Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Opinion Volume 3 Issue 3

Unified learning rules based on different cost functions

Harold Szu,1 Patrick Ho,2 Yichen Sun3

1Dept. of Biomedical Engineering, Catholic University of America, USA
2Parian LLC, Saratoga, USA
3Netflix Corporation, Los Gatos, USA

Correspondence: Department of Biomedical Engineering, The Catholic University, Wash DC, USA

Received: May 07, 2019 | Published: May 9, 2019

Citation: Szu HH, Ho P, Sun Y. Unified learning rules based on different cost functions. MOJ App Bio Biomech. 2019;3(3):45-47. DOI: 10.15406/mojabb.2019.03.00102

Download PDF

Abstract

There have been multiple waves of Artificial Intelligence (AI) research. The first wave was 6 decades ago, when Alan Turing posed the question: “Can machines think?” in his seminal 1950 paper.1 He ushered in the quest for Artificial Intelligence (AI). This quest followed many paths, with Prof. Frank Rosenblatt proposing and developing a single-layer Artificial Neural Net called a “Perceptron” that can now be found in the Smithsonian museum in Washington DC; unfortunately he passed away too early to further advance the work. In response to the perceptron, MIT Prof. Marvin Minsky proposed following a rule based system for computers following “If …, Then…” which set the direction for funding and progress in Artificial Intelligence.2 The 2nd Wave began in March 2017 when Google’s AlphaGo Brain beat Korean genius Lee Sedol in Go by 4-1. AlphaGo used supervised deep learning with labeled training data. Dr. Harold Szu and his collaborators have systematically developed a learning system since 2017 that emulates three intelligences found in the brain- logical IQ, emotional IQ, and Claustrum IQ (cf. Compilation Book from Open Journal by “MedCrave Bionics & Biomechanics”). The following is a new contribution to answer common important questions from the two accompanied authors about what is the essential difference between Artificial Neural Networks using supervised learning via Least Mean Squares and unsupervised learning via Minimum Free Energy. The quick answer: no difference; but the devil, if any, is in the details.

Introduction

We believe that the machine learning ability of the n-th waves of Artificial Intelligence (AI) will eventually approach the Darwinian animal survival level of Natural Intelligence (NI), as n>4.We observe animals satisfying the sufficient conditions of “having homeostatic brains at constant temperature regardless of the external environment, and equipped with the power of paired sensors” shall exhibit NI at the survival level. For example, Homo sapiens have 5 pairs of sensors: two eyes, two ears, two nostrils, two sides of tongues, two sensing hands. We believe that this an adaptive trait for fast pre-processing for survival, i.e., “when the sensors agree, there is a signal; when the sensors disagree, it is noise” In this short communication, we shall show that NI follows a minimum free energy cost function for learning rule derived from thermodynamics, rather than the classical least means square (LMS) cost function derived from statistics that has previously organized many machine learning systems. The performance cost function will be the essential difference. We begin with the following summary theorem:

Theorem of minimum free energy for natural intelligence

Unsupervised learning based on Minimum Free Energy may be derived from the first two laws of thermodynamics. The second law defines the change of heat energy to be proportional to the change of Boltzmann entropy  and the proportional constant is the Kelvin absolute temperature.

ΔQ= T 0 ΔS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq KaamyuaiaaykW7cqGH9aqpcaaMc8UaamivaOWaaSbaaSqaaKqzadGa aGimaaWcbeaajugibiaaykW7cqqHuoarcaWGtbaaaa@454F@    (1)

Then we can begin with the definition of entropy of Ludwig Boltzmann (as formulated by Max Planck)3

S tot k B  Log  W tot     MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGtbGcpaWaaSbaaSqaaKqzadWdbiaadshacaWGVbGaamiD aaWcpaqabaqcLbsapeGaeyyyIORaam4AaOWdamaaBaaaleaajugWa8 qacaWGcbGaaiiOaaWcpaqabaqcLbsapeGaamitaiaad+gacaWGNbGa aiiOaiaadEfak8aadaWgaaWcbaqcLbmapeGaamiDaiaad+gacaWG0b GaaiiOaiaacckacaGGGcGaaiiOaaWcpaqabaaaaa@525C@    (2)

W tot =exp( S tot k B  )=exp( S tot T ° k B  T ° )=exp( ( S res + S brain ) T ° k B  T ° )exp( H brain k B  T ° ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGxbGcpaWaaSbaaSqaaKqzadWdbiaadshacaWGVbGaamiD aaWcpaqabaqcLbsapeGaeyypa0JaciyzaiaacIhacaGGWbGcdaqada WdaeaapeWaaSaaa8aabaqcLbsapeGaam4uaOWdamaaBaaaleaajugW a8qacaWG0bGaam4BaiaadshaaSWdaeqaaaGcbaqcLbsapeGaam4AaO WdamaaBaaaleaajugWa8qacaWGcbGaaiiOaaWcpaqabaaaaaGcpeGa ayjkaiaawMcaaKqzGeGaeyypa0JaciyzaiaacIhacaGGWbGcdaqada WdaeaapeWaaSaaa8aabaqcLbsapeGaam4uaOWdamaaBaaaleaajugW a8qacaWG0bGaam4BaiaadshaaSWdaeqaaKqzGeWdbiaadsfak8aada WgaaWcbaqcLbmapeGaeyiSaalal8aabeaaaOqaaKqzGeWdbiaadUga k8aadaWgaaWcbaqcLbmapeGaamOqaiaacckaaSWdaeqaaKqzGeWdbi aadsfak8aadaWgaaWcbaqcLbmapeGaeyiSaalal8aabeaaaaaak8qa caGLOaGaayzkaaqcLbsacqGH9aqpciGGLbGaaiiEaiaacchakmaabm aapaqaa8qadaWcaaWdaeaapeWaaeWaa8aabaqcLbsapeGaam4uaOWd amaaBaaaleaajugWa8qacaWGYbGaamyzaiaadohaaSWdaeqaaKqzGe WdbiabgUcaRiaadofak8aadaWgaaWcbaqcLbmapeGaamOyaiaadkha caWGHbGaamyAaiaad6gaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGe GaamivaOWdamaaBaaaleaajugib8qacqGHWcaSaSWdaeqaaaGcbaqc LbsapeGaam4AaOWdamaaBaaaleaajugWa8qacaWGcbGaaiiOaaWcpa qabaqcLbsapeGaamivaOWdamaaBaaaleaajugWa8qacqGHWcaSaSWd aeqaaaaaaOWdbiaawIcacaGLPaaajugibiabggMi6kaabwgacaqG4b GaaeiCaOWaaeWaa8aabaqcLbsapeGaeyOeI0IcdaWcaaWdaeaajugi b8qacaWGibGcpaWaaSbaaSqaaKqzadWdbiaadkgacaWGYbGaamyyai aadMgacaWGUbaal8aabeaaaOqaaKqzGeWdbiaadUgak8aadaWgaaWc baqcLbmapeGaamOqaiaacckaaSWdaeqaaKqzGeWdbiaadsfak8aada WgaaWcbaqcLbmapeGaeyiSaalal8aabeaaaaaak8qacaGLOaGaayzk aaaaaa@A9A3@    (3)

We define  as free energy of the brain, or the useful energy of the brain, total energy less thermal energy.

H brain E brain T 0 S brain MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGibGcpaWaaSbaaKqbagaajugWa8qacaWGIbGaamOCaiaa dggacaWGPbGaamOBaaqcfa4daeqaaKqzGeWdbiabggMi6kaadweak8 aadaWgaaqcfayaaKqzadWdbiaadkgacaWGYbGaamyyaiaadMgacaWG UbaajuaGpaqabaqcLbsapeGaeyOeI0IaamivaOWaaSbaaSqaaiaaic daaeqaaKqzGeGaam4uaOWdamaaBaaajuaGbaqcLbmapeGaamOyaiaa dkhacaWGHbGaamyAaiaad6gaaKqba+aabeaaaaa@5651@    (4)

Derivation

  1. From the first law of thermodynamics, conservation of energy between the environmental thermal reservoir heat energy kept at the temperature  and brain internal energy Thus, when we integrate and drop the constant, we have T 0 S res = E brain MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaKqbagaajugWaiaaicdaaKqbagqaaKqzGeGaaGPaVlaadofa kmaaBaaajuaGbaqcLbmacaWGYbGaamyzaiaadohaaKqbagqaaKqzGe GaaGPaVlabg2da9iaaykW7cqGHsislcaaMc8UaamyraOWaaSbaaKqb agaajugWaiaadkgacaWGYbGaamyyaiaadMgacaWGUbaajuaGbeaaaa a@52ED@
  2. We have arrived at exp( ( S res + S brain ) T 0 K B T 0 )=exp( ( E brain T 0 S brain ) K B T 0 )=exp( H brain K B T 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaciyzai aacIhacaGGWbGcdaqadaqcfayaaOWaaSaaaKqbagaakmaabmaajuaG baqcLbsacaWGtbGcdaWgaaqcfayaaKqzadGaamOCaiaadwgacaWGZb aajuaGbeaajugibiabgUcaRiaaykW7caWGtbGcdaWgaaqcfayaaKqz adGaamOyaiaadkhacaWGHbGaamyAaiaad6gaaKqbagqaaaGaayjkai aawMcaaKqzGeGaaGPaVlaadsfakmaaBaaajuaGbaqcLbmacaaIWaaa juaGbeaaaeaajugibiaadUeakmaaBaaajuaGbaqcLbmacaWGcbaaju aGbeaajugibiaadsfakmaaBaaajuaGbaqcLbmacaaIWaaajuaGbeaa aaaacaGLOaGaayzkaaqcLbsacaaMc8Uaeyypa0JaaGPaVlGacwgaca GG4bGaaiiCaOWaaeWaaKqbagaajugibiabgkHiTOWaaSaaaKqbagaa kmaabmaajuaGbaqcLbsacaWGfbGcdaWgaaqcfayaaKqzadGaamOyai aadkhacaWGHbGaamyAaiaad6gaaKqbagqaaKqzGeGaeyOeI0Iaamiv aOWaaSbaaKqbagaajugWaiaaicdaaKqbagqaaKqzGeGaaGPaVlaado fakmaaBaaajuaGbaqcLbmacaWGIbGaamOCaiaadggacaWGPbGaamOB aaqcfayabaaacaGLOaGaayzkaaqcLbsacaaMc8oajuaGbaqcLbsaca WGlbGcdaWgaaqcfayaaKqzadGaamOqaaqcfayabaqcLbsacaWGubGc daWgaaqcfayaaKqzadGaaGimaaqcfayabaaaaaGaayjkaiaawMcaaK qzGeGaaGPaVlaaykW7cqGH9aqpcaaMc8UaciyzaiaacIhacaGGWbGc daqadaqcfayaaKqzGeGaeyOeI0IcdaWcaaqcfayaaKqzGeGaamisaO WaaSbaaKqbagaajugWaiaadkgacaWGYbGaamyyaiaadMgacaWGUbaa juaGbeaaaeaajugibiaadUeakmaaBaaajuaGbaqcLbmacaWGcbaaju aGbeaajugibiaadsfakmaaBaaajuaGbaqcLbmacaaIWaaajuaGbeaa aaaacaGLOaGaayzkaaaaaa@B121@

Where H brain E brain T 0 S brain MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamisaO WaaSbaaSqaaKqzadGaamOyaiaadkhacaWGHbGaamyAaiaad6gaaSqa baqcLbsacaaMc8UaeyyyIORaaGPaVlaadweakmaaBaaaleaajugWai aadkgacaWGYbGaamyyaiaadMgacaWGUbaaleqaaKqzGeGaaGPaVlab gkHiTiaaykW7caWGubGcdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGe Gaam4uaOWaaSbaaSqaaKqzadGaamOyaiaadkhacaWGHbGaamyAaiaa d6gaaSqabaaaaa@59D9@

Now we must move to the anatomy of brain neural physiology. Our brains have approximately 10 billion neurons which have sigmoid-threshold output firing rates (While the sigmoid is linear near the threshold, it becomes nonlinear saturating away from the threshold). Neurons are represented by the following model (Figure 1):

Figure 1

y i =σ( D i ); D i j [ W i,j ] x j [ W i,α ] x α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG5bGcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabg2da9iabeo8aZPWaaeWaa8aabaqcLbsapeGaamiraOWdam aaBaaaleaajugWa8qacaWGPbaal8aabeaaaOWdbiaawIcacaGLPaaa jugibiaacUdacaWGebGcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdae qaaKqzGeWdbiabggMi6kabggHiLRWaaSbaaSqaaiaadQgaaeqaaOWa amWaa8aabaqcLbsapeGaam4vaOWdamaaBaaaleaajugWa8qacaWGPb GaaiilaiaadQgaaSWdaeqaaaGcpeGaay5waiaaw2faaKqzGeGaamiE aOWdamaaBaaaleaajugWa8qacaWGQbaal8aabeaajugib8qacqGHHj IUkmaadmaapaqaaKqzGeWdbiaadEfak8aadaWgaaWcbaqcLbmapeGa amyAaiaacYcacqaHXoqyaSWdaeqaaaGcpeGaay5waiaaw2faaKqzGe GaamiEaOWdamaaBaaaleaajugWa8qacqaHXoqyaSWdaeqaaaaa@69BD@    (5)

and 100 billion of neuroglial cells working in the g-lymph system in our brains. Our unsupervised learning rule requires their symbiotic collaboration as follows (Figure 2): We shall mathematically introduce the A.M. Lyapunov control theory of monotonic convergence4,5 as a constraint to our model of brain free energy.

Figure 2

Appendix A: Derivation of Sigmoid Logic

Two neuronal input/output (I/O) states must be normalization with a norm that turns out to be the sigmoid logic. This is consistently obtained from the canonical probability of usable brain energy as follows:

Input norm = exp( β H brain input ) exp( β H brain input )+exp( β H brain output ) = 1 1+exp( β( H brain output H brain input )) σ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaqcLbsapeGaamysaiaad6gacaWGWbGaamyDaiaadsha aOWdaeaajugib8qacaWGUbGaam4BaiaadkhacaWGTbaaaiabg2da9O WaaSaaa8aabaqcLbsapeGaaeyzaiaabIhacaqGWbGcdaqadaWdaeaa jugib8qacqGHsislcqaHYoGycaWGibWcpaWaa0baaeaajugWa8qaca WGIbGaamOCaiaadggacaWGPbGaamOBaaWcpaqaaKqzadWdbiaadMga caWGUbGaamiCaiaadwhacaWG0baaaaGccaGLOaGaayzkaaaapaqaaK qzGeWdbiGacwgacaGG4bGaaiiCaOWaaeWaa8aabaqcLbsapeGaeyOe I0IaeqOSdiMaamisaSWdamaaDaaabaqcLbmapeGaamOyaiaadkhaca WGHbGaamyAaiaad6gaaSWdaeaajugWa8qacaWGPbGaamOBaiaadcha caWG1bGaamiDaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaeyzai aabIhacaqGWbGcdaqadaWdaeaajugib8qacqGHsislcqaHYoGycaWG ibWcpaWaa0baaeaajugWa8qacaWGIbGaamOCaiaadggacaWGPbGaam OBaaWcpaqaaKqzadWdbiaad+gacaWG1bGaamiDaiaadchacaWG1bGa amiDaaaaaOGaayjkaiaawMcaaaaajugibiabg2da9OWaaSaaa8aaba qcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaigdacqGHRaWkcaqGLbGa aeiEaiaabchakmaabmaapaqaaKqzGeWdbiabgkHiTiabek7aIjaacI cacaWGibWcpaWaa0baaeaajugWa8qacaWGIbGaamOCaiaadggacaWG PbGaamOBaaWcpaqaaKqzadWdbiaad+gacaWG1bGaamiDaiaadchaca WG1bGaamiDaaaajugibiabgkHiTiaadIeal8aadaqhaaqaaKqzadWd biaadkgacaWGYbGaamyyaiaadMgacaWGUbaal8aabaqcLbmapeGaam yAaiaad6gacaWGWbGaamyDaiaadshaaaaakiaawIcacaGLPaaajugi biaacMcaaaGaeyyyIORaeq4WdmNcdaqadaWdaeaajugib8qacaWG4b aakiaawIcacaGLPaaaaaa@B6BE@

Where H brain I/O E brain I/O S T o ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGibWcpaWaa0baaKqbagaajugWa8qacaWGIbGaamOCaiaa dggacaWGPbGaamOBaaqcfa4daeaajugWa8qacaWGjbGaai4laiaad+ eaaaqcLbsacqGHHjIUcaWGfbWcpaWaa0baaKqbagaajugWa8qacaWG IbGaamOCaiaadggacaWGPbGaamOBaaqcfa4daeaajugWa8qacaWGjb Gaai4laiaad+eaaaqcLbsacqGHsislcaWGtbGaamivaSWdamaaBaaa juaGbaqcLbmapeGaam4Baaqcfa4daeqaaKqzGeWdbiaacUdaaaa@598A@ ; β 1 k B T o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGycqGHHjIUkmaalaaapaqaaKqzGeWdbiaaigdaaOWd aeaajugib8qacaWGRbGcpaWaaSbaaSqaaKqzadWdbiaadkeaaSWdae qaaKqzGeWdbiaadsfak8aadaWgaaWcbaqcLbmapeGaam4BaaWcpaqa baaaaaaa@44C0@ ;

for 27 o C+ 273 o K= 300 o K= 1 40 eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIYaGaaG4naSWdamaaCaaabeqaaKqzadWdbiaad+gaaaqc LbsacaWGdbGaey4kaSIaaGOmaiaaiEdacaaIZaWcpaWaaWbaaeqaba qcLbmapeGaam4BaaaajugibiaadUeacqGH9aqpcaaIZaGaaGimaiaa icdal8aadaahaaqabeaajugWa8qacaWGVbaaaKqzGeGaam4saiabg2 da9OWaaSaaa8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaisda caaIWaaaaiaadwgacaWGwbaaaa@516A@

Let’s consider “calcium ions” used in the communication vehicles among neurons (repuling one another like “ducks” walking & quacking across the axon road (but ushered in a line-up (by ten times more and ten times smaller house cleaning) neuralgia cells))

y=σ( x )= 1 1+exp( x ) φ( x )= φ φ = dlogφ( x ) dx Calcium ions MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG5bGaeyypa0Jaeq4WdmNcdaqadaWdaeaajugib8qacaWG 4baakiaawIcacaGLPaaajugibiabg2da9OWaaSaaa8aabaqcLbsape GaaGymaaGcpaqaaKqzGeWdbiaaigdacqGHRaWkcaqGLbGaaeiEaiaa bchakmaabmaapaqaaKqzGeWdbiabgkHiTiaadIhaaOGaayjkaiaawM caaaaajugibiabggMi6kabeA8aQPWaaeWaa8aabaqcLbsapeGaamiE aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcqGHsislkmaalaaapaqaaK qzGeWdbiqbeA8aQ9aagaqbaaGcbaqcLbsapeGaeqOXdOgaaiabg2da 9iabgkHiTOWaaSaaa8aabaqcLbsapeGaamizaiaadYgacaWGVbGaam 4zaiabeA8aQPWaaeWaa8aabaqcLbsapeGaamiEaaGccaGLOaGaayzk aaaapaqaaKqzGeWdbiaadsgacaWG4baaaiaadoeacaWGHbGaamiBai aadogacaWGPbGaamyDaiaad2gacaGGGcGaamyAaiaad+gacaWGUbGa am4Caaaa@738A@ dy dx = y 2 y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaqcLbsapeGaamizaiaadMhaaOWdaeaajugib8qacaWG KbGaamiEaaaacqGH9aqpcaWG5bGcpaWaaWbaaSqabeaajugWa8qaca aIYaaaaKqzGeGaeyOeI0IaamyEaaaa@4330@ lHS= dσ dx = φ φ + ( φ φ ) 2 =RHS= ( φ φ ) 2 + φ φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGSbGaamisaiaadofacqGH9aqpkmaalaaapaqaaKqzGeWd biaadsgacqaHdpWCaOWdaeaajugib8qacaWGKbGaamiEaaaacqGH9a qpcqGHsislkmaalaaapaqaaKqzGeWdbiqbeA8aQ9aagaGbaaGcbaqc LbsapeGaeqOXdOgaaiabgUcaRiaacIcakmaalaaapaqaaKqzGeWdbi qbeA8aQ9aagaqbaaGcbaqcLbsapeGaeqOXdOgaaiaacMcal8aadaah aaqabeaajugWa8qacaaIYaaaaKqzGeGaeyypa0JaamOuaiaadIeaca WGtbGaeyypa0JaaiikaOWaaSaaa8aabaqcLbsapeGafqOXdO2dayaa faaakeaajugib8qacqaHgpGAaaGaaiykaSWdamaaCaaabeqaaKqzad WdbiaaikdaaaqcLbsacqGHRaWkkmaalaaapaqaaKqzGeWdbiqbeA8a Q9aagaqbaaGcbaqcLbsapeGaeqOXdOgaaaaa@6600@ φ = φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacuaHgpGApaGbauaapeGaeyypa0JaeyOeI0IafqOXdO2dayaa gaaaaa@3D72@

Streaming term is set zero at the wave front of diffusion of calcium ions. We have derived Albert Einstein Diffusion Equation: φ t = φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da9iqb eA8aQ9aagaGbaaaa@3D38@

Infamous San Francisco Fire with Smokes Diffusion. Cf.4

Δ H brain Δt = Δ H brain Δ[ W i,j ] Δ[ W i,j ] Δt = ( Δ[ W i,j ] Δt ) 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaqcLbsapeGaeuiLdqKaamisaOWdamaaBaaaleaajugW a8qacaWGIbGaamOCaiaadggacaWGPbGaamOBaaWcpaqabaaakeaaju gib8qacqqHuoarcaWG0baaaiabg2da9OWaaSaaa8aabaqcLbsapeGa euiLdqKaamisaOWdamaaBaaaleaajugWa8qacaWGIbGaamOCaiaadg gacaWGPbGaamOBaaWcpaqabaaakeaajugib8qacqqHuoarkmaadmaa paqaaKqzGeWdbiaadEfak8aadaWgaaWcbaqcLbmapeGaamyAaiaacY cacaWGQbaal8aabeaaaOWdbiaawUfacaGLDbaaaaWaaSaaa8aabaqc LbsapeGaeuiLdqKcdaWadaWdaeaajugib8qacaWGxbGcpaWaaSbaaS qaaKqzadWdbiaadMgacaGGSaGaamOAaaWcpaqabaaak8qacaGLBbGa ayzxaaaapaqaaKqzGeWdbiabfs5aejaadshaaaGaeyypa0JaeyOeI0 IaaiikaOWaaSaaa8aabaqcLbsapeGaeuiLdqKcdaWadaWdaeaajugi b8qacaWGxbGcpaWaaSbaaSqaaKqzadWdbiaadMgacaGGSaGaamOAaa Wcpaqabaaak8qacaGLBbGaayzxaaaapaqaaKqzGeWdbiabfs5aejaa dshaaaGaaiykaOWdamaaCaaaleqabaqcLbmapeGaaGOmaaaajugibi abgsMiJkaaicdaaaa@7A10@    (6)

If & only if the following learning rule is true will learning exponentially converge:

Δ[ W i,j ] Δt = Δ H brain Δ[ W i,j ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaqcLbsapeGaeuiLdqKcdaWadaWdaeaajugib8qacaWG xbGcpaWaaSbaaSqaaKqzadWdbiaadMgacaGGSaGaamOAaaWcpaqaba aak8qacaGLBbGaayzxaaaapaqaaKqzGeWdbiabfs5aejaadshaaaGa eyypa0JaeyOeI0IcdaWcaaWdaeaajugib8qacqqHuoarcaWGibGcpa WaaSbaaSqaaKqzadWdbiaadkgacaWGYbGaamyyaiaadMgacaWGUbaa l8aabeaaaOqaaKqzGeWdbiabfs5aePWaamWaa8aabaqcLbsapeGaam 4vaOWdamaaBaaaleaajugWa8qacaWGPbGaaiilaiaadQgaaSWdaeqa aaGcpeGaay5waiaaw2faaaaaaaa@5933@    (7)

We introduce the Dendrite sum of the output firing rates as follows

D i [ W iα ] y α ;thus Δ D i Δ[ W i,j ] = y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebGcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabggMi6QWaamWaa8aabaqcLbsapeGaam4vaOWdamaaBaaale aajugWa8qacaWGPbGaeqySdegal8aabeaaaOWdbiaawUfacaGLDbaa jugibiaadMhak8aadaWgaaWcbaqcLbmapeGaeqySdegal8aabeaaju gibiaacUdacaaMc8UaamiDaiaadIgacaWG1bGaam4CaiaaykW7k8qa daWcaaqcfa4daeaajugib8qacqqHuoarcaWGebGcpaWaaSbaaKqbag aajugWa8qacaWGPbaajuaGpaqabaaabaqcLbsapeGaeuiLdqKcdaWa daqcfa4daeaajugib8qacaWGxbGcpaWaaSbaaKqbagaajugWa8qaca WGPbGaaiilaiaadQgaaKqba+aabeaaa8qacaGLBbGaayzxaaaaaKqz GeGaeyypa0JaamyEaOWdamaaBaaajuaGbaqcLbmapeGaamOAaaqcfa 4daeqaaaaa@6AED@    (8)

Δ H brain Δ[ W i,j ] = Δ H brain Δ D i Δ D i Δ[ W i,j ] g i y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaqcLbsapeGaeuiLdqKaamisaOWdamaaBaaaleaajugW a8qacaWGIbGaamOCaiaadggacaWGPbGaamOBaaWcpaqabaaakeaaju gib8qacqqHuoarkmaadmaapaqaaKqzGeWdbiaadEfak8aadaWgaaWc baqcLbmapeGaamyAaiaacYcacaWGQbaal8aabeaaaOWdbiaawUfaca GLDbaaaaqcLbsacqGH9aqpkmaalaaapaqaaKqzGeWdbiabfs5aejaa dIeak8aadaWgaaWcbaqcLbmapeGaamOyaiaadkhacaWGHbGaamyAai aad6gaaSWdaeqaaaGcbaqcLbsapeGaeuiLdqKaamiraOWdamaaBaaa leaajugWa8qacaWGPbaal8aabeaaaaGcpeWaaSaaa8aabaqcLbsape GaeuiLdqKaamiraOWdamaaBaaaleaajugWa8qacaWGPbaal8aabeaa aOqaaKqzGeWdbiabfs5aePWaamWaa8aabaqcLbsapeGaam4vaOWdam aaBaaaleaajugWa8qacaWGPbGaaiilaiaadQgaaSWdaeqaaaGcpeGa ay5waiaaw2faaaaajugibiabggMi6kabgkHiTiaadEgak8aadaWgaa WcbaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaamyEaOWdamaaBaaa leaajugWa8qacaWGQbaal8aabeaaaaa@74C0@    (9)

Canadian neurophysiologist Donald O. Hebb observed 5 decades ago that the rule of changing the synaptic weight matrix is “Neurons that fire together wire together,”6

 Which defines the Neuroglia cells to be the negative slope as the Δ H brain 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarcaWGibGcpaWaaSbaaSqaaKqzadWdbiaadkgacaWG YbGaamyyaiaadMgacaWGUbaal8aabeaajugib8qacqGHKjYOcaaIWa aaaa@4341@

g i Δ H brain Δ D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGNbGcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabggMi6kabgkHiTOWaaSaaa8aabaqcLbsapeGaeuiLdqKaam isaOWdamaaBaaaleaajugWa8qacaWGIbGaamOCaiaadggacaWGPbGa amOBaaWcpaqabaaakeaajugib8qacqqHuoarcaWGebGcpaWaaSbaaS qaaKqzadWdbiaadMgaaSWdaeqaaaaaaaa@4D2A@    (10)

In the standard PDP Book4 Prof. Geoffrey Hinton (formerly Canada Univ. Toronto, now Prof. at Google Silicon Valley as Chief Scientist (Protégé Yashua Bengio7)) gives Backward Error Propagation supervised learning as:

So that the positive learning synaptic weight matrix becomes the error energy slope,

Δ[ W i,j ] Δt = Δ H brain Δ[ W i,j ] = g i y j Δt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaqcLbsapeGaeuiLdqKcdaWadaWdaeaajugib8qacaWG xbGcpaWaaSbaaSqaaKqzadWdbiaadMgacaGGSaGaamOAaaWcpaqaba aak8qacaGLBbGaayzxaaaapaqaaKqzGeWdbiabfs5aejaadshaaaGa eyypa0JaeyOeI0IcdaWcaaWdaeaajugib8qacqqHuoarcaWGibGcpa WaaSbaaSqaaKqzadWdbiaadkgacaWGYbGaamyyaiaadMgacaWGUbaa l8aabeaaaOqaaKqzGeWdbiabfs5aePWaamWaa8aabaqcLbsapeGaam 4vaOWdamaaBaaaleaajugWa8qacaWGPbGaaiilaiaadQgaaSWdaeqa aaGcpeGaay5waiaaw2faaaaajugibiabg2da9iaadEgak8aadaWgaa WcbaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaamyEaOWdamaaBaaa leaajugWa8qacaWGQbaal8aabeaajugibiabfs5aejaadshaaaa@6556@    (12)

new[ W i,j ]=old [ W i,j ]+Δ[ W i,j ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGUbGaamyzaiaadEhakmaadmaapaqaaKqzGeWdbiaadEfa k8aadaWgaaWcbaqcLbmapeGaamyAaiaacYcacaWGQbaal8aabeaaaO WdbiaawUfacaGLDbaajugibiabg2da9iaad+gacaWGSbGaamizaiaa cckakmaadmaapaqaaKqzGeWdbiaadEfak8aadaWgaaWcbaqcLbmape GaamyAaiaacYcacaWGQbaal8aabeaaaOWdbiaawUfacaGLDbaajugi biabgUcaRiabfs5aePWaamWaa8aabaqcLbsapeGaam4vaOWdamaaBa aaleaajugWa8qacaWGPbGaaiilaiaadQgaaSWdaeqaaaGcpeGaay5w aiaaw2faaaaa@5A53@    (13a)

Δ[ W i,j ] Δt   g i y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarkmaadmaapaqaaKqzGeWdbiaadEfak8aadaWgaaWc baqcLbmapeGaamyAaiaacYcacaWGQbaal8aabeaaaOWdbiaawUfaca GLDbaajugibiaacckacqGHfjcqcqqHuoarcaWG0bGaaiiOaiaaccka caWGNbGcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbi aadMhak8aadaWgaaWcbaqcLbmapeGaamOAaaWcpaqabaaaaa@501B@    (13b)

This is either unsupervised minimum free energy (MFE) or supervised least mean square (LMS) learning our brain models.

Conclusion

We have reviewed the fundamentals of artificial neural network (ANN) modeling of Biological Neural Networks (BNN) that may yield an ANN that can compete on the basis of Charles Darwin’s “survival of the fittest.” We found out for weakly nonlinear systems there is only one sequential learning rule. Thus the Natural Intelligence (NI) or Artificial Intelligence (AI) share a similar learning rule even though they are derived from different origins - the former from thermodynamics and the latter from statistics. This might answer Prof. Yann LeCun7 of NYU Courant Institute in his Youtube Lecture, or Prof. Andrew Ng of Stanford teaching Deep Learning at the commercial online school Coursera. The only difference in the methods is when to apply either- with a labeled dataset, use supervised learning and with an unlabeled dataset use unsupervised learning.

Acknowledgments

None.

Financial support

Funding received from Parian LLC.

Conflict of interest

None.

References

Creative Commons Attribution License

©2019 Szu, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.