Submit manuscript...
Journal of
eISSN: 2473-0831

Analytical & Pharmaceutical Research

Research Article Volume 12 Issue 1

QSAR studies on a series of biphenyl carboxamide analogues for analgesic activity

Anju Chouhan,1 Bashirulla Shaik,2 Izhar Ahmad,2 Vijay K Agrawal1,3

1Department of Chemistry, APS University, Rewa-486003, India
2Department of Applied Science, National Institute of Technical Teachers Training and Research, Bhopal, India
3Vice-Chancellor, RKDF University, Bhopal, India

Correspondence: Bashirulla Shaik, Department of Applied Science, National Institute of Technical Teachers Training and Research, Shamla Hills, Bhopal, India

Received: February 23, 2023 | Published: April 26, 2023

Citation: Chouhan A, Shaik B, Ahmad I, et al. QSAR studies on a series of biphenyl carboxamide analogues for analgesic activity. J Anal Pharm Res. 2023;12(1):51-58. DOI: 10.15406/japlr.2023.12.00423

Download PDF

Abstract

Anti-inflammatory medicines are frequently used to treat inflammation-related conditions such as rheumatoid arthritis and osteoarthritis as well as pain, fever, and other symptoms. In the present case quantitative structure activity relationship studies have been performed on a series of biphenyl carboxamide analogs acting as anti-inflammatory drugs. The biological activity in terms of logBA has been modeled for the twenty-five biphenyl carboxamide derivatives. Multiple linear regression analysis revealed a statistically significant model comprising of two variables to be the best. The R2 value for the training set model comes out to be 0.800. The predicted R2 comes out to be 0.7217 suggesting that the two variable model is good. The model will help to design some novel biphenyl carboxamides with potent analgesic activity.

Keywords: biphenyl carboxamide derivatives, analgesic activity, QSAR studies, topological descriptors

Introduction

Analgesics, which work on the peripheral or central nerve systems to relieve pain, include paracetamol (acetaminophen), nonsteroidal anti-inflammatory drugs (NSAIDs), salicylates, aryl acetic acids, anthranilic acid derivatives, and propionic acid derivatives. When choosing analgesics, the degree and type of pain, such as neuropathic pain, are taken into account. The WHO pain ladder, which was primarily created for pain due to cancer, is frequently used to locate suitable analgesics in a stepwise manner.1

Although the exact mechanism of action of paracetamol/acetaminophen is uncertain, it appears that it acts on the brain's nerve terminals rather than the peripheral nervous system. By inhibiting cyclooxygenases, aspirin and other nonsteroidal anti-inflammatory medications (NSAIDs) reduce the generation of prostaglandins. This reduces inflammation and pain. Both paracetamol and aspirin have one aromatic center and one carboxyl group center as a pharmacophoric characteristics.2-5

Overdosing on paracetamol can result in serious, potentially fatal liver and kidney damage despite the drug's generally low risk of side effects.6-8 Non-steroidal anti-inflammatory drugs can raise the risk of hemorrhage by impairing platelet function, which increases the risk of hemorrhage as well as peptic ulcers, renal failure, allergic reactions, and hearing loss. It had been postulated that the ulceration was brought on by the presence of carboxyl group function.9,10

There are two biphenyl analgesics on the market: flurbiprofen and diflunisal. Diflunisal inhibits the synthesis of prostaglandins,11 whilst flurbiprofen lessens the hormone that fuels the body's inflammatory and pain-producing processes. The anti-inflammatory, antimicrobial, insecticidal, antidiabetic, cytotoxic, leishmanicidal, trypanocidal, and antimycobacterial activities of biphenyl-4-carboxylic acid have been demonstrated.12-17

In the past, pharmacophore modelling, docking, and 3D QSARs9,10 have all been used to study biphenyl drugs. The typical structure seen in the majority of non-steroidal anti-inflammatory drugs included one acidity center and two aromatic ring centers as a pharmacophoric component. The cause of non-steroidal anti-inflammatory drugs ulcerogenic was also shown to be a carboxyl group or any other sour center. Recently, it has been found that nonacidic compounds, such as carboxyl groups, are potent NSAIDs.

COX-2 inhibitors have been created as a result of the addition of a third aromatic center for almost 20 years. Recently, rofecoxib and valdecoxib were taken off the market due to reports of adverse cardiovascular consequences. As a result, the molecule interacted with additional biological receptors as a result of the inclusion of a third aromatic core, having negative side effects. Prasanna Datar et al.18 have synthesized and assessed the analgesic effect of biphenyl carboxamide in order to examine the analgesic activity of compounds containing a biphenyl nucleus replaced with a carboxamide linkage at position 2.

Material and methods

Shah et al.19 reported twenty-five substituted significant analogues of flurbiprofen [4'-methylbiphenyl-2-(substituted phenyl) carboxamide derivatives] for anti-inflammatory properties were selected for this study. The activity of these molecules was reported by Shah et al.,19 as the percent inhibition required to inhibit carrageenan-induced rat paw edema. The activity was transformed into a logarithmic value (logBA).

A Series of twenty-five biphenyl carboxamide derivatives were taken from the literature.19 The molecular structures of all 25 compounds were drawn using Chem sketch software developed by Advance chemistry development20 and these structures were reported in Table 1. The energy minimization of these structures was done using the MM994X force field. Table 1 also records the logBA values of these compounds. Five thousand six hundred sixty-five descriptors, including 0D, 1D, 2D, and 3D, were calculated using Alva descriptor software.21 Among thousands of descriptors, only those descriptors are listed in Table 1, which are found to be suitable and to govern the activity of the compounds are as below:

H0e =     H autocorrelation of lag0 / weighted by Sanderson electronegativity     

DISPs     = displacement value / weighted by I-state  

Depressant-80 (IP1) = Ghose-Viswanadhan-Wendoloski antidepressant-like index at 80%

Results and discussion

For QSAR studies, 80 percent of the compounds (20 compounds) were randomly selected as the training set from a total data set of 25 compounds, and these compounds were used for QSAR model development. The remaining 20% (5 compounds) were used to estimate the predictability of the developed QSAR model. The test set compounds are marked with a "*" in Table 1.

Compd. No.

Structure

H0e

DISPs

IP1

Obsd.

logBA Pred. by
eq.1

Δ

Pred. LOO

1

2.85

0.37

1

1.21

1.35

0.14

1.36

2

2.84

0.36

0

1.50

1.46

-0.04

1.45

3

2.88

0.36

1

1.29

1.35

0.06

1.35

4*

3.03

0.34

1

1.55

1.34

-0.22

-

5

3.07

0.76

0

1.57

1.67

0.10

1.71

6

2.81

0.15

1

1.20

1.24

0.04

1.25

7

3.16

0.75

0

1.64

1.66

0.02

1.67

8

3.08

0.86

1

1.61

1.61

-0.01

1.61

9

3.02

0.66

1

1.60

1.50

-0.10

1.49

10

2.95

0.31

0

1.55

1.44

-0.11

1.41

11

2.93

0.28

1

1.25

1.30

0.06

1.31

12

2.92

0.34

1

1.34

1.34

-0.01

1.34

13

2.90

0.40

1

1.47

1.37

-0.10

1.36

14

2.90

0.40

1

1.40

1.37

-0.03

1.37

15

2.89

0.32

1

1.34

1.32

-0.02

1.32

16*

2.94

0.47

1

1.49

1.41

-0.08

-

17

3.11

0.93

1

1.61

1.64

0.03

1.65

18

2.97

0.34

1

1.38

1.34

-0.04

1.33

19

2.88

0.36

1

1.29

1.35

0.06

1.35

20

2.88

0.36

1

1.38

1.35

-0.03

1.35

21

3.04

0.78

1

1.62

1.56

-0.05

1.55

22

2.95

0.31

0

1.42

1.44

0.02

1.45

23*

2.98

0.31

1

1.60

1.32

-0.28

-

24*

2.98

0.31

1

1.52

1.32

-0.20

-

25*

2.87

0.28

0

1.41

1.42

0.01

-

Table 1 A series of biphenyl carboxamide analogues and their biological activities
IP1= depressant-80; Δ, residual values

Multiple linear regression analysis was performed using NCSS software22 on the training set compounds to establish a correlation between observed logBA and the various calculated descriptors of the compounds. The most significant correlation consisting of two variables is given below.

logBA= -0.1158(±0.0758) DSIPs-0.1158(±0.0758) Depressant 80+ 1.2762   (1)

N=20, r 2 = 0.8000, r 2 adj =0.7765, S =0.0693,F=34.0007, r 2 cv =0.7217, r 2 pred =0.7626, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGobGaeyypa0JaaGOmaiaaicdacaGGSaGaaGPaVlaaykW7 caWGYbGcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaeyypa0 JaaeiiaiaaicdacaGGUaGaaGioaiaaicdacaaIWaGaaGimaiaacYca caaMc8UaaGPaVlaadkhal8aadaahaaqabeaajugWa8qacaaIYaaaaS WdamaaBaaabaqcLbmapeGaamyyaiaadsgacaWGQbaal8aabeaajugi b8qacqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI3aGaaGOnaiaaiwdaca GGSaGaaeiiaiaadofacaqGGaGaeyypa0JaaGimaiaac6cacaaIWaGa aGOnaiaaiMdacaaIZaGaaiilaiaaykW7caaMc8UaamOraiabg2da9i aaiodacaaI0aGaaiOlaiaaicdacaaIWaGaaGimaiaaiEdacaGGSaGa aGPaVlaaykW7caWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8 aadaWgaaqaaKqzadWdbiaadogacaWG2baal8aabeaajugib8qacqGH 9aqpcaaIWaGaaiOlaiaaiEdacaaIYaGaaGymaiaaiEdacaGGSaGaaG PaVlaaykW7caWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aa daWgaaqaaKqzadWdbiaadchacaWGYbGaamyzaiaadsgaaSWdaeqaaK qzGeWdbiabg2da9iaaicdacaGGUaGaaG4naiaaiAdacaaIYaGaaGOn aOGaaiilaaaa@9060@

In the above eq. (1) the symbols n denotes the number of data points used in the correlation, r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbGcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaaa@3AF4@ is the square of the correlation coefficient, r 2 cv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadogacaWG2baal8aabeaaaaa@3E60@ is the square of the cross-validated correlation coefficient obtained by the leave-one-out (LOO) Jackknife procedure, and r 2 pred MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadchacaWGYbGaamyzaiaadsgaaSWdaeqaaaaa@403C@ is the square of correlation coefficient obtained for test set compounds to judge the external validity of the correlation. Using the equations (2) and (3), the values of r 2 cv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadogacaWG2baal8aabeaaaaa@3E60@ and r 2 pred MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadchacaWGYbGaamyzaiaadsgaaSWdaeqaaaaa@403C@ are calculated respectively, where y i,obsd  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG5bWcpaWaaSbaaeaajugWa8qacaWGPbGaaiilaiaad+ga caWGIbGaam4CaiaadsgacaGGGcaal8aabeaaaaa@40CC@ in eq. (2) refers to the observed activity of compound in the training set and that in eq.(3) to compound  in the test set. Similarly, y i , pred MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG5bWcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaajugW a8qacaGGSaWcpaWaaSbaaeaajugWa8qacaWGWbGaamOCaiaadwgaca WGKbaal8aabeaaaaa@427C@ in eq.(2) refers to the predicted activity of compound  in the training set obtained in the leave-one-out Jackknife procedure and that in eq.(3) to that predicted for the test set compounds by the model obtained in the training set. However, y av , obsd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG5bWcpaWaaSbaaeaajugWa8qacaWGHbGaamODaaWcpaqa baqcLbmapeGaaiilaSWdamaaBaaabaqcLbmapeGaam4Baiaadkgaca WGZbGaamizaaWcpaqabaaaaa@436C@  in the equations refers to the average activity of the training set compound.

r 2 cv = 1 [ Σ i ( y i , obsd   y i , pred ) 2 /  Σ i ( y i , obsd   y av , obsd ) 2 ]           MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadogacaWG2baal8aabeaajugib8qacqGH9aqpca qGGaGaaGymaiaabccacqGHsislpaGaai4wa8qacqqHJoWul8aadaWg aaqaaKqzadWdbiaadMgaaSWdaeqaaOWaaeWaaeaajugib8qacaWG5b WcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaajugWa8qacaGGSaWc paWaaSbaaeaajugWa8qacaWGVbGaamOyaiaadohacaWGKbaal8aabe aajugib8qacqGHsislcaqGGaGaamyEaSWdamaaBaaabaqcLbmapeGa amyAaaWcpaqabaqcLbmapeGaaiilaSWdamaaBaaabaqcLbmapeGaam iCaiaadkhacaWGLbGaamizaaWcpaqabaaakiaawIcacaGLPaaalmaa CaaabeqaaKqzadWdbiaaikdaaaqcLbsacaGGVaGaaeiiaiabfo6atT WdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaGcdaqadaqaaKqzGeWd biaadMhal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqzadWdbi aacYcal8aadaWgaaqaaKqzadWdbiaad+gacaWGIbGaam4Caiaadsga aSWdaeqaaKqzGeWdbiaacobicaqGGaGaamyEaSWdamaaBaaabaqcLb mapeGaamyyaiaadAhaaSWdaeqaaKqzadWdbiaacYcal8aadaWgaaqa aKqzadWdbiaad+gacaWGIbGaam4CaiaadsgaaSWdaeqaaaGccaGLOa GaayzkaaWcdaahaaqabeaajugWa8qacaaIYaaaaKqzGeWdaiaac2fa peGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaOGaai iOaiaacckacaGGGcaaaa@93B5@   (2)

r 2 pred = 1 [ Σ i ( y i , obsd   y i,pred ) 2 /  Σ i ( y i,obsd   y av , obsd ) 2 ]              MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadchacaWGYbGaamyzaiaadsgaaSWdaeqaaKqzGe Wdbiabg2da9iaabccacaaIXaGaaeiiaiabgkHiT8aacaGGBbWdbiab fo6atTWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaGcdaqadaqaaK qzGeWdbiaadMhal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz adWdbiaacYcal8aadaWgaaqaaKqzadWdbiaad+gacaWGIbGaam4Cai aadsgaaSWdaeqaaKqzGeWdbiabgkHiTiaabccacaWG5bWcpaWaaSba aeaajugWa8qacaWGPbGaaiilaiaadchacaWGYbGaamyzaiaadsgaaS WdaeqaaaGccaGLOaGaayzkaaWcdaahaaqabeaajugWa8qacaaIYaaa aKqzGeGaai4laiaabccacqqHJoWul8aadaWgaaqaaKqzadWdbiaadM gaaSWdaeqaaOWaaeWaaeaajugib8qacaWG5bWcpaWaaSbaaeaajugW a8qacaWGPbGaaiilaiaad+gacaWGIbGaam4CaiaadsgaaSWdaeqaaK qzGeWdbiabgkHiTiaabccacaWG5bWcpaWaaSbaaeaajugWa8qacaWG HbGaamODaaWcpaqabaqcLbmapeGaaiilaSWdamaaBaaabaqcLbmape Gaam4BaiaadkgacaWGZbGaamizaaWcpaqabaaakiaawIcacaGLPaaa daahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsapaGaaiyxa8qacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcaaaa@9387@   (3)

If r 2 cv > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadogacaWG2baal8aabeaajugib8qacqGH+aGpaa a@4007@ 0.60, the correlation is assumed to be valid and has a good internal predictive ability for an acceptable QSAR model. Likewise, r 2 pred >0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaal8aadaWg aaqaaKqzadWdbiaadchacaWGYbGaamyzaiaadsgaaSWdaeqaaKqzGe Wdbiabg6da+iaaicdacaGGUaGaaGynaaaa@440E@ indicates that the model's external predictive ability is good. The correlation stated by eq. (1) is found to be quite valid from both parameters. The remaining two statistical parameters, s and F, are the standard deviation and the Fischer-ratio of the variances of the calculated and observed activities, respectively. A higher value of F than this indicates a good correlation. Thus, all descriptors used in this correlation are found to be quite significant, and if we remove them one by one, the significance of the correlation is substantially dropped.

logBA = 1.2326(±0.4266) H0e-2.2040 1.2150   (4)

N= 20, r 2 =0.6719, r 2 adj =0.6536,S= 0.0863,F= 36.8531, r 2 cv = 0.6034, r 2 pred = 0.7081 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGobGaeyypa0JaaeiiaiaaikdacaaIWaGaaiilaiaaykW7 caaMc8EcLbmacaWGYbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaaju gibiabg2da9iaaicdacaGGUaGaaGOnaiaaiEdacaaIXaGaaGyoaiaa cYcacaaMc8UaaGPaVlaaykW7caWGYbWcpaWaaWbaaeqabaqcLbmape GaaGOmaaaal8aadaWgaaqaaKqzadWdbiaadggacaWGKbGaamOAaaWc paqabaqcLbsapeGaeyypa0JaaGimaiaac6cacaaI2aGaaGynaiaaio dacaaI2aGaaiilaiaaykW7caWGtbGaeyypa0JaaeiiaiaaicdacaGG UaGaaGimaiaaiIdacaaI2aGaaG4maiaacYcacaaMc8UaaGPaVlaadA eacqGH9aqpcaqGGaGaaG4maiaaiAdacaGGUaGaaGioaiaaiwdacaaI ZaGaaGymaiaacYcacaaMc8UaaGPaVlaadkhal8aadaahaaqabeaaju gWa8qacaaIYaaaaSWdamaaBaaabaqcLbmapeGaam4yaiaadAhaaSWd aeqaaKqzGeWdbiabg2da9iaabccacaaIWaGaaiOlaiaaiAdacaaIWa GaaG4maiaaisdacaGGSaGaaGPaVlaaykW7caWGYbWcpaWaaWbaaeqa baqcLbmapeGaaGOmaaaal8aadaWgaaqaaKqzadWdbiaadchacaWGYb GaamyzaiaadsgaaSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIWaGa aiOlaiaaiEdacaaIWaGaaGioaiaaigdaaaa@9532@

Thus, from the above results, eq. (1) and eq. (4) have a significant correlation between the inhibitory activity values and the structural descriptors of the compounds.

The observed and predicted logBA values were calculated using model eq.1 are recorded in Table 1. A graph is drawn between the predicted and observed activities for both the training and test sets using models eq. 1 are recorded in Figure 1. The figure shows that the models have a good predictive ability. Figure 1 shows that almost all the points, except a few, lie near the straight line. Thus, using eq,1. From the above statistical values, it is clear that the two-variable model is the best suitable model for predicting the activity of the current set of compounds.

Figure 1 ThreeCorrelation between observed and calculated logBA using eq. 1.

Conclusion

On the basis of above discussion it is concluded that the topological descriptors will play a vital role while designing novel biphenyl carboxamide analogues for analgesic activity. The obtained models are free from any kind of defect. The displacement value weighted by intrsinic state (DISPs) and Ghose-Viswanadhan-Wendoloski antidepressant-like index at 80% (Depressent-80) have a negative coefficient means that lowest values of these parameters will enhance the analgesic activity the present set of compounds.

Conflicts of interest

Authors declare that there is no conflict of interest.

Acknowledgments

None.

References

  1. Cancer pain relief and palliative Care. Report of a WHO expert committee. World Health Organ Tech Rep Ser. 1990;804:1–75.
  2. Dworkin ROH, Backonja M, Rowbotham MC, et.al. Advances in neuropathic pain diagnosis, mechanisms and treatment recommendations. Arch Neurol.2003;60(11):1524–1534.
  3. Futaki N, Yoshikawa K, Hamasaka Y, et al. NS–398, a novel non–steroidal anti–inflammatory drug with potent analgesic and antipyretic effects, which causes minimal stomach lesions. Gen Pharmacol. 1993;24(1):105–110.
  4.  Gans KR, Galbraith W, Roman RJ, et al. Anti–inflammatory and safety profile of DuP 697, a novel orally effective prostaglandin synthesis inhibitor. J Pharmacol Exp Ther. 1990;254(1):180–187.
  5. Penning TD, Talley JJ, Bertenshaw SR, et.al. Synthesis and biological evaluation of the 1, 5–diarylpyrazole class of cyclooxygenase–2 inhibitors: identification of 4–[5–(4–methylphenyl)–3–(trifluoromethyl)–1 H–pyrazol–1–yl] benzenesulfonamide (SC–58635, celecoxib). J Med Chem. 1997;40(9):1347–1365.
  6. Habeeb AG, Rao PP, Knaus EE. Design and syntheses of diarylisoxazoles: Novel inhibitors of cyclooxygenase‐2 (COX‐2) with analgesic‐anti–inflammatory activity. Drug Dev Res. 2000;51(4):273–286.
  7. Puig C, Crespo MI, Godessart N, et al. Synthesis and biological evaluation of 3, 4–diaryloxazolones: a new class of orally active cyclooxygenase–2 inhibitors. J Med Chem. 2000;43(2): 214–23.
  8. Kalgutkar AS, Crews BC, Rowlinson SW, et al. Biochemically based design of cyclooxygenase–2 (COX–2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX–2 inhibitors. Proc Natl Acad Sci U S A. 2000;97(2):925–930.
  9. Woods KW, McCroskey RW, Michaelides MR, et al. Thiazole analogues of the NSAID indomethacin as selective COX–2 Inhibitors. Bioorg Med Chem Lett. 2001;11(10):1325–1328.
  10. Kalgutkar AS, Marnett AB, Crews BC, et al. Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase–2 inhibitors. J Med Chem.2000;43(15):2860–2870.
  11. Wallace JL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself? Physiol Rev. 2008;88(4):1547–1565.
  12. Deep A, Jain S, Sharma PC. Synthesis and anti–inflammatory activity of some novel biphenyl–4–carboxylic acid 5–(arylidene)–2–(aryl)–4–oxothiazolidin–3–yl amides. Acta Poloniae Pharmaceutica. 2010;67(1):63–67.
  13. Deep A, Jain S, Sharma PC, et al. Design and biological evaluation of biphenyl–4–carboxylic acid hydrazide–hydrazone for antimicrobial activity. Acta Pol Pharm. 2010;67(3):255–259.
  14. Madhukar A, Kannappan N, Akashdeep, et al. Synthesis and antimicrobial studies of biphenyl–4–carboxylic acid 2–(aryl)–4–oxo–thiazolidin–3–yl –amide. International Journal ChemTech Research. 2009;1(4);1376–1380.
  15. Plummer EL. Insecticidal 2,2’–bridged(1,1’–biphenyl)–3–ylmethyl carboxamides. US Patent 4493844, 1985.
  16. Sachan N, Thareja S, Agarwal R, et al. Substituted biphenyl ethanones as antidiabetic agents: synthesis and in–vivo screening. International Journal of Pharm Tech Research. 2009;1:625–631.
  17. de Souza AO, Hemerly FP, Busollo AC, et.al. 3–[4′–Bromo–(1, 1′–biphenyl)–4–yl]–N, N–dimethyl–3–(2–thienyl)–2–propen–1–amine: synthesis, cytotoxicity, and leishmanicidal, trypanocidal and antimycobacterial activities. J Antimicrob Chemother. 2002;50(5):629–637.
  18. Datar P. QSAR and Synthesis of a Novel Biphenyl Carboxamide Analogue for Analgesic Activity. Modern Chemistry & Applications. 2015;3(1):148.
  19. Shah UA, Wagh NK, Deokar H, et al. 3D–QSAR of biphenyl analogues as anti–inflammatory agents by: genetic function approximation (GFA) [Part–II]. In. J Pharma Bio Science. 2010;1:512–522.
  20. Advanced Chemistry Development, Inc. Chemsketch. Toronto, Canada 2019.
  21. Mauri A. AlvaDesc: A tool to calculate and analyze molecular descriptors and fingerprints.Methods in Pharmacology and Toxicology. 2020;801–820.
  22. Hintze J. NCSS 8. NCSS, LLC. Kaysville, Utah, USA.
Creative Commons Attribution License

©2023 Chouhan, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.