Submit manuscript...
Journal of
eISSN: 2473-0831

Analytical & Pharmaceutical Research

Research Article Volume 11 Issue 1

QSAR and molecular docking studies on a series of spirocyclic BACE-1 inhibitors

Bashirulla Shaik,1 Tabassum Zafar,2 Vijay K Agrawal,3 Satya P Gupta4

1Department of Applied Sciences, National Institute of Technical Teachers’ Training & Research, Bhopal-462002, Madhya Pradesh, India
2Department of Bioscience, Barkatullah University, Bhopal, Madhya Pradesh, India
3Department of Chemistry, Awadhesh Pratap Singh University, Rewa, Madhya Pradesh, India
4Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, India

Correspondence: Satya P Gupta, Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, India

Received: February 22, 2022 | Published: February 28, 2022

Citation: Shaik B, Zafar T, Agrawal VK, et al. QSAR and molecular docking studies on a series of spirocyclic BACE-1 inhibitors. J Anal Pharm Res. 2022;11(1):21-25. DOI: 10.15406/japlr.2022.11.00397

Download PDF

Abstract

The most prominent irreversible neurodegenerative disease, Alzheimer’s disease (AD), involves an enzyme, known as β-site APP (amyloid precursor protein) cleaving enzyme‐1 (BACE-1). Prediction of potent BACE-1 inhibitors is a potential therapeutic option for the management of AD. The present study deals with the modeling of spirocyclic BACE-1 inhibitors using molecular descriptors to further contribute to better clinical management of AD. A multiple linear regression (MLR) analysis has shown that physicochemical and 2D autocorrelation descriptors of these compounds are the major influencing factors of their activity and a docking study has shown that compounds can form hydrogen bonds with the receptor and have effective steric interactions. The MLR model fits the training set with R2 = 0.857. New potential compounds with higher therapeutic potency than the existing compounds were also docked the enzyme, BACE-1, to validate the formation of hydrogen bonds and hydrophobic interactions. The predicted models will be a constructive approach for the clinical management of Alzheimer’s disease.

Keywords: alzheimer’s disease, BACE-1, QSAR, docking analysis, pharmacokinetic studies

Introduction

Alzheimer’s disease (AD) is an age-dependent, irreversible, neurodegenerative disorder without any complete cure to date. Gradual impairment of cholinergic neuron activity due to nerve cell death leads to a decline in cognitive function, which alters the convenience of daily routines and slowly enables the patient to depends on assistance and monitoring.1 Dr. Alois Alzheimer was the first German psychiatrist and neuropathologist who described a dementing condition that later became known as Alzheimer's Disease (AD). According to the World Health Organization (WHO) Bulletin, dementia (gradual memory loss) is the prime clinical symptom in AD patients. Dementia due to AD progression is very common in older people from 60 years upwards. More than 47 million dementia patients exist in this world; according to WHO, more than half of them belong to underdeveloped countries. Alzheimer’s management involves the downregulation of various pathways that slow down the progression of the disease and offer symptomatic relief.2 The symbol of AD is the brain deposition of amyloid-beta (Aβ), which is a peptide containing 36−43 amino acids that is likely a primary driver of neurodegeneration. amyloid-beta is produced by the sequential cleavage of amyloid precursor protein (APP) by β‑Site amyloid precursor protein cleaving enzyme 1 (BACE-1) and γ-secretase in the amyloidogenic pathway. BACE-1 works as a rate-limiting enzyme that catalyzes the cleavage of amyloid precursor protein (APP) to produce neurotoxic amyloid β (Aβ) protein, which leads the plaque formation and results in neurodegeneration. Prediction of potent BACE-1 inhibitors are potential therapeutic options for the management of Alzheimer’s Disease (AD).3

The enzyme BACE-1 present in humans and encoded by the BACE-1 gene is an aspartic-acid protease essential in the development of myelin sheaths in peripheral nerve cells. Therefore, inhibition of BACE-1 denotes an attractive beneficial target to slow or prevent Alzheimer’s disease (AD).4 In the past, several attempts have been made to build QSAR models for BACE-1 Inhibitors. Hunt et al.5 explored the structure−activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE-1 affinity, cathepsin D selectivity, and blood−brain barrier penetration. These authors also demonstrated a pharmacokinetics/pharmacodynamic (PK/PD) relationship between free drug concentrations in the brain and cerebrospinal fluid (CSF) Aβ lowering.5 Jadhav et al. developed a 2D-QSAR model using multiple linear regression analysis for the prediction of BACE-1 antagonistic activity for theoretically calculated descriptors to propose some new potential compounds. The model developed by them could be useful to provide an idea about the relationship between the physicochemical descriptors like logP, logD, and PSA with BACE-1 inhibitory activity and to design novel and potent BACE-1 inhibitors.6 The aim of the present study is to analyze a series of spirocyclic BACE-1 inhibitors (I), studied by Hunt et al.,5 in relation to physicochemical properties and drug-receptor interactions in order to find therapeutically most useful compounds of this class. The methods applied in this study are linear and nonlinear QSAR (Quantitative Structure-Activity Relationship) models, support vector machine (SVM), and artificial neural network (ANN) approaches.

Material and methods

All the compounds for the study have been taken from Hunt. et al.5 All the compounds are listed in Table 1 along with their physicochemical properties and BACE-1 inhibition activity. For QSAR studies, out of total 54 compounds, 75% of them (41 compounds) were selected for training set by random selection using Statistical Data miner software for generation of the models, and the remaining 25% (13 compounds) were used for the test set for evaluating the predictability of the developed models. The chemical structures were drawn using ACD/ChemSketch software7 (version 2018.1.1) and the physicochemical/topological descriptors were calculated using DRAGON software.8 Among all the calculated descriptors, only those descriptors are listed in Table 1 which were found to be correlated with the activity. In the Table, the test set compounds are marked with superscript ‘b’ and the compounds that behaved as outliers, and thus excluded from the correlation, are marked with superscript ‘c’. The most significant structural descriptors that were found to govern the activity of the compounds were as follows:

MW: Molecular weight

MATS6m = Moran autocorrelation of lag 6 weighted by mass                

MATS8p = Moran autocorrelation of lag 8 weighted by polarizability

MATS6i = Moran autocorrelation of lag 6 weighted by ionization potential         

GATS2v = Geary autocorrelation of lag 2 weighted by van der Waals volume    

The above parameters characterize either the bulk of the molecules or their electronic their electronic properties.9–11

Results and discussion

QSAR study

A multiple linear regression (MLR) analysis was performed using Statistica Dataminer,12 which was found to be quite  successful in many cases,13–16 on the training set compounds to establish a correlation between activity and various descriptors of the compounds. The most significant correlation obtained was as shown by eq. (1).

pI C 50 = 5.9149( ±1.9837 )MATS6m  4.5975 ( ±2.2987 )GATS2v + 3.3755( ±1.2986 )MATS8p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaadMeacaWGdbWdamaaBaaaleaapeGaaGynaiaaicdaa8aa beaak8qacqGH9aqpcaqGGaGaeyOeI0IaaGynaiaac6cacaaI5aGaaG ymaiaaisdacaaI5aWdamaabmaabaWdbiabgglaXkaaigdacaGGUaGa aGyoaiaaiIdacaaIZaGaaG4naaWdaiaawIcacaGLPaaapeGaamytai aadgeacaWGubGaam4uaiaaiAdacaWGTbGaaeiiaiaacobicaqGGaGa aGinaiaac6cacaaI1aGaaGyoaiaaiEdacaaI1aGaaeiia8aadaqada qaa8qacqGHXcqScaaIYaGaaiOlaiaaikdacaaI5aGaaGioaiaaiEda a8aacaGLOaGaayzkaaWdbiaadEeacaWGbbGaamivaiaadofacaaIYa GaamODaiaabccacqGHRaWkcaqGGaGaaG4maiaac6cacaaIZaGaaG4n aiaaiwdacaaI1aWdamaabmaabaWdbiabgglaXkaaigdacaGGUaGaaG OmaiaaiMdacaaI4aGaaGOnaaWdaiaawIcacaGLPaaapeGaamytaiaa dgeacaWGubGaam4uaiaaiIdacaWGWbaaaa@77B3@  + 6.2716( ±3.2725 )MATS6i+ 0.0154( ±0.0049 )MW + 3.8047 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaac6cacaaIYaGaaG4naiaaigdacaaI2aWdamaabmaabaWd biabgglaXkaaiodacaGGUaGaaGOmaiaaiEdacaaIYaGaaGynaaWdai aawIcacaGLPaaapeGaamytaiaadgeacaWGubGaam4uaiaaiAdacaWG PbGaey4kaSIaaeiiaiaaicdacaGGUaGaaGimaiaaigdacaaI1aGaaG ina8aadaqadaqaa8qacqGHXcqScaaIWaGaaiOlaiaaicdacaaIWaGa aGinaiaaiMdaa8aacaGLOaGaayzkaaWdbiaad2eacaWGxbGaaeiiai abgUcaRiaabccacaaIZaGaaiOlaiaaiIdacaaIWaGaaGinaiaaiEda aaa@5EE4@   (1)

n=39, r 2 = 0.8574, r 2 cv = 0.7974, r 2 pred = 0.5204,s= 0.3589, F 5 , 33 = 39.68( 3.64 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaiodacaaI5aGaaiilaiaadkhapaWaaWbaaSqa beaapeGaaGOmaaaakiabg2da9iaabccacaaIWaGaaiOlaiaaiIdaca aI1aGaaG4naiaaisdacaGGSaGaamOCa8aadaahaaWcbeqaa8qacaaI YaaaaOWdamaaBaaaleaapeGaam4yaiaadAhaa8aabeaak8qacqGH9a qpcaqGGaGaaGimaiaac6cacaaI3aGaaGyoaiaaiEdacaaI0aGaaiil aiaadkhapaWaaWbaaSqabeaapeGaaGOmaaaak8aadaWgaaWcbaWdbi aadchacaWGYbGaamyzaiaadsgaa8aabeaak8qacqGH9aqpcaqGGaGa aGimaiaac6cacaaI1aGaaGOmaiaaicdacaaI0aGaaiilaiaadohacq GH9aqpcaqGGaGaaGimaiaac6cacaaIZaGaaGynaiaaiIdacaaI5aGa aiilaiaadAeapaWaaSbaaSqaa8qacaaI1aaapaqabaGcpeGaaiila8 aadaWgaaWcbaWdbiaaiodacaaIZaaapaqabaGcpeGaeyypa0Jaaeii aiaaiodacaaI5aGaaiOlaiaaiAdacaaI4aWdamaabmaabaWdbiaaio dacaGGUaGaaGOnaiaaisdaa8aacaGLOaGaayzkaaaaaa@729C@

In eq. (1), n refers to the number of data points used in the correlation, r2 is the square of the correlation coefficient, r2cv is the square of cross-validated correlation coefficient obtained by leave-one-out (LOO) jackknife procedure, and r2pred is the square of correlation coefficient obtained for test set compounds to judge the external validity of the correlation. Values of r2cv and r2pred are calculated according to eqs. (2) and (3), respectively, where yi,obsd in eq. (2) refers to the observed activity of compound i in the training set and that in eq.(3) to the compound i in test set. Similarly, yi,pred in eq.(2) refers to the predicted activity of compound i in the training set obtained in leave-one-out jackknife procedure and that in eq.(3) to that predicted for the test set compounds by model obtained for the training set. However, yav,obsd in both the equation refers to the average activity of the training set compound.

r 2 cv = 1  [ Σ i ( y i , obsd   y i , pred ) 2 /  Σ i ( y i , obsd   y av , obsd ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaahaaWcbeqaa8qacaaIYaaaaOWdamaaBaaaleaapeGa am4yaiaadAhaa8aabeaak8qacqGH9aqpcaqGGaGaaGymaiaabccacq GHsislcaqGGaWdamaadmaabaWdbiabfo6at9aadaWgaaWcbaWdbiaa dMgaa8aabeaakmaabmaabaWdbiaadMhapaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaaiila8aadaWgaaWcbaWdbiaad+gacaWGIbGaam4C aiaadsgaa8aabeaak8qacqGHsislcaqGGaGaamyEa8aadaWgaaWcba WdbiaadMgaa8aabeaak8qacaGGSaWdamaaBaaaleaapeGaamiCaiaa dkhacaWGLbGaamizaaWdaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabe aapeGaaGOmaaaakiaac+cacaqGGaGaeu4Odm1damaaBaaaleaapeGa amyAaaWdaeqaaOWaaeWaaeaapeGaamyEa8aadaWgaaWcbaWdbiaadM gaa8aabeaak8qacaGGSaWdamaaBaaaleaapeGaam4BaiaadkgacaWG ZbGaamizaaWdaeqaaOWdbiaacobicaqGGaGaamyEa8aadaWgaaWcba WdbiaadggacaWG2baapaqabaGcpeGaaiila8aadaWgaaWcbaWdbiaa d+gacaWGIbGaam4Caiaadsgaa8aabeaaaOGaayjkaiaawMcaamaaCa aaleqabaWdbiaaikdaaaaak8aacaGLBbGaayzxaaaaaa@6F3F@    (2)

r 2 pred = 1  [ Σ i ( y i , obsd   y i,pred ) 2 /  Σ i ( y i,obsd   y av , obsd ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaahaaWcbeqaa8qacaaIYaaaaOWdamaaBaaaleaapeGa amiCaiaadkhacaWGLbGaamizaaWdaeqaaOWaaSbaaSqaaaqabaGcpe Gaeyypa0JaaeiiaiaaigdacaqGGaGaeyOeI0Iaaeiia8aadaWadaqa a8qacqqHJoWupaWaaSbaaSqaa8qacaWGPbaapaqabaGcdaqadaqaa8 qacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYcapaWa aSbaaSqaa8qacaWGVbGaamOyaiaadohacaWGKbaapaqabaGcpeGaey OeI0IaaeiiaiaadMhapaWaaSbaaSqaa8qacaWGPbGaaiilaiaadcha caWGYbGaamyzaiaadsgaa8aabeaaaOGaayjkaiaawMcaamaaCaaale qabaWdbiaaikdaaaGccaGGVaGaaeiiaiabfo6at9aadaWgaaWcbaWd biaadMgaa8aabeaakmaabmaabaWdbiaadMhapaWaaSbaaSqaa8qaca WGPbGaaiilaiaad+gacaWGIbGaam4Caiaadsgaa8aabeaak8qacqGH sislcaqGGaGaamyEa8aadaWgaaWcbaWdbiaadggacaWG2baapaqaba GcpeGaaiila8aadaWgaaWcbaWdbiaad+gacaWGIbGaam4Caiaadsga a8aabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWdbiaaikdaaaaak8 aacaGLBbGaayzxaaaaaa@709F@    (3)

The correlation is supposed to be valid and has the good internal predictive ability if r2cv > 0.60. Similarly, the external predictive ability of the model is supposed to be good if its r2pred > 0.5. From both the parameters, the correlation expressed by eq. (1) is found to be quite valid. Among the remaining two statistical parameters, s and F, s is the standard deviation and F is the Fischer-ratio between the variances of calculated and observed activities. The figures within the parentheses with ± sign refer to the 95% confidence intervals. The F-value given in parenthesis refers to the standard F-value at the 99% level. A higher value of F than this indicates a good correlation. Also, all the descriptors used in this correlation are found to be quite significant as if we remove them one by one, the significance of the correlation is appreciably dropped (eqs. 4-7).

pI C 50 = 7.3562( ±2.5477 )MATS6m  6.1804( ±2.9649 )GATS2v + 7.3441( ±4.3423 )MATS6i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaadMeacaWGdbWdamaaBaaaleaapeGaaGynaiaaicdaa8aa beaak8qacqGH9aqpcaqGGaGaeyOeI0IaaG4naiaac6cacaaIZaGaaG ynaiaaiAdacaaIYaWdamaabmaabaWdbiabgglaXkaaikdacaGGUaGa aGynaiaaisdacaaI3aGaaG4naaWdaiaawIcacaGLPaaapeGaamytai aadgeacaWGubGaam4uaiaaiAdacaWGTbGaaeiiaiaacobicaqGGaGa aGOnaiaac6cacaaIXaGaaGioaiaaicdacaaI0aWdamaabmaabaWdbi abgglaXkaaikdacaGGUaGaaGyoaiaaiAdacaaI0aGaaGyoaaWdaiaa wIcacaGLPaaapeGaam4raiaadgeacaWGubGaam4uaiaaikdacaWG2b GaaeiiaiabgUcaRiaabccacaaI3aGaaiOlaiaaiodacaaI0aGaaGin aiaaigdapaWaaeWaaeaapeGaeyySaeRaaGinaiaac6cacaaIZaGaaG inaiaaikdacaaIZaaapaGaayjkaiaawMcaa8qacaWGnbGaamyqaiaa dsfacaWGtbGaaGOnaiaadMgaaaa@76E8@   
+ 0.0111( ±0.0061 )MW + 7.2258 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaaeiiaiaaicdacaGGUaGaaGimaiaaigdacaaIXaGaaGym a8aadaqadaqaa8qacqGHXcqScaaIWaGaaiOlaiaaicdacaaIWaGaaG Onaiaaigdaa8aacaGLOaGaayzkaaWdbiaad2eacaWGxbGaaeiiaiab gUcaRiaabccacaaI3aGaaiOlaiaaikdacaaIYaGaaGynaiaaiIdaaa a@4D5C@   (4)

n=39, r 2 = 0.7366, r 2 cv = 0.6034, r 2 pred = 0.3792,s= 0.4805, F 4 , 34 = 23.76( 3.93 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaiodacaaI5aGaaiilaiaadkhapaWaaWbaaSqa beaapeGaaGOmaaaakiabg2da9iaabccacaaIWaGaaiOlaiaaiEdaca aIZaGaaGOnaiaaiAdacaGGSaGaamOCa8aadaahaaWcbeqaa8qacaaI YaaaaOWdamaaBaaaleaapeGaam4yaiaadAhaa8aabeaak8qacqGH9a qpcaqGGaGaaGimaiaac6cacaaI2aGaaGimaiaaiodacaaI0aGaaiil aiaadkhapaWaaWbaaSqabeaapeGaaGOmaaaak8aadaWgaaWcbaWdbi aadchacaWGYbGaamyzaiaadsgaa8aabeaak8qacqGH9aqpcaqGGaGa aGimaiaac6cacaaIZaGaaG4naiaaiMdacaaIYaGaaiilaiaadohacq GH9aqpcaqGGaGaaGimaiaac6cacaaI0aGaaGioaiaaicdacaaI1aGa aiilaiaadAeapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaaiila8 aadaWgaaWcbaWdbiaaiodacaaI0aaapaqabaGcpeGaeyypa0Jaaeii aiaaikdacaaIZaGaaiOlaiaaiEdacaaI2aWdamaabmaabaWdbiaaio dacaGGUaGaaGyoaiaaiodaa8aacaGLOaGaayzkaaaaaa@7288@   
pI C 50 = 6.6684( ±2.9334 )MATS6m  5.3125( ±3.4070 )GATS2v + 11.6693( ±4.2233 )MATS6i+11.2604 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaadMeacaWGdbWdamaaBaaaleaapeGaaGynaiaaicdaa8aa beaak8qacqGH9aqpcaqGGaGaeyOeI0IaaGOnaiaac6cacaaI2aGaaG OnaiaaiIdacaaI0aWdamaabmaabaWdbiabgglaXkaaikdacaGGUaGa aGyoaiaaiodacaaIZaGaaGinaaWdaiaawIcacaGLPaaapeGaamytai aadgeacaWGubGaam4uaiaaiAdacaWGTbGaaeiiaiaacobicaqGGaGa aGynaiaac6cacaaIZaGaaGymaiaaikdacaaI1aWdamaabmaabaWdbi abgglaXkaaiodacaGGUaGaaGinaiaaicdacaaI3aGaaGimaaWdaiaa wIcacaGLPaaapeGaam4raiaadgeacaWGubGaam4uaiaaikdacaWG2b GaaeiiaiabgUcaRiaabccacaaIXaGaaGymaiaac6cacaaI2aGaaGOn aiaaiMdacaaIZaWdamaabmaabaWdbiabgglaXkaaisdacaGGUaGaaG OmaiaaikdacaaIZaGaaG4maaWdaiaawIcacaGLPaaapeGaamytaiaa dgeacaWGubGaam4uaiaaiAdacaWGPbGaey4kaSIaaGymaiaaigdaca GGUaGaaGOmaiaaiAdacaaIWaGaaGinaaaa@7D95@  (5)

n= 39, r 2 = 0.6315, r 2 cv = 0.5462, r 2 pred = 0.2801,s= 0.5601, F 3,35 = 20.00( 4.40 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaabccacaaIZaGaaGyoaiaacYcacaWGYbWdamaa CaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGaaGimaiaac6caca aI2aGaaG4maiaaigdacaaI1aGaaiilaiaadkhapaWaaWbaaSqabeaa peGaaGOmaaaak8aadaWgaaWcbaWdbiaadogacaWG2baapaqabaGcpe Gaeyypa0JaaeiiaiaaicdacaGGUaGaaGynaiaaisdacaaI2aGaaGOm aiaacYcacaWGYbWdamaaCaaaleqabaWdbiaaikdaaaGcpaWaaSbaaS qaa8qacaWGWbGaamOCaiaadwgacaWGKbaapaqabaGcpeGaeyypa0Ja aeiiaiaaicdacaGGUaGaaGOmaiaaiIdacaaIWaGaaGymaiaacYcaca WGZbGaeyypa0JaaeiiaiaaicdacaGGUaGaaGynaiaaiAdacaaIWaGa aGymaiaacYcacaWGgbWdamaaBaaaleaapeGaaG4maiaacYcacaaIZa GaaGynaaWdaeqaaOWdbiabg2da9iaabccacaaIYaGaaGimaiaac6ca caaIWaGaaGima8aadaqadaqaa8qacaaI0aGaaiOlaiaaisdacaaIWa aapaGaayjkaiaawMcaaaaa@728E@   
pI C 50 =  6.4851( ±3.2745 )MATS6m + 10.5968 ( ±2.2954 )MATS6i + 7.2314 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaadMeacaWGdbWdamaaBaaaleaapeGaaGynaiaaicdaa8aa beaak8qacqGH9aqpcaqGGaGaai4eGiaabccacaaI2aGaaiOlaiaais dacaaI4aGaaGynaiaaigdapaWaaeWaaeaapeGaeyySaeRaaG4maiaa c6cacaaIYaGaaG4naiaaisdacaaI1aaapaGaayjkaiaawMcaa8qaca WGnbGaamyqaiaadsfacaWGtbGaaGOnaiaad2gacaqGGaGaey4kaSIa aeiiaiaaigdacaaIWaGaaiOlaiaaiwdacaaI5aGaaGOnaiaaiIdaca qGGaWdamaabmaabaWdbiabgglaXkaaikdacaGGUaGaaGOmaiaaiMda caaI1aGaaGinaaWdaiaawIcacaGLPaaapeGaamytaiaadgeacaWGub Gaam4uaiaaiAdacaWGPbGaaeiiaiabgUcaRiaabccacaaI3aGaaiOl aiaaikdacaaIZaGaaGymaiaaisdaaaa@6BC7@   (6)

n= 39, r 2 = 0.5260, r 2 cv = 0.4455, r 2 pred = 0.0788,s= 0.6264, F 2,36 = 19.98( 5.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaabccacaaIZaGaaGyoaiaacYcacaWGYbWdamaa CaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGaaGimaiaac6caca aI1aGaaGOmaiaaiAdacaaIWaGaaiilaiaadkhapaWaaWbaaSqabeaa peGaaGOmaaaak8aadaWgaaWcbaWdbiaadogacaWG2baapaqabaGcpe Gaeyypa0JaaeiiaiaaicdacaGGUaGaaGinaiaaisdacaaI1aGaaGyn aiaacYcacaWGYbWdamaaCaaaleqabaWdbiaaikdaaaGcpaWaaSbaaS qaa8qacaWGWbGaamOCaiaadwgacaWGKbaapaqabaGcpeGaeyypa0Ja aeiiaiaaicdacaGGUaGaaGimaiaaiEdacaaI4aGaaGioaiaacYcaca WGZbGaeyypa0JaaeiiaiaaicdacaGGUaGaaGOnaiaaikdacaaI2aGa aGinaiaacYcacaWGgbWdamaaBaaaleaapeGaaGOmaiaacYcacaaIZa GaaGOnaaWdaeqaaOWdbiabg2da9iaabccacaaIXaGaaGyoaiaac6ca caaI5aGaaGioa8aadaqadaqaa8qacaaI1aGaaiOlaiaaikdacaaI1a aapaGaayjkaiaawMcaaaaa@72BC@   
pI C 50 = 11.1808( ±5.5096 )MATS6i + 8.0147 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaadMeacaWGdbWdamaaBaaaleaapeGaaGynaiaaicdaa8aa beaak8qacqGH9aqpcaqGGaGaaGymaiaaigdacaGGUaGaaGymaiaaiI dacaaIWaGaaGioa8aadaqadaqaa8qacqGHXcqScaaI1aGaaiOlaiaa iwdacaaIWaGaaGyoaiaaiAdaa8aacaGLOaGaayzkaaWdbiaad2eaca WGbbGaamivaiaadofacaaI2aGaamyAaiaabccacqGHRaWkcaqGGaGa aGioaiaac6cacaaIWaGaaGymaiaaisdacaaI3aaaaa@5619@   (7)

n= 39, r 2 = 0.3136, r 2 cv = 0.1960, r 2 pred = 0.0115,s= 0.7435, F 1,37 = 16.91( 7.37 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaabccacaaIZaGaaGyoaiaacYcacaWGYbWdamaa CaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGaaGimaiaac6caca aIZaGaaGymaiaaiodacaaI2aGaaiilaiaadkhapaWaaWbaaSqabeaa peGaaGOmaaaak8aadaWgaaWcbaWdbiaadogacaWG2baapaqabaGcpe Gaeyypa0JaaeiiaiaaicdacaGGUaGaaGymaiaaiMdacaaI2aGaaGim aiaacYcacaWGYbWdamaaCaaaleqabaWdbiaaikdaaaGcpaWaaSbaaS qaa8qacaWGWbGaamOCaiaadwgacaWGKbaapaqabaGcpeGaeyypa0Ja aeiiaiaaicdacaGGUaGaaGimaiaaigdacaaIXaGaaGynaiaacYcaca WGZbGaeyypa0JaaeiiaiaaicdacaGGUaGaaG4naiaaisdacaaIZaGa aGynaiaacYcacaWGgbWdamaaBaaaleaapeGaaGymaiaacYcacaaIZa GaaG4naaWdaeqaaOWdbiabg2da9iaabccacaaIXaGaaGOnaiaac6ca caaI5aGaaGyma8aadaqadaqaa8qacaaI3aGaaiOlaiaaiodacaaI3a aapaGaayjkaiaawMcaaaaa@72A6@

 Thus, from the above results, it is clear that eq. (1) has a noteworthy correlation between the BACE-1 inhibitory activity and the structural descriptors of the compounds. Although the correlation does not have any mechanistic aspects, but it has good predictive ability. A graph drawn between the predicted and observed activities for both the training and test sets (Figure 1) further shows that the model has good predictive ability. Figure 1 shows that except 1 or two points, all other points lie near the straight line. Using this MLR model [eq. (1)], we have predicted some new compounds, as shown in Table 2, where each compound has a higher activity value than any compound in the existing series (Table 1).

Figure 1 A plot between predicted and observed activities of compounds of Table 1.

Docking analysis

A molecular docking study was carried out for the predicted compounds (Table 2) using FlexX software to see the binding of these compounds with the enzyme, BACE-1. The ability of a molecule to interact with an enzyme decides its potency. For the study of molecular docking, the crystal structure of the related enzyme is vital which can be now retrieved from the RCSB protein data bank. We selected the enzyme with PDB entry code 4JOO (http://www.pdb.org).17 All the predicted compounds as listed in Table 2 were docked in this enzyme and the docking results are shown in Table 3.

The molecular docking analysis was carried on all the predicted compounds in the enzyme. Here we cited the only compounds 10 and 2 (Figure 2 and 3), the first compound 10 being the compound having the highest predicted activity and the second having the highest docking score (Table 3), just to illustrate the best possible interactions between the inhibitors and the BACE-1 enzyme. From these Figure 2 and 3, it is clear that the predicted compounds have good interactions with the enzyme. They all undergo hydrogen bondings as well as steric interactions, in which several moieties of compounds are surrounded by the different active clefts of the enzyme. The penetration of any moiety of any inhibitor in any cavity of the enzyme will depend on its flexibility. All these steric interactions might involve dispersion interactions, which is a sort of electronic interaction. 

Figure 2 A representation of the binding of predicted compd 6 (Table 3) in BACE-1 (PDB entry Code 4JOO).

Figure 3 A representation of the binding of predicted compd. 10 (Table 3) in BACE-1 (PDB entry Code 4JOO).

Compd. No.

No. of Hydrogen Bonds

H-bonds

H-bonds Length (Å)

Score

1

3

H(48)-Asp276

3.29

-28.2518

 H(49)-Asp80

4.7

H(64)-Asp80

8.3

2

4

H(49)-Asp276

4.7

-28.3562

H(50)-Asp80

4.7

H(64)-Asp80

8.3

O(34)-Arg283

1.86

3

3

H(49)-Asp276

4.52

-23.0708

H(50)-Asp80

4.7

H(66)-Asp80

8.3

4

3

H(48)-Asp276

3.93

-24.5289

H(49)-Asp80

4.7

H(66)-Asp80

8.3

5

5

H(47)-Asp276

3.97

-26.4259

H(47)-Asp276

0.05

H(48)-Asp80

4.7

H(66)-Asp80

8.3

O(33)-Arg283

0.11

6

5

H(47)-Asp287

3.1

-28.2523

H(48)-Asp276

0.09

H(48)-Asp80

3.62

H(61)-Asp80

8.3

O(33)-Arg283

7.66

7

5

H(47)-Asp276

2.97

-28.303

H(48)-Asp276

0.09

H(48)-Asp80

3.01

H(61)-Asp80

8.3

O(33)-Arg283

7.66

8

4

H(48)-Asp80

4.7

-24.4916

H(49)-Asp276

2.22

H(69)-Asp276

4.85

O(33)-Trp124

4.7

9

5

H(47)-Asp276

3.1

-28.2511

H(48)-Asp80

3.62

H(48)-Asp276

0.09

H(61)-Asp80

8.3

O(33)-Arg283

7.66

10

5

H(49)-Asp80

4.66

-25.973

H(48)-Asp276

0.25

H(48)-Asp276

4.7

H(61)-Asp80

8.3

O(32)-Trp124

5.39

11

4

H(49)-Asp80

4.59

-20.5751

H(50)-Asp276

4.7

H(67)-Asp276

7.21

O(32)-Arg283

4.7

12

4

H(49)-Asp80

4.63

-20.9623

H(50)-Asp276

4.7

H(73)-Asp276

7.63

O(32)-Trp124

4.7

13

4

H(49)-Asp80

4.63

-20.9623

H(50)-Asp276

4.7

H(73)-Asp276

7.63

O(32)-Trp124

4.7

14

5

H(48)-Asp80

4.7

-23.2141

H(49)-Asp80

4.7

H(70)-Asp80

8.09

O(33)-Trp124

4.7

O(34)-Trp124

3.41

15

6

O(32)-Trp124

0.07

-24.171

O(33)-Trp124

4.29

H(48)-Asp80

3.18

H(49)-Asp276

4.7

H(68)-Asp276

5.22

H(67)-Gly59

1.95

Table 3 Docking results of predicated molecules

Pharmacokinetic studies

The pharmacokinetic profiles of the predicted compounds have been obtained using Data Warrior software17 and the results are shown in Table 4. These pharmacokinetic profiles include molecular weight (MW), ClogP, number of hydrogen bond acceptors (HAs), number of hydrogen bond donors (HDs), and number of rotatable bonds (NRBs). According to Lipinski’s rule of five, compounds having MW < 500 and ClogP < 5 are supposed to have good absorption and permeation abilities.18,19 Similarly, according to Veber’s rule, compounds having NRB < 10 are supposed to have good oral bioavailability 1-24]. Thus, almost all the predicted compounds have excellent pharmacokinetic profiles.

Compd. No.

ClogP

MW

HA

HD

NRB

1.

4.4491

487.2

7

1

2

2.

5.0551

522.65

7

1

2

3.

4.697

522.65

7

2

3

4.

4.091

487.2

7

2

3

5.

3.485

451.75

7

2

3

6.

3.5594

455.74

8

2

2

7.

3.0542

439.29

8

2

2

8.

3.9129

463.76

7

1

4

9.

3.5594

455.74

8

2

2

10.

4.1654

491.79

8

2

2

11.

3.1523

486.75

8

2

4

12.

2.6471

470.3

8

2

4

13.

3.1333

456.32

8

2

4

14.

2.7894

444.31

8

2

4

15.

2.0998

448.3

9

3

4

Table 4 Pharmacokinetic properties of the proposed compounds (Table 3)

Conclusion

The BACE-1 inhibition activity of a series of spirocyclic compounds has been found to be well correlated with various physicochemical properties. Using the correlation obtained, some new spirocyclic compounds possessing better activity have been predicted. Through docking study of the predicted compounds, it has been shown how the compounds interact with the enzyme BACE-1. All the compounds are found to have a number of hydrogen-bondings with receptor as well as to involve their bulky groups in significant steric interactions with some sites of the enzyme. The study of the pharmacokinetic profiles of the predicted compounds has shown that they have good pharmacokinetic properties.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer's disease. Ther Adv Neurol Disord. 2013;6(1):19–33.
  2. Neuner SM, Wilmott LA, Hoffmann BR, et al. Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. Behav Brain Res. 2017;30:288–298.
  3. Moussa-Pacha NM, Abdin SM, Omar HA, et al. BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Med Res Rev. 2020;40(1):339–384.
  4. Das B, Yan R. A Close Look at BACE1 Inhibitors for Alzheimer's disease treatment. CNS Drugs. 2019;33(3):251–263.
  5. Hunt KW, Cook AW, Watts RJ, et al. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: from hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species. J Med Chem. 2013;25;56(8):3379–403.
  6. Jain P, Jadhav HR. Quantitative structure activity relationship analysis of aminoimidazoles as BACE-I inhibitors. Med Chem Res. 2013;22: 1740–1746.
  7. ACD/Chemsketch, version 2018.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2019.
  8. Taletsrl. Dragon software for molecular descriptors calculation, version 6.0.
  9. R Todeschini, V Consonni. Wiley -vch, weinhiem, Germany, in the serie “Methodsand principles in medicinal chemistry. 2000, p. 667.
  10. Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23.
  11. Geary RC. The contiguity ratio and statistical mapping. The icorporporated statistician. 1954;5:115–145.
  12. Statistica (Data analysis software sstem) Version 10.
  13. Shaik B, Zafar T, Agarawal VK. Estimation of anti-HIV activity of HEPT analogues using MLR, ANN and SVM techniques. Int J Med Chem. 2013; Article ID 795621:1-8.
  14. Louis B, Singh J, Shaik B. QSPR and ANN studies on prediction of aqueous solubility of heterogenous set of  organic compounds. Int J Pure and applied chem. 2008;3(4):259–274.
  15. Louis B, Agrawal VK, Khadikar PV. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Eur J Med Chem. 2010;45(9):4018–4025.
  16. Shaik B, Zafar T, Agrawal VK. Estimation of Anti-HIV Activity of HEPT Analogues Using MLR, ANN, and SVM Techniques. Int J Med Chem. 2013;(5112):795621.
  17. Sander T, Freyss J, Korff MV. Rufener, C. Data Warrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015;55:460–473.
  18. Kalantary S, Jahani A, Jahani R. MLR and ANN approaches for prediction of synthetic/natural nanofibers diameter in the environmental and medical applications. Sci Rep. 2020;10:8117.
  19. Ghose AK, Viswanadhan VN, Wendoloski JJ. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem. 1998;102:3762–3772.
  20. Ghose AK, Crippen GM. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structureactivity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci. 1987;27:21–35.
  21. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;1;46(1-3):3–26.
  22. Lipinski CA. Lead- and drug-like compounds: The rule-of-fiverevolution. Drug Discov Today Technol. 2004;1:337–341.
  23. Abe K, Tani K, Fujiyoshi Y. Conformational rearrangement of gastric H+,K+ ATPase induced by an acid suppressant. Nat Commun. 2011;2:155.
Creative Commons Attribution License

©2022 Shaik, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.