Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Research Article Volume 2 Issue 4

Quanta of the magnetic monopole entering the Oersted–Ampere law

Stanislaw Olszewski

Institute of Physical Chemistry, Polish Academy of Sciences, Poland

Correspondence: Stanislaw Olszewski, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw, Poland

Received: July 06, 2018 | Published: August 1, 2018

Citation: Olszewski S. Quanta of the magnetic monopole entering the Oersted–Ampere law. Material Sci & Eng. 2018;2(4):111-114. DOI: 10.15406/mseij.2018.02.00043

Download PDF

Abstract

The paper demonstrates that quantization of the magnetic monopole, much similar to that concerning the magnetic flux in superconductors, can occur also in a non–superconducting case represented by the Oersted–Ampere law. This result can occur on condition the Joule–Lenz law for the action quanta of electrons participating in the effect is taken into account. The quantum result obtained for a monopole can be confirmed with the aid of the uncertainty principle applied to the energy and time period characteristic for the current involved in the Oersted–Ampere phenomenon.

Introduction

Quantum properties of the physical parameters entering the electrodynamics were examined already on the basis of the old quantum theory. In principle these properties were important first on the mechanical level. Nevertheless discrete properties of the electric charge carried by the electrons, atomic nuclei, and atoms in general, did influence the quantum theory from its very beginning.

Perhaps the most striking and most investigated particle behaviour was that connected with the electron. Its constant and definite electric charge became evident from the very beginning of the atomic theory, and rather soon afterwards a similar interest was attracted by the electron spin. On the other side, however, our knowledge on the magnetostatics and a definite size of the magnetic poles entering the atomic physics, remained much poorer than that obtained in the case of electrostatics. Nevertheless several laws of electrodynamics apply the idea of a definite pole and its use.

An example of such monopole – considered in the present paper–is provided by the Oersted law. In Sec. 2 we demonstrate the quantum aspects of that law and estimate the size of the magnetic pole entering the calculations. In a further Section the quantum properties of the pole are compared with much similar quanta obtained earlier for the magnetic flux. Finally the magnetic pole obtained in Sec. 2 is compared with the pole size estimated on the basis of the uncertainty principle.

Oersted–Ampere law and its quantum behaviour

The discovery of the action of the electric current on a magnetic pole done by Oersted led next Ampere to state the following law (see e.g1 ): a long straight wire carrying the electric current  is acting on a magnetic pole of strength located at distance  from the wire with a force

F= 2i m ( p ) cr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIYaGa amyAaiaad2gajuaGpaWaaWbaaSqabKqaGeaal8qadaqadaqcbaYdae aajugWa8qacaWGWbaajeaicaGLOaGaayzkaaaaaaGcpaqaaKqzGeWd biaadogacaWGYbaaaaaa@4423@    (1)

where  is a proportionality constant having a speed dimension.

With a substitution of the current expression

i= e Δt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGPbGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGLbaa k8aabaqcLbsapeGaeuiLdqKaamiDaaaaaaa@3DE6@    (2)

where  is the electron charge and  an interval of time, the formula (1) becomes

Frc=2i m ( p ) =2 e Δt m ( p ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbGaamOCaiaadogacqGH9aqpcaaIYaGaamyAaiaad2ga juaGpaWaaWbaaSqabKqaGeaal8qadaqadaqcbaYdaeaajugWa8qaca WGWbaajeaicaGLOaGaayzkaaaaaKqzGeGaeyypa0JaaGOmaKqbaoaa laaak8aabaqcLbsapeGaamyzaaGcpaqaaKqzGeWdbiabfs5aejaads haaaGaamyBaKqba+aadaahaaWcbeqcbasaaSWdbmaabmaajeaipaqa aKqzadWdbiaadchaaKqaGiaawIcacaGLPaaaaaqcLbsacaGGUaaaaa@511E@    (3)

The product Fr=ΔE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbGaamOCaiabg2da9iabfs5aejaadweaaaa@3B93@    (4)

entering (3) has the dimension of energy and can be considered as an energy amount .

In a study of the Joule–Lenz law concerning a transfer of energy  from one quantum level to a neighbouring level within the time interval we found that the product of  andsatisfies the formula2,3

ΔEΔt=h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarcaWGfbGaeuiLdqKaamiDaiabg2da9iaadIgaaaa@3D1D@    (5)

The is considered as a shortest interval of time connected with the electron transition between two neighboring quantum levels.

A transformation of (3) into

FrcΔt=ΔEΔtc=2e m ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbGaamOCaiaadogacqqHuoarcaWG0bGaeyypa0JaeuiL dqKaamyraiabfs5aejaadshacaWGJbGaeyypa0JaaGOmaiaadwgaca WGTbqcfa4damaaCaaaleqajeaibaWcpeWaaeWaaKqaG8aabaqcLbma peGaamiCaaqcbaIaayjkaiaawMcaaaaaaaa@4AED@    (6)

where  is in fact an amount of energy of an arbitrary size, suggests an extension of (5) into

ΔEΔt=nh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarcaWGfbGaeuiLdqKaamiDaiabg2da9iaad6gacaWG Obaaaa@3E10@    (7)

where n is an integer number. This leads to a substitution of (6) by a quantum relation of the kind

 nhc=2e m ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcGaamOBaiaadIgacaWGJbGaeyypa0JaaGOmaiaadwga caWGTbqcfa4damaaCaaaleqajeaibaWcpeWaaeWaaKqaG8aabaqcLb mapeGaamiCaaqcbaIaayjkaiaawMcaaaaaaaa@4352@    (8)

which is expected to exist in the case of the law presented in (1). The integer factor  entering (8) is considered to be an unknown number corresponding to a factually unknown size of the magnetic pole entering the right–hand side of (8).

One of the aims of the present paper is to confirm (8) also by examining the magneto–electric relations for the case of the electron motion along an orbit in the hydrogen atom.

  1. Electron circulation along an orbit in the hydrogen atom gives the quanta of energy as well as those of the magnetic field.

According to the Bohr approach, the electron orbits in the hydrogen atom are the circles whose radii satisfy the formula4

r n = 2 n 2 m e 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbqcfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaa jugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeGaeS4dHGwcfa4aaW baaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaamOBaKqba+aadaah aaWcbeqcbasaaKqzadWdbiaaikdaaaaak8aabaqcLbsapeGaamyBai aadwgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaaajugi biaac6caaaa@4C2C@     (9)

The electron charge  moving along the circle of length  induces the magnetic field of strength Bn. This field corresponds to the frequency of electron circulation equal to

2π τ n = e B n mc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaOWdaeaajugib8qacaaIYaGaeqiWdahak8aabaqcLbsa peGaeqiXdqxcfa4damaaBaaajeaibaqcLbmapeGaamOBaaWcpaqaba aaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamyzaiaa dkeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8aabeaaaOqaaK qzGeWdbiaad2gacaWGJbaaaaaa@49EC@    (10)

where is the size of the circulation time period.

It is easy to check that (9) and (10) give a correct electron velocity on the orbit.4 For

2π r n τ n = e B n mc n 2 2 m e 2 = n 2 2 m 2 ec B n = e 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaOWdaeaajugib8qacaaIYaGaeqiWdaNaamOCaKqba+aa daWgaaqcbasaaKqzadWdbiaad6gaaSWdaeqaaaGcbaqcLbsapeGaeq iXdqxcfa4damaaBaaajeaibaqcLbmapeGaamOBaaWcpaqabaaaaKqz GeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamyzaiaadkeaju aGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8aabeaaaOqaaKqzGeWd biaad2gacaWGJbaaaKqbaoaalaaak8aabaqcLbsapeGaamOBaKqba+ aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsacqWIpecAjuaG paWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbi aad2gacaWGLbqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaa aaqcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaad6gajuaGpa WaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaeS4dHGwcfa4d amaaCaaaleqajeaibaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qaca WGTbqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibiaa dwgacaWGJbaaaiaadkeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGUb aal8aabeaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaa dwgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaGcpaqaaK qzGeWdbiaad6gacqWIpecAaaaaaa@7D72@    (11)

is obtained on condition

B n = m 2 e 3 c n 3 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGcbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaaWcpaqa baqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGTbqcfa 4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibiaadwgajuaG paWaaWbaaSqabKqaGeaajugWa8qacaaIZaaaaKqzGeGaam4yaaGcpa qaaKqzGeWdbiaad6gajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI ZaaaaKqzGeGaeS4dHGwcfa4damaaCaaaleqajeaibaqcLbmapeGaaG 4maaaaaaaaaa@5090@    (12)

In the next step we show that  give a correct spectrum of the electron energy in the hydrogen. This is so because the orbital magnetic moment is5

M n orb = e 2mc n= enh 4πmc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGnbqcfa4damaaDaaajeaibaqcLbmapeGaamOBaaqcbaYd aeaajugWa8qacaWGVbGaamOCaiaadkgaaaqcLbsacqGH9aqpjuaGda WcaaGcpaqaaKqzGeWdbiaadwgaaOWdaeaajugib8qacaaIYaGaamyB aiaadogaaaGaamOBaiabl+qiOjabg2da9Kqbaoaalaaak8aabaqcLb sapeGaamyzaiaad6gacaWGObaak8aabaqcLbsapeGaaGinaiabec8a Wjaad2gacaWGJbaaaaaa@5242@    (13)

When (13) is interacting with the field in (12) we obtain the correct spectrum of levels of the electron energy in the hydrogen atom:

E n = M n orb B n = enh 4πmc m 2 e 3 c n 3 3 = m e 4 2 n 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaaWcpaqa baqcLbsapeGaeyypa0JaeyOeI0IaamytaKqba+aadaqhaaqcbasaaK qzadWdbiaad6gaaKqaG8aabaqcLbmapeGaam4BaiaadkhacaWGIbaa aKqzGeGaamOqaKqba+aadaWgaaqcbasaaKqzadWdbiaad6gaaSWdae qaaKqzGeWdbiabg2da9iabgkHiTKqbaoaalaaak8aabaqcLbsapeGa amyzaiaad6gacaWGObaak8aabaqcLbsapeGaaGinaiabec8aWjaad2 gacaWGJbaaaKqbaoaalaaak8aabaqcLbsapeGaamyBaKqba+aadaah aaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsacaWGLbqcfa4damaaCa aaleqajeaibaqcLbmapeGaaG4maaaajugibiaadogaaOWdaeaajugi b8qacaWGUbqcfa4damaaCaaaleqajeaibaqcLbmapeGaaG4maaaaju gibiabl+qiOLqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaaa aKqzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGTbGaamyzaK qba+aadaahaaWcbeqcbasaaKqzadWdbiaaisdaaaaak8aabaqcLbsa peGaaGOmaiaad6gajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYa aaaKqzGeGaeS4dHGwcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOm aaaaaaaaaa@7BAF@     (14)

  1. The magnetic moments entering the Oersted–Amper law occur to be equal to the quanta of the magnetic flux in the hydrogen atom.

First we show that the quanta of the magnetic flux  in the atom calculated for the electron orbits n approach the magnetic moments  in (8). For from (9) and (12) we obtain:

Φ n =π r n 2 B n =π ( 2 n 3 m e 2 ) 2   m 2 e 3 c n 3 3 = πnc e =  h 2   nc e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHMoGrjuaGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8aa beaajugib8qacqGH9aqpcqaHapaCcaWGYbqcfa4damaaDaaajeaiba qcLbmapeGaamOBaaqcbaYdaeaajugWa8qacaaIYaaaaKqzGeGaamOq aKqba+aadaWgaaqcbasaaKqzadWdbiaad6gaaSWdaeqaaKqzGeWdbi abg2da9iabec8aWLqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqWI pecAjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaad6gaju aGdaahaaWcbeqcbasaaKqzadGaaG4maaaaaOqaaKqzGeGaamyBaiaa dwgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIcaca GLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaaccka juaGdaWcaaGcbaqcLbsacaWGTbqcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsacaWGLbqcfa4aaWbaaSqabKqaGeaajugWaiaaioda aaqcLbsacaWGJbaakeaajugibiaad6gajuaGdaahaaWcbeqcbasaaK qzadGaaG4maaaajugibiabl+qiOLqbaoaaCaaaleqajeaibaqcLbma caaIZaaaaaaajugibiabg2da9Kqbaoaalaaakeaajugibiabec8aWj abl+qiOjaad6gacaWGJbaakeaajugibiaadwgaaaGaeyypa0JaaiiO aKqbaoaalaaakeaajugibiaadIgaaOqaaKqzGeGaaGOmaaaacaGGGc qcfa4aaSaaaOqaaKqzGeGaamOBaiaadogaaOqaaKqzGeGaamyzaaaa aaa@8A53@     (15)

so

Φ n = m ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHMoGrjuaGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8aa beaajugib8qacqGH9aqpcaWGTbqcfa4damaaCaaaleqajeaibaWcpe WaaeWaaKqaG8aabaqcLbmapeGaamiCaaqcbaIaayjkaiaawMcaaaaa aaa@430D@     (16)

where the term on the right–hand side of (16) is equal to the magnetic pole introduced in (1); see (8). It can be noted that the ratio of (13) and (15), viz.

r e = M n orb Φ n = M n orb m ( p ) = enh 4πmc 2e hnc = 1 2π e 2 m c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbqcfa4damaaBaaajeaibaqcLbmapeGaamyzaaWcpaqa baqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGnbqcfa 4damaaDaaajeaibaqcLbmapeGaamOBaaqcbaYdaeaajugWa8qacaWG VbGaamOCaiaadkgaaaaak8aabaqcLbsapeGaeuOPdyucfa4damaaBa aajeaibaqcLbmapeGaamOBaaWcpaqabaaaaKqzGeWdbiabg2da9Kqb aoaalaaak8aabaqcLbsapeGaamytaKqba+aadaqhaaqcbasaaKqzad Wdbiaad6gaaKqaG8aabaqcLbmapeGaam4BaiaadkhacaWGIbaaaaGc paqaaKqzGeWdbiaad2gajuaGpaWaaWbaaSqabKqaGeaal8qadaqada qcbaYdaeaajugWa8qacaWGWbaajeaicaGLOaGaayzkaaaaaaaajugi biabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamyzaiaad6gacaWGOb aak8aabaqcLbsapeGaaGinaiabec8aWjaad2gacaWGJbaaaKqbaoaa laaak8aabaqcLbsapeGaaGOmaiaadwgaaOWdaeaajugib8qacaWGOb GaamOBaiaadogaaaGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaI Xaaak8aabaqcLbsapeGaaGOmaiabec8aWbaajuaGdaWcaaGcpaqaaK qzGeWdbiaadwgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaa aaGcpaqaaKqzGeWdbiaad2gacaWGJbqcfa4damaaCaaaleqajeaiba qcLbmapeGaaGOmaaaaaaqcLbsacaGGSaaaaa@80CC@    (17)

is a constant independent of the quantum number n.

  1. Discussion on the result obtained in (17)

The result calculated in (17) has a dimension of a geometrical distance, or length; it is usually identified as being close to the radius of the electron particle. With the factor of  instead of  it seems that result of (17) has been obtained for the first time by Weyl6 it is defined sometimes as the radius of the Lorentz electron.7 In numerous cases8,9  the expression for the radius of the electron microparticle is simplified into

e 2 m c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaOWdaeaajugib8qacaWGLbqcfa4damaaCaaaleqajeai baqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaWGTbGaam4yaKqba+ aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaaaaa@40BA@     (18)

With the requirement that an agreement of  with the Oersted law should be attained,10 the electron radius becomes

e 2 πm c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaOWdaeaajugib8qacaWGLbqcfa4damaaCaaaleqajeai baqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqaHapaCcaWGTbGaam 4yaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaaaaa@4277@ (18a)

  1. A direct check of the quanta of the magnetic field obtained in (8).
  2. This check can be done by taking the well–known formula11,12

B n d l n = 4π c i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavacake qaleqabaqcLbsacaaMb8oaneaatCvAUfeBSn0BKvguHDwzZbqegiuy 0fMBNbacfaqcLbsaqaaaaaaaaaWdbiaa=5IiaaGabmOqayaalaqcfa 4damaaBaaajeaibaqcLbmapeGaamOBaaWcpaqabaqcLbsapeGaamiz aiqadYgapaGbaSaajuaGdaWgaaqcbasaaKqzadWdbiaad6gaaSWdae qaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGinaiab ec8aWbGcpaqaaKqzGeWdbiaadogaaaGaamyAaKqba+aadaWgaaqcba saaKqzadWdbiaad6gaaSWdaeqaaaaa@57AA@    (19)

where is the path element circumventing the electron microparticle, is the electric current along the orbit n. For the left–hand side of (19) we obtain 

2π B n r e =2π  m 2 e 3 c n 3 3 e 2 πm c 2 =2 m e 5 c n 3 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIYaGaeqiWdaNaamOqaKqba+aadaWgaaqcbasaaKqzadWd biaad6gaaSWdaeqaaKqzGeWdbiaadkhajuaGpaWaaSbaaKqaGeaaju gWa8qacaWGLbaal8aabeaajugib8qacqGH9aqpcaaIYaGaeqiWdaNa aiiOaKqbaoaalaaak8aabaqcLbsapeGaamyBaKqba+aadaahaaWcbe qcbasaaKqzadWdbiaaikdaaaqcLbsacaWGLbqcfa4damaaCaaaleqa jeaibaqcLbmapeGaaG4maaaajugibiaadogaaOWdaeaajugib8qaca WGUbqcfa4damaaCaaaleqajeaibaqcLbmapeGaaG4maaaajugibiab l+qiOLqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaaaaKqbao aalaaak8aabaqcLbsapeGaamyzaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaaikdaaaaak8aabaqcLbsapeGaeqiWdaNaamyBaiaadogaju aGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaaajugibiabg2da 9iaaikdajuaGdaWcaaGcpaqaaKqzGeWdbiaad2gacaWGLbqcfa4dam aaCaaaleqajeaibaqcLbmapeGaaGynaaaaaOWdaeaajugib8qacaWG JbGaamOBaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaqcLb sacqWIpecAjuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIZaaaaaaa aaa@7A6E@    (20)

The right–hand side of (19) is

4π c i n = 4π c e τ n = 4πe c m e 4 2π 3 n 3 = 2m e 5 c 3 n 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaOWdaeaajugib8qacaaI0aGaeqiWdahak8aabaqcLbsa peGaam4yaaaacaWGPbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaa WcpaqabaqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaI 0aGaeqiWdahak8aabaqcLbsapeGaam4yaaaajuaGdaWcaaGcpaqaaK qzGeWdbiaadwgaaOWdaeaajugib8qacqaHepaDjuaGpaWaaSbaaKqa GeaajugWa8qacaWGUbaal8aabeaaaaqcLbsapeGaeyypa0tcfa4aaS aaaOWdaeaajugib8qacaaI0aGaeqiWdaNaamyzaaGcpaqaaKqzGeWd biaadogaaaqcfa4aaSaaaOWdaeaajugib8qacaWGTbGaamyzaKqba+ aadaahaaWcbeqcbasaaKqzadWdbiaaisdaaaaak8aabaqcLbsapeGa aGOmaiabec8aWjabl+qiOLqba+aadaahaaWcbeqcbasaaKqzadWdbi aaiodaaaqcLbsacaWGUbqcfa4damaaCaaaleqajeaibaqcLbmapeGa aG4maaaaaaqcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaik dacaWGTbGaamyzaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiwda aaaak8aabaqcLbsapeGaam4yaiabl+qiOLqba+aadaahaaWcbeqcba saaKqzadWdbiaaiodaaaqcLbsacaWGUbqcfa4damaaCaaaleqajeai baqcLbmapeGaaG4maaaaaaaaaa@7B1D@    (20a)

  1. Proposal of a new formulation of the Oersted–Ampere law.

It looks from (8) that it is more convenient to replace the original Oersted–Ampere law (1) by the formula

F= 2i cr nhc 2e = i r nh e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIYaGa amyAaaGcpaqaaKqzGeWdbiaadogacaWGYbaaaiabgwSixNqbaoaala aak8aabaqcLbsapeGaamOBaiaadIgacaWGJbaak8aabaqcLbsapeGa aGOmaiaadwgaaaGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGPb aak8aabaqcLbsapeGaamOCaaaajuaGdaWcaaGcpaqaaKqzGeWdbiaa d6gacaWGObaak8aabaqcLbsapeGaamyzaaaaaaa@509A@    (21)

or                                                              

rF i = nh e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaOWdaeaajugib8qacaWGYbGaamOraaGcpaqaaKqzGeWd biaadMgaaaGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGUbGaam iAaaGcpaqaaKqzGeWdbiaadwgaaaaaaa@40A8@     (21a)

The equation (21a), when multiplied by , gives in fact on its right–hand side the magnetic flux in (15) expressed by a multiple of the elementary flux, viz.

n hc 2e =n×2.07× 10 7 gauss c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGUbqcfa4aaSaaaOWdaeaajugib8qacaWGObGaam4yaaGc paqaaKqzGeWdbiaaikdacaWGLbaaaiabg2da9iaad6gacqGHxdaTca aIYaGaaiOlaiaaicdacaaI3aGaey41aqRaaGymaiaaicdajuaGpaWa aWbaaSqabKqaGeaajugWa8qacqGHsislcaaI3aaaaKqzGeGaam4zai aadggacaWG1bGaam4CaiaadohacaGGGcGaam4yaiaad2gajuaGpaWa aWbaaSqabKqaGeaajugWa8qacaaIYaaaaaaa@56B3@    (22)

The units on the right–hand side of (22) correspond with the units of the pole

; m ( p ) g 1 2 c m 3 2 sec MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGTbqcfa4damaaCaaaleqajeaibaWcpeWaaeWaaKqaG8aa baqcLbmapeGaamiCaaqcbaIaayjkaiaawMcaaaaajugibiablYJi6K qbaoaalaaak8aabaqcLbsapeGaam4zaKqba+aadaahaaWcbeqcbasa aSWdbmaalaaajeaipaqaaKqzadWdbiaaigdaaKqaG8aabaqcLbmape GaaGOmaaaaaaqcLbsacaWGJbGaamyBaKqba+aadaahaaWcbeqcbasa aSWdbmaalaaajeaipaqaaKqzadWdbiaaiodaaKqaG8aabaqcLbmape GaaGOmaaaaaaaak8aabaqcLbsapeGaam4CaiaadwgacaWGJbaaaaaa @51AA@    (22a)

The formula (22) becomes very similar to that applied in the theory of superconductors.12–14

  1. Uncertainty principle for energy and time applied in the case of the Ampere–Oersted law.

An insight into the size of the monopole entering the Oersted–Ampere law can be obtained also with the aid of the uncertainty principle for energy and time. The principle is represented by the relation 15

2m c 2 ΔE ( Δt ) 2 > 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIYaGaamyBaiaadogajuaGpaWaaWbaaSqabKazba2=baqc LbmapeGaaGOmaaaajugibiabfs5aejaadweajuaGdaqadaGcpaqaaK qzGeWdbiabfs5aejaadshaaOGaayjkaiaawMcaaKqba+aadaahaaWc beqcbasaaKqzadWdbiaaikdaaaqcLbsacqGH+aGpcqWIpecAjuaGpa WaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaaa@4E55@    (23)

where  is the electron mass and the intervals  and  are the considered intervals of energy and time.

Because of (6) the formula (23) can be transformed into

ΔEΔt= 2e m ( p ) c > 2 2m c 2 Δt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarcaWGfbGaeuiLdqKaamiDaiabg2da9Kqbaoaalaaa k8aabaqcLbsapeGaaGOmaiaadwgacaWGTbqcfa4damaaCaaaleqaje aibaWcpeWaaeWaaKqaG8aabaqcLbmapeGaamiCaaqcbaIaayjkaiaa wMcaaaaaaOWdaeaajugib8qacaWGJbaaaiabg6da+Kqbaoaalaaak8 aabaqcLbsapeGaeS4dHGwcfa4damaaCaaaleqajeaibaqcLbmapeGa aGOmaaaaaOWdaeaajugib8qacaaIYaGaamyBaiaadogajuaGpaWaaW baaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaeuiLdqKaamiDaaaa aaa@568B@     (24)

The upper limit of  in (24) is accessible by substituting a minimal acceptable time interval for the electron transition:3

( Δt ) min = m c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaOWdaeaajugib8qacqqHuoarcaWG0baakiaawIcacaGL PaaajuaGpaWaaSbaaKqaGeaajugWa8qacaWGTbGaamyAaiaad6gaaS WdaeqaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaeS4d HGgak8aabaqcLbsapeGaamyBaiaadogajuaGpaWaaWbaaSqabKqaGe aajugWa8qacaaIYaaaaaaaaaa@49FB@    (25)

This gives on the basis of (24) the relation

2e m ( p ) c > 2 2m c 2 m c 2 = 2 = h 4π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaOWdaeaajugib8qacaaIYaGaamyzaiaad2gajuaGpaWa aWbaaSqabKqaGeaal8qadaqadaqcbaYdaeaajugWa8qacaWGWbaaje aicaGLOaGaayzkaaaaaaGcpaqaaKqzGeWdbiaadogaaaGaeyOpa4tc fa4aaSaaaOWdaeaajugib8qacqWIpecAjuaGpaWaaWbaaSqabKqaGe aajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiaaikdacaWGTbGaam4y aKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaaKqbaoaala aak8aabaqcLbsapeGaamyBaiaadogajuaGpaWaaWbaaSqabKqaGeaa jugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiabl+qiObaacqGH9aqpju aGdaWcaaGcpaqaaKqzGeWdbiabl+qiObGcpaqaaKqzGeWdbiaaikda aaGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGObaak8aabaqcLb sapeGaaGinaiabec8aWbaaaaa@60ED@     (26)

from which we obtain

m ( p ) > 1 4π ch 2e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGTbqcfa4damaaCaaaleqajeaibaWcpeWaaeWaaKqaG8aa baqcLbmapeGaamiCaaqcbaIaayjkaiaawMcaaaaajugibiabg6da+K qbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaisda cqaHapaCaaqcfa4aaSaaaOWdaeaajugib8qacaWGJbGaamiAaaGcpa qaaKqzGeWdbiaaikdacaWGLbaaaaaa@491F@    (27)

The limit presented in (27) is smaller only by a factor of  than the result obtained for in (8) on condition the case of n=1 is considered.

  1. Extremal values of the physical parameters connected with an elementary electron transition process

By an elementary transition we understand the transition of an electron between two neighbouring quantum energy levels. The study can be accomplished by applying the formula (25) for. First we estimate a maximal value of the electric current intensity  which can be associated by a single electron transition:

i max = e Δ t min = em c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGPbqcfa4damaaBaaajeaibaqcLbmapeGaamyBaiaadgga caWG4baal8aabeaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGe WdbiaadwgaaOWdaeaajugib8qacqqHuoarcaWG0bqcfa4damaaBaaa jeaibaqcLbmapeGaamyBaiaadMgacaWGUbaal8aabeaaaaqcLbsape Gaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGLbGaamyBaiaadoga juaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaGcpaqaaKqzGe Wdbiabl+qiObaaaaa@533B@    (28)

This implies

i max = 4.8× 10 10 ×9.1× 10 28 × ( 3× 10 10 ) 2 1.6× 10 27  CGS units 82amper MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGPbqcfa4damaaBaaajeaibaqcLbmapeGaamyBaiaadgga caWG4baal8aabeaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGe WdbiaaisdacaGGUaGaaGioaiabgEna0kaaigdacaaIWaqcfa4damaa CaaaleqajeaibaqcLbmapeGaeyOeI0IaaGymaiaaicdaaaqcLbsacq GHxdaTcaaI5aGaaiOlaiaaigdacqGHxdaTcaaIXaGaaGimaKqba+aa daahaaWcbeqcbasaaKqzadWdbiabgkHiTiaaikdacaaI4aaaaKqzGe Gaey41aqBcfa4aaeWaaOWdaeaajugib8qacaaIZaGaey41aqRaaGym aiaaicdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIXaGaaGimaa aaaOGaayjkaiaawMcaaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaa ikdaaaaak8aabaqcLbsapeGaaGymaiaac6cacaaI2aGaey41aqRaaG ymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqGHsislcaaI YaGaaG4naaaaaaqcLbsacaGGGcGaam4qaiaadEeacaWGtbGaaiiOai aadwhacaWGUbGaamyAaiaadshacaWGZbGaaiiOaiabgwKiajaaiIda caaIYaGaamyyaiaad2gacaWGWbGaamyzaiaadkhaaaa@84E6@    (28a)

by taking into account that

Since the resistance associated with the electron transition between two neighbouring quantum levels in an energy emission process is approximately a constant number [2]

R= h e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGsbGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGObaa k8aabaqcLbsapeGaamyzaKqba+aadaahaaWcbeqcbasaaKqzadWdbi aaikdaaaaaaaaa@3F4B@ ,    (29)

we can estimate a maximal potential difference between two neighbouring quantum states as equal to

V max  =R i max = h e 2 em c 2 = 2πm c 2 e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGwbqcfa4damaaBaaajeaibaqcLbmapeGaamyBaiaadgga caWG4bGaaiiOaaWcpaqabaqcLbsapeGaeyypa0JaamOuaiaadMgaju aGpaWaaSbaaKqaGeaajugWa8qacaWGTbGaamyyaiaadIhaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamiAaaGcpa qaaKqzGeWdbiaadwgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI YaaaaaaajuaGdaWcaaGcpaqaaKqzGeWdbiaadwgacaWGTbGaam4yaK qba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaak8aabaqcLbsa peGaeS4dHGgaaiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGOmai abec8aWjaad2gacaWGJbqcfa4damaaCaaaleqajeaibaqcLbmapeGa aGOmaaaaaOWdaeaajugib8qacaWGLbaaaaaa@62CE@    (30)

In effect the corresponding energy difference between two neighbouring electron states becomes limited by a maximal value

Δ E max  =  e V max  =2πm c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarcaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamyB aiaadggacaWG4bGaaiiOaaWcpaqabaqcLbsapeGaeyypa0JaaiiOai aacckacaWGLbGaamOvaKqba+aadaWgaaqcbasaaKqzadWdbiaad2ga caWGHbGaamiEaiaacckaaSWdaeqaaKqzGeWdbiabg2da9iaaikdacq aHapaCcaWGTbGaam4yaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaa ikdaaaaaaa@53D5@    (31)

It is easy to calculate the corresponding minimal capacitance associated with the elementary electron transition. With q equal to the electron charge e this is [1]

C= C min = ( q V ) min = q min V max = e.e 2πm c 2 = e 2 2πm c 2 = 1 2 r e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGdbGaeyypa0Jaam4qaKqba+aadaWgaaqcbasaaKqzadWd biaad2gacaWGPbGaamOBaaWcpaqabaqcLbsapeGaeyypa0tcfa4aae WaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qacaWGXbaak8aabaqc LbsapeGaamOvaaaaaOGaayjkaiaawMcaaKqba+aadaWgaaqcbasaaK qzadWdbiaad2gacaWGPbGaamOBaaWcpaqabaqcLbsapeGaeyypa0tc fa4aaSaaaOWdaeaajugib8qacaWGXbqcfa4damaaBaaajeaibaqcLb mapeGaamyBaiaadMgacaWGUbaal8aabeaaaOqaaKqzGeWdbiaadAfa juaGpaWaaSbaaKqaGeaajugWa8qacaWGTbGaamyyaiaadIhaaSWdae qaaaaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadwga caGGUaGaamyzaaGcpaqaaKqzGeWdbiaaikdacqaHapaCcaWGTbGaam 4yaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaaKqzGeGa eyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGLbqcfa4damaaCaaale qajeaibaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaaIYaGaeqiW daNaamyBaiaadogajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYa aaaaaajugibiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGymaaGc paqaaKqzGeWdbiaaikdaaaGaamOCaKqba+aadaWgaaqcbasaaKqzad WdbiaadwgaaSWdaeqaaaaa@8033@    (32)

where re is the radius of the electron microparticle given in (18a).

Summary

The paper is analyzing the size of the magnetic monopole entering the Oersted–Ampere law of electrodynamics. With an application of the quantum character of the Joule–Lenz law obtained for the product of the intervals of energy ( ΔE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarcaWGfbaaaa@38CB@ ) and time (  Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcGaeuiLdqKaamiDaaaa@3A1D@ ), it is found that the magnetic monopole  becomes equal to a multiple of the magnetic flux characteristic for the first electron orbit in the hydrogen atom. Precisely the same kind of the magnetic flux is observed since a long time in superconductors.

The result for  can be approached also by applying the uncertainty principle to the intervals of energy and time specific for the Oersted–Ampere law.

Acknowledgements

None.

Conflicts of interest

Author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Olszewski. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.