Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Correspondence:

Received: January 01, 1970 | Published: ,

Citation: DOI:

Download PDF

Abstract

We wish to demonstrate mathematically a possibility of fuzzy thinking in homo sapiens. We begin with the fundamental physiological fact that human brains are kept at a constant temperature, we can prove McCulloch-Pitts sigmoid- σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCaaa@37D9@  formula adopted by Artificial Neural Networks (ANN) as neuronal firing rates. Then, we verify sigmoid- σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCaaa@37D9@  to be the exact solution of nonlinear Riccati differential equation (Jacopo Riccati, 1676–1754). Furthermore, applying the baker transform of Riccati equation we derive the Einstein thermal diffusion equation governing neuron’s transmitting ion’s dynamics in the propagation wave front. Given the aforementioned background, we review the neurophysiology that the most abundant cells in our brains are glia (Greek: glue), which are ten time smaller but ten times more abundant than the mm-size neurons. Their functionalities are more than passive house-keeping cleaning brain debris at the nights avoiding dementia Alzheimer disease, but also actively modulate the ion diffusion firing rates during the days. Especially, the glia cells generate a derivative of cholesterol fatty acids known as Myelin sheath coating of the Axon to keep Calcium C a ++ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbGaamyya8aadaahaaqabeaapeGaey4kaSIaey4kaSca aaaa@3A58@ ionic current within, without being short circuit with the other causing Epileptic seizures. The insulation is sausage-like modulation from the root reservoir Axon Hillock all the way to reach the other neuron’s Dendrite Tree. The longest Axon is over a meter long from the head to the toe. While one ion is push inward from the Axon Hillock, the other end ion will be out to the Dendrite in a real time. That’s how we issue the command to run away from predators, e.g. Tiger, or chase after preys. A temporary pile up of Calcium ions at the Axon Hillock is possible in the sense of increasing the concentration in backward propagation. This temporarily out of the normal order of forward propagation might be responsible for the bifurcation leading to chaotic dynamics of Walter Freeman, as well as the envelope of bifurcation maps becomes Lotfi Zadeh fuzzy membership function.

We postulate such a sigmoid- σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCaaa@37D9@ logic augmented with an extra piece of negative logic can generate single hump Feigenbaum-like iterative bifurcations. The envelop function of bifurcation map resembles the Fuzzy Membership Function. Now that we have derived the FMF out of a piece-wise Chaotic brain, we can apply a set of FMF to endow AV with the understanding pedestrians crossing a red light as a possibility fuzzy thinking in a half the time needed as the dozen years predicted by Highway Traffic Security Agency without FMF’s.

Keywords: neuronal firing, Calcium, dendrite tree, ion diffusion, chaotic brain

Abbreviations

ANN, artificial neural networks; AV, autonomous vehicle; FMF, fuzzy membership functions; AI, artificial intelligence

Introduction

Takeshi Yamakawa has successfully applied fuzzy logic to consumer electronics and made the sale in Japan, because the word “fuzzy” sounds like the famous “Fuji” mountain in Japan. For example, Japan has fuzzy air conditioning, fuzzy coffee pot, fuzzy cloth washer, fuzzy automatic transmission, except fuzzy camera which might not sell in the World. When the 3rd Gen AI has incorporated the Lotfi Zade’s fuzzy membership functions (FMF) capturing vehicle dynamics, and pedestrian emotional responses, we believe Autonomous Vehicle (AV) called fuzzy Toyota may take off. We refer to Google-developed Alpha Go Artificial Intelligence (AI) as the 2nd Gen AI that Google applies artificial neural network (ANN) to learn the ‘If: Then’ rules as ANN’s I/O. The 1st Gen AI is a fixed Rule-Based System proposed by Marvin Minsky of MIT circa 1990. The 2nd Gen AI can beat human on the Go-Chess Game in 2015. Yet, the 2nd Gen AI cannot yet help human drive an Autonomous Vehicle (AV), for it unfortunately killed a pedestrian in Phoenix Arizona in 2018, We believe that the 2nd Gen AI did not understand human analog possibility thinking. We sometimes violate sensibly the traffic rule during a red traffic light when a human driver will take a right hand turn yielding pedestrians & cars. However, AV cannot do that. This might be due to the automation computer scientists have not digitally captured the human emotional intelligence and program multi-level fuzzy logic in thinking. When this is digitally done successfully, the 3rd Gen AI machine can exit with human being peacefully.

The Myelin sheath that is the fatty acids protein generated by glia cells to separate and speed the transmission of ion current and protects it from short-circuiting from another cell, e.g. causing Epileptic seizure. The glia cells are dynamic in nature, and they can be temporary out of order but are healthy and can rejuvenate themselves with own cell mitosis of course, some rare cases due to genetic genome or life style epigenetic phenome reasons, glia cell can be developing toward tumor (benign type & malign glioma type 1 to type 4 according to United Nations, World Health Organization, e.g. Senator John McCain has diagnosed glioma in July 2017 after local surgery, he is rapidly worsen to the terminating stage-4 by April 2018). Multiple sclerosis is another glia causing autoimmune disease that our own immune cells attack and destroy the Myelin sheath. The immune system might be fighting the infection by a virus mistaking Myelin sheath for a viral protein because it resembles the previously-recognized viral invader. We are describing a healthy brain to causing occasional fuzzy possibility thinking, and definitely not pathological reasons, as this might be proved by founder Lotfi Zadeh who lived healthy & productive until 98 years old without brain disorders.

Unification theory between normal brian and fuzzy brian

We wish to unify the human brain biological neural networks (BNN) with the brain isothermal natural intelligent (NI)) with Lotfi Zadeh fuzzy logic and Walter Freeman ion diffusion dynamics. We postulated a homeostasis equilibrium theory of human brains which have two states: input state from the dendrite tree to the output state at axon hillock where the potential drop is derived from the Maxwell-Boltzmann (2nd &1st from LHS of Figure 1) Canonical probability. It turned out to yield the normalized sigmoid function σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCaaa@37D9@ of neuron firing rate. This is first observed in 1943 by Warren S. McCulloch (3rd), a neuroscientist, and Walter Pitts (4th), a logician, in Figure 1. In this paper McCulloch and Pitts tried to understand how the brain could produce highly complex logic prior to John von Neumann (5th from LHS) designing the computer logic.1–4

Ludwig Boltzmann introduced the concept of total entropy S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbaaaa@377C@ as the measuring the degree of uniformity. For example, the mountain top rock has much less entropy than white sand beach

S tot = k B Log  W MB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWdamaaBaaabaqcLbmapeGaamiDaiaad+gacaWG0baa juaGpaqabaWdbiabg2da9iaadUgapaWaaSbaaeaajugWa8qacaWGcb aajuaGpaqabaWdbiaadYeacaWGVbGaam4zaiaacckacaWGxbWdamaa BaaabaqcLbmapeGaamytaiaadkeaaKqba+aabeaaaaa@49AB@      (1)

Where the proportional constant k B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFRbWdamaaBaaabaqcLbmapeGaa8Nqaaqcfa4daeqa aaaa@3A6B@ has appended with a upper case letter B in honor of Boltzmann. The magnitude of k B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFRbWdamaaBaaabaqcLbmapeGaa8Nqaaqcfa4daeqa aaaa@3A6B@ is best represented together with the hot room temperature 27   o C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaG4naiaaykW7caGGGcWcpaWaaWbaaKqbagqabaqc LbmapeGaam4BaaaajuaGpaGaam4qaaaa@3F31@ in terms of the absolute scale of Kelvin Temperature T

27 o C+ 273 o K = 300 o K=( 1 40 ) eV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaG4naSWdamaaCaaajuaGbeqaaKqzadWdbiaad+ga aaqcfaOaam4qaiabgUcaRiaaikdacaaI3aGaaG4ma8aadaahaaqabe aajugWa8qacaWGVbaaaKqbakaadUeacaGGGcGaeyypa0JaaG4maiaa icdacaaIWaWdamaaCaaabeqaaKqzadWdbiaad+gaaaqcfaOaam4sai abg2da9maabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGinaiaaicdaaaaacaGLOaGaayzkaaGaaiiOaiaadwgacaWGwbaaaa@5385@       (2)

W MB =exp( S tot k B )=exp( ( S brain + S env. ) T o k B T o )=exp( S brain T o E brain k B T o )=exp( H brain k B T o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGxbWcpaWaaSbaaKqbagaajugWa8qacaWGnbGaamOqaaqc fa4daeqaa8qacqGH9aqpciGGLbGaaiiEaiaacchadaqadaWdaeaape WaaSaaa8aabaWdbiaadofal8aadaWgaaqcfayaaKqzadWdbiaadsha caWGVbGaamiDaaqcfa4daeqaaaqaa8qacaWGRbWdamaaBaaabaqcLb mapeGaamOqaaqcfa4daeqaaaaaa8qacaGLOaGaayzkaaGaeyypa0Ja ciyzaiaacIhacaGGWbWaaeWaa8aabaWdbmaalaaapaqaa8qadaqada WdaeaapeGaam4ua8aadaWgaaqaaKqzadWdbiaadkgacaWGYbGaamyy aiaadMgacaWGUbaajuaGpaqabaWdbiabgUcaRiaadofal8aadaWgaa qcfayaaKqzadWdbiaadwgacaWGUbGaamODaiaac6caaKqba+aabeaa a8qacaGLOaGaayzkaaGaamiva8aadaWgaaqaaKqzadWdbiaad+gaaK qba+aabeaaaeaapeGaam4Aa8aadaWgaaqaaKqzadWdbiaadkeaaKqb a+aabeaapeGaamiva8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabe aaaaaapeGaayjkaiaawMcaaiabg2da9iGacwgacaGG4bGaaiiCamaa bmaapaqaa8qadaWcaaWdaeaapeGaam4ua8aadaWgaaqaaKqzadWdbi aadkgacaWGYbGaamyyaiaadMgacaWGUbaajuaGpaqabaWdbiaadsfa paWaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaWdbiabgkHiTiaadw eapaWaaSbaaeaajugWa8qacaWGIbGaamOCaiaadggacaWGPbGaamOB aaqcfa4daeqaaaqaa8qacaWGRbWdamaaBaaabaqcLbmapeGaamOqaa qcfa4daeqaa8qacaWGubWdamaaBaaabaqcLbmapeGaam4Baaqcfa4d aeqaaaaaa8qacaGLOaGaayzkaaGaeyypa0JaciyzaiaacIhacaGGWb WaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaWGibWcpaWaaSba aKqbagaajugWa8qacaWGIbGaamOCaiaadggacaWGPbGaamOBaaqcfa 4daeqaaaqaa8qacaWGRbWdamaaBaaabaqcLbmapeGaamOqaaqcfa4d aeqaa8qacaWGubWdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaaa aaa8qacaGLOaGaayzkaaaaaa@A64A@    (3)

Thus, human brain temperature is kept at T o =37  0 C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabsfajuaGpaWaaSbaaKqbGeaajugWa8qacaqGVbaajuaG paqabaqcLbsapeGaaeypaiaabodacaqG3aGaaeiiaSWdamaaCaaaju aGbeqaaKqzadWdbiaabcdaaaqcLbsacaqGdbaaaa@42B7@ which is slightly higher than the thermal reservoir energy which is optimum for the elasticity of red blood cell hemoglobin. On the other hand, the chicken is kept at 40 °C for reason of hatching eggs. However, a higher temperature of brains is not necessarily to be smart, because we “ate chicken, not vice versa. Q.E.D.“ Maxwell-Boltzmann Probability W is derived from the third thermodynamic Neal’s law at non-zero temperature that insures the incessant collision mixing homogenizing the degree of uniformity measured by the total entropy

  S= S env +S( x 0 )= k B  Log( W MB ); W MB ( x o ) = exp( H brain ( x o )/ k B T o ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaeyyKH0Qaeyypa0Jaam4uaSWdamaaBaaajuaGbaqc LbmapeGaamyzaiaad6gacaWG2baajuaGpaqabaWdbiabgUcaRiaado fadaqadaWdaeaapeGaamiEa8aadaWgaaqaaKqzadWdbiaaicdaaKqb a+aabeaaa8qacaGLOaGaayzkaaGaeyyKH0Qaeyypa0Jaam4Aa8aada WgaaqaaKqzadWdbiaadkeajuaGcaGGGcaapaqabaWdbiaadYeacaWG VbGaam4zamaabmaapaqaa8qacaWGxbWdamaaBaaabaqcLbmapeGaam ytaiaadkeaaKqba+aabeaapeGaeyyKH0kacaGLOaGaayzkaaGaai4o aiaadEfapaWaaSbaaeaajugWa8qacaWGnbGaamOqaaqcfa4daeqaa8 qadaqadaWdaeaapeGaamiEa8aadaWgaaqaaKqzadWdbiaad+gaaKqb a+aabeaaa8qacaGLOaGaayzkaaGaaiiOaiabg2da9iaacckacaWGLb GaamiEaiaadchadaqadaWdaeaapeGaeyOeI0IaamisaSWdamaaBaaa juaGbaqcLbmapeGaamOyaiaadkhacaWGHbGaamyAaiaad6gaaKqba+ aabeaapeWaaeWaa8aabaWdbiaadIhapaWaaSbaaeaajugWa8qacaWG VbaajuaGpaqabaaapeGaayjkaiaawMcaaiaac+cacaWGRbWdamaaBa aabaqcLbmapeGaamOqaaqcfa4daeqaa8qacaWGubWdamaaBaaabaqc LbmapeGaam4Baaqcfa4daeqaaaWdbiaawIcacaGLPaaacaGGSaaaaa@857A@     (3a,b)

where H brain MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFibWdamaaBaaabaqcLbmapeGaa8Nyaiaa=jhacaWF HbGaa8xAaiaa=5gaaKqba+aabeaaaaa@3E16@ is the derived within the head ( x 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaacbmGaa8hEaSWdamaaBaaajuaGbaqcLbmapeGaaGim aaqcfa4daeqaaiaacMcaaaa@3C61@ is called the Helmholtz Free Energy H brain ( x o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGibWdamaaBaaabaqcLbmapeGaaeOyaiaabkhacaqGHbGa aeyAaiaab6gaaKqba+aabeaapeWaaeWaa8aabaWdbiaabIhapaWaaS baaeaajugWa8qacaqGVbaajuaGpaqabaaapeGaayjkaiaawMcaaaaa @43D6@ defined as the internal energy E brain ( x o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGfbWdamaaBaaabaqcLbmapeGaaeOyaiaabkhacaqGHbGa aeyAaiaab6gaaKqba+aabeaapeWaaeWaa8aabaWdbiaabIhapaWaaS baaeaajugWa8qacaqGVbaajuaGpaqabaaapeGaayjkaiaawMcaaaaa @43D3@ in contact with a blood environment T o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFubWdamaaBaaabaqcLbmapeGaa83Baaqcfa4daeqa aaaa@3A81@ at the temperature.The free energy H brain ( x o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFibWdamaaBaaabaqcLbmapeGaa8Nyaiaa=jhacaWF HbGaa8xAaiaa=5gaaKqba+aabeaapeWaaeWaa8aabaWdbiaadIhapa WaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaaapeGaayjkaiaawMca aaaa@43DA@ is the total internal E brain ( x o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFfbWdamaaBaaabaqcLbmapeGaa8Nyaiaa=jhacaWF HbGaa8xAaiaa=5gaaKqba+aabeaapeWaaeWaa8aabaWdbiaadIhapa WaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaaapeGaayjkaiaawMca aaaa@43D7@ subtracted the thermal entropy energy T o  S( x 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFubWdamaaBaaabaqcLbmapeGaa83Baaqcfa4daeqa a8qacaWFGcGaa83uamaabmaapaqaa8qacaWF4bWcpaWaaSbaaKqbag aajugWa8qacaaIWaaajuaGpaqabaaapeGaayjkaiaawMcaaaaa@4295@ and the net becomes free-to-do work energy kept to be the minimum to be stable:

min. H brain ( x o )=  E brain ( x o )  T o S( x o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFibWdamaaBaaabaqcLbmapeGaa8Nyaiaa=jhacaWF HbGaa8xAaiaa=5gaaKqba+aabeaapeWaaeWaa8aabaWdbiaadIhapa WaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaaapeGaayjkaiaawMca aiabgoziVkabg2da9iaa=bkacaWFfbWdamaaBaaabaqcLbmapeGaa8 Nyaiaa=jhacaWFHbGaa8xAaiaa=5gaaKqba+aabeaapeWaaeWaa8aa baWdbiaadIhapaWaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaaape GaayjkaiaawMcaaiabgkHiTiaa=bkacaWFubWcpaWaaSbaaKqbagaa jugWa8qacaWFVbaajuaGpaqabaWdbiaa=nfadaqadaWdaeaapeGaam iEaSWdamaaBaaajuaGbaqcLbmapeGaam4Baaqcfa4daeqaaaWdbiaa wIcacaGLPaaacqGHrgsRaaa@64A9@       (4)

Use is made of the isothermal equilibrium of brain in the warm blood reservoir at the homeostasis temperature   T o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaamiva8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aa beaaaaa@3BA1@ . Use is further used of the second law of conservation energy Δ Q env. = T o Δ S env.   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHuoarcaWGrbWdamaaBaaabaqcLbmapeGaamyzaiaad6ga caWG2bqcfaOaaiOlaaWdaeqaa8qacqGH9aqpcaWGubWcpaWaaSbaaK qbagaajugWa8qacaWGVbaajuaGpaqabaGaeyiLdq0dbiaadofapaWa aSbaaeaajugWa8qacaWGLbGaamOBaiaadAhajuaGcaGGUaaapaqaba Wdbiaacckaaaa@4D16@ and the brain internal energy Δ E brain +Δ Q env. =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHuoarcaWGfbWdamaaBaaabaqcLbmapeGaamOyaiaadkha caWGHbGaamyAaiaad6gaaKqba+aabeaapeGaey4kaSIaeyiLdqKaam yua8aadaWgaaqaaKqzadWdbiaadwgacaWGUbGaamODaKqbakaac6ca a8aabeaapeGaeyypa0JaaGimaaaa@4A1A@ ., and then we integrate the change and dropped the integration constant due to arbitrary probability normalization. We now know H Brain   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWcpaWaaSbaaKqbagaajugWa8qacaWGcbGaamOCaiaa dggacaWGPbGaamOBaaqcfa4daeqaa8qacaGGGcaaaa@3FCF@ is related to constant temperature T o =37C=310K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaa8qa cqGH9aqpcaaIZaGaaG4naiaadoeacqGH9aqpcaaIZaGaaGymaiaaic dacaWGlbaaaa@41E1@ thermodynamic Helmholtz Free Energy H Brain = E Brain    T o  S  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWcpaWaaSbaaKqbagaajugWa8qacaWGcbGaamOCaiaa dggacaWGPbGaamOBaaqcfa4daeqaa8qacqGH9aqpcaWGfbWdamaaBa aabaqcLbmapeGaamOqaiaadkhacaWGHbGaamyAaiaad6gajuaGcaGG GcGaaiiOaiaacckaa8aabeaapeGaeyOeI0Iaamiva8aadaWgaaqaaK qzadWdbiaad+gaaKqba+aabeaapeGaaiiOaiaacofacaGGGcaaaa@527A@ (Figure 2).

exp( H 1 k B T o )/exp( H 1 k B T o )+exp( H 2 k B T o )=   1/[exp( Δ H 1,2 k B T o )+1] =σ( Δ H 1,2 k B T o )={ 1, Δ H 1,2 k B T o   0, Δ H 1,2 k B T o       MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOeI0YaaSaa a8aabaWdbiaadIeal8aadaWgaaqcfayaaKqzadWdbiaaigdaaKqba+ aabeaaaeaapeGaam4Aa8aadaWgaaqaaKqzadWdbiaadkeaaKqba+aa beaapeGaamiva8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaa aapeGaayjkaiaawMcaaiaac+caciGGLbGaaiiEaiaacchadaqadaWd aeaapeGaeyOeI0YaaSaaa8aabaWdbiaadIeal8aadaWgaaqcfayaaK qzadWdbiaaigdaaKqba+aabeaaaeaapeGaam4Aa8aadaWgaaqaaKqz adWdbiaadkeaaKqba+aabeaapeGaamivaSWdamaaBaaajuaGbaqcLb mapeGaam4Baaqcfa4daeqaaaaaa8qacaGLOaGaayzkaaGaey4kaSIa ciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8 qacaWGibWdamaaBaaabaqcLbmapeGaaGOmaaqcfa4daeqaaaqaa8qa caWGRbWdamaaBaaabaqcLbmapeGaamOqaaqcfa4daeqaa8qacaWGub WdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaaa8qacaGLOaGa ayzkaaGaeyypa0JaaiiOaiaacckacaGGGcGaaGymaiaac+cacaGGBb GaaeyzaiaabIhacaqGWbGaaiikamaalaaapaqaa8qacqGHuoarcaqG ibWdamaaBaaabaqcLbmapeGaaGymaiaacYcacaaIYaaajuaGpaqaba aabaWdbiaadUgal8aadaWgaaqcfayaaKqzadWdbiaadkeaaKqba+aa beaapeGaamiva8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaa WdbiaacMcacqGHRaWkcaaIXaGaaiyxaiaacckacqGH9aqpcqaHdpWC daqadaWdaeaapeWaaSaaa8aabaWdbiabgs5aejaabIeal8aadaWgaa qcfayaaKqzadWdbiaaigdacaGGSaGaaGOmaaqcfa4daeqaaaqaa8qa caWGRbWdamaaBaaabaqcLbmapeGaamOqaaqcfa4daeqaa8qacaWGub WdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaaaaaa8qacaGLOaGa ayzkaaGaeyypa0Zaaiqaa8aabaqbaeqabiqaaaqaa8qacaaIXaGaai ilamaalaaapaqaa8qacqGHuoarcaqGibWdamaaBaaabaqcLbmapeGa aGymaiaacYcacaaIYaaajuaGpaqabaaabaWdbiaadUgapaWaaSbaae aajugWa8qacaWGcbaajuaGpaqabaWdbiaadsfapaWaaSbaaeaajugW a8qacaWGVbaajuaGpaqabaaaa8qacqGHsgIRcqGHEisPcaGGGcaapa qaa8qacaaIWaGaaiilamaalaaapaqaa8qacqGHuoarcaqGibWcpaWa aSbaaKqbagaajugWa8qacaaIXaGaaiilaiaaikdaaKqba+aabeaaae aapeGaam4Aa8aadaWgaaqaaKqzadWdbiaadkeaaKqba+aabeaapeGa amiva8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaaaaWdbiabgk ziUkabgkHiTiabg6HiLkaacckaaaaacaGL7baacaqGGcGaaeiOaiaa bckaaaa@CDD4@ (5)

Theorem 1: Riccati nonlinear 1st order differential equation is derived from Maxwell-Boltzman two state weighted sum and its exact solution turns out to be the sigmoid threshold function: Let x= Δ H 1,2 k B T o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyypa0ZaaSaaa8aabaWdbiabgs5aejaabIeapaWa aSbaaeaajugWa8qacaaIXaGaaiilaiaaikdaaKqba+aabeaaaeaape Gaam4Aa8aadaWgaaqaaKqzadWdbiaadkeaaKqba+aabeaapeGaamiv aSWdamaaBaaajuaGbaqcLbmapeGaam4Baaqcfa4daeqaaaaaaaa@478E@ , then

d σ( x ) dx +σ( x )=σ ( x ) 2 ;σ( x )= 1 exp( x )+1   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaacckacqaHdpWCdaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaaWdaeaapeGaamizaiaadIhaaaGaey 4kaSIaeq4Wdm3aaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH 9aqpcqaHdpWCdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aada ahaaqabeaajugWa8qacaaIYaaaaKqba+aacaGG7aWdbiabeo8aZnaa bmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aaba Wdbiaaigdaa8aabaWdbiGacwgacaGG4bGaaiiCamaabmaapaqaa8qa caWG4baacaGLOaGaayzkaaGaey4kaSIaaGymaaaacaGGGcaaaa@5C55@       (6)

Proof:

d σ( x ) dx = d dx [exp(x)+1] 1 =1 [exp(x)+1] 2 exp( x )=1 [exp(x)+1] 2 {1+(exp( x )+1)}= σ ( x ) 2 σ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaacckacqaHdpWCdaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaaWdaeaapeGaamizaiaadIhaaaGaey ypa0ZaaSaaa8aabaWdbiaadsgaa8aabaWdbiaadsgacaWG4baaaiaa cUfaciGGLbGaaiiEaiaacchacaGGOaGaamiEaiaacMcacqGHRaWkca aIXaGaaiyxaSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiaaigda aaqcfaOaeyypa0JaeyOeI0IaaGymaiaacUfaciGGLbGaaiiEaiaacc hacaGGOaGaamiEaiaacMcacqGHRaWkcaaIXaGaaiyxaSWdamaaCaaa juaGbeqaaKqzadWdbiabgkHiTiaaikdaaaqcfaOaciyzaiaacIhaca GGWbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqpcqGH sislcaaIXaGaai4waiGacwgacaGG4bGaaiiCaiaacIcacaWG4bGaai ykaiabgUcaRiaaigdacaGGDbWdamaaCaaabeqaaKqzadWdbiabgkHi TiaaikdaaaqcfaOaai4EaiabgkHiTiaaigdacqGHRaWkcaGGOaGaci yzaiaacIhacaGGWbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaa cqGHRaWkcaaIXaGaaiykaiaac2hacqGH9aqpcaGGGcGaeq4Wdm3aae Waa8aabaWdbiaadIhaaiaawIcacaGLPaaapaWaaWbaaeqabaqcLbma peGaaGOmaaaajuaGcqGHsislcqaHdpWCdaqadaWdaeaapeGaamiwaa GaayjkaiaawMcaaaaa@8F9A@

Theorem 2: Hopf (baker) Transform can linearize the first order Ricati quadratic-nonlinear differential equation to A. Einstein diffusion equation Eq(4). (Note that in dynamical systems theory, the baker's map is a chaotic map from the unit square into itself. It is named after a kneading operation that bakers apply to dough: the dough is cut in half, and the two halves are stacked on one another, and compressed. Wikipedia)

Proof:

We introduce the calcium ions φ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaa @3B07@ concentration; we can set the slope of logarithmic concentration to be two-state normalization sigmoid

σ( x )= φ ( x ) ' φ( x ) = d dx logφ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHdpWCdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiab g2da9iabgkHiTmaalaaapaqaa8qacqaHgpGAdaqadaWdaeaapeGaam iEaaGaayjkaiaawMcaa8aadaahaaqabeaapeGaai4jaaaaa8aabaWd biabeA8aQnaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaiabg2 da9iabgkHiTmaalaaapaqaa8qacaWGKbaapaqaa8qacaWGKbGaamiE aaaaciGGSbGaai4BaiaacEgacqaHgpGAdaqadaWdaeaapeGaamiEaa GaayjkaiaawMcaaaaa@5340@       (7)

LHS= d σ( x ) dx = φ'' φ + ( φ ) 2 φ 2 =RHS= ( φ ) 2 φ 2 + φ ( x ) ' φ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbGaamisaiaadofacqGH9aqpdaWcaaWdaeaapeGaamiz aiaacckacqaHdpWCdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaa WdaeaapeGaamizaiaadIhaaaGaeyypa0JaeyOeI0YaaSaaa8aabaWd biabeA8aQjaacEcacaGGNaaapaqaa8qacqaHgpGAaaGaey4kaSYaaS aaa8aabaWdbiaacIcacuaHgpGApaGbauaapeGaaiykaSWdamaaCaaa juaGbeqaaKqzadWdbiaaikdaaaaajuaGpaqaa8qacqaHgpGAl8aada ahaaqcfayabeaajugWa8qacaaIYaaaaaaajuaGcqGH9aqpcaWGsbGa amisaiaadofacqGH9aqpdaWcaaWdaeaapeGaaiikaiqbeA8aQ9aaga qba8qacaGGPaWcpaWaaWbaaKqbagqabaqcLbmapeGaaGOmaaaaaKqb a+aabaWdbiabeA8aQTWdamaaCaaajuaGbeqaaKqzadWdbiaaikdaaa aaaKqbakabgUcaRmaalaaapaqaa8qacqaHgpGAdaqadaWdaeaapeGa amiEaaGaayjkaiaawMcaa8aadaahaaqabeaapeGaai4jaaaaa8aaba WdbiabeA8aQnaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaaaa @7205@

φ = φ   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaHgpGApaGbauaapeGaeyypa0JaeyOeI0IafqOXdO2dayaa gaWdbiaacckaaaa@3D8D@

With respect to a local wave front, the streaming term is set to zero at the wave front, e.g. sitting on the smoke outer most wave front Figure 3 where smoke particles will be diffusive.

dφ dt = φ t + φ =0 ; φ ' φ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiabeA8aQbWdaeaapeGaamizaiaa dshaaaGaeyypa0JaeqOXdO2damaaBaaabaqcLbmapeGaamiDaaqcfa 4daeqaa8qacqGHRaWkcuaHgpGApaGbauaapeGaeyypa0JaaGimaiaa cckacaGG7aGaeyO0H4TaeqOXdO2damaaCaaabeqaa8qacaGGNaaaai abgwKiajabgkHiTiabeA8aQTWdamaaBaaajuaGbaqcLbmapeGaamiD aaqcfa4daeqaaaaa@543F@

We have derived that at the local wave front of the neuro-transmittent calcium ions the diffusion equation of calcium ionsconcentration φ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaa @3B07@ satisfies Albert Einstein’s Brownian motion:

φ t  =    φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGApaWaaSbaaeaapeGaamiDaaWdaeqaa8qacaGGGcGa eyypa0JaaiiOaiaacckacaGGGcGaaGzaVlaaygW7caaMb8UaaGzaVl aaygW7cuaHgpGApaGbayaaaaa@48DA@ ;         (8)

From which follows the standard correlation function of the diffusion density by means of Taylor series expansion:

φ( t o )φ( t o +t ) <φ( V× t o )(V×( t o +t )> r 2 + 1 2 φ t o r + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaaadaWdaeaapeGaeqOXdO2aaeWaa8aabaWdbiaadshapaWa aSbaaeaajugWa8qacaWGVbaajuaGpaqabaaapeGaayjkaiaawMcaai abeA8aQnaabmaapaqaa8qacaWG0bWdamaaBaaabaqcLbmapeGaam4B aaqcfa4daeqaa8qacqGHRaWkcaWG0baacaGLOaGaayzkaaaacaGLPm IaayPkJaGaeyyrIaKaeyipaWJaeqOXdO2aaeWaa8aabaWdbiaadAfa cqGHxdaTcaWG0bWdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaaa WdbiaawIcacaGLPaaacaGGOaGaamOvaiabgEna0oaabmaapaqaa8qa caWG0bWdamaaBaaabaqcLbmapeGaam4Baaqcfa4daeqaa8qacqGHRa WkcaWG0baacaGLOaGaayzkaaGaeyOpa4JaeyyrIa0aaaWaa8aabaWd biaabkhal8aadaahaaqcfayabeaajugWa8qacaaIYaaaaaqcfaOaay zkJiaawQYiaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaaI YaaaaiqbeA8aQ9aagaqbamaaBaaabaWdbiaadshapaWaaSbaaeaaju gWa8qacaWGVbaajuaGpaqabaaabeaapeWaaaWaa8aabaWdbiaabkha aiaawMYicaGLQmcacqGHRaWkcqGHMacVaaa@7784@ , (9)

Where Vt=r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbGaamiDaiabg2da9iaadkhaaaa@3A75@ the quadratic parabolic curvature is reduced through the collisions among Calcium ion particles and cellar medium molecules into a linear trajectory (Figure 4). However, when the active ushering glia cells are temporarily out of order, these ions cannot keep up with the ions passing rate, the output rate my dip in piecewise negative slope: the more inputs are, the less output are. The ions are stuck in the Axon Hillock (Figure 5).

  1. The quadratic sigmoid map follows M. Feigenbaum bifurcation logistic map with 4λ  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI0aGaeq4UdWMaaiiOaaaa@3A3B@ knob turning higher value that might depend on the physiologic happy Hormone Dopamine or glia cells cooperation or not (Figure 6).
  2. y n+1 =4λ x n ( 1 x n );n=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWF5bWcpaWaaSbaaKqbagaajugWa8qacaWFUbGaey4k aSIaaGymaaqcfa4daeqaa8qacqGH9aqpcaaI0aGaa83Udiaa=Hhapa WaaSbaaeaajugWa8qacaWFUbaajuaGpaqabaWdbmaabmaapaqaa8qa caaIXaGaeyOeI0Iaa8hEa8aadaWgaaqaaKqzadWdbiaa=5gaaKqba+ aabeaaa8qacaGLOaGaayzkaaGaai4oaiaad6gacqGH9aqpcaaIXaGa aiilaiaaikdacaGGSaGaaG4maiaacYcacqGHMacVaaa@53CD@ x n+1 = y n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWF4bWdamaaBaaabaqcLbmapeGaa8NBaiabgUcaRiaa igdaaKqba+aabeaapeGaeyypa0Jaa8xEa8aadaWgaaqaaKqzadWdbi aa=5gacqGHRaWkcaaIXaaajuaGpaqabaaaaa@42E7@      (10)

Physiology experiments: Neurobiologists have observed the sudden onset of Epileptic seizure when the two states are crossed over becoming a pseudo-synchronous. The root cause could be the cross-over output axon without insulating Myelin sheath due to Epileptic seizures the output short circuit the input dendrite tree in Figure 4B. Multiple sclerosis is another glia causing autoimmune disease that our own immune cells attack and destroy the Myelin sheath. In these cases, Takeshi Yamakawa has demonstrated by using real-time Magnetic imaging the physician can apply a laser pipe in to burn at the cross-over junction. The less invasive procedure has turned the Hospital week-long patients into a day visit out-patient (Figure 7) (Figure 8).

Figure 1 Neuroscientists contributed human brain dynamics. They are Luwig Boltzmann, James Clerk Maxwell, Warren S. McCulloch (1943) U. Illinois; Walter Pitts (1943) U. Chicago; John von Neumann(1903,1957) (Donald O. Hebb (1949) U. Toronto., Lotfi Zadeh (98 years old, 2017) UC Berkeley, Walter Freeman (89 years old, 2017), UC Berkeley.

Figure 2 Standard McCullough-Pitt1 Sigmoid Threshold Logic is Eq.(5) derived from two state normalization of Maxwell-Boltzmann distribution function Eq.( 1).

Figure 3 Smoke from chimney is similar to Calcium ions passing from dendrite tree synaptic gaps to axon.

Figure 4Indicate the complexity of ion current reservoir that (Wikipedia) might go wrong. A single layer of the membrane is built with hydrophilic heads and hydrophobic tails (like a human heads and legs) in three inter-related inserts in the RHS. The potential at the Axon Hillock (LHS sub-figure) has about ~100–200 voltage-gated sodium channels per square micrometer. Both inhibitory postsynaptic potentials and excitatory postsynaptic potentials are summed in the axon hillock and once a triggering threshold is exceeded, an action potential propagates through the rest of the axon (and "backwards" towards the dendrites as seen in neural back-propagation).

Figure 5Chaotic Neural Net will be due to a piecewise negative N-shape logic in the sigmoid logic.

Figure 6 Logistic map de4monstrated the bifurcation cascades by means of increasing the knot λ> 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBcqGH+aGpdaWcaaWdaeaapeGaaG4maaWdaeaapeGa aGinaaaaaaa@3B2A@ so that the slope of hump at the intersecting the feedback line at 45 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI0aGaaGyna8aadaahaaqabeaapeGaam4Baaaaaaa@3957@ becomes larger than < 90 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI5aGaaGimaSWdamaaCaaajuaGbeqaaKqzadWdbiaaicda aaaaaa@3AE4@ (Michele Feigenbaum, circa 1970).

Figure 7 Fundamentally, we can understand the neuron density modulation of firing rates by means of Donald O. Hebb phenomenological rule: "linked together, firing together"(LTFT), (observed 5 decade ago by Hebb in U. Toronto) that is why the dots density appears to be modulated from on 100 Hz to off less than 50 Hz. In reality, there is no travelling Electromagnetic wave in the BNN Figure 4 (a), rather neuronal population of firing rates.

Figure 8 A long history of NASA and DARPA have invested on Driverless Autonomous Vehicles (DAV). Nevertheless, in no-man land, the scientists & technologists have not taken into account human driver and pedestrian behaviors. Applying AI to Sensors Suites is both all-weather W band Radar and optical LIDAR, as well as the Video Motion Detection Optical.

Applications to Autonomous Vehicle (AV)

Flow Imaging Processing is adopted for collision avoidance situation awareness.

Why driverless autonomous vehicle (DAV) takes dozen years (according to Science Magazine (V. 358, pp.1370-1375, Dec 15, 2018)? This might be due to that recently Uber’s DAV has killed a pedestrian in Phoenix Arizona. When can Human Experience Expert Systems be coded as the 3rd Gen AI that can understand and co-exist with Human? We notice that a major difference between machines versus human is that digital closed set table of look up versus analog open set agenda. For example,” a traffic rule of red light is made to be sensibly broken”; they shall do no harm to the other. The 1st Gen AI “Rule-Based System,” M. Minsky when F. Rosenblatt built visions failed. The 2nd Gen AI “Learnable rule-based” has beaten Lee Sedol in 4:1 Mar.19, 2015. The 3rd Gen AI “Human Experience Expert System” Google, Uber & Tesla in US, German, Italy, and Japan have spent over $100B to DAV’s. Recently a DAV killed a pedestrian in Phoenix Arizona. In spite of NASA Space Program and DARPA Grand Challenge, technologies were in no-man land. Highway TSA said semi-DAV at level 4 will be dozen years, circa 2030. DAV machine must be peacefully co-exited with crowded human society with all kinds of personality. Automation computer scientists need to endow machines with 3nd Gen AI to comprehend human fuzzy possibility thinking, so-called Zedah-Freeman fuzzy logic, in order to exit with human being society. Of course, fuzziness is not the logic, but open set Fuzzy Membership Function’s (FMF’s)) e.g.,“Young”, or “Beautiful.” A double fuzziness “Young & Beautiful” becomes less fuzzy. That’s why we endow FMF’s at execution load time to the digital machine.5–8

  1. Statistical Ergodicity principle allows us to replace the limited temporal average with massively parallel spatial averages to accommodate all possible initial boundary conditions,
  2. Biological Natural Intelligence base on aforementioned homeostasis principle, we have derived the Biological Neural Nets sigmoid logic from which we have reproduced Walter Freeman diffusion and lOtfi Zadeh fuzzy logic membership function.
  3. Human psychology & fuzzy thinking about the traffic rules. We shall code the fuzzy logic into machine’s Control Command and Communication Intelligence(C4I), but FMF’s are sharpen after Boolean Logic (U,Ո) at load time. Model & Simulate (M&S) each dynamics including (1) Hebb Learning (2) road-friction Langevin-Einstein, (3) Satellites-GPU, (4) Computer Sensing (Radar, Lidar, Video, Sound, Tactile, Smell, Sensors).
  4. Multiple Layer known Deep Learning4,9
  5. To increase probability of detection of A & minimize False Alarm Rate B we need multiple layers in the so-called deep learning (Figure 9).

We wish to improve the supervised deep learning with LMS cost to become self-organization “follow the leader” as Unsupervised Deep Learning with thermodynamic equilibrium at constant temperatureat Minimum Free Energy (MFE). The automation solves NP Complete path finding problem by means of loss-less divide and conquer (ANN TSP, Foo & Szu, 1997). Supervised cost function is taken as min A B =min A C + C B =min A C +min C B iff  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbGaamyAaiaad6gacqWILicuceWGbbWdayaaoaWdbiab gkHiTiqadkeapaGba4aapeGaeSyjIaLaeyypa0JaamyBaiaadMgaca WGUbGaeSyjIaLabmyqa8aagaGda8qacqGHsislceWGdbWdayaaoaWd biabgUcaRiqadoeapaGba4aapeGaeyOeI0IabmOqa8aagaGda8qacq WILicucqGH9aqpcaWGTbGaamyAaiaad6gacqWILicuceWGbbWdayaa oaWdbiabgkHiTiqadoeapaGba4aapeGaeSyjIaLaey4kaSIaamyBai aadMgacaWGUbGaeSyjIaLabm4qa8aagaGda8qacqGHsislceWGcbWd ayaaoaWdbiablwIiqjaadMgacaWGMbGaamOzaiaacckacqGHLkIxaa a@6309@ , the cost of search for C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGdbWdayaaoaaaaa@3790@ city is linear at boundary. We review thermodynamics to answer why keep our head blood temperature constant 37 0C. This is necessary for the optimum elasticity of red blood cells Hemoglobium, squeezing through capillaries supplying the glucose and oxygen. Also, the thermodynamic equilibrium keeps the chemical diffusion rate constant for all generations to accumulate the experience. This is the basis of human Natural Intelligence (NI) based on two necessary conditions:

  1. Constant temperature brain and (ii) power of pairs.
  2. Applying Least Mean Squares (LMS) Error Energy,
  3. E=|(desired Output  S pairs  actural Output  S ^ pairs  ( t  ) | 2     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0JaaiiFaiaacIcacaWGKbGaamyzaiaadoha caWGPbGaamOCaiaadwgacaWGKbGaaiiOaGqadiaa=9eacaWG1bGaam iDaiaadchacaWG1bGaamiDaiaacckaceWGtbWdayaaoaWaaSbaaeaa peGaamiCaiaadggacaWGPbGaamOCaiaadohaa8aabeaapeGaeyOeI0 IaaiiOaiaadggacaWGJbGaamiDaiaadwhacaWGYbGaamyyaiaadYga caGGGcGaa83taiaa=vhacaWF0bGaamiCaiaadwhacaWG0bGaaiiOam aaHaaabaGaam4uaaGaayPadaWdamaaBaaabaWdbiaadchacaWGHbGa amyAaiaadkhacaWGZbaapaqabaWdbiaacckadaqadaWdaeaapeGaam iDaiaacckaaiaawIcacaGLPaaacaGG8bWdamaaCaaabeqaaKqzadWd biaaikdaaaqcfaOaaiiOaiaacckacaGGGcaaaa@71F0@  > > (11)
  4. Sensory Inputs: “While agreed, the signal; disagreed, the noises”

Power of pairs: X pairs ( t )=[ A ij ]  S pairs ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGybWdayaaoaWcdaWgaaqcfayaaKqzadWdbiaadchacaWG HbGaamyAaiaadkhacaWGZbaajuaGpaqabaWdbmaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaGaeyypa0ZaamWaa8aabaWdbiaadgeal8aa daWgaaqcfayaaKqzadWdbiaadMgacaWGQbaajuaGpaqabaaapeGaay 5waiaaw2faaiaacckaceWGtbWdayaaoaWaaSbaaeaajugWa8qacaWG WbGaamyyaiaadMgacaWGYbGaam4Caaqcfa4daeqaa8qadaqadaWdae aapeGaamiDaaGaayjkaiaawMcaaaaa@5596@ (12)

The agreed signals become   X pairs ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOabmiwa8aagaGdamaaBaaabaqcLbmapeGaamiCaiaa dggacaWGPbGaamOCaiaadohaaKqba+aabeaapeWaaeWaa8aabaWdbi aadshaaiaawIcacaGLPaaaaaa@422E@ the vector pair time serieswith the internal representation of degree of uniformity of neuron firing rate S pairs ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGtbWdayaaoaWaaSbaaeaajugWa8qacaWGWbGaamyyaiaa dMgacaWGYbGaam4Caaqcfa4daeqaa8qadaqadaWdaeaapeGaamiDaa GaayjkaiaawMcaaaaa@4105@ described with Ludwig Boltzmann entropy with unknown space-variant impulse response functions mixing matrixand the invers by learning synaptic weight matrix [ A ij ]  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaWdaeaapeGaamyqaSWdamaaBaaajuaGbaqcLbmapeGa amyAaiaadQgaaKqba+aabeaaa8qacaGLBbGaayzxaaGaaiiOaaaa@3F30@ .

The inverse is convolution artificial neural networks

S ^ pairs ( t )=[ W ji  ( t ) ]  X pairs ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqiaaqaaiaadofaaiaawkWaa8aadaWgaaqaaKqzadWdbiaa dchacaWGHbGaamyAaiaadkhacaWGZbaajuaGpaqabaWdbmaabmaapa qaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0ZaamWaa8aabaWdbiaa dEfal8aadaWgaaqcfayaaKqzadWdbiaadQgacaWGPbGaaiiOaaqcfa 4daeqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaay5w aiaaw2faaiaacckaceWGybWdayaaoaWaaSbaaeaajugWa8qacaWGWb GaamyyaiaadMgacaWGYbGaam4Caaqcfa4daeqaa8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@5986@      (13)

Subtracted the un-usable thermal noise energy  

H=E T o S0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaey4KH8Qaeyypa0JaamyraiabgkHiTiaadsfapaWa aSbaaeaapeGaam4BaaWdaeqaa8qacaWGtbGaeyyKH0QaeyyzImRaaG imaaaa@438D@        (14)

d[ W ] dt = H [ W ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizamaadmaapaqaa8qacaWGxbaacaGL BbGaayzxaaaapaqaa8qacaWGKbGaamiDaaaacqGH9aqpcqGHsislda WcaaWdaeaapeGaeyOaIyRaamisaaWdaeaapeGaeyOaIy7aamWaa8aa baWdbiaadEfaaiaawUfacaGLDbaaaaaaaa@4572@            (15)

Control steering wheel Lyaponov convergence of Learning of

dH dt = H [ W ] d[ W ] dt = H [ W ] ( H [ W ] )= ( H [ W ] ) 2 0   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiaadIeaa8aabaWdbiaadsgacaWG 0baaaiabg2da9maalaaapaqaa8qacqGHciITcaWGibaapaqaa8qacq GHciITdaWadaWdaeaapeGaam4vaaGaay5waiaaw2faaaaadaWcaaWd aeaapeGaamizamaadmaapaqaa8qacaWGxbaacaGLBbGaayzxaaaapa qaa8qacaWGKbGaamiDaaaacqGH9aqpdaWcaaWdaeaapeGaeyOaIyRa amisaaWdaeaapeGaeyOaIy7aamWaa8aabaWdbiaadEfaaiaawUfaca GLDbaaaaWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacqGHciIT caWGibaapaqaa8qacqGHciITdaWadaWdaeaapeGaam4vaaGaay5wai aaw2faaaaaaiaawIcacaGLPaaacqGH9aqpcqGHsisldaqadaWdaeaa peWaaSaaa8aabaWdbiabgkGi2kaadIeaa8aabaWdbiabgkGi2oaadm aapaqaa8qacaWGxbaacaGLBbGaayzxaaaaaaGaayjkaiaawMcaa8aa daahaaqabeaajugWa8qacaaIYaaaaKqbakabgsMiJkaaicdacaGGGc GccaGGGcaaaa@6B97@      (16)

Langevin equation of the car momentum P =m V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGqbWdayaaoaWdbiabg2da9iaad2gaceWGwbWdayaaoaaa aa@3AA5@ , with tire-road friction coefficient f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbaaaa@3790@ ,car-body aerodynamic fluctuation force F ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGgbWdayaaoaWdbmaabmaapaqaa8qacaWG0baacaGLOaGa ayzkaaaaaa@3A45@

d P dt =f P + F ( t )    MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiqadcfapaGba4aaaeaapeGaamiz aiaadshaaaGaeyypa0JaeyOeI0IaamOzaiqadcfapaGba4aapeGaey 4kaSIabmOra8aagaGda8qadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiaacckacaGGGcGaaiiOaaaa@467D@      (17a)

& F ( t ) F ( t' ) =2 k B  f δ( tt' )            MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaaadaqaaiqadAeapaGba4aapeWaaeWaa8aabaWdbiaadsha aiaawIcacaGLPaaacqGHflY1ceWGgbWdayaaoaWdbmaabmaapaqaa8 qacaWG0bGaai4jaaGaayjkaiaawMcaaaGaayzkJiaawQYiaiabg2da 9iaaikdacaWGRbWdamaaBaaabaqcLbmapeGaamOqaKqbakaacckaa8 aabeaapeGaamOzaiaacckacqaH0oazdaqadaWdaeaapeGaamiDaiab gkHiTiaadshacaGGNaaacaGLOaGaayzkaaGccaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aaaa@5EDE@       (17b)

This possible membership concept is important to exploration of large data as which often don’t have definitive membership relations when partial analysis of the data is being done without definite knowledge that classifies all the subsets of the data. For example, “young and beautiful” is a much sharper possibility than either “the Young” or “the Beautiful”. When we average over spatial cases, we obtain the average of the experience based Expert System in order to elucidate i-AI.

Brake   FMFSensor Awareness FMF GPS spacetime FMF=Experience  σ( stop  )        MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFcbGaa8NCaiaa=fgacaWFRbGaa8xzaiaa=bkacaWF GcGaa8hOaiaa=zeacaWFnbGaa8NraiablMIijjaa=nfacaWFLbGaa8 NBaiaa=nhacaWFVbGaa8NCaiaa=bkacaWFbbGaa83Daiaa=fgacaWF YbGaa8xzaiaa=5gacaWFLbGaa83Caiaa=nhacaWFGcGaa8Nraiaa=1 eacaWFgbGaeSykIKKaaiiOaiaa=DeacaWFqbGaa83uaiaa=bkacaWF ZbGaa8hCaiaa=fgacaWFJbGaa8xzaiabgkHiTiaa=rhacaWFPbGaa8 xBaiaa=vgacaWFGcGaa8Nraiaa=1eacaWFgbGaeyypa0Jaa8xraiaa =HhacaWFWbGaa8xzaiaa=jhacaWFPbGaa8xzaiaa=5gacaWFJbGaa8 xzaiaa=bkacaWFGcGaeq4Wdm3aaeWaa8aabaWdbiaa=nhacaWF0bGa a83Baiaa=bhacaWFGcaacaGLOaGaayzkaaGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaaaa@8380@

Review of fuzzy membership function, which is an open set and cannot be normalized as the probability but a possibility (Figure 10). UC Berkeley Prof. Lotfi Zadeh passed away at the age of 95 years old and Walter Freeman at age 89. To them, 80 may be “young.” Likewise, the “beauty” is in the eye of beholder. According to the Greek mythology of Helen of Troy, has sunk thousand ships, and Egypt Cleopatra hundred ships and Bible Eva one ship (Noah Arc) (Figure 11). Consequently, the car will drive through slowly when the red light happens at the mid night in desert and without incoming cars. Such an RB becomes flexible as EBES. To show that this replacing RB with EBES is a natural improvement of AI in the remaining paper. This explains a driverless car that will turn the rule stopping at red light to be gliding over the red light when no incoming car at mid light in desert.10–16

Figure 9 Artificial Neural Networks (ANN) needs multiple layers known as Deep Learning8,9 (a) Left panel shows that while a single layer of Artificial Neural Network can simply be a linear classifier, the right panel shows the dendrite net giving rise to the linear classifier equation after the sigmoid threshold.

Figure 10 Young membership is not well defined: Young (17 to 65).

Figure 11The utility of FMF logic is Boolean Logic of Union MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHQicYaaa@37B7@ & Intersection MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHPiYXaaa@37B5@  of open set Fuzzy Membership Functions (FMF) which cannot be normalized as the probability. The Boolean logic is sharp, not fuzzy. Unfortunately, the shortened “Fuzzy (membership function) Logic” as “Fuzzy Logic” is a misnomer. Logic cannot be fuzzy, but the set can be open set as all possibilities. Szu has advocated a bifurcation of chaos (advocated first by Walter Freeman in human brains with Bob Kozma) as a learnable FMF, making the deterministic Chaos as the learnable dynamics of FMF (cf. Max Planck: ResearcGate.net).

Conclusion

We demonstrate an application of Lotfi Zadeh fuzzy membership function of two states “beauty or not” (Figure 12). In summary, Russian Mathematician G Cybenko2 has proved “Approximation by Superposition of a Sigmoidal Functions,” Math. Control Signals Sys. (1989)2:303-314. Similarly, Kolmogorov AN3 has given “On the representation of continuous functions of many variables by superposition of continuous function of one variable and addition,”Dokl. Akad. Nauk, SSSR, 114(1957), 953-956. The two state normalization in the Maxwell-Boltzmann phase space distributions is derived to be equivalent to an ion-current diffusion equation, as proposed first ad-hoc-ly by Walter Freeman. By means of the Hopf transform, we can be applied to the sigmoid threshold logic, which turns out to be fuzzy membership function (FMF) of beauty or not. We have illustrated the two states normalization.

Figure 12 Beauty Fuzzy Logic Membership Function turns out to sigmoid. Since the beauty is in the eyes of beholder, then it follows two state beauty or not in terms of Maxwell-Boltzmann phase space distribution and derived the sigmoid function, Eq.(5).

Acknowledgement

ONR Grant Award Number N00014-17-1-2597.

Conflict of interests

Authors declare that there is no conflict of interest.

References

  1. Warren S, McCulloch, Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics. 1943;5(4):115–1339.
  2. Cybenko G. Approximation by Superposition of a Sigmoid Functions. Math Control Signals Sys. 1989;2:303–314.
  3. Kolmogorov N. On the representation of continuous functions of many variables by superposition of continuous function of one variable and addition. Dokl Akad Nauk SSSR. 1957;114(5):953–956.
  4. Donald O Hebb. The Organization of Behavior: A Neuropsychological theory. New York: Wiley and Sons; 1949.
  5. DARPA call for explainable AI or XAI Website, 2017-2020 $10M.
  6. ONR call 6.1 AI proposal website, 2018-2021 $10M.
  7. We know there’re out there. New Scientist Weekly March. 2016:19–25.
  8. When will we get there” Science V. 358, 15 Dec 2017.
  9. Hinton G, Lecun Y, Bengio Y. Deep learning. Nature. 2015.
  10. James McCelland, David Rumelhart. Backprop. Book MIT Press; 1986. p. 1.
  11. Soo-Young Lee, Harold Szu. Design of Smartphone Capturing Subtle Emotional Behavior. MOJ App Bio Biomech. 2017;1(2):1–10.
  12. Lipmann RK. Introduction to computing with neural nets. IEEE ASSP Magazine. 1987.
  13. Harold Szu, Mike Wardlaw, Jeff Willey, et al. Theory of glial cells & neurons emulating biological neural networks (bnn) for natural intelligence (ni) operated effortlessly at a minimum free energy (mfe). MOJ App Bio BioMech. 2017;1(1):1–26.
  14. Harold Szu, Gyu Moon. How to avoid DAD? MOJ App Bio BioMech. 2018;2(2):43–58.
  15. http://ica-wavelet.net
  16. Ronald J Fox. Construction of the Jordan basis for the Baker map. Chaos; 1997;7:254.
Creative Commons Attribution License

© . This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.