Submit manuscript...
Journal of
eISSN: 2473-0831

Analytical & Pharmaceutical Research

Research Article Volume 7 Issue 5

Physicochemical properties of some pyrimidine derivatives in some organic solvents

Shipra Baluja, Asmita Hirapara, Divyata Lava

Correspondence: Shipra Baluja, Department of Chemistry, Saurashtra University, Rajkot-360005 (India), Tel -9687692827

Received: July 30, 2017 | Published: September 14, 2018

Citation: Baluja S, Hirapara A, Lava D. Physicochemical properties of some pyrimidine derivatives in some organic solvents. J Anal Pharm Res. 2018;7(5):540-546. DOI: 10.15406/japlr.2018.07.00280

Download PDF

Abstract

Some physicochemical parameters such as density, refractive index and conductance of some newly synthesized pyrimidine derivatives have been measured in N, N-dimethyl formamide, chloroform and methanol at 308.15K. It is observed that these studied parameters depend on the solvent and structure of compounds, which may be due to different type of interactions.

Keywords: density, refractive index, conductance, methanol, N, N-dimethyl formamide, chloroform

Introduction

Heterocyclic compounds play an immense role in many biochemical processes1 and numerous heterocyclic compounds are biosynthesized by plants and animals, which are also associated to significant biological properties. Nitrogen containing heterocyclic compounds are known to play an essential role in many living systems. The nucleic acid bases are the derivatives of pyrimidine and purine,2 found in RNA and DNA in the form of uracil, thymine, cytosine, adenine and guanine. These nitrogen containing heterocycles are synthetically challenging models for a number of physiologically active natural products.3

Pyrimidines are always an attraction point for researchers due to their pharmacological usages. These compounds are known to possess wide spectrum of biological activities such as anti-tubercular, anti-HIV, anti-microbial, anti-analgesic, anti-inflammatory and anti-malarial, antidepressant, anticonvulsant, antioxidant, anticancer, antifungal, etc.4–16.

Thus, due to these biologically activity of pyrimidines, in the present paper, different pyrimidines compounds i.e., tetrahydropyrimidines and 2, 4-disubstituted pyrimidines have been synthesized. Some physicochemical properties such as density, refractive index and conductance of solutions of these synthesized compounds have been studied in different solvents at 308.15K.

Experimental

Some new tetrahydropyrimidines and 2, 4-disubstituted pyrimidines compounds have been synthesized. The general structures and substitutions in different compounds are given in Figure 1.


  • Where R is : SNS-1: 4-OH, 3-OCH3-C6H4; SNS-2: 4-OCH3-C6H4; SNS-3: 4-OH-C6H4; SNS-4: 4-Cl-C6H4; SNS-5: 3-Cl-C6H4; SNS-6: 4-F-C6H4; SNS-7: 3-NO2-C6H4; SNS-8: -C6H5; SNS-9: C4H3O; SNS-10: -CH=CH-C6H5;


  • Where R is: SDN-1: 4-Cl; SDN-2: 4-CH3; SDN-3: 4-F; SDN-4: 3-CF3; SDN-5: 3-Cl, 4-F;

  • Where R is: SDO-1: 4-Cl; SDO-2: 4-CH3; SDO-3: 4-F; SDO-4: 3-CF3; SDO-5: 3-Cl, 4-F.

    Figure 1 General structure of synthesized different pyrimidine derivatives: [A] tetrahydropyrimidines (SNS series); [B] 2, 4-disubstituted pyrimidines (SDN series) and [C] 2, 4-disubstituted pyrimidines (SDO series)

Physicochemical studies

The solvents DMF, chloroform and methanol used for physicochemical studies were purified by fractionally distillation by the reported method.17 For each compound, a series of solutions of different concentrations were prepared in these solvents. The choice of different solvents for different compounds is due to solubility problem.

The density and refractive index of pure solvents and solutions were measured by using pycnometer and Abbe refractometer respectively at 308.15K. The desired temperature was maintained by circulating water through jacket around the prisms of refractometer from an electronically controlled thermostatic water bath (NOVA NV-8550 E). The uncertainty of temperature was ±0.1°C.

The conductance of each solution was measured by using Elico Conductivity Meter (Model No. CM 180) at 308.15K. The measured conductance was corrected by subtracting the conductance of pure solvent.

Results and discussion

Density and refractive index

Table 1 shows the experimental values of densities and refractive index for all the studied solutions. Using experimental density of solution, density of each compound was calculated using the following relation:

1 ρ 12 = g 1 ρ 1 + g 2 ρ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsacqaHbpGCjuaGdaWgaaWcbaqcLbma caaIXaGaaGOmaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLb sacaWGNbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGa eqyWdixcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaqcLbsacqGHRa WkjuaGdaWcaaGcbaqcLbsacaWGNbqcfa4aaSbaaSqaaKqzadGaaGOm aaWcbeaaaOqaaKqzGeGaeqyWdixcfa4aaSbaaSqaaKqzadGaaGOmaa Wcbeaaaaaaaa@5463@ (1)

Conc. M

ρ12 g.cm-3

n

ρ12 g.cm-3

N

Tetrahydropyrimidines

 

DMF

Chloroform

SNS-1

0.00

0.9338

1.4239

1.4713

1.4397

0.01

0.9456

1.4231

1.4715

1.4402

0.02

0.9465

1.4239

1.4718

1.4410

0.04

0.9483

1.4247

1.4721

1.4421

0.06

0.9500

1.4255

1.4726

1.4433

0.08

0.9516

1.4265

1.4731

1.4448

0.10

0.9535

1.4273

1.4737

1.4458

SNS-2

0.01

0.9448

1.4223

1.4717

1.4399

0.02

0.9452

1.4229

1.4724

1.4404

0.04

0.9461

1.4238

1.4736

1.4414

0.06

0.9470

1.4248

1.4749

1.4423

0.08

0.9479

1.4259

1.4761

1.4433

0.10

0.9489

1.4268

1.4774

1.4443

SNS-3

0.01

0.9486

1.4212

1.4714

1.4400

0.02

0.9489

1.4228

1.4718

1.4406

0.04

0.9495

1.4230

1.4727

1.4417

0.06

0.9501

1.4242

1.4736

1.4428

0.08

0.9507

1.4252

1.4745

1.4440

0.10

0.9513

1.4263

1.4754

1.4450

SNS-4

0.01

0.9494

1.4219

1.4749

1.4415

0.02

0.9503

1.4223

1.4753

1.4416

0.04

0.9520

1.4231

1.4761

1.4420

0.06

0.9538

1.4239

1.4768

1.4423

0.08

0.9555

1.4250

1.4776

1.4425

0.10

0.9573

1.4255

1.4784

1.4428

SNS-5

0.01

0.9494

1.4203

1.4720

1.4409

0.02

0.9503

1.4208

1.4723

1.4410

0.04

0.9520

1.4217

1.4730

1.4413

0.06

0.9538

1.4226

1.4736

1.4416

0.08

0.9556

1.4235

1.4743

1.4418

0.10

0.9573

1.4244

1.4750

1.4421

SNS-6

0.01

0.9454

1.4211

1.4747

1.4412

0.02

0.9458

1.4215

1.4752

1.4414

0.04

0.9467

1.4222

1.4762

1.4418

0.06

0.9476

1.4230

1.4772

1.4425

0.08

0.9484

1.4237

1.4782

1.4426

0.10

0.9494

1.4244

1.4792

1.4430

SNS-7

0.01

0.9529

1.4191

1.4800

1.4408

0.02

0.9530

1.4200

1.4801

1.4412

0.04

0.9531

1.4217

1.4803

1.4420

0.06

0.9535

1.4234

1.4805

1.4426

0.08

0.9537

1.4252

1.4807

1.4433

0.10

0.9540

1.4269

1.4809

1.4440

SNS-8

0.01

0.9506

1.4225

1.4735

1.4408

0.02

0.9517

1.4228

1.4737

1.4411

0.04

0.9528

1.4234

1.4741

1.4416

0.06

0.9531

1.4239

1.4744

1.4421

0.08

0.9547

1.4245

1.4748

1.4426

0.10

0.9551

1.4251

1.4751

1.4431

SNS-9

0.01

0.9424

1.4164

1.4809

1.4397

0.02

0.9429

1.4175

1.4813

1.4400

0.04

0.9440

1.4195

1.4820

1.4406

0.06

0.9451

1.4214

1.4827

1.4412

0.08

0.9462

1.4234

1.4834

1.4418

0.10

0.9473

1.4253

1.4741

1.4424

SNS-10

0.01

0.9562

1.4233

1.4746

1.4396

0.02

0.9565

1.4238

1.4751

1.4398

0.04

0.9571

1.4244

1.4763

1.4399

0.06

0.9576

1.4251

1.4775

1.4401

0.08

0.9581

1.4257

1.4787

1.4402

0.10

0.9587

1.4262

1.4798

1.4404

2, 4-disubstituted pyrimidines

 

DMF

Methanol

SDN-1

0.00

0.9338

1.4239

0.7770

1.3250

0.01

0.9432

1.4245

0.7794

1.3260

0.02

0.9446

1.4255

0.7812

1.3265

0.04

0.9468

1.4270

0.7839

1.3295

0.06

0.9484

1.4285

0.7879

1.3310

0.08

0.9497

1.4295

0.7892

1.3325

0.10

0.9516

1.4310

0.7909

1.3330

SDN-2

0.01

0.9430

1.4240

0.7816

1.3265

0.02

0.9441

1.4245

0.7839

1.3280

0.04

0.9462

1.4260

0.7880

1.3300

0.06

0.9479

1.4270

0.7915

1.3315

0.08

0.9491

1.4285

0.7948

1.3330

0.10

0.9504

1.4300

0.7997

1.3345

SDN-3

0.01

0.9428

1.4250

0.7804

1.3280

0.02

0.9438

1.4260

0.7819

1.3295

0.04

0.9455

1.4275

0.7837

1.3315

0.06

0.9474

1.4295

0.7869

1.3330

0.08

0.9489

1.4310

0.7883

1.3345

0.10

0.9501

1.4320

0.7893

1.3360

SDN-4

0.01

0.9434

1.4250

0.7830

1.3265

0.02

0.9447

1.4265

0.7851

1.3285

0.04

0.9474

1.4285

0.7883

1.3310

0.06

0.9506

1.4300

0.7907

1.3325

0.08

0.9520

1.4315

0.7932

1.3345

0.10

0.9541

1.4325

0.7969

1.3380

SDN-5

0.01

0.9432

1.4255

0.7798

1.3265

0.02

0.9445

1.4270

0.7821

1.3280

0.04

0.9470

1.4285

0.7860

1.3295

0.06

0.9492

1.4300

0.7889

1.3330

0.08

0.9512

1.4320

0.7921

1.3360

0.10

0.9525

1.4315

0.7958

1.3405

 

DMF

Methanol

SDO-1

0.01

0.9425

1.4245

0.7791

1.3265

0.02

0.9440

1.4260

0.7802

1.3270

0.04

0.9467

1.4275

0.7824

1.3275

0.06

0.9490

1.4280

0.7847

1.3280

0.08

0.9517

1.4300

0.7868

1.3290

0.10

0.9529

1.4320

0.7894

1.3305

SDO-2

0.01

0.9422

1.4240

0.7793

1.3260

0.02

0.9434

1.4245

0.7809

1.3270

0.04

0.9449

1.4255

0.7831

1.3275

0.06

0.9488

1.4265

0.7857

1.3285

0.08

0.9502

1.4280

0.7872

1.3294

0.10

0.9513

1.4295

0.7912

1.3315

SDO-3

0.01

0.9428

1.4240

0.7795

1.3260

0.02

0.9447

1.4245

0.7809

1.3275

0.04

0.9461

1.4255

0.7829

1.3290

0.06

0.9496

1.4260

0.7855

1.3305

0.08

0.9520

1.4270

0.7876

1.3315

0.10

0.9535

1.4281

0.7914

1.3335

SDO-4

0.01

0.9429

1.4240

0.7801

1.3265

0.02

0.9452

1.4245

0.7824

1.3260

0.04

0.9471

1.4255

0.7864

1.3270

0.06

0.9489

1.4270

0.7898

1.3280

0.08

0.9507

1.4285

0.7923

1.3295

0.10

0.9530

1.4295

0.7950

1.3330

SDO-5

0.01

0.9431

1.4245

0.7797

1.3260

0.02

0.9449

1.4265

0.7814

1.3275

0.04

0.9468

1.4290

0.7844

1.3285

0.06

0.9495

1.4315

0.7869

1.3295

0.08

0.9520

1.4325

0.7885

1.3305

0.10

0.9540

1.4340

0.7923

1.3315

Table 1 The density (ρ12) and refractive index (n) of synthesized compounds at 308.15K

where ρ12 is the density of solution and ρ1 and ρ2 are the densities of solvent and solute respectively. g1 and g2are the weight fractions of solvent and solute.

The evaluated densities of all the compounds are listed in Table 2 along with the theoretical densities, which were calculated using the following equation:18

ρ= KM/ N A Δ V i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGH9aqpjuaGdaWcgaGcbaqcLbsacaWGlbGaamytaaGcbaqcLbsa caWGobqcfa4aaSbaaSqaaKqzadGaamyqaaWcbeaajuaGdaaeabGcba qcLbsacqGHuoarcaWGwbqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaa aeqabeqcLbsacqGHris5aaaaaaa@4924@ (2)

Compounds

Experimental density g.cm-3

Theoretical density g.cm-3

 

DMF

Chloroform

 

SNS-1

1.5175

1.6234

1.2960

SNS-2

1.2270

1.9380

1.2624

SNS-3

1.2870

1.7825

1.3163

SNS-4

1.7953

1.8692

1.3565

SNS-5

1.7699

1.6978

1.3565

SNS-6

1.2610

2.0121

1.3351

SNS-7

1.2438

1.8519

1.3664

SNS-8

1.2315

1.6892

1.2787

SNS-9

1.2642

2.4213

1.5300

 SNS-10

1.5974

2.0661

1.3877

 

DMF

Methanol

 

SDN-1

1.2804

1.2484

1.3612

SDN-2

1.2531

1.9417

1.2766

SDN-3

1.3405

1.1628

1.3485

SDN-4

1.3605

1.3680

1.6028

SDN-5

1.3021

1.4599

1.4420

SDO-1

1.4368

1.1919

1.1947

SDO-2

1.3870

1.3123

1.1177

SDO-3

1.4306

1.7007

1.1787

SDO-4

1.3228

1.2063

1.3514

SDO-5

1.4225

1.2887

1.2192

Table 2 Experimental and theoretical densities of compounds at 308.15K

where ρ is the density of the compound, K is packing fraction (0.599), M is the molecular weight of the compound, NA is the Avogadro’s number and ΔVi is the volume increment of the atoms and atomic groups present in the compound.

Comparison of densities values showed that theoretical density values are different from those evaluated from experimental data. Further, for the same compound, density in the two solvents is different. This suggests that solvent plays an important role. In solutions, compounds interact differently depending upon their substitution, structure and nature of solvent. These molecular interactions affect volume, which causes change in density.

Further, the molar refraction of a pure liquid (MRD)1 were calculated by the following equation:

( MRD ) 1 =[ n 2 1 n 2 +1 ] M ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaiaadkfacaWGebaakiaawIcacaGLPaaajuaGdaWg aaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0tcfa4aamWaaOqaaK qbaoaalaaakeaajugibiaad6gajuaGdaahaaWcbeqaaKqzadGaaGOm aaaajugibiabgkHiTiaaigdaaOqaaKqzGeGaamOBaKqbaoaaCaaale qabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGymaaaaaOGaay5waiaa w2faaKqbaoaalaaakeaajugibiaad2eaaOqaaKqzGeGaeqyWdihaaa aa@53BE@ (3)

where n, M and ρ are refractive index, molecular weight and density pure liquid respectively.

For solutions, the following equation was used to determining molar refraction:

( MRD ) 12 =[ n 12 2 1 n 12 2 +1 ][ X 1 M 1 + X 2 M 2 ρ 12 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaiaadkfacaWGebaakiaawIcacaGLPaaajuaGdaWg aaWcbaqcLbmacaaIXaGaaGOmaaWcbeaajugibiabg2da9Kqbaoaadm aakeaajuaGdaWcaaGcbaqcLbsacaWGUbqcfa4aa0baaSqaaKqzadGa aGymaiaaikdaaSqaaKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaO qaaKqzGeGaamOBaKqbaoaaDaaaleaajugWaiaaigdacaaIYaaaleaa jugWaiaaikdaaaqcLbsacqGHRaWkcaaIXaaaaaGccaGLBbGaayzxaa qcfa4aamWaaOqaaKqbaoaalaaakeaajugibiaadIfajuaGdaWgaaWc baqcLbmacaaIXaaaleqaaKqzGeGaamytaKqbaoaaBaaaleaajugWai aaigdaaSqabaqcLbsacqGHRaWkcaWGybqcfa4aaSbaaSqaaKqzadGa aGOmaaWcbeaajugibiaad2eajuaGdaWgaaWcbaqcLbmacaaIYaaale qaaaGcbaqcLbsacqaHbpGCjuaGdaWgaaWcbaqcLbmacaaIXaGaaGOm aaWcbeaaaaaakiaawUfacaGLDbaaaaa@6FAD@ (4)

where n12 and ρ12 are refractive index and density of solution respectively. X1 and X2 are the mole fractions and M1 and M2 are the molecular weight of the solvent and solute respectively.

From the values of the molar refraction of solution and pure solvent, molar refraction of solid compounds were determined by following equation:

( MRD ) 12 = X 1 ( MRD ) 1 + X 2 ( MRD ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaiaadkfacaWGebaakiaawIcacaGLPaaajuaGdaWg aaWcbaqcLbmacaaIXaGaaGOmaaWcbeaajugibiabg2da9iaadIfaju aGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqbaoaabmaakeaajugibiaa d2eacaWGsbGaamiraaGccaGLOaGaayzkaaqcfa4aaSbaaSqaaKqzad GaaGymaaWcbeaajugibiabgUcaRiaadIfajuaGdaWgaaWcbaqcLbma caaIYaaaleqaaKqbaoaabmaakeaajugibiaad2eacaWGsbGaamiraa GccaGLOaGaayzkaaqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@585E@ (5)

From the density and molar refraction data, the refractive indexes of all the compounds were calculated from eq. (5). The molar refraction (MRD)2 and refractive index of all the compounds are reported in Table 3 for 0.1M solution.

Compounds

(MRD2)

n

(MRD2)

N

Solvents

 

DMF

Chloroform

SNS-1

121.62

1.7680

76.53

1.4703

SNS-2

127.01

1.6448

59.26

1.4469

SNS-3

114.30

1.5263

64.01

1.3921

SNS-4

99.00

1.7553

50.46

1.3539

SNS-5

94.42

1.7361

53.75

1.3576

SNS-6

109.83

1.5803

47.02

1.3722

SNS-7

119.41

1.5820

54.05

1.3677

SNS-8

104.12

1.5317

51.63

1.3419

SNS-9

112.69

1.6026

30.06

1.2799

SNS-10

96.77

1.6999

33.79

1.2784

 

DMF

Methanol

SDN-1

116.23

1.7175

107.01

1.6251

SDN-2

108.67

1.6872

87.16

1.9230

SDN-3

121.28

1.8583

124.15

1.7308

SDN-4

126.43

1.7764

128.42

1.7989

SDN-5

121.29

1.7296

141.56

2.0683

SDO-1

109.87

1.8569

88.87

1.5211

SDO-2

95.38

1.7731

84.56

1.5932

SDO-3

82.26

1.6053

86.98

1.8493

SDO-4

122.39

1.9435

106.60

1.5894

SDO-5

105.28

1.6510

91.59

1.5586

Table 3 Molar refraction (MRD)2 and refractive index (n) of 0.1M solutions of compounds at 308.15K

It is evident from Table 3 that both (MRD)2 and refractive index of compounds are different in each solvent. This again proves that in different solvents, intermolecular interactions are different, which affect these parameters. In some solvents, there may be interaction between solute and solvent molecules where as in others breakage of bonds may take place. As refractive index and molar refraction depends upon not only atomic refraction but also upon single, double or triple bonds, the type of interactions taking place in solution affects these parameters. Further, bond polarity also causes change in molar refraction. Thus, type of solvent affects the refractive index and molar refraction of a solute.

Conductance

The measured conductance (k) of each solution after correction are given in Table 4. It is observed that for all the studied compounds, conductance increases with concentration in all the solvents. The conductance measurement of two tetrahydropyrimidine compounds SNS-1 and SNS-3 cannot be done as these compounds had very less solubility in chloroform. For both tetrahydropyrimidines 2, 4-disubstituted pyrimidine compounds, conductance is lower in DMF than that in chloroform and methanol respectively.

Conc.
M

k.104mho

Tetrahydropyrimidines

DMF

 

SNS -1

SNS -2

SNS -3

SNS -4

SNS -5

SNS -6

SNS -7

SNS -8

SNS -9

SNS -10

0.000

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.001

0.0187

0.0174

0.0017

0.0089

0.0050

0.0017

0.0013

0.0122

0.0030

0.0209

0.002

0.0370

0.0346

0.0034

0.0169

0.0094

0.0028

0.0021

0.0238

0.0059

0.0414

0.004

0.0728

0.0684

0.0064

0.0326

0.0170

0.0057

0.0040

0.0454

0.0115

0.0804

0.006

0.1062

0.0988

0.0094

0.0463

0.0243

0.0077

0.0053

0.0660

0.0165

0.1140

0.008

0.1336

0.1284

0.0111

0.0580

0.0295

0.0088

0.0051

0.0843

0.0184

0.1424

0.010

0.1420

0.1526

0.0075

0.0675

0.0306

0.0100

0.0043

0.1000

0.0190

0.1550

0.020

0.1979

0.2453

0.0279

0.1121

0.0494

0.0291

0.0106

0.1421

0.0352

0.2467

0.040

0.2246

0.3684

0.0470

0.2020

0.0730

0.0684

0.0198

0.1876

0.0620

0.3206

0.060

0.2495

0.4080

0.1009

0.2735

0.0726

0.0996

0.0178

0.2331

0.0720

0.3947

0.080

0.2738

0.3449

0.1258

0.3459

0.0746

0.1299

0.0176

0.2779

0.0756

0.4689

0.100

0.2992

0.2707

0.1595

0.4185

0.0709

0.1586

0.0107

0.3241

0.0783

0.5431

Chloroform

0.000

0.084

0.084

0.084

0.084

0.084

0.084

0.084

0.084

0.084

0.084

0.001

-

0.0890

-

0.0890

0.0850

0.1000

0.1050

0.1038

0.1246

0.1187

0.002

-

0.1740

-

0.1558

0.1335

0.1880

0.1860

0.2003

0.2373

0.2225

0.004

-

0.3400

-

0.2967

0.2373

0.3560

0.3227

0.3560

0.4450

0.4050

0.006

-

0.4980

-

0.3900

0.3120

0.4680

0.4160

0.4800

0.6000

0.5680

0.008

-

0.6240

-

0.5200

0.3740

0.5280

0.5020

0.5512

0.7390

0.6760

0.010

-

0.6400

-

0.4450

0.4020

0.5500

0.5120

0.5680

0.8460

0.7400

0.020

-

0.8900

-

0.7000

0.6230

0.8900

0.7120

1.0680

1.2460

1.1570

0.040

-

0.9790

-

0.8010

0.6230

0.8900

0.8010

1.2460

1.7350

1.6460

0.060

-

0.9790

-

0.8900

0.7120

0.9790

0.8900

1.3350

1.9350

1.8000

0.080

-

1.0680

-

0.8900

0.7120

0.9790

0.9790

1.4240

2.0640

1.6800

0.100

-

1.0680

-

0.9790

0.8010

0.9790

1.1570

1.6020

1.9900

1.5130

2,4-Disubstituted pyrimidines

DMF

 

SDN-1

SDN -2

SDN -3

SDN -4

SDN -5

SDO -1

SDO-2

SDO-3

SDO-4

SDO-5

0.000

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.2800

0.001

0.0735

0.2037

0.1200

0.1851

0.0828

0.0642

0.1107

0.2967

0.1851

0.2595

0.002

0.2130

0.3525

0.2874

0.3060

0.2316

0.2781

0.3339

0.5757

0.4827

0.5850

0.004

0.4362

0.6780

0.5943

0.5385

0.4362

0.6687

0.6780

1.0221

1.0128

1.1988

0.006

0.6036

0.9105

0.8361

0.7803

0.5943

1.0221

0.9849

1.4313

1.3941

1.6452

0.008

0.7802

1.1058

1.0593

0.9662

0.7524

1.3569

1.2360

1.8218

1.8405

2.0544

0.010

0.8547

1.3197

1.4127

1.1523

0.9291

1.7010

1.4871

2.2497

2.2404

2.3241

0.020

1.3940

2.1938

2.0916

1.5986

1.4778

2.8262

2.3612

3.6726

4.3700

3.9702

0.040

2.2684

3.0868

3.3284

2.4076

2.4544

3.9700

4.1656

6.4440

6.8532

5.4116

0.060

2.6496

3.6540

3.9330

3.1890

3.2262

5.3928

5.2440

8.1828

7.6530

6.3138

0.080

3.0216

4.2960

4.1656

3.7008

4.0072

6.3512

5.8952

9.2896

8.0992

7.2064

0.100

3.2630

4.4540

4.2310

4.1840

4.2030

6.8900

6.4250

9.5220

8.6020

8.3500

Methanol

0.000

 0.0400

0.0400

 0.0400

0.0400

 0.0400

0.0400

 0.0400

0.0400

 0.0400

0.0400

0.001

0.0558

0.4929

0.0837

0.0651

0.0372

0.0558

0.0465

0.8928

0.9951

0.7254

0.002

0.2511

0.9021

0.4278

0.6045

0.5115

0.2465

0.5673

1.9158

1.9902

1.7112

0.004

0.7719

1.7949

1.2369

1.5066

1.4415

0.8928

1.5252

3.8967

3.7851

3.5247

0.006

1.2927

2.5854

1.9065

2.4924

2.2599

1.4880

2.5017

5.7195

5.7102

5.0406

0.008

1.8414

3.3759

2.7528

3.3108

3.1713

2.0181

3.3945

7.6818

7.3842

6.0450

0.010

2.2320

3.9339

3.3108

4.1943

4.3617

2.5017

4.6128

9.0954

8.7234

7.6167

0.020

4.0827

7.5516

6.2589

8.0538

7.8492

4.0827

8.5002

15.9774

15.1404

12.6294

0.040

6.5100

13.0014

11.2344

14.0244

13.0014

10.0347

13.9314

25.5564

24.9984

21.0924

0.060

9.6813

19.1394

15.9774

19.2324

17.7444

14.1174

19.3254

34.2984

33.8334

27.8814

0.080

12.0807

23.0454

22.5804

23.7894

21.8364

18.0234

23.8824

42.6684

40.5294

33.8334

0.100

15.3264

27.9744

25.8354

25.9284

25.7424

24.4404

28.9044

49.2714

45.6444

38.3904

Table 4 The conductance (k) of synthesized compounds in different solvents at 308.15K

From corrected conductance, specific conductance (κ) and equivalent conductance (λc) are calculated using the following equations:

κ=kθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAcqGH9aqpcaWGRbGaeqiUdehaaa@3BE3@ (6)

λ c =1000 κ C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBjuaGdaWgaaWcbaqcLbmacaWGJbaaleqaaKqzGeGaeyypa0JaaGym aiaaicdacaaIWaGaaGimaKqbaoaalaaakeaajugibiabeQ7aRbGcba qcLbsacaWGdbaaaaaa@43DC@ (7)

where θ is the cell constant (0.96cm-1) and c is the concentration (g.equi./lit.) of solution.

The equivalent conductance (λc) is plotted against √C for all compounds as shown in Figure 2-4. For tetrahydropyrimidine compounds, in DMF, equivalent conductance increases with concentration in both the solvents. At higher concentrations, the variation of equivalent conductance for different compounds is very less. Further, in DMF, equivalent conductance for tetrahydropyrimidine compounds are much lower than those in chloroform. It is obvious from Figure 2 that in DMF, most of tetrahydropyrimidine compounds behave as weak electrolytes whereas in chloroform, these compounds exhibited electrolytic behavior. For 2, 4-disubstituted pyrimidine compounds (both SDN and SDO compounds) also, equivalent conductance is less in DMF solutions than those in methanol solutions. Figure 3 shows that in DMF, SDN-2 and SDN-4 showed electrolytic behavior whereas for SDN-1, SDN-3 and SDN-5 compounds, equivalent conductance decreases at lower concentration. In methanol also, except SDN-2, for other four compounds also equivalent conductance decreases at lower concentration. Similar behavior was also observed for SDO compounds in both DMF and methanol solutions except SDO-3 in DMF (Figure 4). This typical behavior may be due to interactions within the molecule thereby causing constriction within the molecule or due to association between solute with solvent molecules. Similar behavior was observed by Singh et al.19,20

  • A                                                B

    Figure 2 The variation of equivalent conductance with C for tetrahydropyrimidines in [A] DMF and [B] chloroform at 308.15K. ●: SNS-1; ●: SNS-2; ●: SNS-3; ●: SNS-4; ●: SNS-5; ●: SNS-6; ●: SNS-7●: SNS-8; ●: SNS-9; ●: SNS-10.

  • A                                                B

    Figure 3 The variation of equivalent conductance with C for 2, 4-disubstituted pyrimidines (SDN series) in [A] DMF and [B] Methanol at 308.15K. ●: SDN-1; ●: SDN-2; ●: SDN-3; ●: SDN-4; ●: SDN-5.

  • A                                                B

    Figure 4 The variation of equivalent conductance with C for 2, 4-disubstituted pyrimidines (SDO series) in [A] DMF and [B] Methanol at 308.15K. ●: SDO-1; ●: SDO-2; ●: SDO-3; ●: SDO-4; ●: SDO-5.

Conclusion

It is observed that physicochemical parameters of compounds in solution depends not only on the structure and substitution of the compound but also on the nature of solvent in which it is dissolved. The molecular interactions occurring in the solution affect volume which in turn causes a small change in density and refractive index. Depending upon the nature of solvent, the conductance i.e., electrolytic behavior of compounds also changes.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Q Tu, M Eckelman, J Zimmerman. Meta–analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels. Environ Sci Techn. 2017;51(17):9419–9432.
  2. TH Chen, CF Chang, SC Yu, et al. Dipyridamole inhibits cobalt chloride–induced osteopontin expression in NRK52E cells. Eur J Pharmaco. 2009;613(1-3):10–18.
  3. CM Marson. Saturated Heterocycles with Applications in Medicinal Chemistry. Adv Heterocyc Chem. 2017;121:13–33.
  4. ES Al–Abdullah, AR Al–Obaid, OA Al–Deeb, et al. Synthesis of novel 6–phenyl–2, 4–disubstituted pyrimidine–5–carbonitriles as potential antimicrobial agents. Eur J Med Chem. 2011;46(9):4642–4647.
  5. PJ Manley, AE Balitza, MT Bilodeau, et al. 2, 4–Disubstituted pyrimidines: A novel class of KDR kinase inhibitors. Bioorg Med Chem Lett. 2003;13:1673–1677.
  6. L Jing, Y Tang, M Goto, et al. SAR study on N 2, N 4–disubstituted pyrimidine–2, 4–diamines as effective CDK2/CDK9 inhibitors and antiproliferative agents. RSC advances. 2018;8(22):11871–11885.
  7. G Luo, Z Tang, K Lao, et al. Structure–activity relationships of 2, 4–disubstituted pyrimidines as dual ERα/VEGFR–2 ligands with anti–breast cancer activity. European journal of medicinal chemistry. 2018;150:783–795.
  8. Z Czudor, M Balogh, P Bánhegyi, et al. Novel compounds with potent CDK9 inhibitory activity for the treatment of myeloma. Bioorganic & medicinal chemistry letters. 2018;28(4):769–773.
  9. MK Krapf, J Gallus, S Vahdati, et al. New Inhibitors of Breast Cancer Resistance Protein (ABCG2) Containing a 2, 4–Disubstituted Pyridopyrimidine Scaffold. Journal of medicinal chemistry. 2018;61(8):3389–3408.
  10. T Mohamed, PP Rao. 2, 4–Disubstituted quinazolines as amyloid–β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: Development and structure–activity relationship (SAR) studies. European journal of medicinal chemistry. 2017;126:823–843.
  11. J Jang, J Son, E Park, et al. Discovery of a Highly Potent and Broadly Effective EGFR and HER2 Exon 20 Insertion Mutant Inhibitor. Angew Chem Int Ed Engl. 2018;57(36):11629–11633.
  12. A Sujayev, E Garibov, P Taslimi, et al. Synthesis of some tetrahydropyrimidine–5–carboxylates, determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase. Journal of enzyme inhibition and medicinal chemistry. 2016;31(6):1531–1539.
  13. M. Geramizadegan, G. H. Mahdavinia: cerium (iv) ammonium nitrate (can) as a catalyst in water: a simple, proficient and green approach for the synthesis of tetrahydropyrimidine quinolones. Journal of the Chilean Chemical Society. 2017;62:3578–3580.
  14. S Sepehri, S Soleymani, R Zabihollahi, et al. Design, Synthesis, and Anti‐HIV‐1 Evaluation of a Novel Series of 1, 2, 3, 4‐Tetrahydropyrimidine‐5‐Carboxylic Acid Derivatives. Chem Biodivers. 2018;15:1700502.
  15. P Taslimi, A Sujayev, F Turkan, et al. Synthesis and investigation of the conversion reactions of pyrimidine‐thiones with nucleophilic reagent and evaluation of their acetylcholinesterase, carbonic anhydrase inhibition, and antioxidant activities. J Biochem Mol Toxicol. 2018;32(2):e22019.
  16. BC Raju, RN Rao, P Suman, et al. Synthesis, structure–activity relationship of novel substituted 4H–chromen–1, 2, 3, 4–tetrahydropyrimidine–5–carboxylates as potential anti–mycobacterial and anticancer agents. Bioorg Med Chem Lett. 2011;21:2855–2859.
  17. JA Riddick, WB Bunger, T Sakano. Organic Solvents: Physical Properties and methods of purification. 4th edition. Techniques of Chemistry II, A Wiley–Interscience Publication: New York; 1986.
  18. GL Slonimskii, AA Askadshii, AI Kitaigorodskii. The packing of polymer molecules. Polymer Science U.S.S.R. 1970;12(3):494–498.
  19. M Singh, A Kumar, S Easo, et al. Electrolytic conductivity of crystal violet based quaternary ammonium polyelectrolytes in dimethylformamide and dimethyl sulfoxide. Can J Chem. 1997;75:414–422.
  20. M Singh, BB Prasad. Electrolytic conductivity of the N–chloranil– and N–xylylene– based polyelectrolytes in dimethylformamide and dimethyl sulfoxide. J Chem Eng Data. 1996;41(3):409.
Creative Commons Attribution License

©2018 Baluja, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.