Submit manuscript...
Journal of
eISSN: 2373-633X

Cancer Prevention & Current Research

Opinion Volume 9 Issue 3

Simulating cancer cell growth and effect of chemotherapy on cancer cells

Saeid Parsa

Retired researcher, Materials and energy research center, Iran

Correspondence: Saeid Parsa, Material and Energy Research Center, Tehran, I.R. Iran

Received: April 04, 2018 | Published: May 11, 2018

Citation: Parsa S. Simulating cancer cell growth and effect of chemotherapy on cancer cells. J Cancer Prev Curr Res. 2018;9(3):104-105. DOI: 10.15406/jcpcr.2018.09.00330

Download PDF

Abstract

In order to simulate cancer growth rate, travelling wave migration effects and effects of chemotherapy on given initial number of cancer cells, the following calculations have been done to estimate the effectiveness of the dosage of chemotherapy. Using this method any appropriate function could be used to estimate cancer growth, cancer travelling wave migration and chemotherapy.

Keywords: growth rate, travelling wave migration, chemotherapy

Method of calculations

Cancer cell growth, and effect of different treatments on cancer tumors, is mainly effected by many functions; growth function, migration wave function, chemotherapy function, and radiotherapy function. To treat cancer patients depending where the tumor is, the tumor removed by operation and radiotherapy is performed and if necessary chemotherapy is done.

Cancer cells growth function

Cancer cells growth is given by following equation.1

The number of grown cancer cells =N0*exp(ln(Nmax/N0)*(1-exp(-ln(4)*i))), i=1,…..,number of days,

Where: N0=estimated initial cancer cells per area under investigation.

Nmax=maximum of cells in the area.

The table below is indicating the growth of cancer cells during five days with the given initial cancer cells to start with:

The below table is written for five days and the average value is also calculated.

10

15

20

25

30

35

40

45

50

55

60

65

70

میانگین

0.31623

0.4743416

0.37606

0.397635

0.416179

0.4325308

0.447214

0.460578

0.472871

0.48427

0.49492

0.50493

0.514369

0.43272

0.74989

0.7691405

0.783095

0.794093

0.803193

0.810969

0.817765

0.823808

0.834205

0.8342

0.83875

0.84296

0.84296

0.80451

0.93057

0.9364863

0.940705

0.943991

0.946684

0.9489669

0.950949

0.952701

0.95427

0.95569

0.95699

0.95819

0.95819

0.94678

0.98217

0.9837287

0.984835

0.985694

0.986396

0.987505

0.987505

0.987959

0.988366

0.98873

0.98907

0.98938

0.989666

0.98647

0.99551

0.9959071

0.996187

0.996404

0.996581

0.9967315

0.996862

0.996976

0.997079

0.99717

0.99726

0.99733

0.997406

0.99659

The below table shows normalized mean for each day multiplied by number of cells and accumulated to give the total number of cells at the end of five day periods.

Day

Mean normalized

Number of cancer cells=10

Number of cancer cells=100

Number of cancer cells=1000

Number of cancer cells=10000

1

0.103842275

11.03842275

110.3842275

1103.842275

11038.42275

2

0.193064018

12.96906294

129.6906294

1296.906294

12969.06294

3

0.22720584

15.24112134

152.4112134

1524.112134

15241.12134

4

0.236729293

17.60841427

176.0841427

1760.841427

17608.41427

5

0.239158573

20

200

2000

20000

sum of cells after five days

76.8570213

768.570213

7685.70213

76857.0213

In order to investigate the effectiveness of chemotherapy the following formula is introduced by reference.1

Number of effected cells by chemotherapy=number of effected cells*exp (-BSA).

The body surface area (BSA) is the measured or calculated surface area of a human body. For many clinical purposes BSA is a better indicator of metabolic mass than body weight because it is less affected by abnormal adipose mass. Nevertheless, there have been several important critiques of the use of BSA in determining the dosage of medications with a narrow therapeutic index, such as chemotherapy.

Different formula is suggested for calculation of BSA which is tabulated in Table 1. The following formula is used during our calculations.

Authors

Formula

Meeh (1879)

0.1053 ⋅ W2/3

DuBois & DuBois (1916)

0.007184 W 0.425 H 0.725 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaG4naiaaigdacaaI4aGa aGinaiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGinaiaaikdacaaI1aaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI3aGaaGOmaiaaiwdaaaaaaa@54CB@

Faber & Melcher (1921)

0.00785 W 0.425 H 0.725 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaG4naiaaiIdacaaI1aGa aGPaVlabgwSixlaaykW7caWGxbqcfa4damaaCaaaleqabaqcLbmape GaaGimaiaac6cacaaI0aGaaGOmaiaaiwdaaaqcLbsacaaMc8UaeyyX ICTaaGPaVlaadIeajuaGpaWaaWbaaSqabeaajugWa8qacaaIWaGaai OlaiaaiEdacaaIYaGaaGynaaaaaaa@5411@

Takahira (1925)

0.007246 W 0.425 H 0.725 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaG4naiaaikdacaaI0aGa aGOnaiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGinaiaaikdacaaI1aaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI3aGaaGOmaiaaiwdaaaaaaa@54CA@

Breitmann (1932)

0.0087 ⋅ (W + H) − 0.26

Boyd (1935)

0.0003207 (W1000) 0.72850.0188 log 10 (W1000) H 0.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaiodacaaIYaGa aGimaiaaiEdacaaMc8UaeyyXICTaaGPaV=aacaGGOaWdbiaadEfaca aMc8UaeyyXICTaaGPaVlaaigdacaaIWaGaaGimaiaaicdapaGaaiyk aKqbaoaaCaaaleqabaqcLbmapeGaaGimaiaac6cacaaI3aGaaGOmai aaiIdacaaI1aGaaGPaVlabgkHiTiaaykW7caaIWaGaaiOlaiaaicda caaIXaGaaGioaiaaiIdacaaMc8oaaKqba+aadaahaaWcbeqaaKqzGe WdbiabgwSixlaaykW7caWGSbGaam4BaiaadEgaaaqcfa4damaaBaaa leaajugib8qacaaIXaGaaGimaaWcpaqabaqcfa4aaWbaaSqabeaaju gWaiaacIcapeGaam4vaiaaykW7cqGHflY1caaMc8UaaGymaiaaicda caaIWaGaaGima8aacaGGPaaaaKqzGeWdbiaaykW7cqGHflY1caaMc8 UaamisaKqba+aadaahaaWcbeqaaKqzadWdbiaaicdacaGGUaGaaG4m aaaaaaa@8013@

Stevenson (1937)

0.0128 ⋅ W + 0.0061 ⋅ H − 0.1529

Sendroy & Cecchini (1954)

0.0097 ⋅ (W + H) − 0.545

Banerjee & Sen (1955)

0.007466 W 0.425 H 0.725 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaG4naiaaisdacaaI2aGa aGOnaiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGinaiaaikdacaaI1aaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI3aGaaGOmaiaaiwdaaaaaaa@54CE@

Choi (1956)

men: 0.005902 W 0.407 H 0.776 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGynaiaaiMdacaaIWaGa aGOmaiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGinaiaaicdacaaI3aaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI3aGaaG4naiaaiAdaaaaaaa@54CD@
women: 0.008692 W 0.442 H 0.678 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGioaiaaiAdacaaI5aGa aGOmaiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGinaiaaisdacaaIYaaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI2aGaaG4naiaaiIdaaaaaaa@54D6@

Mehra (1958)

0.01131 W 0.4092 H 0.6468 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIXaGaaGymaiaaiodacaaIXaGa aGPaVlabgwSixlaaykW7caWGxbqcfa4damaaCaaaleqabaqcLbmape GaaGimaiaac6cacaaI0aGaaGimaiaaiMdacaaIYaaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI2aGaaGinaiaaiAdacaaI4aaaaaaa@5585@

Banerjee & Bhattacharya (1961)

0.007 W 0.425 H 0.725 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaG4naiaaykW7cqGHflY1 caaMc8Uaam4vaKqba+aadaahaaWcbeqaaKqzadWdbiaaicdacaGGUa GaaGinaiaaikdacaaI1aaaaKqzGeGaaGPaVlabgwSixlaaykW7caWG ibqcfa4damaaCaaaleqabaqcLbmapeGaaGimaiaac6cacaaI3aGaaG Omaiaaiwdaaaaaaa@5290@

Fujimoto et al. (1968)

0.008883 W 0.444 H 0.663 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGioaiaaiIdacaaI4aGa aG4maiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGinaiaaisdacaaI0aaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI2aGaaGOnaiaaiodaaaaaaa@54D4@

Gehan & George (1970)

0.0235 W 0.51456 H 0.42246 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIYaGaaG4maiaaiwdacaaMc8Ua eyyXICTaaGPaVlaadEfajuaGpaWaaWbaaSqabeaajugWa8qacaaIWa GaaiOlaiaaiwdacaaIXaGaaGinaiaaiwdacaaI2aaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG imaiaac6cacaaI0aGaaGOmaiaaikdacaaI0aGaaGOnaaaaaaa@5643@

Haycock et al. (1978)

0.024265 W 0.5378 H 0.3964 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIYaGaaGinaiaaikdacaaI2aGa aGynaiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGynaiaaiodacaaI3aGaaGioaaaajugi biaaykW7cqGHflY1caaMc8UaamisaKqba+aadaahaaWcbeqaaKqzad WdbiaaicdacaGGUaGaaG4maiaaiMdacaaI2aGaaGinaaaaaaa@5652@

Mosteller (1987)

  ( WH/3600 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaakaaake aajuaGdaqadaGcbaqcLbsacaWGxbGaeyyXICTaamisaiaac+cacaaI ZaGaaGOnaiaaicdacaaIWaaakiaawIcacaGLPaaaaSqabaaaaa@40F0@

Mattar (1989)

(W + H − 60)/100

Nwoye (1989)

0.001315 W 0.262 H 1.2139 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaiodacaaIXaGa aGynaiaaykW7cqGHflY1caaMc8Uaam4vaKqba+aadaahaaWcbeqaaK qzadWdbiaaicdacaGGUaGaaGOmaiaaiAdacaaIYaaaaKqzGeGaaGPa VlabgwSixlaaykW7caWGibqcfa4damaaCaaaleqabaqcLbmapeGaaG ymaiaac6cacaaIYaGaaGymaiaaiodacaaI5aaaaaaa@557C@

Shuter & Aslani (2000)

0.00949 W 0.441 H 0.655 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGyoaiaaisdacaaI5aGa aGPaVlabgwSixlaaykW7caWGxbqcfa4damaaCaaaleqabaqcLbmape GaaGimaiaac6cacaaI0aGaaGinaiaaigdaaaqcLbsacaaMc8UaeyyX ICTaaGPaVlaadIeajuaGpaWaaWbaaSqabeaajugWa8qacaaIWaGaai OlaiaaiAdacaaI1aGaaGynaaaaaaa@5413@

Livingston & Lee (2001)

0.1173 W 0.6466 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaigdacaaIXaGaaG4naiaaiodacaaMc8Ua eyyXICTaaGPaVlaadEfajuaGpaWaaWbaaSqabeaajugWa8qacaaIWa GaaiOlaiaaiAdacaaI0aGaaGOnaiaaiAdaaaaaaa@47A8@

Tikuisis (2001)

men: 0.01281 W 0.44 H 0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIXaGaaGOmaiaaiIdacaaIXaGa aGPaVlabgwSixlaaykW7caWGxbqcfa4damaaCaaaleqabaqcLbmape GaaGimaiaac6cacaaI0aGaaGinaaaajugibiaaykW7cqGHflY1caaM c8UaamisaKqba+aadaahaaWcbeqaaKqzadWdbiaaicdacaGGUaGaaG Onaaaaaaa@51D0@
women: 0.01474 W 0.47 H 0.55 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIXaGaaGinaiaaiEdacaaI0aGa aGPaVlabgwSixlaaykW7caWGxbqcfa4damaaCaaaleqabaqcLbmape GaaGimaiaac6cacaaI0aGaaG4naaaajugibiaaykW7cqGHflY1caaM c8UaamisaKqba+aadaahaaWcbeqaaKqzadWdbiaaicdacaGGUaGaaG ynaiaaiwdaaaaaaa@5295@

Nwoye & Al-Sheri (2003)

0.02036 W 0.427 H 0.516 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIYaGaaGimaiaaiodacaaI2aGa aGPaVlabgwSixlaaykW7caWGxbqcfa4damaaCaaaleqabaqcLbmape GaaGimaiaac6cacaaI0aGaaGOmaiaaiEdaaaqcLbsacaaMc8UaeyyX ICTaaGPaVlaadIeajuaGpaWaaWbaaSqabeaajugWa8qacaaIWaGaai OlaiaaiwdacaaIXaGaaGOnaaaaaaa@5408@

Yu, Lo, Chiou (2003)

0.015925 (WH) 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIXaGaaGynaiaaiMdacaaIYaGa aGynaiaaykW7cqGHflY1caaMc8+daiaacIcapeGaam4vaiaaykW7cq GHflY1caaMc8Uaamisa8aacaGGPaqcfa4aaWbaaSqabeaajugWa8qa caaIWaGaaiOlaiaaiwdaaaaaaa@4E8C@

Schlich (2010)

men: 0.000579479 W 0.38 H 1.24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaiwdacaaI3aGa aGyoaiaaisdacaaI3aGaaGyoaiaaykW7cqGHflY1caaMc8Uaam4vaK qba+aadaahaaWcbeqaaKqzadWdbiaaicdacaGGUaGaaG4maiaaiIda aaqcLbsacaaMc8UaeyyXICTaaGPaVlaadIeajuaGpaWaaWbaaSqabe aajugWa8qacaaIXaGaaiOlaiaaikdacaaI0aaaaaaa@5593@
women: 0.000975482 W 0.46 H 1.08 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaiMdacaaI3aGa aGynaiaaisdacaaI4aGaaGOmaiaaykW7cqGHflY1caaMc8Uaam4vaK qba+aadaahaaWcbeqaaKqzadWdbiaaicdacaGGUaGaaGinaiaaiAda aaqcLbsacaaMc8UaeyyXICTaaGPaVlaadIeajuaGpaWaaWbaaSqabe aajugWa8qacaaIXaGaaiOlaiaaicdacaaI4aaaaaaa@558E@

Yu, Lin, Yang (2010)

0.00713989 W 0.404 H 0.7437 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaG4naiaaigdacaaIZaGa aGyoaiaaiIdacaaI5aGaaGPaVlabgwSixlaaykW7caWGxbqcfa4dam aaCaaaleqabaqcLbmapeGaaGimaiaac6cacaaI0aGaaGimaiaaisda aaqcLbsacaaMc8UaeyyXICTaaGPaVlaadIeajuaGpaWaaWbaaSqabe aajugWa8qacaaIWaGaaiOlaiaaiEdacaaI0aGaaG4maiaaiEdaaaaa aa@570E@

Table 1 Body Surface Area formulae used for the comparison.
W indicates weight in kilograms, and H indicates height in centimeters.

Schlich (2010) men: women:

W=patient weight in kilogram.

H=patient height in centimeters.

Simulating the cancer growth and migration with following initial values will give the following results:

N0=initial cancer growth cells=100

Nmax=20000

Body surface area=2.21

Weight =106kg

Height=178cm

N3 =initial number of migration cells=10 cells

The below table indicates the number of effected cells by chemotherapy:

Number of cells after chemotherapy

169.85402

1698.54

16985

169854

A given BSA=2.196653612

168.828

1688.28

16883

168828

Of course there is another problem associated to traveling wave function which is the rate of migration of cancer cells from main organ to other organs. This migration is usually associated to blood circulation and Lymphatic system.

U = 1 4 ( e x + e x ) + e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGvbWdayaafaWdbiabg2da9Kqbaoaalaaak8aabaqcLbsa peGaaGymaaGcpaqaaKqzGeWdbiaaisdaaaqcfa4aaeWaaOWdaeaaju gib8qacaWGLbqcfa4damaaCaaaleqabaqcLbmapeGaeyOeI0IaamiE aaaajugibiabgUcaRiaadwgajuaGpaWaaWbaaSqabeaajugWa8qaca WG4baaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGLbqcfa4damaa CaaaleqabaqcLbmapeGaeyOeI0IaamiEaaaaaaa@4F8F@ U = 1 4 ( e x 3 e x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGvbGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIXaaa k8aabaqcLbsapeGaaGinaaaajuaGdaqadaGcpaqaaKqzGeWdbiaadw gajuaGpaWaaWbaaSqabeaajugWa8qacaWG4baaaKqzGeGaeyOeI0Ia aG4maiaadwgajuaGpaWaaWbaaSqabeaajugWa8qacqGHsislcaWG4b aaaaGccaGLOaGaayzkaaaaaa@49DF@ N 3 = n u m b e r   m i g r a t i n g   c e l l s . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGobWcpaWaaSbaaeaajugWa8qacaaIZaaal8aabeaajugi b8qacqGH9aqpcaWGUbGaamyDaiaad2gacaWGIbGaamyzaiaadkhaca GGGcGaamyBaiaadMgacaWGNbGaamOCaiaadggacaWG0bGaamyAaiaa d6gacaWGNbGaaiiOaiaadogacaWGLbGaamiBaiaadYgacaWGZbGaai Olaaaa@511F@ x = B o d y   s u r f a c e   a r e a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGaeyypa0JaamOqaiaad+gacaWGKbGaamyEaiaaccka caWGZbGaamyDaiaadkhacaWGMbGaamyyaiaadogacaWGLbGaaiiOai aadggacaWGYbGaamyzaiaadggaaaa@48C1@

U, traveling wave function value=

2.19665

Number of cancer cells

Number of migration

10

21.9665

100

219.665

1000

2196.65

10000

21966.5

According to growth of cancer cells and BSA the physician has to prescribe the chemotherapy. Body Surface Area formulae used for the comparison. W indicates weight in kilograms, and H indicates height in centimeters. Dose = Weight * SeverityFactor * RenalFactor Iron Replacement (parenteral dosing) for Iron Deficiency Dose = 0.3 * Weight * (100 - (Hgb * 100) / AgeFactor)

Radiation therapy

Radiotherapy uses high energy radiation to shirink tumor and kills cancer cells. X-rays, gamma rays, and particles are types of radiations used for cancer treatment. The radiation may be delivered by a machine outside the body, or it may come from radioactive sources situated near the cancer tumor, or it may be given in form of oral medications to patients and x-ray treatment is then used, depending where is the body the tumor cancer is located.

Radiotherapy kills cancer cells by damaging their DNA and therefore cells, cancer cells whose DNA is damaged beyond repair stop dividing or die, when the damage cells die, they are broken down and eliminated by the bodies natrual process, radiation therapy can also damage normal cells, making the patient ill in some cases. In order to find the right position near the cancer tumor and its surroundings cells, depending on the organ the proper scan; CT scan, MRI, PET scan or sonography. After simulation, placing the cancer tumor area. Amount radiotherapy dose is determined and treatment is started and required dose is delivered to the cancer tumor.

Chemotherapy

Chemotherapy is done through blood transfusion using different medicine during period of time depending on cancer spration and its location.

Acknowledgements

None.

Conflict of interest

Author declare there is no conflict of interest in publishing the article

References

Creative Commons Attribution License

©2018 Parsa. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.