Submit manuscript...
Journal of
eISSN: 2473-0831

Analytical & Pharmaceutical Research

Research Article Volume 6 Issue 4

Detailed Unification Equations for Kinetic Parameters: A Case Study on Human Salivary Alpha Amylase

Ikechukwu Iloh Udema

Correspondence: Ikechukwu Iloh Udema, Research Division of Ude International Concepts Limited (RC 862217) B.B. Agbor, Delta State, Nigeria,Biochemistry and Chemistry Department, Owa Alizomor Sec Sch, Owa Alizomor, Ika North East, Delta State, Nigeria

Received: October 25, 2017 | Published: November 20, 2017

Citation: Udema II (2017) Detailed Unification Equations for Kinetic Parameters: A Case Study on Human Salivary Alpha Amylase. J Anal Pharm Res 6(4): 00181. DOI: 10.15406/japlr.2017.06.00181

Download PDF

Abstract

Background: There has been an equation which unifies all common kinetic parameters to the exclusion of pseudo–first order rate constant. Much attention had been paid to rate constant for the production of reducing sugars during amylolysis catalyzed by alpha amylase. There seems not be concern for the rate (k2[S]) of amylolysis of glycosidic bond and making of bonds. Modification of active site for therapeutic and scientific reasons can alter the value of k2[S].

Objectives: The objectives of this research are the formulation of an additional, simple, and verifiable mathematical models that can be used to determine the parameter, exp (k t) and D[S0] given [S0] where k, t and [S0] are the pseudo–first order rate constant, duration of assay and concentration of the substrate and, more importantly, the equation for the determination of k2[S].

Method: The theoretical aspect entailed the derivation of different equations while the experimental aspect entailed the application of Bernfeld method of enzyme assay; this was used to determine the molar concentration of reducing sugar produced.

Results: Unpaired t – test showed that the usual or conventional equations gave quantitative results that were not statistically different (P > 0.05) from the quantitative results from the derived equations in this research. The value of k2[S] was 9202.74±65/min.

Conclusion: Unification quadratic equations were derived and give quantitative results similar to the results obtained from conventional equations. The value of k2[S] ~1/2nd of k2; this shows that hydrolysis of glycosidic bond and making of new bonds is the rate limiting step. Estimation of the duration of assay needed to produce a desired amount of reducing sugar may be for feature investigation.

Keywords: rate constant for product formation, rate constant for the hydrolysis of glycosidic bond and bond making, pseudo–first order rate constant, michaelis–menten constant, maximum velocity of hydrolysis, quadratic equations, degree of polymerization

Introduction

There has been lot of interest in different kinds of rate constant which characterizes different enzymes.1–5 Most enzymes studied may be described as industrial enzymes because of commercial objectives, which include production of industrial fuels, bioethanol,6–8 production of bulking agent, water retention agent, thickeners etc.4 Some of the products are highly important in a wide range of nutritional, cosmetic and pharmaceutical applications.10–12 The hydrolysis of starch from various sources is widely studied.12–16 Most of the industrial enzymes studied are usually mesophiles and most often, thermophiles of microbial origin.17 This research focuses mainly on a polymer called potato starch and human salivary alpha amylase which, has similar capacity and function as pancreatic amylase. It is not a misplacement to use salivary amylase (EC 3.2.1.1) as a model for this study because its normal activity is evidence of good health. It is a maker for various health indices.18,19 It has been observed that direct entry of starch into the small intestine, by–passing partial digestion in the oral cavity results in substantially less starch digestion in the small intestine and glucose absorption.20 These observations make it worthwhile to treat human salivary amylase exclusively.

Unlike polysaccharides whose degree of polymerization f (the number of glucose molecules in a molecule of a polysaccharide) are quite large requiring much longer duration of assay on the assumption that the polysaccharide is totally amenable to total amylolysis, the hydrolysis of sugar whose f ranges from 2–5, as pointed in a submitted manuscript.21 is much more straightforward. “For instant if n moles of maltose are totally hydrolyzed, 2n moles of glucose should be yielded; thus the rate constant for the production of glucose molecules is twice the rate constant for the hydrolysis of maltose”.21

As in a parallel paper, submitted elsewhere, using Aspergillus oryzea alpha amylase as an enzyme model, this research is not concerned with mechanism of enzyme catalyzed reaction, but such mechanism cannot be detached from the rate of formation of the desired and/or any by product. However, most often the rate of formation of the product is the focus to the exclusion of the rate of the process or the mechanistic steps to give the product. The mechanism by which glycosidic bond is hydrolyzed is a process which requires time.22,23 This view and the fact that it may be a rate limiting step, has been expressed in a submitted paper treating another homologue. Therefore, so long as challenges such as need for energy for worthwhile purpose, athleticism/labour and health challenge such as diabetics which requires regulation of blood glucose level are common experiences, it is instructive to consider as part of the objectives of this research the formulation of an additional, simple, and verifiable mathematical models similar to Eq. (1a) anchored on basic principle that can be used to determine the parameter, exp (k t) and D[S0] given [S0] where k, t and [S0] are the pseudo–first order rate constant, duration of assay and concentration of the substrate and, more importantly, for the determination of the rate of hydrolysis of glycosidic bond, the duration of which is part of the total time taken to yield the product.  

The significance of the intended objectives is better appreciated if cognizance is taken of the fact that it is the hydrolysis of the bond that is the rate limiting step; this is the reason while thermophiles in particular are less active at low temperatures due to low conformational flexibility of the active site domain, unlike psychrophiles whose cold temperature environment does not inhibit its activity because its active site domain is already in a state of conformational flexibility, eliminating the need for higher temperature dependence.17,24 Apart from swallowing starch–rich diet, by–passing partial digestion in oral cavity as suggested elsewhere.16,20 a complex process of gene transplant coding for amylase with lower capacity to hydrolyze glycosidic bond or ingestion of capsules encapsulating such enzyme may also enhance the control of digestion and plasma sugar level in diabetics. Extract from natural sources, Moringa oleifera,25 may also aide the control of diabetics, though it is not certain whether amylase is susceptible to direct and indirect effect of the extract at its active site.

Formulation of unification equations–the theory

Rate constant in particular, for most enzymes, hydrolases in particular, are regularly studied for different reasons. The most studied is the pseudo–rate constant which according to Butterworth et al.1 may not be accurate on the basis of the mathematical formalism applied in its determination and in particular, the rate constant otherwise called turnover number,23 The rate constant equation, (Eq. (1a)) below is another expression which is often cited by astute and higher mathematical biologist,26,27 as shown below. According to Tzafrifri,26 and, Schnel and Maini.27 the equation was original work of Goldstein,28 and Cha et al.29

v= k 2  2 ( ( K m  + [ E 0 ]+[ Š ] ) ( K m  + [ E 0 ]+[ Š ] ) 2 4[ Š ][ E 0 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqvcjugiba baaaaaaaaapeGaamODaiabg2da9Kqbaoaalaaak8aabaqcLbsapeGa am4AaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaiaabckaaSWdaeqaaa GcbaqcLbsapeGaaGOmaaaajuaGdaqadaGcpaqaaKqba+qadaqadaGc paqaaKqzGeWdbiaadUeajuaGpaWaaSbaaSqaaKqzadWdbiaad2gaca qGGcaal8aabeaajugib8qacqGHRaWkcaqGGcqcfa4aamWaaOWdaeaa jugib8qacaWGfbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabe aaaOWdbiaawUfacaGLDbaajugibiabgUcaRKqbaoaadmaak8aabaqc LbsapeGaaeiybaGccaGLBbGaayzxaaaacaGLOaGaayzkaaqcLbsacq GHsisljuaGdaGcaaGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaa dUeajuaGpaWaaSbaaSqaaKqzadWdbiaad2gacaqGGcaal8aabeaaju gib8qacqGHRaWkcaqGGcqcfa4aamWaaOWdaeaajugib8qacaWGfbqc fa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawUfaca GLDbaajugibiabgUcaRKqbaoaadmaak8aabaqcLbsapeGaaeiybaGc caGLBbGaayzxaaaacaGLOaGaayzkaaqcfa4damaaCaaaleqabaqcLb mapeGaaGOmaaaajugibiabgkHiTiaaisdajuaGdaWadaGcpaqaaKqz GeWdbiaabcwaaOGaay5waiaaw2faaKqbaoaadmaak8aabaqcLbsape GaamyraKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qa caGLBbGaayzxaaaaleqaaaGccaGLOaGaayzkaaaaaa@8373@   (1a)

Where v, k2, Km, and [E0] are the velocity of hydrolysis of starch, rate constant for the production of reducing sugar maltose, Michaelis–Menten constant, and the concentration of the enzyme respectively; The parameter [ Š ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqvcjuaGqa aaaaaaaaWdbmaadmaak8aabaqcLbsapeGaamiybaGccaGLBbGaayzx aaaaaa@3A9F@ expresses the sum of the mass concentration of free substrate and substrate involved in complex formation with the enzyme,27 [ Š ]=[ S ]+[ C ]=[ S 0 ] [P ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaGcpaqaaKqzGeWdbiaadcwaaOGaay5waiaaw2faaKqz GeGaeyypa0tcfa4aamWaaOWdaeaajugib8qacaWGtbaakiaawUfaca GLDbaajugibiabgUcaRKqbaoaadmaak8aabaqcLbsapeGaam4qaaGc caGLBbGaayzxaaqcLbsacqGH9aqpcaGGBbGaam4uaKqba+aadaWgaa WcbaqcLbmapeGaaGimaaWcpaqabaqcfa4dbmaajmcak8aabaqcLbsa peGaeyOeI0cakiaaw2facaGLBbaajuaGdaWacaGcbaqcLbsacaWGqb aakiaaw2faaaaa@52F8@ ,27 where [S], [S0], [C], and [P] are the concentration of free substrate, total concentration of substrate, concentration of enzyme–substrate complex, and concentration of product respectively. The attraction for the equation is initial unfamiliarity and for its inspiring capacity for application to answer or proffer solution to another question vis–à–vis barrage of criticism against linear plot for the determination of kinetic parameters.30

The issue regarding the equation is that Michaelis–Menten constant ( K m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqvccaGGOa qcLbsacaWGlbWcdaWgaaadbaGaamyBaaqabaGccaGGPaaaaa@3A42@ and [ Š ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqvcjuaGqa aaaaaaaaWdbmaadmaak8aabaqcLbsapeGaamiybaGccaGLBbGaayzx aaaaaa@3A9F@  must be in mol/L. Consequently the molar mass of the substrate must be known in order to maintain dimensional consistency. However, the view that “ ( K m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqvccaGGOa qcLbsacaWGlbWcdaWgaaadbaGaamyBaaqabaGccaGGPaaaaa@3A42@ ”gives information about the proportion of enzyme present as enzyme–substrate complex (ES) as well, but for the reaction at steady–state, i.e. while the enzyme is actually ‘at work’, busy in turning over substrate”,31 may be examined with caution. If Km remains the substrate concentration at half maximum velocity (vmax) and vmax /k2 = [E0], vmax /k2/2 ¹ Km/MS where MS is the molar mass of the substrate. Otherwise, (vmax /k2/2)–1Km=MS which may not be the case, if for instance maltose is the substrate. Besides, hydrolysis of glycosidic bond in sugars whose degree of polymerization » 2 occurs one after the other coupled with dissociation of the complex leaving behind a fragment and maltose, the product, for instance, after each hydrolytic action.

A complex equation such as Eq. (1a) unlike the usual or conventional simple expression such as vmax/[E0] ºv(Km+[S0])/[S0][E0] is far more encompassing bringing relational link between variables which characterize the activity of an enzyme with element of conservation principle despite paucity in its use. This may not belie its usefulness as supported by Baici’s view that “A classic paper is not necessarily one that has been, and continues to be, cited at a high rate. It can also be one that marked a starting point and stimulated the growth of an entire branch of science”.31

Once again as in a submitted manuscript,21 in which a different homologue is addressed the following equations below lead to some quadratic equations that may serve as a unifying equation for different variable including in particular, pseudo–rate constant, k, for the change in the concentration of the substrate with progress in amylolysis. In line with intellectual honesty and integrity it is imperative to state that Eq. (1) through Eq. (22) had been derived in another manuscript treating another homologue of alpha amylase of microbial origin.21 It is repeated in this research so as to preclude doubt regarding the basis or origin of Eq. (22) below.

Δ[ S 0 ] M x ( ϕ1 ) N A =Number of glycosidic bonds ( b G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeuiLdqucfa4aamWa aOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaaaOWdbiaawUfacaGLDbaaa8aabaqcLbsapeGaamytaKqb aoaaBaaabaqcLbmacaWG4baajuaGbeaaaaWaaeWaaOWdaeaaiiaaju gib8qacqWFvpGzcqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaa d6eajuaGdaWgaaqaaKqzadGaamyqaaqcfayabaqcLbsacqGH9aqpca qGobGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqGGcGaae4Baiaa bAgacaqGGcGaae4zaiaabYgacaqG5bGaae4yaiaab+gacaqGZbGaae yAaiaabsgacaqGPbGaae4yaiaabckacaqGIbGaae4Baiaab6gacaqG KbGaae4CaiaacckajuaGdaqadaGcpaqaaKqzGeWdbiaadkgajuaGda WgaaqaaKqzadGaam4raaqcfayabaaakiaawIcacaGLPaaaaaa@72B0@   (1b)

Where f, [S0], NA, and Mx is the degree of polymerization, mass concentration of the substrate, Avogadro’s number, and molar mass of the substrate if the entire chain of a polysaccharide is hydrolyzed otherwise it can best be described as the molar mass of that part of the substrate hydrolyzed, which ensures dimensionless parameter, bG. The basis of Eq. (1) is that if the degree of polymerization of a polysaccharide is ϕ, and Mx is the molar mass of the part of the substrate hydrolyzed, the number of glycosidic covalent bonds should be ϕ – 1. However, for the purpose of this investigation, a simple expression for the total number (ϕ) of glucose molecule is given as:  ϕ= M x 162   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdii aajugibabaaaaaaaaapeGae8x1dyMaeyypa0tcfa4aaSaaaOWdaeaa jugib8qacaWGnbqcfa4damaaBaaaleaajugWa8qacaqG4baal8aabe aaaOqaaKqzGeWdbiaaigdacaaI2aGaaGOmaaaacaGGGcaaaa@4403@  (2)

Δ[ S 0 ]=[ S 0 ]( 1 e kt ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqucfa4aamWaaOWdaeaajugib8qacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawU facaGLDbaajugibiabg2da9Kqbaoaadmaak8aabaqcLbsapeGaam4u aKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBb Gaayzxaaqcfa4aaeWaaOWdaeaajugib8qacaaIXaGaeyOeI0Iaamyz aSWdamaaCaaabeqaaKqzadWdbiabgkHiTiaadUgacaWG0baaaaGcca GLOaGaayzkaaaaaa@52A9@   (3)

Where k and t are the pseudo–first order rate constant for the utilization of the substrate and duration of assay. Equation (3) is derivable from first principle,32 as follows: [ S ]=[ S 0 ] e kt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaadmaak8aabaqcLbsapeGaam4uaaGccaGLBbGa ayzxaaqcLbsacqGH9aqpjuaGdaWadaGcpaqaaKqzGeWdbiaadofaju aGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaa w2faaKqzGeGaamyzaSWdamaaCaaabeqaaKqzadWdbiabgkHiTiaadU gacaWG0baaaaaa@49D6@ such that Δ[ S 0 ]=[ S 0 ][ S 0 ] e kt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqucfa4aamWaaOWdaeaajugib8qacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawU facaGLDbaajugibiabg2da9Kqbaoaadmaak8aabaqcLbsapeGaam4u aKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBb GaayzxaaqcLbsacqGHsisljuaGdaWadaGcpaqaaKqzGeWdbiaadofa juaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5wai aaw2faaKqzGeGaamyzaKqba+aadaahaaWcbeqaaKqzadWdbiabgkHi TiaadUgacaWG0baaaaaa@57C6@ . Marchal et al.33 determined pseudo–first order rate constant taking into cognizance mass conservation law [mmol/(kg dw + H2O)]. The authors,33 recognized the addition of water to the hydrolytic process. In this paper, however, the number of bonds that can be hydrolyzed given appropriate hydrolase is f –1 where, f is as earlier defined. There is need to add that with human salivary alpha amylase only some of the bonds need to be hydrolyzed. For convenient sake exp (k t) for e kt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwgajuaGpaWaaWbaaSqabeaajugWa8qacaWGRbGaamiD aaaaaaa@3B81@  and exp (– k t) (1/exp (k t)) for e kt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwgajuaGpaWaaWbaaSqabeaajugWa8qacqGHsislcaWG RbGaamiDaaaaaaa@3C6D@  are to be used subsequently.

Equations (1b) and (3) show mass concentration of the substrate converted to product. Consequently, if the mass of the product is implied in line with mass conservation law division by the molar mass of the product, if certain gives the number of moles per unit volume. In this case f should be the degree of polymerization of the product. On account of this, the following relationship may hold:

[ P ] N A = β[ S 0 ] M 3  ( 1 1 exp( k t ) )( M 3 162 1 ) N A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGa ayzxaaqcLbsacaWGobqcfa4damaaBaaaleaajugWa8qacaWGbbaal8 aabeaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaGqabKqba+qacaWF YoWaamWaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8 qacaaIWaaal8aabeaaaOWdbiaawUfacaGLDbaaa8aabaqcLbsapeGa amytaKqba+aadaWgaaWcbaqcLbmapeGaaG4maiaabckaaSWdaeqaaa aajuaGpeWaaeWaaOWdaeaajugib8qacaaIXaGaeyOeI0scfa4aaSaa aOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaciyzaiaacIhaca GGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaeiOaiaadshaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaajuaGdaqadaGcpaqaaKqba+ qadaWcaaGcpaqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqaaKqzGeWd biaaiodaaSWdaeqaaaGcbaqcLbsapeGaaGymaiaaiAdacaaIYaaaai abgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaamOtaKqba+aadaWg aaWcbaqcLbmapeGaamyqaaWcpaqabaaaaa@6F7D@   (4)

Where b may be referred to as a proportionality constant if M3 is taken as the molar mass of the product, maltose. It may be necessary to point out that Eq. (3) and its appearance in Eq. (4) is from the expression as explained earlier from first principle.

Equation (4) is premised on the fact that for every mole of maltose yielded, one mole of the glycosidic bond is hydrolyzed. This is equivalent to the loss of two glycosidic bonds from the polysaccharide. Rearrangement and elimination of the parameter NA gives:

[ P ]= β[ S 0 ]( exp( kt )1 ) exp( kt ) ( M 3 162 1 ) M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGa ayzxaaqcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqba+qadaWcaaGcpa qaaGGabKqba+qacqWFYoGydaWadaGcpaqaaKqzGeWdbiaadofajuaG paWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2 faaKqbaoaabmaak8aabaqcLbsapeGaciyzaiaacIhacaGGWbqcfa4a aeWaaOWdaeaajugib8qacaWGRbGaamiDaaGccaGLOaGaayzkaaqcLb sacqGHsislcaaIXaaakiaawIcacaGLPaaaa8aabaqcLbsapeGaciyz aiaacIhacaGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaamiDaa GccaGLOaGaayzkaaaaaKqbaoaabmaak8aabaqcfa4dbmaalaaak8aa baqcLbsapeGaamytaKqba+aadaWgaaWcbaqcLbmapeGaaG4maaWcpa qabaaakeaajugib8qacaaIXaGaaGOnaiaaikdaaaGaeyOeI0IaaGym aaGccaGLOaGaayzkaaaapaqaaKqzGeWdbiaad2eajuaGpaWaaSbaaS qaaKqzadWdbiaaiodaaSWdaeqaaaaaaaa@6C6C@   (5)

Rearrangement of Eq. (5) gives:

 [ S 0 ] 162 [ S 0 ] M 3  = exp( k t )[ P ] β(exp( k t )1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaiiOaKqbaoaadmaa k8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaa Wcpaqabaaak8qacaGLBbGaayzxaaaapaqaaKqzGeWdbiaaigdacaaI 2aGaaGOmaaaacqGHsisljuaGdaWcaaGcpaqaaKqba+qadaWadaGcpa qaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWd aeqaaaGcpeGaay5waiaaw2faaaWdaeaajugib8qacaWGnbqcfa4dam aaBaaaleaajugWa8qacaaIZaGaaiiOaaWcpaqabaaaaKqzGeWdbiab g2da9Kqbaoaalaaak8aabaqcLbsapeGaciyzaiaacIhacaGGWbqcfa 4aaeWaaOWdaeaajugib8qacaWGRbGaaiiOaiaadshaaOGaayjkaiaa wMcaaKqbaoaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzxaa aapaqaaGGabKqzGeWdbiab=j7aIjaacIcaciGGLbGaaiiEaiaaccha juaGdaqadaGcpaqaaKqzGeWdbiaadUgacaGGGcGaamiDaaGccaGLOa GaayzkaaqcLbsacqGHsislcaaIXaGaaiykaaaaaaa@7071@   (6)

[ S 0 ] M 3 = [ S 0 ] 162 exp( k t )[ P ] β(exp( k t )1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcfa4dbmaadmaak8aabaqcLbsa peGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaak8 qacaGLBbGaayzxaaaapaqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqa aKqzadWdbiaaiodaaSWdaeqaaaaajugib8qacqGH9aqpjuaGdaWcaa GcpaqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSba aSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaaWdae aajugib8qacaaIXaGaaGOnaiaaikdaaaGaeyOeI0scfa4aaSaaaOWd aeaajugib8qaciGGLbGaaiiEaiaacchajuaGdaqadaGcpaqaaKqzGe WdbiaadUgacaqGGcGaamiDaaGccaGLOaGaayzkaaqcfa4aamWaaOWd aeaajugib8qacaWGqbaakiaawUfacaGLDbaaa8aabaacceqcLbsape Gae8NSdiMaaiikaiGacwgacaGG4bGaaiiCaKqbaoaabmaak8aabaqc LbsapeGaam4AaiaabckacaWG0baakiaawIcacaGLPaaajugibiabgk HiTiaaigdacaGGPaaaaaaa@6D98@   (7)

Let Eq. (8a) below holds temporarily for the purpose of brevity.

ζ=[ S 0 ] 1 162 exp( k t )[ P ] β(exp( k t )1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaaeOTdiabg2da9iaacUfacaWGtbqcfa4damaa BaaaleaajugWa8qacaaIWaaal8aabeaajugib8qacaGGDbqcfa4aaS aaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGymaiaaiAda caaIYaaaaiabgkHiTKqbaoaalaaak8aabaqcLbsapeGaciyzaiaacI hacaGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaiiOaiaadsha aOGaayjkaiaawMcaaKqbaoaadmaak8aabaqcLbsapeGaamiuaaGcca GLBbGaayzxaaaapaqaaGGabKqzGeWdbiab=j7aIjaacIcaciGGLbGa aiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaGGGcGaam iDaaGccaGLOaGaayzkaaqcLbsacqGHsislcaaIXaGaaiykaaaaaaa@62FD@   (8a)

M 3 = [ S 0 ] ζ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaamytaKqba+aadaWgaaWcbaqcLbmapeGaaG4m aaWcpaqabaqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajuaGpeWaam WaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaI Waaal8aabeaaaOWdbiaawUfacaGLDbaaa8aabaqcLbsapeGaaeOTda aaaaa@46F3@   (8b)

It is necessary to bear in mind that the reducing sugar produced within specified duration of assay is not necessarily from one polysaccharide. Just as k2 is expressed as vmax/[E0], where k2, vmax, and [E0] are the rate constant for the production of reducing sugar, maltose for instance, maximum velocity of the production of the reducing sugar, maltose in this case, and the molar concentration of the enzyme, the equivalent rate constant, k2[S] (not a pseudo–rate constant) for the transformation of a given amount of the substrate, being equal to the mass of the product in line with conservation law is:

   k 2[ S ]  = Δ[ S 0 ]  k 2  vt M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdqa aaaaaaaaWdbiaacckajugibiaacckacaWGRbWcpaWaaSbaaeaajugW a8qacaaIYaWcdaWadaWdaeaajugWa8qacaWGtbaaliaawUfacaGLDb aaa8aabeaajugib8qacaGGGcGaeyypa0tcfa4aaSaaaOWdaeaajugi b8qacqGHuoarjuaGdaWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaS baaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaKqz GeGaaiiOaiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdacaGGGc aal8aabeaaaOqaaKqzGeWdbiaadAhacaWG0bGaamytaKqba+aadaWg aaWcbaqcLbmapeGaaG4maaWcpaqabaaaaaaa@5B0C@   (9a)

The term transformation is simply the breaking and making of bonds before the departure of the product. In Eq. (9a), v k 2 : Δ[ S 0 ] t M 3 k 2[ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaamODaaGcpaqaaKqz GeWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaa aajugib8qacaGG6aqcfa4aaSaaaOWdaeaajugib8qacqGHuoarjuaG daWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbi aaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaaWdaeaajugib8qacaWG 0bGaamytaKqba+aadaWgaaWcbaqcLbmapeGaaG4maaWcpaqabaqcLb sapeGaam4AaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaSWaamWaa8aa baqcLbmapeGaae4uaaWccaGLBbGaayzxaaaapaqabaaaaaaa@5731@ is simply an expression of the ratio of the molar concentration of the enzyme involved in complex formation to the molar concentration of product obtained from the concentration of hydrolyzed starch that was transformed to product or more precisely, the molar concentration of hydrolyzed glycosidic bonds (for each glycosidic bond hydrolyzed one maltose molecule is given), with known value of M3. Therefore, if D[S0] is taken as mass of product, in line with mass conservation principle, then M3 becomes the molar mass of the product – maltose for instance – and k2[S] should be @ k2. The approximation is indicated because of imperfection in every assay.

= Δ[ S 0 ]  k 2 ζ vt[ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqGH uoarjuaGdaWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaK qzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaKqzGeGaaiiO aiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaKqzGe WdbiaabA7aaOWdaeaajugib8qacaWG2bGaamiDaiaacUfacaWGtbqc fa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaajugib8qacaGGDb aaaaaa@52C9@   (9b)

Equation (9b) is obtained by replacing M3 with Eq. (8b). In Eq. (9a), k2[S]  a 1/M3. Thus,

k 2[ S ] = Θ     M 3    MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaam4AaKqba+aadaWgaaWcbaqcLbmapeGaaGOm aSWaamWaa8aabaqcLbmapeGaam4uaaWccaGLBbGaayzxaaaapaqaba qcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugibiabfI5arbGcbaqc LbsapeGaaiiOaiaacckacaGGGcGaamytaKqba+aadaWgaaWcbaqcLb mapeGaaG4maiaacckacaGGGcGaaiiOaaWcpaqabaaaaaaa@4F6A@   (10)

Where, for the purpose of brevity, Q is Δ[ S 0 ]  k 2  vt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyiLdqucfa4aamWa aOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaaaOWdbiaawUfacaGLDbaajugibiaacckacaWGRbqcfa4d amaaBaaaleaajugWa8qacaaIYaGaaiiOaaWcpaqabaaakeaajugib8 qacaWG2bGaamiDaaaaaaa@4A5C@

Substitute Eq. (8b) into Eq. (10) to give:

k 2[ S ] =  Θζ [ S 0 ] Θ( [ S 0  ] 162 [ P ]exp( k t ) β(exp( k t )1)   ) [ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaam4AaKqba+aadaWgaaWcbaqcLbmapeGaaGOm aSWaamWaa8aabaqcLbmapeGaae4uaaWccaGLBbGaayzxaaaapaqaba qcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaqGGcGaeuiM deLaaeOTdaGcpaqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaadofaju aGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaa w2faaaaajugibiabggMi6Mqbaoaalaaak8aabaqcfa4dbiabfI5arn aabmaak8aabaqcLbsafaqabeGabaaakeaajuaGpeWaaSaaaOWdaeaa jugib8qacaGGBbGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaa WcpaqabaqcLbsapeGaaeiOaiaac2faaOWdaeaajugib8qacaaIXaGa aGOnaiaaikdaaaGaeyOeI0scfa4aaSaaaOWdaeaajuaGpeWaamWaaO Wdaeaajugib8qacaWGqbaakiaawUfacaGLDbaajugibiGacwgacaGG 4bGaaiiCaKqbaoaabmaak8aabaqcLbsapeGaam4AaiaacckacaWG0b aakiaawIcacaGLPaaaa8aabaacceqcLbsapeGae8NSdiMaaiikaiGa cwgacaGG4bGaaiiCaKqbaoaabmaak8aabaqcLbsapeGaam4Aaiaacc kacaWG0baakiaawIcacaGLPaaajugibiabgkHiTiaaigdacaGGPaaa aaGcpaqaaKqzGeWdbiaacckaaaaakiaawIcacaGLPaaaa8aabaqcLb sapeGaai4waiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWd aeqaaKqzGeWdbiaac2faaaaaaa@8731@   (11)

[ S 0 ] k 2[ S ] =Θ [ S 0 ] 162 Θ[ P ]exp( k t ) β( exp( k t )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaai4waiaadofajuaGpaWaaSbaaSqaaKqzadWd biaaicdaaSWdaeqaaKqzGeWdbiaac2facaWGRbqcfa4damaaBaaale aajugWa8qacaaIYaWcdaWadaWdaeaajugWa8qacaWGtbaaliaawUfa caGLDbaaa8aabeaajugib8qacqGH9aqpcqqHyoqujuaGdaWcaaGcpa qaaKqzGeWdbiaacUfacaWGtbqcfa4damaaBaaaleaajugWa8qacaaI Waaal8aabeaajugib8qacaGGDbaak8aabaqcLbsapeGaaGymaiaaiA dacaaIYaaaaiabgkHiTKqbaoaalaaak8aabaqcfa4dbiabfI5arnaa dmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzxaaqcLbsaciGGLb GaaiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaqGGcGa amiDaaGccaGLOaGaayzkaaaapaqaaGGabKqba+qacqWFYoGydaqada GcpaqaaKqzGeWdbiGacwgacaGG4bGaaiiCaKqbaoaabmaak8aabaqc LbsapeGaam4AaiaabckacaWG0baakiaawIcacaGLPaaajugibiabgk HiTiaaigdaaOGaayjkaiaawMcaaaaaaaa@7383@   (12)

If k2[S] is replaced by Eq. (9a) the result is:

[ S 0 ] Δ[ S 0 ] k 2 vt M 3  =Θ [ S 0 ] 162 Θ[ P ]exp( k t ) β( exp( k t )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaai4waiaadofajuaGpaWaaSbaaSqaaKqzadWd biaaicdaaSWdaeqaaKqba+qadaqcZaGcpaqaaKqzGeWdbiabgs5aej aacUfacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaa aOWdbiaaw2facaGLDbaajuaGdaWcaaGcpaqaaKqzGeWdbiaadUgaju aGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaGcbaqcLbsapeGa amODaiaadshacaWGnbqcfa4damaaBaaaleaajugWa8qacaaIZaaal8 aabeaaaaqcLbsapeGaaeiOaiabg2da9iabfI5arLqbaoaalaaak8aa baqcLbsapeGaai4waiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaic daaSWdaeqaaKqzGeWdbiaac2faaOWdaeaajugib8qacaaIXaGaaGOn aiaaikdaaaGaeyOeI0scfa4aaSaaaOWdaeaajugib8qacqqHyoquju aGdaWadaGcpaqaaKqzGeWdbiaadcfaaOGaay5waiaaw2faaKqzGeGa ciyzaiaacIhacaGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaae iOaiaadshaaOGaayjkaiaawMcaaaWdaeaaieqajugib8qacaWFYoqc fa4aaeWaaOWdaeaajugib8qaciGGLbGaaiiEaiaacchajuaGdaqada GcpaqaaKqzGeWdbiaadUgacaqGGcGaamiDaaGccaGLOaGaayzkaaqc LbsacqGHsislcaaIXaaakiaawIcacaGLPaaaaaaaaa@80F0@   (13)

Rearrangement of Eq. (13) gives:

[ S 0 ] Δ[ S 0 ] k 2  vt =Θ[ S 0 ] M 3 162 Θ[ P ]exp( k t ) M 3 β(exp( k t )1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaai4waiaadofajuaGpaWaaSbaaSqaaKqzadWd biaaicdaaSWdaeqaaKqba+qadaqcZaGcpaqaaKqzGeWdbiabgs5aej aacUfacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaa aOWdbiaaw2facaGLDbaajuaGdaWcaaGcpaqaaKqzGeWdbiaadUgaju aGpaWaaSbaaSqaaKqzadWdbiaaikdacaqGGcaal8aabeaaaOqaaKqz GeWdbiaadAhacaWG0baaaiabg2da9iabfI5arjaacUfacaWGtbqcfa 4damaaBaaaleaajugWa8qacaaIWaaal8aabeaajugib8qacaGGDbqc fa4aaSaaaOWdaeaajugib8qacaWGnbqcfa4damaaBaaaleaajugWa8 qacaaIZaaal8aabeaaaOqaaKqzGeWdbiaaigdacaaI2aGaaGOmaaaa cqGHsisljuaGdaWcaaGcpaqaaKqzGeWdbiabfI5arLqbaoaadmaak8 aabaqcLbsapeGaamiuaaGccaGLBbGaayzxaaqcLbsaciGGLbGaaiiE aiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaqGGcGaamiDaa GccaGLOaGaayzkaaqcLbsacaWGnbqcfa4damaaBaaaleaajugWa8qa caaIZaaal8aabeaaaOqaaGGabKqzGeWdbiab=j7aIjaacIcaciGGLb GaaiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaqGGcGa amiDaaGccaGLOaGaayzkaaqcLbsacqGHsislcaaIXaGaaiykaaaaaa a@8363@   (14)

Δ[ S 0 ]= (  Θ[ S 0 ]      M 3    162   Θ[ P ]exp( k t ) M 3 β(exp( k t )1)   )v t [ S 0 ] k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqKaai4waiaadofajuaGpaWaaSbaaSqa aKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2facqGH9aqpjuaGda WcaaGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaacckacqqHyoqu caGGBbGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqaba qcLbsapeGaaiyxaKqbaoaalaaak8aabaqcLbsapeGaaiiOaiaaccka caGGGcGaaiiOaiaad2eajuaGpaWaaSbaaSqaaKqzGeWdbiaaiodaca GGGcGaaiiOaiaacckaaSWdaeqaaaGcbaqcLbsapeGaaGymaiaaiAda caaIYaaaaiabgkHiTiaacckajuaGdaWcaaGcpaqaaKqzGeWdbiabfI 5arLqbaoaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzxaaqc LbsaciGGLbGaaiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadU gacaGGGcGaamiDaaGccaGLOaGaayzkaaqcLbsacaWGnbqcfa4damaa BaaaleaajugWa8qacaaIZaaal8aabeaaaOqaaGGabKqzGeWdbiab=j 7aIjaacIcaciGGLbGaaiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWd biaadUgacaGGGcGaamiDaaGccaGLOaGaayzkaaqcLbsacqGHsislca aIXaGaaiykaaaacaGGGcaakiaawIcacaGLPaaajugibiaadAhacaGG GcGaamiDaaGcpaqaaKqzGeWdbiaacUfacaWGtbqcfa4damaaBaaale aajugWa8qacaaIWaaal8aabeaajugib8qacaGGDbGaam4AaKqba+aa daWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaaaaaaa@907D@   (15)

Equation (9a) could be rearranged to give:   

v t= k 2 Δ[ S 0 ] M 3 K 2[ S ]   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaamODaiaabckacaWG0bGaeyypa0tcfa4aaSaa aOWdaeaajugib8qacaWGRbqcfa4damaaBaaaleaajugWa8qacaaIYa aal8aabeaajugibiabgs5aeLqba+qadaWadaGcpaqaaKqzGeWdbiaa dofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay 5waiaaw2faaaWdaeaajugib8qacaWGnbqcfa4damaaBaaaleaajugW a8qacaaIZaaal8aabeaajugib8qacaWGlbqcfa4damaaBaaaleaaju gWa8qacaaIYaWcdaWadaWdaeaajugWa8qacaqGtbaaliaawUfacaGL Dbaaa8aabeaaaaqcLbsapeGaaeiOaaaa@58BF@   (16)

The purpose of Eq. (16) is the determination of a slope (SL (1)) which could be used to find another expression for M3. The slope from the plot of v t (or [P]) versus D[S0] ([S0] exp ((k t) -1)/exp (k t)) can be expressed as:

  S L( 1 ) = k 2  M 3 k 2[ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaaiiOaGqadiaa=nfal8aadaWgaaqaaKqzadWd biaahYealmaabmaapaqaaKqzadWdbiaaigdaaSGaayjkaiaawMcaaa WdaeqaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaam4A aKqba+aadaWgaaWcbaqcLbmapeGaaGOmaiaabckaaSWdaeqaaaGcba qcLbsapeGaamytaKqba+aadaWgaaWcbaqcLbmapeGaaG4maaWcpaqa baqcLbsapeGaam4AaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaSWaam Waa8aabaqcLbmapeGaae4uaaWccaGLBbGaayzxaaaapaqabaaaaaaa @54C0@   (17a)

Equation (17a) leads to Eq. (17b).

  k 2[ S ]  = k 2  M 3 S L( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdie WaqaaaaaaaaaWdbiaa=bkajugibiaadUgal8aadaWgaaqaaKqzadWd biaaikdalmaadmaapaqaaKqzadWdbiaadofaaSGaay5waiaaw2faaa WdaeqaaKqzGeWdbiaacckacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWd biaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdacaGGGcaal8aabe aaaOqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqaaKqzadWdbiaaioda aSWdaeqaaKqzGeWdbiaa=nfajuaGpaWaaSbaaSqaaKqzadWdbiaahY ealmaabmaapaqaaKqzadWdbiaaigdaaSGaayjkaiaawMcaaaWdaeqa aaaaaaa@55E3@   (17b)

From Eq. (17a)

M 3 = k 2 S L ( 1 ) k 2[ S ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eajuaGpaWaaSbaaSqaaKqzadWdbiaaiodaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaam4AaKqba+ aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaaakeaaieWajugib8qa caWFtbqcfa4damaaBaaaleaajugWa8qacaWHmbGaa8hOaSWaaeWaa8 aabaqcLbmapeGaaGymaaWccaGLOaGaayzkaaaapaqabaqcLbsapeGa am4AaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaSWaamWaa8aabaqcLb mapeGaae4uaaWccaGLBbGaayzxaaaapaqabaaaaaaa@52E5@   (18)

Substitution of Eq. (18) into Eq. (15) gives:

Δ[ S 0 ] = ( Θ[ S 0 ] k 2 162 S L( 1 ) k 2[ S ] Θ[ P ]exp( k t ) k 2 β( exp( k t )1 ) S L( 1 ) k 2[ S ] )v t [ S 0 ] k 2  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgs5aejaacUfacaWGtbqcfa4damaaBaaaleaajugWa8qa caaIWaaal8aabeaajugib8qacaGGDbGaaeiOaiabg2da9iaabckaju aGdaqadaGcpaqaaKqzGeWdbiabfI5arjaacUfacaWGtbqcfa4damaa BaaaleaajugWa8qacaaIWaaal8aabeaajugib8qacaGGDbqcfa4aaS aaaOWdaeaajugib8qacaWGRbqcfa4damaaBaaaleaajugWa8qacaaI Yaaal8aabeaaaOqaaKqzGeWdbiaaigdacaaI2aGaaGOmaGqadiaa=n fajuaGpaWaaSbaaSqaaKqzadWdbiaahYealmaabmaapaqaaKqzadWd biaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzGeWdbiaadUgal8aada WgaaqaaKqzadWdbiaaikdalmaadmaapaqaaKqzadWdbiaabofaaSGa ay5waiaaw2faaaWdaeqaaaaajugib8qacqGHsisljuaGdaWcaaGcpa qaaKqzGeWdbiabfI5arLqbaoaadmaak8aabaqcLbsapeGaamiuaaGc caGLBbGaayzxaaqcLbsaciGGLbGaaiiEaiaacchajuaGdaqadaGcpa qaaKqzGeWdbiaadUgacaqGGcGaamiDaaGccaGLOaGaayzkaaqcLbsa caWGRbqcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaOqaaG GabKqzGeWdbiab+j7aILqbaoaabmaak8aabaqcLbsapeGaciyzaiaa cIhacaGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaeiOaiaads haaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzk aaqcLbsacaWFtbqcfa4damaaBaaaleaajugWa8qacaWHmbWcdaqada WdaeaajugWa8qacaaIXaaaliaawIcacaGLPaaaa8aabeaajugib8qa caWGRbqcfa4damaaBaaaleaajugWa8qacaaIYaWcdaWadaWdaeaaju gWa8qacaqGtbaaliaawUfacaGLDbaaa8aabeaaaaaak8qacaGLOaGa ayzkaaqcLbsacaWG2bqcfa4aaSaaaOWdaeaajugib8qacaWG0baak8 aabaqcLbsapeGaai4waiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaa icdaaSWdaeqaaKqzGeWdbiaac2facaWGRbqcfa4damaaBaaaleaaju gWa8qacaaIYaGaaeiOaaWcpaqabaaaaaaa@A99D@   (19)

Meanwhile, [P] = v t and Eq. (18) is substituted into Eq. (10) to give:

k 2[ S ] = Θ k 2   S L( 1 ) k 2[ S ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdalmaadmaa paqaaKqzadWdbiaabofaaSGaay5waiaaw2faaaWdaeqaaKqzGeWdbi abg2da9Kqbaoaalaaak8aabaqcLbsacqqHyoquaOqaaKqzGeWdbiaa dUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaaajugib8 qacaqGGcacbmGaa83uaKqba+aadaWgaaWcbaqcLbmapeGaaCitaSWa aeWaa8aabaqcLbmapeGaaGymaaWccaGLOaGaayzkaaaapaqabaqcLb sapeGaam4AaSWdamaaBaaabaqcLbmapeGaaGOmaSWaamWaa8aabaqc LbmapeGaae4uaaWccaGLBbGaayzxaaaapaqabaaaaa@589C@   (20)

 Θ= k 2 S L( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdqa aaaaaaaaWdbiaacckajugibiabfI5arjabg2da9Kqbaoaalaaak8aa baqcLbsapeGaam4AaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpa qabaaakeaaieWajugib8qacaWFtbqcfa4damaaBaaaleaajugWa8qa caWHmbWcdaqadaWdaeaajugWa8qacaaIXaaaliaawIcacaGLPaaaa8 aabeaaaaaaaa@48C6@   (21)

Rearrangement of Eq. (19) and substitution of Eq. (21) into it gives the following after simplification,

Δ[ S 0 ]=Θ( [ S 0 ] k 2 162 S L( 1 ) k 2[ S ] [ P ]exp( k t ) k 2 β( exp( k t ) 1 ) S L( 1 ) k 2[ S ] ) v t [ S 0 ] k 2  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqKaai4waiaadofajuaGpaWaaSbaaSqa aKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2facqGH9aqpcqqHyo qujuaGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqba+qadaWadaGc paqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaS WdaeqaaaGcpeGaay5waiaaw2faaKqzGeGaam4AaKqba+aadaWgaaWc baqcLbmapeGaaGOmaaWcpaqabaaakeaajugib8qacaaIXaGaaGOnai aaikdaieWacaWFtbWcpaWaaSbaaeaajugWa8qacaWHmbWcdaqadaWd aeaajugWa8qacaaIXaaaliaawIcacaGLPaaaa8aabeaajugib8qaca WGRbqcfa4damaaBaaaleaajugWa8qacaaIYaWcdaWadaWdaeaajugW a8qacaqGtbaaliaawUfacaGLDbaaa8aabeaaaaqcLbsapeGaeyOeI0 scfa4aaSaaaOWdaeaajuaGpeWaamWaaOWdaeaajugib8qacaWGqbaa kiaawUfacaGLDbaajugibiGacwgacaGG4bGaaiiCaKqbaoaabmaak8 aabaqcLbsapeGaam4AaiaabckacaWG0baakiaawIcacaGLPaaajugi biaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaGcba acceqcLbsapeGae4NSdiwcfa4aaeWaaOWdaeaajugib8qaciGGLbGa aiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaqGGcGaam iDaaGccaGLOaGaayzkaaqcLbsacqGHsislcaqGGcGaaGymaaGccaGL OaGaayzkaaqcLbsacaWFtbWcpaWaaSbaaeaajugWa8qacaWHmbWcda qadaWdaeaajugWa8qacaaIXaaaliaawIcacaGLPaaaa8aabeaajugi b8qacaWGRbWcpaWaaSbaaeaajugWa8qacaaIYaWcdaWadaWdaeaaju gWa8qacaqGtbaaliaawUfacaGLDbaaa8aabeaaaaaak8qacaGLOaGa ayzkaaqcLbsacaqGGcGaamODaKqbaoaalaaak8aabaqcLbsapeGaam iDaaGcpaqaaKqzGeWdbiaacUfacaWGtbqcfa4damaaBaaaleaajugW a8qacaaIWaaal8aabeaajugib8qacaGGDbGaam4AaKqba+aadaWgaa WcbaqcLbmapeGaaGOmaiaabckaaSWdaeqaaaaaaaa@A822@
= k 2 k 2[ S ] S L( 1 ) 2 ( [ S 0 ] 162 [ P ]exp( k t ) β( exp( k t )  1 ) )v t [ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWG Rbqcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaOqaaKqzGe WdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdalmaadmaapaqa aKqzadWdbiaabofaaSGaay5waiaaw2faaaWdaeqaaGqadKqzGeWdbi aa=nfal8aadaqhaaqaaKqzadWdbiaahYealmaabmaapaqaaKqzadWd biaaigdaaSGaayjkaiaawMcaaaWdaeaajugWa8qacaaIYaaaaaaaju aGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaacUfacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaajugib8qaca GGDbaak8aabaqcLbsapeGaaGymaiaaiAdacaaIYaaaaiabgkHiTKqb aoaalaaak8aabaqcfa4dbmaadmaak8aabaqcLbsapeGaamiuaaGcca GLBbGaayzxaaqcLbsaciGGLbGaaiiEaiaacchajuaGdaqadaGcpaqa aKqzGeWdbiaadUgacaqGGcGaamiDaaGccaGLOaGaayzkaaaapaqaaG GabKqzGeWdbiab+j7aILqbaoaabmaak8aabaqcLbsapeGaciyzaiaa cIhacaGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaeiOaiaads haaOGaayjkaiaawMcaaKqzGeGaaeiOaiabgkHiTiaabckacaaIXaaa kiaawIcacaGLPaaaaaaacaGLOaGaayzkaaqcLbsacaWG2bqcfa4aaS aaaOWdaeaajugib8qacaWG0baak8aabaqcLbsapeGaai4waiaadofa juaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2 faaaaaaa@88E3@   (22)

As stated earlier in the text (Eq. (17b)) k 2 k 2[ S ] = S L( 1 ) M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaam4AaKqba+aadaWg aaWcbaqcLbmapeGaaGOmaaWcpaqabaaakeaajugib8qacaWGRbqcfa 4damaaBaaaleaajugWa8qacaaIYaWcdaWadaWdaeaajugWa8qacaqG tbaaliaawUfacaGLDbaaa8aabeaaaaqcLbsapeGaeyypa0Jaae4uaK qba+aadaWgaaWcbaqcLbmapeGaaeitaSWaaeWaa8aabaqcLbmapeGa aGymaaWccaGLOaGaayzkaaaapaqabaqcLbsapeGaamytaKqba+aada WgaaWcbaqcLbmapeGaaG4maaWcpaqabaaaaa@5268@ . Therefore, substitution into Eq. (22) gives:

Δ[ S 0 ]= S L( 1 ) M 3 S L( 1 ) 2 ( [ S 0 ] 162 [ P ]exp( k t ) β( exp( k t )  1 ) )v t [ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqucfa4aamWaaOWdaeaajugib8qacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawU facaGLDbaajugibiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaam4u aKqba+aadaWgaaWcbaqcLbmapeGaaeitaSWaaeWaa8aabaqcLbmape GaaGymaaWccaGLOaGaayzkaaaapaqabaqcLbsapeGaamytaKqba+aa daWgaaWcbaqcLbmapeGaaG4maaWcpaqabaaakeaajugib8qacaWGtb WcpaWaa0baaeaajugWa8qacaqGmbWcdaqadaWdaeaajugWa8qacaaI XaaaliaawIcacaGLPaaaa8aabaqcLbmapeGaaGOmaaaaaaqcfa4aae WaaOWdaeaajuaGpeWaaSaaaOWdaeGabaa6aKqzGeWdbiaacUfacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaajugib8qaca GGDbaak8aabaqcLbsapeGaaGymaiaaiAdacaaIYaaaaiabgkHiTKqb aoaalaaak8aabaqcfa4dbmaadmaak8aabaqcLbsapeGaamiuaaGcca GLBbGaayzxaaqcLbsaciGGLbGaaiiEaiaacchajuaGdaqadaGcpaqa aKqzGeWdbiaadUgacaqGGcGaamiDaaGccaGLOaGaayzkaaaapaqaaG GabKqzGeWdbiab=j7aILqbaoaabmaak8aabaqcLbsapeGaciyzaiaa cIhacaGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaeiOaiaads haaOGaayjkaiaawMcaaKqzGeGaaeiOaiabgkHiTiaabckacaaIXaaa kiaawIcacaGLPaaaaaaacaGLOaGaayzkaaqcLbsacaWG2bqcfa4aaS aaaOWdaeaajugib8qacaWG0baak8aabaqcLbsapeGaai4waiaadofa juaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2 faaaaaaa@9216@   (23)

However, Michaelis–Menten equation can be substituted into Eq. (23) so as to replace v and [P] which is º v t. The result is:

Δ[ S 0 ]= M 3 S L( 1 ) ( [ S 0 ] 162 exp( k t ) β( exp( k t )  1 ) [ E 0 ] k 2 [ S 0 ]t ( K m +[ S 0 ] ) ) [ E 0 ] k 2 [ S 0 ]t ( K m +[ S 0 ] ) 1 [ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqucfa4aamWaaOWdaeaajugib8qacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawU facaGLDbaajugibiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamyt aKqba+aadaWgaaWcbaqcLbmapeGaaG4maaWcpaqabaaakeaajugib8 qacaWGtbqcfa4damaaBaaaleaajugWa8qacaqGmbWcdaqadaWdaeaa jugWa8qacaaIXaaaliaawIcacaGLPaaaa8aabeaaaaqcfa4dbmaabm aak8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaai4waiaadofajuaG paWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2faaO Wdaeaajugib8qacaaIXaGaaGOnaiaaikdaaaGaeyOeI0scfa4aaSaa aOWdaeaajugib8qaciGGLbGaaiiEaiaacchajuaGdaqadaGcpaqaaK qzGeWdbiaadUgacaqGGcGaamiDaaGccaGLOaGaayzkaaaapaqaaGGa bKqzGeWdbiab=j7aILqbaoaabmaak8aabaqcLbsapeGaciyzaiaacI hacaGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaeiOaiaadsha aOGaayjkaiaawMcaaKqzGeGaaeiOaiabgkHiTiaabckacaaIXaaaki aawIcacaGLPaaaaaqcfa4aaSaaaOWdaeaajuaGpeWaamWaaOWdaeaa jugib8qacaWGfbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabe aaaOWdbiaawUfacaGLDbaajugibiaadUgajuaGpaWaaSbaaSqaaKqz adWdbiaaikdaaSWdaeqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaado fajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5w aiaaw2faaKqzGeGaamiDaaGcpaqaaKqba+qadaqadaGcpaqaaKqzGe WdbiaadUeajuaGpaWaaSbaaSqaaKqzadWdbiaab2gaaSWdaeqaaKqz GeWdbiabgUcaRKqbaoaadmaak8aabaqcLbsapeGaam4uaKqba+aada WgaaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaaa caGLOaGaayzkaaaaaaGaayjkaiaawMcaaKqbaoaalaaak8aabaqcfa 4dbmaadmaak8aabaqcLbsapeGaamyraKqba+aadaWgaaWcbaqcLbma peGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaqcLbsacaWGRbqcfa 4damaaBaaaleaajugWa8qacaaIYaaal8aabeaajuaGpeWaamWaaOWd aeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8 aabeaaaOWdbiaawUfacaGLDbaajugibiaadshaaOWdaeaajuaGpeWa aeWaaOWdaeaajugib8qacaWGlbqcfa4damaaBaaaleaajugWa8qaca qGTbaal8aabeaajugib8qacqGHRaWkjuaGdaWadaGcpaqaaKqzGeWd biaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpe Gaay5waiaaw2faaaGaayjkaiaawMcaaaaajuaGdaWcaaGcpaqaaKqz GeWdbiaaigdaaOWdaeaajugib8qacaGGBbGaam4uaKqba+aadaWgaa WcbaqcLbmapeGaaGimaaWcpaqabaqcLbsapeGaaiyxaaaaaaa@CA17@   (24)

Δ[ S 0 ] S L( 1 ) M 3 = [ E 0 ][ S 0 ]t k 2 162( K m +[ S 0 ] ) exp( k t ) β( exp( k t )  1 ) ( [ E 0 ]t K m +[ S 0 ] ) 2 k 2 2 [ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyiLdqucfa4aamWa aOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaaaOWdbiaawUfacaGLDbaajugibiaadofajuaGpaWaaSba aSqaaKqzadWdbiaabYealmaabmaapaqaaKqzadWdbiaaigdaaSGaay jkaiaawMcaaaWdaeqaaaGcbaqcLbsapeGaamytaKqba+aadaWgaaWc baqcLbmapeGaaG4maaWcpaqabaaaaKqzGeWdbiabg2da9Kqbaoaala aak8aabaqcfa4dbmaadmaak8aabaqcLbsapeGaamyraKqba+aadaWg aaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaqcfa 4aamWaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qa caaIWaaal8aabeaaaOWdbiaawUfacaGLDbaajugibiaadshacaWGRb qcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaOqaaKqzGeWd biaaigdacaaI2aGaaGOmaKqbaoaabmaak8aabaqcLbsapeGaam4saK qba+aadaWgaaWcbaqcLbmapeGaaeyBaaWcpaqabaqcLbsapeGaey4k aSscfa4aamWaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaaju gWa8qacaaIWaaal8aabeaaaOWdbiaawUfacaGLDbaaaiaawIcacaGL PaaaaaqcLbsacqGHsisljuaGdaWcaaGcpaqaaKqzGeWdbiGacwgaca GG4bGaaiiCaKqbaoaabmaak8aabaqcLbsapeGaam4AaiaabckacaWG 0baakiaawIcacaGLPaaaa8aabaacceqcLbsapeGae8NSdiwcfa4aae WaaOWdaeaajugib8qaciGGLbGaaiiEaiaacchajuaGdaqadaGcpaqa aKqzGeWdbiaadUgacaqGGcGaamiDaaGccaGLOaGaayzkaaqcLbsaca qGGcGaeyOeI0IaaeiOaiaaigdaaOGaayjkaiaawMcaaaaajuaGdaqa daGcpaqaaKqba+qadaWcaaGcpaqaaKqba+qadaWadaGcpaqaaKqzGe WdbiaadweajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGc peGaay5waiaaw2faaKqzGeGaamiDaaGcpaqaaKqzGeWdbiaadUeaju aGpaWaaSbaaSqaaKqzadWdbiaab2gaaSWdaeqaaKqzGeWdbiabgUca RKqbaoaadmaak8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLb mapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaaaaaGaayjkaiaa wMcaaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacaWGRb WcpaWaa0baaeaajugWa8qacaaIYaaal8aabaqcLbmapeGaaGOmaaaa juaGdaWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzad WdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaaaa@BB6E@   (25)

In Eq. (25), exp( k t ) ( exp( k t )  1 ) = [ S 0 ] Δ[ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaciyzaiaacIhacaGG Wbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaiiOaiaadshaaOGaay jkaiaawMcaaaWdaeaajuaGpeWaaeWaaOWdaeaajugib8qaciGGLbGa aiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaGGGcGaam iDaaGccaGLOaGaayzkaaqcLbsacaGGGcGaeyOeI0IaaiiOaiaaigda aOGaayjkaiaawMcaaaaajugibiabg2da9Kqbaoaalaaak8aabaqcfa 4dbmaadmaak8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbma peGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaaapaqaaKqzGeWdbi abgs5aeLqbaoaadmaak8aabaqcLbsapeGaam4uaKqba+aadaWgaaWc baqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaaaaaaa@6423@ . Therefore, substitution into Eq. (25) gives:

Δ[ S 0 ] S L( 1 ) M 3 = [ E 0 ][ S 0 ]t k 2 162( K m +[ S 0 ] ) [ S 0 ] 2 Δ[ S 0 ]β ( [ E 0 ]t K m +[ S 0 ] ) 2 k 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyiLdqucfa4aamWa aOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaaaOWdbiaawUfacaGLDbaajugibiaadofajuaGpaWaaSba aSqaaKqzadWdbiaabYealmaabmaapaqaaKqzadWdbiaaigdaaSGaay jkaiaawMcaaaWdaeqaaaGcbaqcLbsapeGaamytaKqba+aadaWgaaWc baqcLbmapeGaaG4maaWcpaqabaaaaKqzGeWdbiabg2da9Kqbaoaala aak8aabaqcfa4dbmaadmaak8aabaqcLbsapeGaamyraKqba+aadaWg aaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaqcfa 4aamWaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qa caaIWaaal8aabeaaaOWdbiaawUfacaGLDbaajugibiaadshacaWGRb qcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaOqaaKqzGeWd biaaigdacaaI2aGaaGOmaKqbaoaabmaak8aabaqcLbsapeGaam4saK qba+aadaWgaaWcbaqcLbmapeGaaeyBaaWcpaqabaqcLbsapeGaey4k aSscfa4aamWaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaaju gWa8qacaaIWaaal8aabeaaaOWdbiaawUfacaGLDbaaaiaawIcacaGL PaaaaaqcLbsacqGHsisljuaGdaWcaaGcpaqaaKqba+qadaWadaGcpa qaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWd aeqaaaGcpeGaay5waiaaw2faaKqba+aadaahaaWcbeqaaKqzadWdbi aaikdaaaaak8aabaqcLbsapeGaeyiLdqucfa4aamWaaOWdaeaajugi b8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaO WdbiaawUfacaGLDbaaiiqajugibiab=j7aIbaajuaGdaqadaGcpaqa aKqba+qadaWcaaGcpaqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaadw eajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5w aiaaw2faaKqzGeGaamiDaaGcpaqaaKqzGeWdbiaadUeajuaGpaWaaS baaSqaaKqzadWdbiaab2gaaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaa dmaak8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaG imaaWcpaqabaaak8qacaGLBbGaayzxaaaaaaGaayjkaiaawMcaaKqb a+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacaWGRbqcfa4dam aaDaaaleaajugWa8qacaaIYaaal8aabaqcLbmapeGaaGOmaaaaaaa@AE5F@   (26)

Rearrangement of Eq. (26) gives:

k 2 = [ E 0 ][ S 0 ]t 162( K m +[ S 0 ] ) ± 2 ( [ E 0 ][ S 0 ]t 162( K m +[ S 0 ] ) ) 2 4 S L( 1 ) M 3 [ S 0 ] 2 β ( [ E 0 ]t K m +[ S 0 ] ) 2 [ S 0 ] 2 Δ[ S 0 ]β ( [ E 0 ]t K m +[ S 0 ] ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiabg2da9OWaaSaaaeaajuaGdaWcaaGcpaqaaKqba+qada WadaGcpaqaaKqzGeWdbiaadweajuaGpaWaaSbaaSqaaKqzadWdbiaa icdaaSWdaeqaaaGcpeGaay5waiaaw2faaKqbaoaadmaak8aabaqcLb sapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaa k8qacaGLBbGaayzxaaqcLbsacaWG0baak8aabaqcLbsapeGaaGymai aaiAdacaaIYaqcfa4aaeWaaOWdaeaajugib8qacaWGlbqcfa4damaa BaaaleaajugWa8qacaqGTbaal8aabeaajugib8qacqGHRaWkjuaGda WadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaa icdaaSWdaeqaaaGcpeGaay5waiaaw2faaaGaayjkaiaawMcaaaaaju aGcqGHXcqSdaahaaqabeaajugWaiaaikdaaaGcdaGcaaqaaKqbaoaa bmaak8aabaqcfa4dbmaalaaak8aabaqcfa4dbmaadmaak8aabaqcLb sapeGaamyraKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaa k8qacaGLBbGaayzxaaqcfa4aamWaaOWdaeaajugib8qacaWGtbqcfa 4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawUfacaGL DbaajugibiaadshaaOWdaeaajugib8qacaaIXaGaaGOnaiaaikdaju aGdaqadaGcpaqaaKqzGeWdbiaadUeajuaGpaWaaSbaaSqaaKqzadWd biaab2gaaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaadmaak8aabaqcLb sapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaa k8qacaGLBbGaayzxaaaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaK qba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqGHsislcaaI 0aqcfa4aaSaaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaaju gib8qacaqGmbqcfa4aaeWaaSWdaeaajugib8qacaaIXaaaliaawIca caGLPaaaa8aabeaaaOqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqaaK qzadWdbiaaiodaaSWdaeqaaaaajuaGpeWaaSaaaOWdaeaajuaGpeWa amWaaOWdaeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qaca aIWaaal8aabeaaaOWdbiaawUfacaGLDbaajuaGpaWaaWbaaSqabeaa jugWa8qacaaIYaaaaaGcpaqaaGGabKqzGeGae8NSdigaaKqba+qada qadaGcpaqaaKqba+qadaWcaaGcpaqaaKqba+qadaWadaGcpaqaaKqz GeWdbiaadweajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaa GcpeGaay5waiaaw2faaKqzGeGaamiDaaGcpaqaaKqzGeWdbiaadUea juaGpaWaaSbaaSqaaKqzadWdbiaab2gaaSWdaeqaaKqzGeWdbiabgU caRKqbaoaadmaak8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqc LbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaaaaaGaayjkai aawMcaaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaaaleqaaaGc baqcfa4aaSaaaOWdaeaajuaGpeWaamWaaOWdaeaajugib8qacaWGtb qcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawUfa caGLDbaajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaGcpaqaaK qzGeWdbiabgs5aeLqbaoaadmaak8aabaqcLbsapeGaam4uaKqba+aa daWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaa qcLbsacqWFYoGyaaqcfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaa juaGpeWaamWaaOWdaeaajugib8qacaWGfbqcfa4damaaBaaaleaaju gWa8qacaaIWaaal8aabeaaaOWdbiaawUfacaGLDbaajugibiaadsha aOWdaeaajugib8qacaWGlbqcfa4damaaBaaaleaajugWa8qacaqGTb aal8aabeaajugib8qacqGHRaWkjuaGdaWadaGcpaqaaKqzGeWdbiaa dofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay 5waiaaw2faaaaaaiaawIcacaGLPaaajuaGpaWaaWbaaSqabeaajugW a8qacaaIYaaaaaaaaaa@F319@   (27)

Simplification of Eq. (27) gives:

k 2 = 1 162 ± 2 1 162 2 4 S L( 1 ) M 3 β 2 [ S 0 ] Δ[ S 0 ]β [ E 0 ]t ( K m +[ S 0 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiabg2da9OWaaSaaaeaajuaGdaWcaaGcpaqaaKqzGeWdbi aaigdaaOWdaeaajugib8qacaaIXaGaaGOnaiaaikdaaaqcfaOaeyyS ae7aaWbaaeqabaqcLbmacaaIYaaaaOWaaOaaaeaajuaGdaWcaaGcpa qaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaIXaGaaGOnaiaaikda juaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaaajugibiabgkHiTi aaisdajuaGdaWcaaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqa aKqzadWdbiaabYealmaabmaapaqaaKqzadWdbiaaigdaaSGaayjkai aawMcaaaWdaeqaaaGcbaqcLbsapeGaamytaKqba+aadaWgaaWcbaqc LbmapeGaaG4maaWcpaqabaacceqcLbsacqWFYoGyaaaal8qabeaaaO qaaKqzGeGaaGOmaKqbaoaalaaak8aabaqcfa4dbmaadmaak8aabaqc LbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqaba aak8qacaGLBbGaayzxaaaapaqaaKqzGeWdbiabgs5aeLqbaoaadmaa k8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaa Wcpaqabaaak8qacaGLBbGaayzxaaqcLbsacqWFYoGyaaqcfa4aaSaa aOWdaeaajuaGpeWaamWaaOWdaeaajugib8qacaWGfbqcfa4damaaBa aaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawUfacaGLDbaajugi biaadshaaOWdaeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGlbqcfa 4damaaBaaaleaajugWa8qacaqGTbaal8aabeaajugib8qacqGHRaWk juaGdaWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzad WdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaaGaayjkaiaawMca aaaaaaaaaa@8C40@   (28)

k 2 = Δ[ S 0 ]( K m +[ S 0 ] )( 1 162 ± 2 1 162 2 4 S L( 1 ) M 3 β ) 2[ S 0 ][ E 0 ]t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiabg2da9OWaaSaaaeaajugibiabgs5aeLqbaoaadmaak8 aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWc paqabaaak8qacaGLBbGaayzxaaqcfa4aaeWaaOWdaeaajugib8qaca WGlbqcfa4damaaBaaaleaajugWa8qacaqGTbaal8aabeaajugib8qa cqGHRaWkjuaGdaWadaGcpaqaaKqzGeWdbiaabofajuaGpaWaaSbaaS qaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaaGaayjk aiaawMcaaKqbaoaabmaabaWaaSaaa8aabaWdbiaaigdaa8aabaWdbi aaigdacaaI2aGaaGOmaaaacqGHXcqSdaahaaqabeaajugWaiaaikda aaqcfa4aaOaaaeaadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymai aaiAdacaaIYaWdamaaCaaabeqaaKqzadWdbiaaikdaaaaaaKqbakab gkHiTiaaisdadaWcaaWdaeaapeGaam4ua8aadaWgaaqaa8qacaqGmb WaaeWaa8aabaWdbiaaigdaaiaawIcacaGLPaaaa8aabeaaaeaapeGa amyta8aadaWgaaqaa8qacaaIZaaapaqabaacceGae8NSdigaaaWdbe qaaaGaayjkaiaawMcaaaGcbaqcLbsacaaIYaqcfa4aamWaaOWdaeaa jugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabe aaaOWdbiaawUfacaGLDbaajuaGdaWadaGcpaqaaKqzGeWdbiaadwea juaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5wai aaw2faaKqzGeGaamiDaaaaaaa@7EFA@   (29)

Cross multiplication by [E0] gives vmax on the left hand side of the equation. But as stated earlier in the text, D[S0] = [S0] (exp (k t) – 1)/exp (k t). Substitution into Eq. (29) gives first:

k 2 = [ S 0 ]( 1 1 exp( k t ) )β( K m +[ S 0 ] )( 1 162 ± 2 1 162 2 4 S L( 1 ) M 3 β ) 2[ S 0 ][ E 0 ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiabg2da9OWaaSaaaeaajuaGdaWadaGcpaqaaKqzGeWdbi aadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGa ay5waiaaw2faaKqbaoaabmaak8aabaqcLbsapeGaaGymaiabgkHiTK qbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiGacwga caGG4bGaaiiCaKqbaoaabmaak8aabaqcLbsapeGaam4Aaiaabckaca WG0baakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaacceqcLbsacqWF YoGyjuaGdaqadaGcpaqaaKqzGeWdbiaadUeajuaGpaWaaSbaaSqaaK qzadWdbiaab2gaaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaadmaak8aa baqcLbsapeGaae4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpa qabaaak8qacaGLBbGaayzxaaaacaGLOaGaayzkaaqcfa4aaeWaaeaa daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymaiaaiAdacaaIYaaaai abgglaXoaaCaaabeqaaKqzadGaaGOmaaaajuaGdaGcaaqaamaalaaa paqaa8qacaaIXaaapaqaa8qacaaIXaGaaGOnaiaaikdapaWaaWbaae qabaqcLbmapeGaaGOmaaaaaaqcfaOaeyOeI0IaaGinamaalaaapaqa a8qacaWGtbWdamaaBaaabaWdbiaabYeadaqadaWdaeaapeGaaGymaa GaayjkaiaawMcaaaWdaeqaaaqaa8qacaWGnbWdamaaBaaabaWdbiaa iodaa8aabeaacqWFYoGyaaaapeqabaaacaGLOaGaayzkaaaakeaaju gibiaaikdajuaGdaWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSba aSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaKqbao aadmaak8aabaqcLbsapeGaamyraKqba+aadaWgaaWcbaqcLbmapeGa aGimaaWcpaqabaaak8qacaGLBbGaayzxaaqcLbsacaWG0baaaaaa@8F2E@   (30)

Simplification and rearrangement of Eq. (30) gives:

1 exp( k t ) =1 2 k 2 [ E 0 ]t β( K m +[ S 0 ] ) ( 1 162 ± 2 1 162 2 4 S L( 1 ) M 3 β   ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qaciGG LbGaaiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaqGGc GaamiDaaGccaGLOaGaayzkaaaaaKqzGeGaeyypa0JaaGymaiabgkHi TOWaaSaaaeaajugibiaaikdacaWGRbqcfa4damaaBaaaleaajugWa8 qacaaIYaaal8aabeaajuaGpeWaamWaaOWdaeaajugib8qacaWGfbqc fa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawUfaca GLDbaajugibiaadshaaOqaaGGabKqzGeGae8NSdiwcfa4aaeWaaOWd aeaajugib8qacaWGlbqcfa4damaaBaaaleaajugWa8qacaqGTbaal8 aabeaajugib8qacqGHRaWkjuaGdaWadaGcpaqaaKqzGeWdbiaabofa juaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5wai aaw2faaaGaayjkaiaawMcaaaaadaqadaqaaKqbaoaalaaak8aabaqc LbsapeGaaGymaaGcpaqaaKqzGeWdbiaaigdacaaI2aGaaGOmaaaacq GHXcqSkmaaCaaaleqabaqcLbmacaaIYaaaaOWaaOaaaeaajuaGdaWc aaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaIXaGaaGOnai aaikdajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaaajugibiab gkHiTiaaisdajuaGdaWcaaGcpaqaaKqzGeWdbiaadofajuaGpaWaaS baaSqaaKqzadWdbiaabYealmaabmaapaqaaKqzadWdbiaaigdaaSGa ayjkaiaawMcaaaWdaeqaaaGcbaqcLbsapeGaamytaKqba+aadaWgaa WcbaqcLbmapeGaaG4maaWcpaqabaqcLbsapeGae8NSdigaaaWcbeaa jugibiaabckaaOGaayjkaiaawMcaaaaa@89D6@   (31)

Making exp (k t) subject of the formula gives after rearrangement:

exp( k t )= β( K m +[ S 0 ] )( 1 162 ± 2 1 162 2 4 S L( 1 ) M 3 β ) β( K m +[ S 0 ] )( 1 162 ± 2 1 162 2 4 S L( 1 ) M 3 β )2 k 2 [ E 0 ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabwgacaqG4bGaaeiCaKqbaoaabmaak8aabaqcLbsapeGa am4AaiaacckacaWG0baakiaawIcacaGLPaaajugibiabg2da9OWaaS aaaeaaiiqajuaGcqWFYoGydaqadaGcpaqaaKqzGeWdbiaadUeajuaG paWaaSbaaSqaaKqzadWdbiaab2gaaSWdaeqaaKqzGeWdbiabgUcaRK qbaoaadmaak8aabaqcLbsapeGaae4uaKqba+aadaWgaaWcbaqcLbma peGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaaacaGLOaGaayzkaa qcfa4aaeWaaeaadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymaiaa iAdacaaIYaaaaiabgglaXoaaCaaabeqaaKqzadGaaGOmaaaajuaGda Gcaaqaamaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaaGOnaiaa ikdapaWaaWbaaeqabaWdbiaaikdaaaaaaiabgkHiTiaaisdadaWcaa WdaeaapeGaam4ua8aadaWgaaqaa8qacaqGmbWaaeWaa8aabaWdbiaa igdaaiaawIcacaGLPaaaa8aabeaaaeaapeGaamyta8aadaWgaaqaa8 qacaaIZaaapaqabaWdbiab=j7aIbaaaeqaaaGaayjkaiaawMcaaaGc baqcfaOae8NSdi2aaeWaaOWdaeaajugib8qacaWGlbqcfa4damaaBa aaleaajugWa8qacaqGTbaal8aabeaajugib8qacqGHRaWkjuaGdaWa daGcpaqaaKqzGeWdbiaabofajuaGpaWaaSbaaSqaaKqzadWdbiaaic daaSWdaeqaaaGcpeGaay5waiaaw2faaaGaayjkaiaawMcaaKqbaoaa bmaabaWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacaaI2aGaaG OmaaaacqGHXcqSdaahaaqabeaajugWaiaaikdaaaqcfa4aaOaaaeaa daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymaiaaiAdacaaIYaWdam aaCaaabeqaa8qacaaIYaaaaaaacqGHsislcaaI0aWaaSaaa8aabaWd biaadofapaWaaSbaaeaapeGaaeitamaabmaapaqaa8qacaaIXaaaca GLOaGaayzkaaaapaqabaaabaWdbiaad2eapaWaaSbaaeaapeGaaG4m aaWdaeqaa8qacqWFYoGyaaaabeaaaiaawIcacaGLPaaajugibiabgk HiTiaaikdacaWGRbqcfa4damaaBaaaleaajugWa8qacaaIYaaal8aa beaajuaGpeWaamWaaOWdaeaajugib8qacaWGfbqcfa4damaaBaaale aajugWa8qacaaIWaaal8aabeaaaOWdbiaawUfacaGLDbaajugibiaa dshaaaaaaa@A14B@   (32)

Knowing that v t = [P], Eq. (22) can then be transformed into a quadratic equation as follows. As indicated in submitted manuscript,21 treating another alpha amylase of microbial origin, Eq. (33) below is obtained by the expansion of Eq. (22) to give:

exp( kt )1 exp( kt ) [ S 0 ] 2   k 2[ S ] k 2   S L( 1 ) 2 = ( [ S 0 ] 162 [ P ]exp( kt ) β( exp( kt )1 ) ) [ P ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaciyzaiaacIhacaGG Wbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaamiDaaGccaGLOaGaay zkaaqcLbsacqGHsislcaaIXaaak8aabaqcLbsapeGaciyzaiaacIha caGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaamiDaaGccaGLOa GaayzkaaaaaKqbaoaadmaak8aabaqcLbsapeGaam4uaKqba+aadaWg aaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaqcfa 4damaaCaaaleqabaqcLbmapeGaaGOmaiaabckacaqGGcaaaKqbaoaa laaak8aabaqcLbsapeGaam4AaKqba+aadaWgaaWcbaqcLbmapeGaaG OmaSWaamWaa8aabaqcLbmapeGaam4uaaWccaGLBbGaayzxaaaapaqa baaakeaajugib8qacaWGRbqcfa4damaaBaaaleaajugWa8qacaaIYa aal8aabeaaaaqcLbsapeGaaeiOaiaadofal8aadaqhaaqaaKqzadWd biaabYealmaabmaapaqaaKqzadWdbiaaigdaaSGaayjkaiaawMcaaa WdaeaajugWa8qacaaIYaaaaKqzGeGaeyypa0JaaeiOaKqbaoaabmaa k8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaai4waiaadofajuaGpa WaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2faaOWd aeaajugib8qacaaIXaGaaGOnaiaaikdaaaGaeyOeI0scfa4aaSaaaO WdaeaajuaGpeWaamWaaOWdaeaajugib8qacaWGqbaakiaawUfacaGL DbaajugibiaabwgacaqG4bGaaeiCaKqbaoaabmaak8aabaqcLbsape Gaam4AaiaadshaaOGaayjkaiaawMcaaaWdaeaaiiqajugib8qacqWF YoGyjuaGdaqadaGcpaqaaKqzGeWdbiGacwgacaGG4bGaaiiCaKqbao aabmaak8aabaqcLbsapeGaam4AaiaadshaaOGaayjkaiaawMcaaKqz GeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaaK qzGeGaaeiOaKqbaoaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGa ayzxaaaaaa@A141@   (33)

Equation (33) is as it is after cross multiplication, because D[S0] = [S0] (exp (k t)–1)/exp (k t). Further rearrangement gives:

(exp( k t )1) 2  (expk t) 2  [ S 0 ] 2  S L( 1 ) 2  k 2[ S ] k 2  = [ S 0 ] 162 ( exp( kt )1 )[ P ] exp( k t ) [ P ] 2  β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaiikaiGacwgacaGG 4bGaaiiCaKqbaoaabmaak8aabaqcLbsapeGaam4AaiaabckacaWG0b aakiaawIcacaGLPaaajugibiabgkHiTiaaigdacaGGPaqcfa4damaa CaaaleqabaqcLbmapeGaaGOmaiaabckaaaaak8aabaqcLbsapeGaai ikaiGacwgacaGG4bGaaiiCaiaadUgacaqGGcGaamiDaiaacMcajuaG paWaaWbaaSqabeaajugWa8qacaaIYaGaaeiOaaaaaaqcLbsacaGGBb Gaam4uaKqba+aadaWgaaWcbaqcLbsapeGaaGimaaWcpaqabaqcLbsa peGaaiyxaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdacaqGGcaaaK qzGeGaam4uaKqba+aadaqhaaWcbaqcLbmapeGaaeitaSWaaeWaa8aa baqcLbmapeGaaGymaaWccaGLOaGaayzkaaaapaqaaKqzadWdbiaaik dacaqGGcaaaKqbaoaalaaak8aabaqcLbsapeGaam4AaKqba+aadaWg aaWcbaqcLbmapeGaaGOmaSWaamWaa8aabaqcLbmapeGaam4uaaWcca GLBbGaayzxaaaapaqabaaakeaajugib8qacaWGRbqcfa4damaaBaaa leaajugWa8qacaaIYaGaaeiOaaWcpaqabaaaaKqzGeWdbiabg2da9K qbaoaalaaak8aabaqcfa4dbmaalaaak8aabaqcfa4dbmaadmaak8aa baqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpa qabaaak8qacaGLBbGaayzxaaaapaqaaKqzGeWdbiaaigdacaaI2aGa aGOmaaaajuaGdaqadaGcpaqaaKqzGeWdbiGacwgacaGG4bGaaiiCaK qbaoaabmaak8aabaqcLbsapeGaam4AaiaadshaaOGaayjkaiaawMca aKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcfa4aamWaaOWdae aajugib8qacaqGqbaakiaawUfacaGLDbaaa8aabaqcLbsapeGaaeyz aiaabIhacaqGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaeiOai aadshaaOGaayjkaiaawMcaaaaajugibiabgkHiTKqbaoaalaaak8aa baqcfa4dbmaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzxaa qcfa4damaaCaaaleqabaqcLbmapeGaaGOmaiaabckaaaaak8aabaac ceqcLbsacqWFYoGyaaaaaa@AC75@   (34a)

Let, for the purpose of simplicity, c = (exp (k t) –1)/exp (k t). Thus,

χ= ( [ S 0 ] 162 [ P ]± ( [ S 0 ][ P ] 162 ) 2  4  [ P ] 2 β [ S 0 ] 2 S L( 1 ) 2 k 2[ S ] k 2 ) 2 [ S 0 ] 2 S L( 1 ) 2 k 2[ S ] k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeq4XdmMaeyypa0tcfa4aaSaaaOWdaeaajuaG peWaaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajuaGpeWaamWaaOWdae aajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aa beaaaOWdbiaawUfacaGLDbaaa8aabaqcLbsapeGaaGymaiaaiAdaca aIYaaaaKqbaoaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzx aaqcLbsacqGHXcqSjuaGdaGcaaGcpaqaaKqba+qadaqadaGcpaqaaK qba+qadaWcaaGcpaqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaadofa juaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5wai aaw2faaKqbaoaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzx aaaapaqaaKqzGeWdbiaaigdacaaI2aGaaGOmaaaaaOGaayjkaiaawM caaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqGHsisl caqGGcGaaGinaiaabckajuaGdaWcaaGcpaqaaKqba+qadaWadaGcpa qaaKqzGeWdbiaadcfaaOGaay5waiaaw2faaKqba+aadaahaaWcbeqa aKqzadWdbiaaikdaaaaak8aabaacceqcLbsacqWFYoGyaaqcfa4dbm aadmaak8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGa aGimaaWcpaqabaaak8qacaGLBbGaayzxaaqcfa4damaaCaaaleqaba qcLbmapeGaaGOmaaaajugibiaadofajuaGpaWaa0baaSqaaKqzGeWd biaabYeajuaGdaqadaWcpaqaaKqzGeWdbiaaigdaaSGaayjkaiaawM caaaWdaeaajugWa8qacaaIYaaaaKqbaoaalaaak8aabaqcLbsapeGa am4AaKqba+aadaWgaaWcbaqcLbsapeGaaGOmaKqbaoaadmaal8aaba qcLbsapeGaam4uaaWccaGLBbGaayzxaaaapaqabaaakeaajugib8qa caWGRbqcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaaaape qabaaakiaawIcacaGLPaaaa8aabaqcLbsapeGaaGOmaKqbaoaadmaa k8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaa Wcpaqabaaak8qacaGLBbGaayzxaaqcfa4damaaCaaaleqabaqcLbma peGaaGOmaaaajugibiaadofajuaGpaWaa0baaSqaaKqzGeWdbiaabY eajuaGdaqadaWcpaqaaKqzGeWdbiaaigdaaSGaayjkaiaawMcaaaWd aeaajugWa8qacaaIYaaaaKqbaoaalaaak8aabaqcLbsapeGaam4AaK qba+aadaWgaaWcbaqcLbmapeGaaGOmaSWaamWaa8aabaqcLbmapeGa am4uaaWccaGLBbGaayzxaaaapaqabaaakeaajugib8qacaWGRbqcfa 4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaaaaaaaa@B466@   (34b)

As already stated above, D[S0] = [S0] (exp (k t)–1)/exp (k t) such that Eq. (34a) can be rearranged to give:

Δ [ S 0 ] 2   S L( 1 ) 2 k 2[ S ] k 2 Δ[ S 0 ][ P ] 162 + [ P ] 2 β =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqucfa4aamWaaOWdaeaajugib8qacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawU facaGLDbaajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaGaaeiOaiaa bckaaaqcLbsacaWGtbqcfa4damaaDaaaleaajugWa8qacaqGmbWcda qadaWdaeaajugWa8qacaaIXaaaliaawIcacaGLPaaaa8aabaqcLbma peGaaGOmaaaajuaGdaWcaaGcpaqaaKqzGeWdbiaadUgajuaGpaWaaS baaSqaaKqzadWdbiaaikdalmaadmaapaqaaKqzadWdbiaadofaaSGa ay5waiaaw2faaaWdaeqaaaGcbaqcLbsapeGaam4AaKqba+aadaWgaa WcbaqcLbmapeGaaGOmaaWcpaqabaaaaKqzGeWdbiabgkHiTKqbaoaa laaak8aabaqcLbsapeGaeyiLdqKaai4waiaadofajuaGpaWaaSbaaS qaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2fajuaGdaWadaGc paqaaKqzGeWdbiaadcfaaOGaay5waiaaw2faaaWdaeaajugib8qaca aIXaGaaGOnaiaaikdaaaGaey4kaSscfa4aaSaaaOWdaeaajuaGpeWa amWaaOWdaeaajugib8qacaWGqbaakiaawUfacaGLDbaajuaGpaWaaW baaSqabeaajugWa8qacaaIYaaaaaGcpaqaaGGabKqzGeGae8NSdiga a8qacqGH9aqpcaaIWaaaaa@7B01@   (35)

Δ[ S 0 ]= [ P ] 162 ± [ P ] 2 162 2 4 S L( 1 ) 2 k 2[ S ] β k 2 [ P ] 2 2 S L( 1 ) 2 k 2[ S ] k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqucfa4aamWaaOWdaeaajugib8qacaWG tbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawU facaGLDbaajugibiabg2da9Kqbaoaalaaak8aabaqcfa4dbmaalaaa k8aabaqcfa4dbmaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaay zxaaaapaqaaKqzGeWdbiaaigdacaaI2aGaaGOmaaaacqGHXcqSjuaG daGcaaGcpaqaaKqba+qadaWcaaGcpaqaaKqba+qadaWadaGcpaqaaK qzGeWdbiaadcfaaOGaay5waiaaw2faaKqba+aadaahaaWcbeqaaKqz adWdbiaaikdaaaaak8aabaqcLbsapeGaaGymaiaaiAdacaaIYaqcfa 4damaaCaaaleqabaqcLbmapeGaaGOmaaaaaaqcLbsacqGHsislcaaI 0aGaam4uaKqba+aadaWgaaWcbaqcLbmapeGaaeitaSWaaeWaa8aaba qcLbmapeGaaGymaaWccaGLOaGaayzkaaaapaqabaqcfa4aaWbaaSqa beaajugWa8qacaaIYaaaaKqbaoaalaaak8aabaqcLbsapeGaam4AaK qba+aadaWgaaWcbaqcLbmapeGaaGOmaSWaamWaa8aabaqcLbmapeGa am4uaaWccaGLBbGaayzxaaaapaqabaaakeaaiiqajugib8qacqWFYo GycaWGRbqcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaaqc fa4dbmaadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzxaaqcfa 4damaaCaaaleqabaqcLbmapeGaaGOmaaaaaSqabaaak8aabaqcfa4d bmaalaaak8aabaqcLbsapeGaaGOmaiaadofajuaGpaWaa0baaSqaaK qzadWdbiaabYealmaabmaapaqaaKqzadWdbiaaigdaaSGaayjkaiaa wMcaaaWdaeaajugWa8qacaaIYaaaaKqzGeGaam4AaKqba+aadaWgaa WcbaqcLbmapeGaaGOmaSWaamWaa8aabaqcLbmapeGaam4uaaWccaGL BbGaayzxaaaapaqabaaakeaajugib8qacaWGRbqcfa4damaaBaaale aajugWa8qacaaIYaaal8aabeaaaaaaaaaa@95B5@   (36)

Equations (22) and (36) are equivalents. However, Eq. (35) which leads to Eq. (36) enables the determination of b as follows. First is the expression as follows.

A plot of v t (or [P]) versus D[S0] in Eq. (16) (M3 = 324) gives the slope, SL(1) which is = k2/324k2[S]. Therefore, k2[S] /k2 = 1/324SL(1). The implication is that k2[S] < k2 because 1/SL(1) < 324 (or @ 324). The conversion of [P] to D[S0] (i.e. 324[P]) takes into account mass conservation law,33–36 and accounts for the fact that hydrolysis involves the uptake of water molecule which adds to the total weight of the product and substrate.33,34 The substitution of the conversion, D[S0]/324 into Eq. (35), leads to:

Δ [ S 0 ] 2 S L( 1 ) 2 k 2[ S ] k 2 ( Δ[ S 0 ] ) 2 162×324 + ( Δ[ S 0 ] ) 2  β 324 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaeyiLdqKaai4waiaadofajuaGpaWaaSbaaSqa aKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2fajuaGpaWaaWbaaS qabeaajugWa8qacaaIYaaaaKqzGeGaam4uaKqba+aadaqhaaWcbaqc LbmapeGaaeitaSWaaeWaa8aabaqcLbmapeGaaGymaaWccaGLOaGaay zkaaaapaqaaKqzadWdbiaaikdaaaqcfa4aaSaaaOWdaeaajugib8qa caWGRbqcfa4damaaBaaaleaajugWa8qacaaIYaWcdaWadaWdaeaaju gWa8qacaWGtbaaliaawUfacaGLDbaaa8aabeaaaOqaaKqzGeWdbiaa dUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaaajugib8 qacqGHsisljuaGdaWcaaGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWd biabgs5aejaacUfacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaajugib8qacaGGDbaakiaawIcacaGLPaaajuaGpaWaaWba aSqabeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiaaigdacaaI2a GaaGOmaiabgEna0kaaiodacaaIYaGaaGinaaaacqGHRaWkjuaGdaWc aaGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabgs5aejaacUfaca WGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaajugib8qa caGGDbaakiaawIcacaGLPaaajuaGpaWaaWbaaSqabeaajugWa8qaca aIYaaaaaGcpaqaaKqzGeWdbiaacckaiiqacqWFYoGycaaIZaGaaGOm aiaaisdajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaaajugibi abg2da9iaaicdaaaa@89FF@   (37)

Simplification gives:

S L( 1 ) 2 k 2[ S ] k 2 1 162×324 + 1 324 2 β =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaam4uaSWdamaaDaaabaqcLbmapeGaaeitaSWa aeWaa8aabaqcLbmapeGaaGymaaWccaGLOaGaayzkaaaapaqaaKqzad Wdbiaaikdaaaqcfa4aaSaaaOWdaeaajugib8qacaWGRbqcfa4damaa BaaaleaajugWa8qacaaIYaWcdaWadaWdaeaajugWa8qacaWGtbaali aawUfacaGLDbaaa8aabeaaaOqaaKqzGeWdbiaadUgajuaGpaWaaSba aSqaaKqzadWdbiaaikdaaSWdaeqaaaaajugib8qacqGHsisljuaGda WcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaIXaGaaGOn aiaaikdajugWaiabgEna0MqzGeGaaG4maiaaikdacaaI0aaaaiabgU caRKqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaa iodacaaIYaGaaGinaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaa acceqcLbsapaGae8NSdigaa8qacqGH9aqpcaaIWaaaaa@67C6@   (38)

Meanwhile, from the plot of [P] versus [S0] (Eq. (16)) is the slope, SL(1) = k 2 M 3 k 2[ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaam4AaKqba+aadaWg aaWcbaqcLbmapeGaaGOmaaWcpaqabaaakeaajugib8qacaWGnbqcfa 4damaaBaaaleaajugWa8qacaaIZaaal8aabeaajugib8qacaWGRbqc fa4damaaBaaaleaajugWa8qacaaIYaWcdaWadaWdaeaajugWa8qaca WGtbaaliaawUfacaGLDbaaa8aabeaaaaaaaa@4963@  (where M3 = 2´162) which upon rearrangement gives k 2[ S ] k 2 = 1 2 S L( 1 ) ×162 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaam4AaKqba+aadaWg aaWcbaqcLbmapeGaaGOmaSWaamWaa8aabaqcLbmapeGaam4uaaWcca GLBbGaayzxaaaapaqabaaakeaajugib8qacaWGRbqcfa4damaaBaaa leaajugWa8qacaaIYaaal8aabeaaaaqcLbsapeGaeyypa0tcfa4aaS aaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGOmaiaadofa juaGpaWaaSbaaSqaaKqzadWdbiaabYealmaabmaapaqaaKqzadWdbi aaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzadWdbiabgEna0MqzGeGa aGymaiaaiAdacaaIYaaaaaaa@57BC@ . Substitution of the latter into Eq. (38) gives, after rearrangement.

S L( 1 ) M 3 1 162×324 + 1 324 2 β =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaam4uaKqba+aadaWg aaWcbaqcLbmapeGaaeitaSWaaeWaa8aabaqcLbmapeGaaGymaaWcca GLOaGaayzkaaaapaqabaaakeaajugib8qacaWGnbqcfa4damaaBaaa leaajugWa8qacaaIZaaal8aabeaaaaqcLbsapeGaeyOeI0scfa4aaS aaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGymaiaaiAda caaIYaqcLbmacqGHxdaTjugibiaaiodacaaIYaGaaGinaaaacqGHRa WkjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaI ZaGaaGOmaiaaisdajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaG GabKqzGeWdaiab=j7aIbaapeGaeyypa0JaaGimaaaa@5DBD@   (39)

And calculation gives,

1 β =0.977456 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaGGa bKqzGeGae8NSdigaa8qacqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI3a GaaG4naiaaisdacaaI1aGaaGOnaaaa@42BC@   (40)

It is very clear that Eq. (39) is a general one in which the parameter to be determine is the slope, SL(1) from the plot of [P] versus D[S0].

The most important objective of this research is the determination of the rate constant for hydrolysis of a glycosidic bond or the rate at which water molecules partake in the hydrolytic action being the rate limiting step. As in submitted manuscript, the formulation of the equation requires that b should not appear in any of the equations. The idea is very recent (in submitted manuscript treating microbial enzyme), and for quick reference, the formulation is presented in appendix section.

Material and methods

Materials

Human salivary alpha amylase was obtained from the researcher and soluble potato starch was purchased from Sigma – Aldrich, USA. Hydrochloric acid, sodium hydroxide, and sodium chloride, were purchased from BDH Chemical Ltd, Poole England. Tris, 3, 5–dinitrosalicylic acid, maltose, and sodium potassium tartrate tetrahydrate were purchased from Kem light laboratories Mumbai India, while potassium iodide was purchased from Merck Germany. Distilled water was purchased from local market.

Equipment

Electronic weighing machine was purchased from Wenser Weighing Scale Limited and 721/722 visible spectrophotometer was purchased from Spectrum Instruments China. PH meter was purchased from Hanna Instruments, Italy. Water bath was purchased from Hospibrand, USA.

 Methods

One gram of potato starch was mixed in 100mL of distilled water and boiled at 100°C for 3 minutes, cooled to room temperature, and decrease in volume was corrected by topping the volume with distilled water to 100mL to give 16g/L as stock. Dilution of the stock was made to give concentrations ranging from 6–16g/L. Stock solution of the enzyme was prepared by centrifuging ice–cold 20mL of saliva. Centrifuged saliva was diluted with a mixture of tris – HCl buffer (pH=6.9), NaCl (aq) (0.9g/100mL), CaCl 2( aq ) ( 0.065 g/mL ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaae4qaiaabggacaqGdbGaaeiBaKqba+aadaWg aaWcbaqcLbmapeGaaGOmaSWaaeWaa8aabaqcLbmapeGaamyyaiaadg haaSGaayjkaiaawMcaaaWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWd biaaicdacaGGUaGaaGimaiaaiAdacaaI1aGaaiiOaiaabEgacaGGVa GaaeyBaiaabYeaaOGaayjkaiaawMcaaaaa@4DEE@ and distilled water to give a final solution whose concentration is ½ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaaiyVaaaa@3928@  the concentration of stock saliva solution. A 5 minutes centrifugation was at approximately 3000 rpm (or at 1343g). The mass concentration (~18.872mg/L) of the enzyme was determined as described elsewhere.37

The determination of rate of hydrolysis of the glycosidic bond and making of bond is given in its simplest form as Eq. (B.2). Assay was according to Bernfeld method,38 for the quantification of the molar concentration of reducing sugar, maltose and kinetic parameter, maximum velocity of hydrolysis in particular was by Lineweaver–Burk,39 and direct linear,40 plots. The value obtained from direct linear plot was adopted. The determination of rate constant for the hydrolysis of endo–glycosidic bond and making of bond requires the determination of the first and second slopes: This is where assaying of the enzyme to generate data–velocity of hydrolysis with substrate concentration ranging from 6–16g/L, maximum velocity of hydrolysis obtained from direct linear plot and via linear Lineweaver–Burk plot, and ultimately rate constant for product formation– is indispensible. The pseudo–first order rate constant k, was obtained from the plot of In [S0] – In ([S0]–324[P]) versus t. In order to verify the validity of the quadratic equation and any other equation the first slope from the plot of [P] versus D[S0] (Figure 1) was substituted into Eq. (22) and Eq. (34b) for the determination of D[S0] and exp (kt) respectively. The determination of rate constant for the hydrolysis of the glycosidic bond and making new bond requires a plot of D[S0] versus ( [ S 0 ] 162 [ P ]exp( k t ) ( exp( k t )  1 ) )v t [ S 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsa peGaai4waiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdae qaaKqzGeWdbiaac2faaOWdaeaajugib8qacaaIXaGaaGOnaiaaikda aaGaeyOeI0scfa4aaSaaaOWdaeaajuaGpeWaamWaaOWdaeaajugib8 qacaWGqbaakiaawUfacaGLDbaajugibiGacwgacaGG4bGaaiiCaKqb aoaabmaak8aabaqcLbsapeGaam4AaiaacckacaWG0baakiaawIcaca GLPaaaa8aabaqcfa4dbmaabmaak8aabaqcLbsapeGaciyzaiaacIha caGGWbqcfa4aaeWaaOWdaeaajugib8qacaWGRbGaaiiOaiaadshaaO GaayjkaiaawMcaaKqzGeGaaiiOaiabgkHiTiaacckacaaIXaaakiaa wIcacaGLPaaaaaaacaGLOaGaayzkaaqcLbsacaWG2bqcfa4aaSaaaO Wdaeaajugib8qacaWG0baak8aabaqcLbsapeGaai4waiaadofajuaG paWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaac2faaa aaaa@6DE6@ or the simplified form, ( 1 162 [ P ] Δ[ S 0 ] )[ P ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsa peGaaGymaaGcpaqaaKqzGeWdbiaaigdacaaI2aGaaGOmaaaacqGHsi sljuaGdaWcaaGcpaqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaadcfa aOGaay5waiaaw2faaaWdaeaajugib8qacqGHuoarjuaGdaWadaGcpa qaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWd aeqaaaGcpeGaay5waiaaw2faaaaaaiaawIcacaGLPaaajuaGdaWada GcpaqaaKqzGeWdbiaadcfaaOGaay5waiaaw2faaaaa@5195@ as shown under Figure 2. The first and second slopes are then substituted into Eq. (B.2) to give after calculation the rate constant for the hydrolysis of the glycosidic bond and making of bond.

Figure 1 Plot of v t versus D[S0] for separate determination of the first (SL(1)) of two slopes.

Figure 2 Plot of [S0] versus  i.e. ( 1 162 [ P ] Δ[ S 0 ] )[ P ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaaigda aOWdaeaajugib8qacaaIXaGaaGOnaiaaikdaaaGaeyOeI0scfa4aaS aaaOWdaeaajuaGpeWaamWaaOWdaeaajugib8qacaWGqbaakiaawUfa caGLDbaaa8aabaqcLbsapeGaeyiLdqucfa4aamWaaOWdaeaajugib8 qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWd biaawUfacaGLDbaaaaaacaGLOaGaayzkaaqcfa4aamWaaOWdaeaaju gib8qacaWGqbaakiaawUfacaGLDbaaaaa@5053@ to give a 2nd slope, SL (2).

Statistical analysis.

 Unpaired t–test for significant difference is carried out using internet based graph pad (www.graphpad. com/quick calcs /t–test). Micro–soft Excel was used to determine standard deviation (n=7).

Results and discussion

Various equations have been derived. Since results can be mathematical in nature or also quantitative, it is imperative to analyze the derived equations with a view to elucidate possible feature application. Only corollaries have to be highlighted and not outright re–derivation. In order to apply the unification equations unlike Eq. (1a), the only factor that should be determined is the factor b (Eq. (38–40)) which is mainly dependent on the slope from the plot of [P] versus D[S0]. The motivation for this research in part as it was elsewhere is Eq. (1a) which like the mathematical results from this research contains all the kinetic parameters though the structure of the equation is partially different from all the quadratic equations in this research, Eq. (28–30). The parameters missing in Eq. (1a) is the pseudo–first order rate constant and D[S0] unlike the derived Eq. (28–30) and other equations, Eq. (31–34b), for instance.

The summation ( K m  + [ E 0 ]+[ Š ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaabmaak8aabaqcLbsapeGaam4saKqba+aadaWg aaWcbaqcLbmapeGaamyBaiaacckaaSWdaeqaaKqzGeWdbiabgUcaRi aacckajuaGdaWadaGcpaqaaKqzGeWdbiaadweajuaGpaWaaSbaaSqa aKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaKqzGeGaey 4kaSscfa4aamWaaOWdaeaajugib8qacaWGGfaakiaawUfacaGLDbaa aiaawIcacaGLPaaaaaa@4E63@  contains different parameters namely concentrations of the remaining substrate [ Š ]=[ S ]+[ C ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaadmaak8aabaqcLbsapeGaamiybaGccaGLBbGa ayzxaaqcLbsacqGH9aqpjuaGdaWadaGcpaqaaKqzGeWdbiaadofaaO Gaay5waiaaw2faaKqzGeGaey4kaSscfa4aamWaaOWdaeaajugib8qa caWGdbaakiaawUfacaGLDbaaaaa@46AA@  or [ S 0 ][ P ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqz adWdbiaaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaKqbakabgkHiTm aadmaak8aabaqcLbsapeGaamiuaaGccaGLBbGaayzxaaaaaa@421F@  [27] which has already been explained. The implication is that with a given value of v and k2, the total concentration of the substrate at zero time, free substrate [S], substrate which formed complex with the enzyme [C], Michaelis–Menten constant, and the molar concentration of the enzyme, the molar mass of the substrate may be determined by the rearrangement of Eq. (1a). First, Km, [ Š ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaadmaak8aabaqcLbsapeGaamiybaGccaGLBbGa ayzxaaaaaa@3B81@ , [S0], [P], and [E0] should be seen to be in molar concentrations such that , [ Š ] mc ( or  [ S 0 ] mc [ P ] mc ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaGcpaqaaKqzGeWdbiaadcwaaOGaay5waiaaw2faaKqb a+aadaahaaWcbeqaaKqzadWdbiaab2gacaqGJbaaaKqbaoaabmaak8 aabaqcLbsapeGaae4BaiaabkhacaqGGcqcfa4aamWaaOWdaeaajugi b8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaO WdbiaawUfacaGLDbaajuaGpaWaaWbaaSqabeaajugWa8qacaqGTbGa ae4yaaaajugibiabgkHiTKqbaoaadmaak8aabaqcLbsapeGaamiuaa GccaGLBbGaayzxaaqcfa4damaaCaaaleqabaqcLbmapeGaaeyBaiaa bogaaaaakiaawIcacaGLPaaaaaa@5854@ , K   m mc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaapjjugiba baaaaaaaaapeGaam4saOWdamaaBaaaleaapeGaaiiOaaWdaeqaamaa DaaabaqcLbmapeGaamyBaaWcpaqaaKqzadWdbiaad2gacaWGJbaaaa aa@3F98@ should be the mass concentration of the corresponding concentration of substrate (where mc means mass concentration and not exponent or power.). Then following the rearrangement of Eq. (1a) and given that MS is the molar mass of the substrate, then substitution of      [ Š ] mc M S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaacckacaGGGcGaaiiOaiaaccka juaGdaWadaGcpaqaaKqzGeWdbiaadcwaaOGaay5waiaaw2faaKqba+ aadaahaaWcbeqaaKqzadWdbiaab2gacaqGJbaaaaGcpaqaaKqzGeWd biaad2eajuaGpaWaaSbaaSqaaKqzadWdbiaabofaaSWdaeqaaaaaaa a@4883@  and   K   m mc M S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaiiOaiaadUeajuaG paWaaSbaaSqaaKqzGeWdbiaacckaaSWdaeqaamaaDaaabaqcLbmape GaamyBaaWcpaqaaKqzadWdbiaad2gacaWGJbaaaaGcpaqaaKqzGeWd biaad2eajuaGpaWaaSbaaSqaaKqzadWdbiaabofaaSWdaeqaaaaaaa a@474D@ into Eq. (1a) should give after, expansion and rearrangement Eq. (41) below.

M S = v( K m mc +  [ Š ] mc )  [ Š ] mc [ E 0 ] k 2 v( v k 2 [ E 0 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaamytaKqba+aadaWgaaWcbaqcLbmapeGaae4u aaWcpaqabaqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qaca WG2bqcfa4aaeWaaOWdaeaajugib8qacaWGlbWcpaWaa0baaeaajugW a8qacaqGTbaal8aabaqcLbmapeGaaeyBaiaabogaaaqcLbsacqGHRa WkcaqGGcqcfa4aamWaaOWdaeaajugib8qacaqGGfaakiaawUfacaGL DbaajuaGpaWaaWbaaSqabeaajugWa8qacaqGTbGaae4yaaaaaOGaay jkaiaawMcaaKqzGeGaeyOeI0IaaeiOaKqbaoaadmaak8aabaqcLbsa peGaaeiybaGccaGLBbGaayzxaaqcfa4damaaCaaaleqabaqcLbmape GaaeyBaiaabogaaaqcfa4aamWaaOWdaeaajugib8qacaWGfbqcfa4d amaaBaaaleaajugWa8qacaaIWaaal8aabeaaaOWdbiaawUfacaGLDb aajugibiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aaGcbaqcLbsapeGaamODaKqbaoaabmaak8aabaqcfa4dbmaalaaak8 aabaqcLbsapeGaamODaaGcpaqaaKqzGeWdbiaadUgajuaGpaWaaSba aSqaaKqzadWdbiaaikdaaSWdaeqaaaaajugib8qacqGHsisljuaGda WadaGcpaqaaKqzGeWdbiaadweajuaGpaWaaSbaaSqaaKqzadWdbiaa icdaaSWdaeqaaaGcpeGaay5waiaaw2faaaGaayjkaiaawMcaaaaaaa a@7CB3@   (41)

Negative molar mass is unusual and so, in Eq. (41),   [ Š ] mc [ E 0 ] k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdqa aaaaaaaaWdbiaacckajuaGdaWadaGcpaqaaKqzGeWdbiaadcwaaOGa ay5waiaaw2faaKqba+aadaahaaWcbeqaaKqzadWdbiaab2gacaqGJb aaaKqbaoaadmaak8aabaqcLbsapeGaamyraKqba+aadaWgaaWcbaqc LbmapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaqcLbsacaWGRb qcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaaa@4BD6@ must be > v( K m mc +  [ Š ] mc ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaamODaKqbaoaabmaak8aabaqcLbsapeGaam4s aSWdamaaDaaabaqcLbmapeGaaeyBaaWcpaqaaKqzadWdbiaab2gaca qGJbaaaKqzGeGaey4kaSIaaiiOaKqbaoaadmaak8aabaqcLbsapeGa amiybaGccaGLBbGaayzxaaqcfa4damaaCaaaleqabaqcLbmapeGaae yBaiaabogaaaaakiaawIcacaGLPaaaaaa@4CBF@ . However, the same cannot be said of Eq. (28–30). In the equations the unit of mass in the denominator and nominator cancel out. Therefore, there is no question of making any quantity of matter per mole subject of the formula. Unlike Eq. (1a), Eq. (28–30) can be used to estimate the time it may take to produce a desired concentration of reducing sugar given a specified concentration of the substrate and enzyme under a given condition of assay. The time needed to hydrolyze a desired amount of substrate given initial concentration can also be estimated. Unlike Eq. (1a), Eq. (28–30) can enable one to switch from pseudo–first order rate constant k to first order rate constant k2 and vice versa.

The quantitative results obtained are shown in Table 1. The values of exp (kQua t) calculated from the quadratic equation (Eq.(34b)) was not significantly different (P > 0.05) from the values of exp (k t) and exp (kc t) in which k and exp (kc t) is the pseudo–first order rate constant determined from the plot of In [ S 0 ] [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaaeysaiaab6gajuaGdaWcaaGcpaqaaKqba+qa daWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbi aaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaaWdaeaajuaGpeWaamWa aOWdaeaajugib8qacaWGtbaakiaawUfacaGLDbaaaaaaaa@45AA@ versus time (t) and [ S 0 ] [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaadofa juaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaay5wai aaw2faaaWdaeaajuaGpeWaamWaaOWdaeaajugib8qacaWGtbaakiaa wUfacaGLDbaaaaaaaa@421C@  respectively. The value of k2(Qua) and k2 (the rate constant for the formation of product, maltose) obtained from Eq. (29 or 30) and vmax/[E0] respectively are not significantly different (P > 0.05). Also, the differences in the result between D[S0] ([S0]–324[P]) and [S0] ( 1 1 exp( k t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaabmaak8aabaqcLbsapeGaaGymaiabgkHiTKqb aoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiGacwgaca GG4bGaaiiCaKqbaoaabmaak8aabaqcLbsapeGaam4AaiaacckacaWG 0baakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa@475A@ was not significant (P > 0.05). Given the equation [P] (or v t) = k [S0]t, the value of [P] in g/L will appear to be indefinite with different duration of assay or any enzyme activity: But this is unlike the derived quadratic or unification equations as the case may be, Eq. (22,28–30,36) and the usual or conventional equation, Eq. (3).

Parameters

Time/min

0.67

1.00

1.50

2.00

2.50

3.00

D[S0]/g/L (324[P])

0.680±0.044

1.129±0.014

1.502±0.007

1.965±0.051

2.177±0.037

2.455±0.042

c[S0]/g/L

0.549±0.008

0.807±0.012

1.183±0.043

1.551±0.021

1.900±0.025

2.236±0.107

Exp (k t)

1.058±0.001

1.088±0.001

1.136±0.002

1.184±0.003

1.235±0.004

1.288±0.005

Exp (kc t) ( = [ S 0 ] [ S ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqc fa4dbmaadmaak8aabaqcLbsapeGaam4uaKqba+aadaWgaaWcbaqcLb mapeGaaGimaaWcpaqabaaak8qacaGLBbGaayzxaaaapaqaaKqba+qa daWadaGcpaqaaKqzGeWdbiaadofaaOGaay5waiaaw2faaaaaaiaawI cacaGLPaaaaaa@45F1@

1.088±0.001

1.128±0.001

1.177±0.001

1.244±0.007

1.278±0.006

1.325±0.007

exp (kQua t)

1.088

1.128

1.177

1.244

1.278

1.325

k2[S] (1/min)

9202.74±119.65

k2 (1/min)

18604.72±86.50

k2(Qua) (1/min)

18468.38±2754.25

Table 1 Calculated parameters viz D[S0], exp (k t), k2[S] and k2

The Michaelis-Menten constant (Km) = 9.009±0.068g/L; The maximum velocity of hydrolysis (vmax) = 14389±67 U/mL; vmax(Qua) = 14284±2130U/mL (1U = micromoles maltose released/mL enzyme in the reaction mixture/3 min. Exp (kQua t) is calculated from the quadratic equation; c is  ( 1 1 exp( k t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckajuaGdaqadaGcpaqaaKqzGeWdbiaaigdacqGHsisl juaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qaciGGLb GaaiiEaiaacchajuaGdaqadaGcpaqaaKqzGeWdbiaadUgacaGGGcGa amiDaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaaa@47CA@ ; k is the pseudo-first order rate constant determined from the plot of In [ S 0 ] [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabMeacaqGUbqcfa4aaSaaaOWdaeaajuaGpeWaamWaaOWd aeaajugib8qacaWGtbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8 aabeaaaOWdbiaawUfacaGLDbaaa8aabaqcfa4dbmaadmaak8aabaqc LbsapeGaam4uaaGccaGLBbGaayzxaaaaaaaa@4467@  versus time (t) where [S0] and [S] are the initial substrate concentration and substrate concentration as t →¥; [P] is the molar concentration of the product, maltose; k2 and k2[S] are the rate constant for production formation and rate constant for the hydrolysis of glycosidic bond and making of new bond respectively.

The rate constant (k2) otherwise called turn over number is determined at different temperatures by many investigators,17 in order to determine the kinetic and thermodynamic characteristic of the enzymes. But it has been made known that there are different aspects of the process involved in the amylolytic production of reducing sugar, namely transit of enzyme towards the heavier polysaccharide, catalytic orientation, hydrolysis of the glycosidic bonds and making of bond and the departure of product.22 Each aspect takes some time and, in this regard, the hydrolysis of the bond and making of new bond cannot be an exception. The rate constant for the breaking and making of bond is the main objective of this research and the result shows that it is slightly < 1/2th the value of k2.

Any means including genetic engineering that alters the physicochemical characteristic of the active site could alter the rate of bond breaking and making thereby either increasing or decreasing the value of k2[S]. It represents a useful way of controlling the overall rate of the production of simple sugars and consequently blood sugar level in diabetics in particular. This is where the pancreatic alpha amylase becomes very relevant. On the other hand in clinical and scientific research, human stress testing for instance requires the amylolytic action of human salivary alpha amylase. The most important issue is the parameter k2[S] that may be seen as the rate limiting factor. This factor should be seen to be important in the clearance of starch or modified starch from starch or modified starch based encapsulating agents,41–43 for therapeutic drug delivery to target tissue and organ. Although k2 may appear to be sufficient in monitoring the rate of production of reducing sugar, but the means to an end could be more important. “Without master card or verb card it is impossible for now to get money from automated teller machine (ATM). One might get to the ATM at the speed of light, but the person cannot control the network that determine the speed at which the machine processes the request expressed via the ATM card before the grant is made and cash ejected, the speed of which, may be high”.

Conclusion

Various equations, mainly quadratic equations, were successfully derived and the results obtained from them were similar to that obtainable from the conventional equations. However, the difference in the result between D[S0] ([S0]–324[P]) and [S0] ( 1 1 exp( k t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju aGqaaaaaaaaaWdbmaabmaak8aabaqcLbsapeGaaGymaiabgkHiTKqb aoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiGacwgaca GG4bGaaiiCaKqbaoaabmaak8aabaqcLbsapeGaam4AaiaacckacaWG 0baakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa@475A@ and between the value of k2(Qua) (the constant from quadratic equation ) and k2 (the rate constant from conventional equation) were not statistically significant (P > 0.05). Also, there was no significant difference (P > 0.05) between the values of exp (kQua t) calculated from the quadratic equation (Eq.(34b)) and the values of exp (k t) and exp (kc t) in which k and exp (kc t) is the pseudo–first order rate constant determined from the plot of In [ S 0 ] [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaqvcaqDdju gibabaaaaaaaaapeGaaeysaiaab6gajuaGdaWcaaGcpaqaaKqba+qa daWadaGcpaqaaKqzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbi aaicdaaSWdaeqaaaGcpeGaay5waiaaw2faaaWdaeaajuaGpeWaamWa aOWdaeaajugib8qacaWGtbaakiaawUfacaGLDbaaaaaaaa@45AA@  versus time (t) and [ S 0 ] [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWwijuaGqa aaaaaaaaWdbmaalaaak8aabaqcfa4dbmaadmaak8aabaqcLbsapeGa am4uaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qaca GLBbGaayzxaaaapaqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaadofa aOGaay5waiaaw2faaaaaaaa@42AC@  respectively. The main objective, the determination of the rate constant for the breaking and making of bond was accomplished and the result showed that the value is about 1/2th the value of k2 leaving one to conclude that the limiting step may be the hydrolysis of the glycosidic bond and making of new bond.

Acknowledgments

None.

Conflicts of interest

There is neither any financial interest nor any conflict of interest.

References

  1. Butterworth PJ, Warren FJ, Grassby T, et al. Analysis of starch amylolysis using plots for first–order kinetics. Carbohydrate Polymers. 2012;87(3):2189–2197.
  2. Stoisser T, Brunsteiner M, Wilson DK, et al. Conformational flexibility related to enzyme activity: evidence for a dynamic active–site gatekeeper function of Tyr215 in Aerococcus viridanslactate oxidase. Sci Rep. 2016;6: 27892.
  3. Brooks HB, Davidson VL. A Method for extracting rate constants from initial rates of stopped–flow kinetic data: application to a physiological electron–transfer reaction. Biochem J. 1993;294(1):211–213.
  4. Christensen T, Stoffer BB, Svensson B, et al. Some details of the reaction mechanism of glucoamylase from Aspergillus nigerKinetic and structural studies on Trp52dPhe and Trp317hPhe mutants. Eur J Biochem. 1997;250(3):638–645.
  5. Ewers D, Becher T, Machtens JP, et al. Induced fit substrate binding to an archeal glutamate transporter homologue. Proc Natl Acad Sci. USA. 2013;110(30):12486–12491.
  6. de Souza PM, e Magalhães PO. Application of microbial alpha amylase in industry–a review. Braz J Microbiol. 2010;41(4):850–861.
  7. Ruiz MI, Sanchez CI, Torrres RG, et al. Enzymatic hydrolysis of cassava starch for production of bioethanol with a Colombian wild yeast strain. J Braz Chem Soc. 2011;22(12):2337–2343.
  8. Uthumporn U, Zaidul ISM, Karim AA. Hydrolysis of granular starch at sub–gelatinization temperature using a mixture of amylolytic enzymes. Food and Byproducts Process. 2010;88(1):47–54.
  9. Jaspreet Singha J, Kaurb L, McCarthy OJ. Factors influencing the physico–chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications–A review. Food Hydrocolloids. 2007;21(1):1–22.
  10. Wu AC, Ral JP, Morell MK, et al. New Perspectives on the Role of α– and β–Amylases in Transient Starch Synthesis. Plos One. 2014;9(6):1–10.
  11. Jemli S, Ayadi–Zouari D, Hlima HB, et al. Biocatalysts: application and engineering for         industrial purposes. Crit Rev Biotechnol. 2015;8(2):1–13.
  12. Xian L, Wang F, Luo X, et al. Purification and characterization of a highly efficient calcium–independent α–amylase from Talaromyces pinophilus. PLoS one. 2015;10(3):1–18.
  13. Herrero–Martínez JM, Schoenmakers PJ, et al. WTH Determination of the amylose–amylopectin ratio of starches by iodine–affinity capillary electrophoresis. J Chromatogr A. 2014;1053(1–2):227–234.
  14. Absar N, Zaidul ISM, Takigawa S, et. al. Enzymatic hydrolysis of potato starches containing different amounts of phosphorus. Food Chemistry. 2008:112(1):57–62.
  15. Kasprzak MM, Laerk HN, Larsen FH, et al. Effect of enzymatic treatment of different starch sources on the in vitro rate and extent of starch digestion. Int J Mol Sci. 2012;13:929–942.
  16. Slaughter SL, Ellis PR, Butterworth PJ. An investigation of the action of porcine pancreatic alpha amylase on native and gelatinized starches. Biochim Biophysica Acta. 2001;1525(1–2):29–36.
  17. D’ Amico S, Marx JC, Gerday C, et al. Activity – stability relationships in extremophilic        enzymes. J Biol Chem. 2003;276(10):7891–7896.
  18. Ohtomo T, Igarashi S,Takagai Y. Flow injection spectrophotometric analysis of human        salivary α–amylase activity using an enzyme degradation of starch–iodine complexes in flow channel         and its application to human stress testing. Biol Pharm Bull. 2013;36(11):1857–1861.
  19. Feroz KA, Umma Reddy CH, Anitha M, et al. Miracle of saliva in diagnosis of oral cancer. IJRMR. 2016;3(6):1586–1590.
  20. Presečki AV, Blažević ZF, Vasić–Rački D. Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: Impact of calcium ions. Bioprocess Biosyt Eng. 2013;36(11):1555–1562.
  21. Udema II. Unifying equation and rate constant for amylolysis of glycosidic bond. Int J Appl Life Sci Int. 2017;14(3).
  22. Udema II. Space–time and Entropic Characterization of Aspergillus oryzeaa–amylase Catalyzed Reaction. Int J Biochem Res Rev. 2016;15(2):1–12.
  23. Reuveni S, Urbakhc M, Klafterc J. Role of substrate unbinding in Michaelis–Menten enzymatic reactions. Proc Natl Acad Sci USA 2014;111(12):4391–4396.
  24. Cipolla A, Delbrassine F, Da Lage JL, et al. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride – dependent alpha–amylases. Biochemie. 2012;94(9):1943–1950.
  25. Sarabia–Sanchez MJ, Sanchez–Munoz MA, Perez–Velazquez JR, et al. Modes of inhibition of human protein–tyrosine phosphatase 1B and aldose reductase by Moringa oleiferalam leaves extract. MOJ Biorg. Org Chem. 2017:1(1):1–7.
  26. Tzafriri AR. Michaelis–Menten kinetics at high enzyme concentrations. Bull Math Biol. 2003;65(6):1111–1129.
  27. Schnell S, Maini PK. Enzyme kinetics at high enzyme concentration. Bull Math Biol. 2000;62(3):483–499.
  28. Goldstein A. The mechanism of enzyme–inhibitor–substrate reactions. J Gen Physiol. 1944;27(6):529–580.
  29. Cha S, Cha CJM. Kinetics of cyclic enzyme systems. Mol Pharmacol. 1965;1(2):178–189.
  30. Jeriĉevi Ž, Kuŝter Ž. Non–linear optimization of parameters in Michaelis–Menten kinetics. Croat Chem Acta. 2005;78(4):519–523.
  31. Baici A. Enzyme kinetics: the velocity of reactions. Biochem J. 2006;p. 1–3.
  32. Copeland RA. Enzymes: A practical introduction to structure, mechanism, and data analysis. (2nd edn), John Wiley & Sons, New York, USA, 2002;pp. 1–391.
  33. Marchal LM, Jonkers J, Franke JTh, et al. The effect of process conditions on the alpha amylolytic hydrolysis of amylopectin potato starch: An experimental design approach. Biotechnol Bioeng. 1999;62(3):348–357.
  34. Bérangère F, Laurent P, Agnes P, et al. Methodology for bioprocess analysis: Mass balances, yields and stoichiometries, stoichiometry and research–The importance of quantity in biomedicine. In: Innocenti A (Eds.), InTech, Croatia, China, 2012;p. 1–28.
  35. Beard DA, Liang SD, Quian H. Energy balance for the analysis of complex metabolic net works. Biophys J. 2002;83(1):79–81.
  36. Udema II. Substrate mass conservation in enzyme catalyzed amylolytic activity. Int J Biochem Res Rev. 2017;18(1):1–10.
  37. Udema II. Derivation of kinetic parameter dependent model for the quantification of the concentration and molar mass of an enzyme in aqueous solution: A case study on Aspergillus oryzeaalpha–amylase. J Sci Res Reports. 2016;10(3):1–10.
  38. Bernfeld P. Amylases, alpha and beta. Methods. Enzymol. 1955;1: 49–152.
  39. Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56(3):658–666.
  40. Eisenthal R, Cornish–Bowen A. The direct linear plot: A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974;139(3):715–720.
  41. Udema II. Space–time and Entropic Characterization of Aspergillus oryzeaa–amylase Catalyzed Reaction. Int J Biochem Res Rev. 2016;15(2):1–12.
  42. Balmayor ER, Tuzlakoglu K, Marques AP, et al. A novel enzymatically–mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch–based micro–particles and differentiation agents. J Mater Sci: Mater Med. 2008;19(4):1617–1623.
  43. Desai KGH, Park HJ. Recent developments in microencapsulation of food ingredients. Drying Technology. 2005;23:1361–1394.
  44. Raj V, Prabha G. Synthesis, characterization and in vitro drug release of cisplatin loaded       Cassava starch acetate–PEG/gelatin nanocomposites. J Assoc Arab Univ Basic Appl 2016;21:10–16.
Creative Commons Attribution License

©2017 Udema. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.