYaaaaaqcfayaaKqzGeGaamyzaaaacqGH9a qpcaaIXaaaaa@54D8@ (17)

which transformed into

e 2 3e + 1 = 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwgajuaGpaWaaWbaaeqajuaibaqcLbmapeGaaGOmaaaa jugib8aacqGHsislpeGaaG4maiaadwgacaqGGaGaey4kaSIaaeiiai aaigdacaqGGaGaeyypa0JaaeiiaiaaicdacaGGSaaaaa@4451@ (17a)

gives

e= 3+ 94 2 = 3+ 5 2 =1.5+1.118=2.618, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwgacqGH9aqpjuaGdaWcaaqaaKqzGeGaaG4maiabgUca RKqbaoaakaaabaqcLbsacaaI5aGaeyOeI0IaaGinaaqcfayabaaaba qcLbsacaaIYaaaaiabg2da9KqbaoaalaaabaqcLbsacaaIZaGaey4k aSscfa4aaOaaaeaajugibiaaiwdaaKqbagqaaaqaaKqzGeGaaGOmaa aacqGH9aqpcaaIXaGaaiOlaiaaiwdacqGHRaWkcaaIXaGaaiOlaiaa igdacaaIXaGaaGioaiabg2da9iaaikdacaGGUaGaaGOnaiaaigdaca aI4aGaaiilaaaa@5586@ (18)

where as the correct value of e is 2:718.

Conclusion

A one-dimensional non-interacting free electron system is studied in the case when the electron excitations are provided by an increase of the temperature. In the first step the electron particle behaviour is replaced by that of an oscillator. Next it is demonstrated that the specific heat of the oscillators is close to that given by the Einstein’s formula for a metal, on condition the reduction of the metal dimensionality from 3 to 1 is taken into account In general it is shown that the quantum of temperature equal approximately to the equilibrium temperature of the Planck’s oscillator is adequate to provide a thermal excitation of an electron to its next quantum level.

Acknowledgment

None.

Conflict of interest

Authors declare there is no conflict of interest in publishing the article.

References

  1. Eyring H, Walter J, Kimball GE. Quantum Chemistry. Wiley, USA, 1958.
  2. Nikitine S, El-Komoss SG. Journal de chim Phys. 1954;51:129.
  3. Olszewski S. Zeitschrift fuer Physik B. Condensed Matter. 1982;45:297.
  4. Olszewski S, Rolinski T. Journal of Modern Physics. 2010;1:328.
  5. Sommerfeld, Bethe H. Handbuch der Physik. In: Geiger H, Scheel K, editors. Germany, Springer; 1933.
  6. Mott NF, Jones H. The Theory of the Properties of Metals and Alloys. USA, University Press, Oxford; 1958.
  7. Ziman JM. Principles of the Theory of Solids. 2nd ed. Cambridge, University Press; 1972.
  8. Planck M. Einführung in die Theorie der Wärme. 2nd ed. Germany, Hirzel S; 1932.
  9. Einstein. Annalen der Physik. 1907;22:180–800.
Creative Commons Attribution License

©2018 Olszewski. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.