Submit manuscript...
MOJ
eISSN: 2573-2919

Ecology & Environmental Sciences

Research Article Volume 6 Issue 2

Effects of merapi eruption on environmental and social conditions: case study in Pabelan River, Indonesia

Jazaul Ikhsan, Indrasweri NK

Civil Engineering, Universitas Muhammadiyah Yogyakarta, Indonesia

Correspondence: Jazaul Ikhsan, Civil Engineering, Universitas Muhammadiyah Yogyakarta, Brawijaya Street, Tamantirto, Kasihan, Yogyakarta, Indonesia 55183, Tel +62274387656, Fax +62274387646

Received: August 20, 2020 | Published: April 27, 2021

Citation: Ikhsan J, Indrasweri NK. Effects of merapi eruption on environmental and social conditions: case study in Pabelan River, Indonesia. MOJ Eco Environ Sci. 2021;6(2):54-59. DOI: 10.15406/mojes.2021.06.00214

Download PDF

Abstract

Debris flows triggered by Merapi eruption in 2010 have impacts on the environment and social condition along the rivers on the volcano, especially in Pabelan River. Material resulted from debris flows could change on morphology and porosity of riverbed surface material, as well as the capacity of sediment. Therefore, it is important to study the influence of Merapi eruption in 2010 on environmental and social conditions in Pabelan River. To determine the river morphology was used Ronsgen method. To calculate porosity of riverbed surface material was used the equation was proposed by Sulaiman. Einstein equation was used to calculate sediment transport. To investigate the social conditions, damage land and sand mining activity were used as parameters. The result has shown that morphology types at confluence Progo-Pabelan Rivers, Srowol Bridge, and Pabelan Bridge 1 were D5b, D5b and E5, respectively. Sedimentation has occurred in the segment between the confluence of Progo-Pabelan Rivers and Srowol Bridge. Erosion has taken place in the segment between Srowol Bridge and Pabelan Bridge 1. The riverbank collapses took place along the river and it gave a negative impact on social conditions. The sand mining activity was intensive, and the activity has a positive impact on the economical inhabitants.

Keywords: the 2010 Merapi eruption, environment, social condition, Pabelan River

Introduction

Pabelan River is located in the west side of Merapi, and one of the Progo river’s tributaries with a length of around 46 kilometers and it flows from Merapi Volcano to the south direction.1 It is very important for the local community's livelihood. Most of the villages are located in the river is very dependent on the natural resources of the river Pabelan. Pabelan River is one of the rivers that are passed by the debris flow from Merapi eruption. Damage due to debris flows has caused changes in the river morphology of Pabelan and the surrounding ecosystem. Material deposition of debris flow from the eruption of Merapi in 2010 change the morphology and porosity of the sediment at the bottom of the Pabelan River and sediment transport capacity. In addition, debris flow has also affected the social and economic conditions around the Pabelan River.

Therefore, it is important to study the influence of Merapi eruption in 2010 on environmental and social conditions in Pabelan River. The study aims to investigate the river environmental and social conditions in Pabelan River due to debris flows. The research was conducted in three locations, they are Pabelan Brigde (C), Srowol Brigde (B), and conjunction of Pabelan-Progo (A), as shown in Figure 1.

Figure 1 The research locations.

Literature review

River morphology

River morphology is related to the physical condition of the river geometry, the type, nature, and behavior of the river with all aspects of the changes in space and time dimensions, thus involving the dynamic nature of the river and its environment are interrelated with each other.2 In the determining of river morphology is needed geometry data, covering a wide river, depth, cross the river, the coordinates of the location and slope of the riverbed. According to Rosgen3 types of river morphology are shown in Figure 2.

Figure 2 Morphology types by Rosgen.3

The steps that used to determining river morphology according to the Rosgen,3 as follows:

Entrenchment ratio

Entrenchment Ratio is the relationship of the flood prone area width (Wfpa) and the ratio of the Bank full Surface Width (Wbkf). The way to measure in determining Entrenchment Ratio (ER) is:

ER= Flood Prone Area Width ( W fpa ) Bankfull Surface Width ( W bkf ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaadkfacqGH9aqpdaWcaaWdaeaapeGaaeOraiaabYgacaqG VbGaae4BaiaabsgacaqGGcGaaeiuaiaabkhacaqGVbGaaeOBaiaabw gacaqGGcGaaeyqaiaabkhacaqGLbGaaeyyaiaabckacaqGxbGaaeyA aiaabsgacaqG0bGaaeiAaiaabckadaqadaWdaeaapeGaam4va8aada WgaaWcbaWdbiaadAgacaWGWbGaamyyaaWdaeqaaaGcpeGaayjkaiaa wMcaaaWdaeaapeGaaeOqaiaabggacaqGUbGaae4AaiaabAgacaqG1b GaaeiBaiaabYgacaqGGcGaae4uaiaabwhacaqGYbGaaeOzaiaabgga caqGJbGaaeyzaiaabckacaqGxbGaaeyAaiaabsgacaqG0bGaaeiAai aabckadaqadaWdaeaapeGaam4va8aadaWgaaWcbaWdbiaadkgacaWG RbGaamOzaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaaa@70EF@ (1)

Width/depth ratio (W/D ratio)

Width width/Depth Ratio is the relation between the width of the river (Wbkf) and the depth ratio relation (dbkf). The formulation used is:

W/D Ratio=  W bkf d bkf  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaiaac+cacaWGebGaaiiOaiaadkfacaWGHbGaamiDaiaadMga caWGVbGaeyypa0JaaeiOamaalaaapaqaa8qacaWGxbWdamaaBaaale aapeGaamOyaiaadUgacaWGMbaapaqabaaakeaapeGaamiza8aadaWg aaWcbaWdbiaadkgacaWGRbGaamOzaiaacckaa8aabeaaaaaaaa@4AD6@ (2)

Furthermore, the calculated slope river and riverbed material “D50”. “D50” is diameter in 50 percent of population sediment sample that is observed to represent of sediment particle diameter in that location.

Sediment transport

Sediment transport is a material transport phenomenon in the watershed. The shape, size and weight of the material determine the massive of amount sediment transport. There are many formulas that can use to account scale of sediment transport; one of them is Einstein’s Formula.4 Einstein determines the sediment transport equation that links the base material/bed material and local flow. The equation describes equilibrium state of the granular based exchange between the base layer (layer bed) and its riverbed. Einstein use d35 as transport parameters, whereas for roughness use d65. In determining scale of sediment transport that use Einstein’s Formula, the necessary data are: flow rate (Q), the width of the channel/river (B), the slope of the river (S), gradation of grain size sieve analysis and viscosity of water/water viscosity (v). Steps to be able to calculate the sediment transport need to determine the grain size d35 and d65. Then the sediment transport can be calculated with the following steps.

Friction velocity due to grain roughness

u ˙ ' =  g.Rb.S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabiyDayaazaGaai4jaiaacckacqGH9aqpcaGGGcGaeyOgIyTaaiiO aiaahEgacaGGUaGaaCOuaiaahkgacaGGzaIaaiOlaiaahofaaaa@44B6@ (3)

Sub-viscous height

δ'= 11,6 . υ  u ˙ ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hTdiaa=DcacqGH9aqpdaWcaaWdaeaapeGaaGymaiaaigda caGGSaGaaGOnaiaa=bkacaGGUaGaa8hOaiabew8a1jaa=bkaa8aaba GabmyDayaazaGaai4jaaaaaaa@44E6@ (4)

ks δ' = d65 δ΄ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaahUgacaWHZbaapaqaa8qacaWH0oGaai4jaaaa cqGH9aqpdaWcaaWdaeaapeGaaCizaiaaiAdacaaI1aaapaqaaGqad8 qacaWF0oGaa8hHdaaaaaa@4164@ (5)

Δ =  d65  δ΄ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaaiiOaiabg2da9iaacckadaWcaaWdaeaapeGaamizaiaa iAdacaaI1aGaaiiOaaWdaeaapeGaeqiTdqMaamiHdaaaaaa@426E@ (6)

Average of discharge velocity

V = 5,75.  u ˙ '. log(12,27) Rb'.x ks MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaabccacqGH9aqpcaqGGaGaaGynaiaacYcacaaI3aGaaGyn aiaac6cacaqGGaGabeyDayaazaGaae4jaiaac6cacaqGGaGaamiBai aad+gacaWGNbWdaiaacIcapeGaaGymaiaaikdacaGGSaGaaGOmaiaa iEdapaGaaiyka8qadaWcaaWdaeaapeGaamOuaiaadkgacaGGNaGaai OlaiaadIhaa8aabaWdbiaadUgacaWGZbaaaaaa@500A@ (7)

Stream intensity

Ψ =  γsγ γ   d35 S.Rb' =1,65  d35 S.Rb' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdKLaaeiiaiabg2da9iaacckadaWcaaWdaeaapeGaeq4SdC2e fv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xc8Zj abgkHiTiabeo7aNbWdaeaapeGaeq4SdCgaaiaacckadaWcaaWdaeaa peGaamizaiaaiodacaaI1aaapaqaa8qacaWGtbGaaiOlaiaadkfaca WGIbGaai4jaaaacqGH9aqpcaaIXaGaaiilaiaaiAdacaaI1aGaaiiO amaalaaapaqaa8qacaWGKbGaaG4maiaaiwdaa8aabaWdbiaadofaca GGUaGaamOuaiaadkgacaGGNaaaaaaa@6213@ (8)

By using Einstein-Barbarosa diagram, it can be obtained the value U’/V that it can use to know U’.

Hydraulic diameter due to bed channel configuration

R b  =  ( U' )² gS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacaGGDaIaaeii aiabg2da9iaacckadaWcaaWdaeaapeWaaeWaa8aabaacbmWdbiaa=v facaWFNaaacaGLOaGaayzkaaGaaiOSaaWdaeaapeGaa83zaiaa=nfa aaaaaa@4360@ (9)

R b =  R b + R b   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacqGH9aqpcaqG GaGaamOua8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacaGGzaIaey 4kaSIaamOua8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacaGGDaIa aiiOaaaa@42F1@ (10)

Controlling by discharge calculation

Q = AV = (B h U΄) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiaabccacqGH9aqpcaqGGaGaamyqaiaadAfacaqGGaGaeyyp a0Jaaeiia8aacaGGOaWdbiaadkeacaqGGaGaamiAaiaabccacaWGvb GaamiHd8aacaGGPaaaaa@44A4@ (11)

Sediment discharge

( i b q b ) =  i b θ. γ s ( g d ) 3/2 () 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGPbWdamaaBaaaleaapeGaamOyaaWdaeqaaOWdbiaa dghapaWaaSbaaSqaa8qacaWGIbaapaqabaaakiaawIcacaGLPaaada WgaaWcbaaabeaak8qacqGH9aqpcaqGGaGaamyAa8aadaWgaaWcbaWd biaadkgaa8aabeaak8qacqaH4oqCcaGGUaGaeq4SdC2damaaBaaale aapeGaam4CaaWdaeqaaOWaaeWaaeaapeGaam4zaiaabccacaWGKbaa paGaayjkaiaawMcaamaaCaaaleqabaWdbiaaiodacaGGVaGaaGOmaa aak8aacaGGOaGaaiykamaaCaaaleqabaWdbiaaigdacaGGVaGaaGOm aaaaaaa@5146@ (12)

Qsed = i b q b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavacabeWcbe qaaiaaygW7a0qaaabaaaaaaaaapeGaeyyeIuoaaOGaamyAa8aadaWg aaWcbaWdbiaadkgaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaam OyaaWdaeqaaaaa@3F3D@ (13)

Porosity of riverbed material

According to Sulaiman,5 to calculate a value of riverbed sediment porosity is done with the following steps. First, the bed material on each point representing top, middle and bottom material is sieved to obtain grain size distribution. Furthermore, a type of sediment distribution is determined based on the value of γ and β parameters, which is calculated by the following equations:

γ= log  d max log d 50 log d max log d min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaSaaa8aabaWdbiaadYgacaWGVbGaam4zaiaa cckacaWGKbWdamaaBaaaleaapeGaamyBaiaadggacaWG4baapaqaba GcpeGaeyOeI0IaciiBaiaac+gacaGGNbGaamiza8aadaWgaaWcbaWd biaaiwdacaaIWaaapaqabaaakeaapeGaamiBaiaad+gacaWGNbGaam iza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaiabgkHiTaWdaeqa aOWdbiGacYgacaGGVbGaai4zaiaadsgapaWaaSbaaSqaa8qacaWGTb GaamyAaiaad6gaa8aabeaaaaaaaa@579B@ (14)

β= log d max log d peak log d max log d min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0ZaaSaaa8aabaWdbiGacYgacaGGVbGaai4zaiaa dsgapaWaaSbaaSqaa8qacaWGTbGaamyyaiaadIhaa8aabeaak8qacq GHsislciGGSbGaai4BaiaacEgacaWGKbWdamaaBaaaleaapeGaamiC aiaadwgacaWGHbGaam4AaaWdaeqaaaGcbaWdbiGacYgacaGGVbGaai 4zaiaadsgapaWaaSbaaSqaa8qacaWGTbGaamyyaiaadIhaa8aabeaa k8qacqGHsislciGGSbGaai4BaiaacEgacaWGKbWdamaaBaaaleaape GaamyBaiaadMgacaWGUbaapaqabaaaaaaa@58AB@ (15)

Once the values of γ and β are known, the type of grain size distribution can be found using the diagram proposed by Sulaiman,5 as shown in Figure 3. Furthermore, the porosity values can be calculated with the following equation:

Figure 3 Diagram to determine type of grain size distribution.5

Lognormal distribution

σ 1  2 = j=1 N ( In d j  Ind )² P sj MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaaGymaiaacckaa8aabeaakmaaCaaa leqabaGaaGOmaaaak8qadaGfWbqabSWdaeaapeGaamOAaiabg2da9i aaigdaa8aabaWdbiaad6eaa0WdaeaapeGaeyypa0JaeyyeIuoaaOWa aeWaa8aabaWdbiaadMeacaWGUbGaamiza8aadaWgaaWcbaWdbiaadQ gacaGGGcaapaqabaGcpeGaeyOeI0Iaamysaiaad6gacaWGKbaacaGL OaGaayzkaaGaaiOSaiaadcfapaWaaSbaaSqaa8qacaWGZbGaamOAaa Wdaeqaaaaa@522E@ (16)

Where:

γ = 0.1561, if 1.5<σ           MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaaeiiaiabg2da9iaabccacaaIWaGaaiOlaiaaigdacaaI 1aGaaGOnaiaaigdacaGGSaGaaeiiaiaadMgacaWGMbGaaeiiaiaaig dacaGGUaGaaGynaiabgYda8iabeo8aZjaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaaaa@53AC@

γ=( 0.0465σ )+( 0.2258 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaeWaa8aabaWdbiaaicdacaGGUaGaaGimaiaa isdacaaI2aGaaGynaiabeo8aZbGaayjkaiaawMcaaiabgUcaRmaabm aapaqaa8qacaaIWaGaaiOlaiaaikdacaaIYaGaaGynaiaaiIdaaiaa wIcacaGLPaaacaGGGcGaaiilaaaa@4A6D@ , if 1.25<σ<1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadAgacaqGGaGaaGymaiaac6cacaaIYaGaaGynaiabgYda 8iabeo8aZjabgYda8iaaigdacaGGUaGaaGynaaaa@4289@

γ=( 0.141σ )+( 0.3445 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaeWaa8aabaWdbiabgkHiTiaaicdacaGGUaGa aGymaiaaisdacaaIXaGaeq4WdmhacaGLOaGaayzkaaGaey4kaSYaae Waa8aabaWdbiaaicdacaGGUaGaaG4maiaaisdacaaI0aGaaGynaaGa ayjkaiaawMcaaiaacYcaaaa@4972@ if 1.0<σ<1.25  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaIWaGaeyipaWJaeq4WdmNaeyipaWJaaGymaiaa c6cacaaIYaGaaGynaiaacckaaaa@412C@

γ=( 0.105σ )+( 0.3088 )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaeWaa8aabaWdbiabgkHiTiaaicdacaGGUaGa aGymaiaaicdacaaI1aGaeq4WdmhacaGLOaGaayzkaaGaey4kaSYaae Waa8aabaWdbiaaicdacaGGUaGaaG4maiaaicdacaaI4aGaaGioaaGa ayjkaiaawMcaaiaacckaaaa@49E9@ , if 0.75<σ<1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiaac6cacaaI3aGaaGynaiabgYda8iabeo8aZjabgYda8iaa igdacaGGUaGaaGimaaaa@400C@

γ=( 0.1871σ )+( 0.3698 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaeWaa8aabaWdbiabgkHiTiaaicdacaGGUaGa aGymaiaaiIdacaaI3aGaaGymaiabeo8aZbGaayjkaiaawMcaaiabgU caRmaabmaapaqaa8qacaaIWaGaaiOlaiaaiodacaaI2aGaaGyoaiaa iIdaaiaawIcacaGLPaaaaaa@4991@ , if 0.5<σ<0.75 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiaac6cacaaI1aGaeyipaWJaeq4WdmNaeyipaWJaaGimaiaa c6cacaaI3aGaaGynaaaa@4010@

M Tallbot distribution

n T ( x% )= In( f( D x% ) ) In( log D x% log D min log D max log D min ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGubaabeaakmaabmaabaGaamiEaiaacwcaaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiaadMeacaWGUbWaaeWaaeaacaWGMbWaae WaaeaacaWGebWaaSbaaSqaaiaadIhacaGGLaaabeaaaOGaayjkaiaa wMcaaaGaayjkaiaawMcaaaqaaiaadMeacaWGUbWaaeWaaeaadaWcaa qaaiGacYgacaGGVbGaai4zaiaadseadaWgaaWcbaGaamiEaiaacwca aeqaaOGaeyOeI0IaciiBaiaac+gacaGGNbGaamiramaaBaaaleaaci GGTbGaaiyAaiaac6gaaeqaaaGcbaGaciiBaiaac+gacaGGNbGaamir amaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaeyOeI0IaciiBai aac+gacaGGNbGaamiramaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqa aaaaaOGaayjkaiaawMcaaaaaaaa@64D0@ (17)

n T = n T ( 16% )+ n T ( 25% )+( 50% )+ n T ( 75% )+ n T ( 85% ) 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGubaabeaakiabg2da9maalaaabaGaamOBamaaBaaaleaa caWGubaabeaakmaabmaabaGaaGymaiaaiAdacaGGLaaacaGLOaGaay zkaaGaey4kaSIaamOBamaaBaaaleaacaWGubaabeaakmaabmaabaGa aGOmaiaaiwdacaGGLaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaaca aI1aGaaGimaiaacwcaaiaawIcacaGLPaaacqGHRaWkcaWGUbWaaSba aSqaaiaadsfaaeqaaOWaaeWaaeaacaaI3aGaaGynaiaacwcaaiaawI cacaGLPaaacqGHRaWkcaWGUbWaaSbaaSqaaiaadsfaaeqaaOWaaeWa aeaacaaI4aGaaGynaiaacwcaaiaawIcacaGLPaaaaeaacaaI1aaaaa aa@5969@

100  d maks / d min , γ = 0,0125  n T + 0,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdacaaIWaGaeyizImQaaeiiaiaadsgapaWaaSbaaSqa a8qacaWGTbGaamyyaiaadUgacaWGZbaapaqabaGcpeGaai4laiaads gapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aabeaak8qacaGG SaGaaeiiaiabeo7aNjaabccacqGH9aqpcaqGGaGaaGimaiaacYcaca aIWaGaaGymaiaaikdacaaI1aGaaeiiaiaad6gapaWaaSbaaSqaa8qa caWGubaapaqabaGcpeGaey4kaSIaaeiiaiaaicdacaGGSaGaaG4maa aa@55E4@

d maks / d min  1000, γ =0,0125 n T + 0,15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad2gacaWGHbGaam4Aaiaadohaa8aa beaak8qacaGGVaGaamiza8aadaWgaaWcbaWdbiaad2gacaWGPbGaam OBaaWdaeqaaOWdbiabgwMiZkaabccacaaIXaGaaGimaiaaicdacaaI WaGaaiilaiaabccacqaHZoWzcaqGGaGaeyypa0JaaGimaiaacYcaca aIWaGaaGymaiaaikdacaaI1aGaamOBa8aadaWgaaWcbaWdbiaadsfa a8aabeaak8qacqGHRaWkcaqGGaGaaGimaiaacYcacaaIXaGaaGynaa aa@5626@

Socio-economical aspects

Socio-economical parameters used in this study are infrastructure damage and sand mining activities. Debris flows will give negative impacts on social conditions as well as positive impacts. The negative impacts that often occurred are river bank collapse due to erosion along the river. Damage in a river bank, it will cause the social problem, such as the loss of agricultural land, houses damaged and others. Nevertheless, debris flows also brought positive impacts, such as the material could be used as resources, so that mining activities can improve inhabitant economy.

Research methods

Stages of the study to determine the debris flow effect post eruption of Merapi in 2010 on Pabelan River, especially the environmental and social conditions are as follows:

Data collection

The data collected is primary and secondary data. The primary data consists of a cross-section and dimensions, river slope, sediment samples, sand mining activities and river bank collapses. Secondary data includes topographic maps and social economic data.

Laboratory test

Laboratory testing is used to determine the grain size gradation of the riverbed material sample.

Data analysis

Based on the data from the field survey and the laboratory test, river morphology, porosity and sediment transport were analyzed. In addition, also land degradation/river bank collapse and sand mining activities were analyzed.

Discussion and conclusion

Based on the analysis data, then discussion of the results and conclusion were carried out. The parameters used to determine effects of debris flow due to the eruption of Merapi in 2010 on environmental conditions is river morphology, porosity of riverbed sediment and sediment transport. River morphology determination method used,3 sediment porosity using the formula of5 and to determine the amount of sediment transport with Einstein's formula. The parameters used to determine social conditions are inhabitant evacuated, infrastructure damage and sand mining activities. The location of the study were conducted in three locations Pabelan River, namely at the conjunction between Pabelan and Progo Rivers, Srowol Bridge, and Pabelan Bridge. The detail of locations is shown in Table 1. Figures 4–6 describes the situation in the research locations.

No

Location

Elevation (m)

Coordinate

1

Conjunction of Pabelan-Progo (A)

234

S 07°37’29,2”

E 110°14’21,6”

2

Srowol Bridge (B)

255

S 07°36’34,4”

E 110°14’13,2”

3

Pabelan Bridge (C)

325

S 07°34’41,5”

E 110°15’45,9”

Table 1 Research locations

Figure 4 River condition at Conjunction of Pabelan and Progo Rivers.

Figure 5 River condition at Srowol Bridge.

Figure 6 River condition at Pabelan Bridge.

Result and discussion

River morphology

Based on Rosgen3 method, morphology types of rivers are shown in Table 2. It can be seen from Table 2 that the morphology type in Pabelan River generally is D5. It indicates that flow in the tributaries is multi flow. Only at Pabelan Bridge, the river morphology is E5, which means single flow. Riverbed material in Pabelan River is sand, and its mean diameter varies between 0.5mm to 0.88mm.

Porosity of sediment

Location

ER types

W/R types

Slope (%)

d50 (mm)

Type

Pabelan-Progo Conjunction 1

11.953

12.333

0.56

0.88

D5

 

C,D,E

B,C,F

     

Pabelan-Progo Conjunction 2

9.938

5.817

0.56

0.88

D5

 

C,D,E

A,E,G

     

Srowol Bridge 1

16.134

12.526

0.748

0.5

D5

 

C,D,E

B,C,F

     

Srowol Bridge 2

25.772

9.313

0.748

0.5

D5

 

C,D,E

A,E,G

     

Srowol Bridge 3

7.266

45.957

0.748

0.5

D5

 

C,D,E

D

     

Pabelan Bridge

13.3

7.804

0.445

0.6

E5

 

C,D,E

A,E,G

 

 

 

Table 2 Morphplogy type of river

Based on the results, the value of γ and β parameters are shown in Table 3. Table 3 shows that for Pabelan River, a type of grain size in the upstream area is Talbot with a porosity of 0.29. In the downstream area of Pabelan River, type grain size is log normal with a porosity value of 0.15.

Location

γ

β

Type

λ

Pabelan-progo conjunction 1

0.558

0.563

LN

0.15

Pabelan-progo conjunction 2

0.558

0.563

LN

0.15

Srowol bridge 1

0.432

0.099

T

0.29

Srowol bridge 2

0.432

0.099

T

0.29

Srowol bridge 3

0.432

0.099

T

0.29

Pabelan bridge

0.476

0.099

T

0.29

Table 3 Grain size type and porosity

Sediment transport

Based on calculations using Einstein formula, sediment transport for each location in Pabelan River is shown in Table 4. Sediment transport the location in Pabelan River shows the same relative value. This indicates that there is no erosion or deposition. Material transported in the River Pabelan, generally derives from Mount Merapi.

Location

Q (m3/s)

Qsed (ton/day)

Pabelan-progo conjunction 1

4.094

3.213

Pabelan-progo conjunction 2

1.798

0.665

Srowol bridge 1

2.614

2.648

Srowol bridge 2

1.791

1.741

Srowol bridge 3

2.339

0.988

Pabelan bridge

5.429

4.171

Table 4 Sediment transport

Socio-economic aspects

Land degradation and sand mining activity are used as social parameter for assessing Merapi eruption effect in Pabelan river area. According to the resulting survey at the location, land degradation almost occurred in every observation point. It bothering some of land settlement and local farming activity. Some local settlements were buried by containing cold volcanic mudflow materials. Riverbank erosion occurred at those sites that make the settlement and local farming damage, as shown in Figure 7. In addition to giving the negative impact, debris flow also provides benefits to the potential of the material for sand mining. Based on the survey, in almost all the locations, there are sand mining activities, with a small to medium scale. The intensity of sand mining has tendency greater if compared with before the eruption of 2010. Figure 8 shows a sand mining activity at Srowol Bridge in Pabelan River.

Figure 7 Riverbank collapse at the conjunction between Pabelan-Progo River.

Figure 8 A sand mining at Srowol Bridge in Pabelan River.

Conclusion

According to the research, environment and social changes occurred at Pabelan river after Merapi eruption 2010. Sediment transport at Pabelan bridge showing the smallest value than the other observation point. The surface of the riverbed material value tendency becomes smaller at the downstream. The surface of the riverbed material at the upstream area has harder tendency compare with the downstream area. Land damage occurred at three observation points caused by sediment eruption.

Nomenclature

Wfpa             = flood-prone area width

Wbkf               = bank full surface width

Wbkf          = bank full surface width

dbkf                 = bank full mean depth

D50                = diameter in 50 percent of population sediment sample

ự              = friction velocity due to grain roughness

g              = gravity

Rb’         = hydraulic diameter due to grain roughness

S              = bed channel slope

δ'             = sub-viscous layer height

v              = viscosity

ks            = grain size diameter

Δ             = bed channel roughness

V             = mean velocity

Ψ             = stream intensity

d              = grain size diameter

γs            = specific gravity of water

γ              = specific gravity of sediment

Rb”         = hydraulic diameter of bed channel configuration

Q             = discharge

A             = cross section area of river/channel

V             = velocity

B             = channel/river width

h              = water depth

(ibqb)     = sediment discharge of each fraction

ib             = percentage of material in population

θ              = slope value at Einstein diagram

γ and β = geometrical parameter

dmax         = maximum diameter

dmin          = minimum diameter

dpeak        = peak diameter

σ              = deviation standard

d              = grain size diameter

j               = grain size class

psj           = proportion of class j

γ              = porosity

f(D)         = cumulative percentage of grain size

nT            = Talbot number

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare there are no conflicts of interest.

References

  1. Winditiatama S. Characteristics of downstream area of Pabelan River Post Merapi Eruption in 2010. Thesis, Diploma Program of Civil Engineering Department, Yogyakarta: Gadjah Mada University; 2011.
  2. Infrastructure in River. 2012.
  3. Rosgen D. Applied river morphology, widland hydrology. Colorado: Pagosa Springs; 1996.
  4. Kironoto BA. Sediment transport hydraulics. Civil Engineering Department, Graduate School Program, Yogyakarta: Gadjah Mada University; 1997.
  5. Sulaiman M. Study on porosity of sediment mixtures and a Bed-porosity Variation model. PhD dissertation, Civil and Earth Resources Engineering Department, Kyoto: Kyoto University; 2008.
Creative Commons Attribution License

©2021 Ikhsan, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.