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Abstract

An analysis of the electron specific heat of a quasi one-dimensional free-electron 
system leads to conclusion that some minimal quantum of temperature should be 
applied to the system in order to promote the excitation of an electron present on the 
Fermi level. The value of the minimal excitation temperature depends on the length of 
the one-dimensional potential box containing the electrons, the quantum state of the 
electron, and the actual temperature of the system as well as the fundamental constants 
of nature.
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Introduction
A one-dimensional metal is a well-known model applied both in 

quantum physics and chemistry; see e.g.1–4 We assume that electrons 
are enclosed in a tube of a constant potential which is so thin that 
for low energies the excitations along the tube length can be only 
admitted. In this case the transversal excitations are of much higher 
energy than the longitudinal ones and are usually neglected.

The energies dependent on the box length L are
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 where n is the electron quantum number. The lowest excitation 
energy of nE is
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where the last step in (2) holds for 1n  .

The electron specific heat of the electron ensemble is usually 
examined for a three-dimensional electron gas case.5–7 In such a 
study the contributions given by the individual electrons are regularly 
neglected and the quantum-statistical density of the whole electron 
ensemble is taken into account. However, because of the special 
boundary conditions applied to a one-dimensional metal, a different, 
i.e. partly non-statistical kind of approach, can be followed in 
calculating the electron specific heat done in the present paper.

Electron specific heat calculated from a 
quantum oscillator

Let us assume that electrons in the box are vibrating along the box 
length L with the frequencyν . 

This frequency is easy to calculate for any quantum state n. 

For a free electron moving with the velocity 
n

υ  we have the 
relation
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where nE  is taken from (1). This gives 
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In the next step the speed nυ  is coupled with the time period pnt
necessary for an electron to travel from one of the box ends to another 
end, and back to the beginning electron position in the box. This 
velocity is represented by the formula 
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An equality between (4) and (5) gives 
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so the vibration frequency along L becomes 
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A characteristic point is that the frequency in (7) can be referred to 
the energy difference in (2) by the formula 
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on condition the quantum number n is large. 

The frequency v of the one-dimensional motion in (7) can be 
coupled with the temperature T by the well-known Planck’s energy 
formula for the system of N one-dimensional oscillators8
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and 0ε  is a constant zero-point energy of the oscillator independent 
of T. The symbol ν  is the frequency equal to (7), k is the Boltzmann 
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constant. In Section 3 we calculate the specific heat of the electron 
oscillator on the basis of (9).

Specific heat of the Planck’s one-dimensional 
oscillator

This kind of the electron specific heat can be obtained directly 
from the formula (10). We have
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The result in (11) is the well-known Einstein’s formula for the 

specific heat of the vibrating atoms in a three-dimensional crystal,6,7,9 
all atoms are having a definite frequency ν . The only difference from 
the Einstein’s result is dictated by the dimensionality of the oscillating 
system: the coefficient 3 before the formula in (11) is obtained in the 
Einstein case which corresponds to a three-dimensional oscillating 
object, for the one-dimensional electron oscillators considered in 
the present approach the number of 3 is replaced by 1. Evidently the 
frequency ν − entering the Planck’s theory-is referred to the metal 
parameters by the formula (7).

Balance of energy due to the temperature 
change with the excitation energy

In order to promote an electron from the Fermi level, the excitation 
energy from that level represented by (2) and (8)-where ν is the 
frequency characteristic for the oscillations on the Fermi level-should 
be equal to the energy supplied by the temperature change T∆ :
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We obtain from (8) and (12) the result 
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By dividing the both sides of (13) by T we obtain 
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on condition an abbreviated formula
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is applied. Evidently we have x tending to zero for very large T. 
This case is satisfied by equation (14). 

A limiting value applicable for T∆ seems to be 
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or
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where T is the Planck’s equilibrium temperature entering the 
energy (10) of the oscillator. 

In this case also equation (14) is roughly satisfied on condition 
there is substituted the ratio (16a) and x = 1. For we obtain from (14) 
the equation:
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which transformed into 

		
2 3   1  0,e e +− =  		  (17a)

gives 
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whereas the correct value of e is 2.718

Conclusion
A one-dimensional non-interacting free electron system is 

studied in the case when the electron excitations are provided by 
an increase of the temperature. In the first step the electron particle 
behaviour is replaced by that of an oscillator. Next it is demonstrated 
that the specific heat of the oscillators is close to that given by the 
Einstein’s formula for a metal, on condition the reduction of the 
metal dimensionality from 3 to 1 is taken into account In general it 
is shown that the quantum of temperature equal approximately to 
the equilibrium temperature of the Planck’s oscillator is adequate to 
provide a thermal excitation of an electron to its next quantum level.
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