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Quantum of temperature necessary for the thermal
electron excitation in a one—dimensional metal

Abstract

An analysis of the electron specific heat of a quasi one-dimensional free-electron
system leads to conclusion that some minimal quantum of temperature should be
applied to the system in order to promote the excitation of an electron present on the

Volume 2 Issue | - 2018

Stanislaw Olszewski
Institute of Physical Chemistry, Polish Academy of Sciences,
Poland

Fermi level. The value of the minimal excitation temperature depends on the length of

the one-dimensional potential box containing the electrons, the quantum state of the
electron, and the actual temperature of the system as well as the fundamental constants

of nature.
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Introduction

A one-dimensional metal is a well-known model applied both in
quantum physics and chemistry; see e.g.'* We assume that electrons
are enclosed in a tube of a constant potential which is so thin that
for low energies the excitations along the tube length can be only
admitted. In this case the transversal excitations are of much higher
energy than the longitudinal ones and are usually neglected.

The energies dependent on the box length L are
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where n is the electron quantum number. The lowest excitation

energy of E is
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where the last step in (2) holds for n > 1.

The electron specific heat of the electron ensemble is usually
examined for a three-dimensional electron gas case.>”’ In such a
study the contributions given by the individual electrons are regularly
neglected and the quantum-statistical density of the whole electron
ensemble is taken into account. However, because of the special
boundary conditions applied to a one-dimensional metal, a different,
i.e. partly non-statistical kind of approach, can be followed in
calculating the electron specific heat done in the present paper.

Electron specific heat calculated from a
quantum oscillator

Let us assume that electrons in the box are vibrating along the box
length L with the frequency v .

This frequency is easy to calculate for any quantum state n.

For a free electron moving with the velocity vowe have the
relation
)
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where E is taken from (1). This gives

1/2
v _(2En )1/2 _ n*h? _ nh @
o Um - 4m*I* - 2mL

In the next step the speed v, is coupled with the time period -
necessary for an electron to travel from one of the box ends to another
end, and back to the beginning electron position in the box. This
velocity is represented by the formula
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An equality between (4) and (5) gives
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so the vibration frequency along L becomes
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A characteristic point is that the frequency in (7) can be referred to
the energy difference in (2) by the formula

nh*
AE = hv =——,
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on condition the quantum number n is large.
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The frequency v of the one-dimensional motion in (7) can be
coupled with the temperature T by the well-known Planck’s energy
formula for the system of N one-dimensional oscillators®

E=Ne + NE (T) )
where
Nhv
E(T) = hv/kT (10)
e -1
and ¢, is a constant zero-point energy of the oscillator independent

of T. The symbol v is the frequency equal to (7), k is the Boltzmann
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constant. In Section 3 we calculate the specific heat of the electron
oscillator on the basis of (9).

Specific heat of the Planck’s one-dimensional
oscillator

This kind of the electron specific heat can be obtained directly
from the formula (10). We have
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The result in (11) is the well-known Einstein’s formula for the
specific heat of the vibrating atoms in a three-dimensional crystal,®”
all atoms are having a definite frequency v . The only difference from
the Einstein’s result is dictated by the dimensionality of the oscillating
system: the coefficient 3 before the formula in (11) is obtained in the
Einstein case which corresponds to a three-dimensional oscillating
object, for the one-dimensional electron oscillators considered in
the present approach the number of 3 is replaced by 1. Evidently the
frequency v — entering the Planck’s theory-is referred to the metal
parameters by the formula (7).

Balance of energy due to the temperature
change with the excitation energy

In order to promote an electron from the Fermi level, the excitation
energy from that level represented by (2) and (8)-where v is the
frequency characteristic for the oscillations on the Fermi level-should
be equal to the energy supplied by the temperature change AT :

AE = cVAT (12)
We obtain from (8) and (12) the result
h
2V AT
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By dividing the both sides of (13) by T we obtain
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on condition an abbreviated formula
hv
=— 15
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is applied. Evidently we have x tending to zero for very large T.
This case is satisfied by equation (14).

A limiting value applicable for AT seems to be

AT =T, (16)
or
AT
= =1 16
T , (16a)
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where T is the Planck’s equilibrium temperature entering the
energy (10) of the oscillator.

In this case also equation (14) is roughly satisfied on condition
there is substituted the ratio (16a) and x = 1. For we obtain from (14)
the equation:
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which transformed into
e -3¢ +1 =0, (17a)
gives
3+4/9-4  3+4/5
e=————= \/—=1.5+1.118=2.618, (18)
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whereas the correct value of e is 2.718

Conclusion

A one-dimensional non-interacting free electron system is
studied in the case when the electron excitations are provided by
an increase of the temperature. In the first step the electron particle
behaviour is replaced by that of an oscillator. Next it is demonstrated
that the specific heat of the oscillators is close to that given by the
Einstein’s formula for a metal, on condition the reduction of the
metal dimensionality from 3 to 1 is taken into account In general it
is shown that the quantum of temperature equal approximately to
the equilibrium temperature of the Planck’s oscillator is adequate to
provide a thermal excitation of an electron to its next quantum level.
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