Submit manuscript...
Journal of
eISSN: 2473-0831

Analytical & Pharmaceutical Research

Opinion Volume 10 Issue 5

An idea about simple derivation of mean activity, mean activity coefficient, and mean molar concentration

Yoshihiro Kudo

Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan

Correspondence: Yoshihiro Kudo, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received: September 10, 2021 | Published: September 29, 2021

Citation: Kudo Y. An idea about simple derivation of mean activity, mean activity coefficient, and mean molar concentration. J Anal Pharm Res. 2021;10(5):166-167. DOI: 10.15406/japlr.2021.10.00382

Download PDF

Abstract

A simple derivation procedure of equations about a mean activity, a mean activity coefficient, and a mean molar concentration was proposed based on the electrochemical potentials. The equations for the electrolytes, such as KCl, CaCl2, and LaCl3, were derived.

Keywords: mean activity; mean activity coefficient; mean molar concentration; electrochemical potentials; strong electrolytes; average potential

Introduction

It is difficult to understand a mean activity (a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHXcqSaaa@39E2@ ), a mean activity coefficient (y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGHXcqSaaa@39FA@ ), and a mean molar concentration (C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacqGHXcqSaaa@39C4@ ) described in several books.1-3 In addition to this, many students seem to hardly derive their expressions and it is hard to do them for me too. As an idea, the use of electrochemical potentials (μ̅)2-4 can be effective. We try here to introducing a brief derivation procedure about their equations.

Results and discussion

Case (A): for 1: 1 strong electrolyte

We handle the aqueous solution of C mol/L KCl as this example. First, each component is expressed with the electrochemical potential μ̅ [4].

μ¯+=μ0++RT1na++Fϕ+ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeY7aTzaaraWaaSbaaSqaaiabgUcaRaqabaGccqGH9aqpcqaH8oqBdaahaaWcbeqaaiaaicdaaaGcdaWgaaWcbaGaey4kaScabeaakiabgUcaRiaadkfacaWGubGaaGymaiaab6gacaWGHbWaaSbaaSqaaiabgUcaRaqabaGccqGHRaWkcaWGgbGaeqy1dy2aaSbaaSqaaiabgUcaRaqabaaaaa@4978@    (1)

μ¯=μ0+RT1naFϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeY7aTzaaraWaaSbaaSqaaiabgkHiTaqabaGccqGH9aqpcqaH8oqBdaahaaWcbeqaaiaaicdaaaGcdaWgaaWcbaGaeyOeI0cabeaakiabgUcaRiaadkfacaWGubGaaGymaiaab6gacaWGHbWaaSbaaSqaaiabgkHiTaqabaGccqGHsislcaWGgbGaeqy1dy2aaSbaaSqaaiabgkHiTaqabaaaaa@49AF@    (2)

Here, the symbols, μ0+,a+ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaCaaaleqabaGaaGimaaaakmaaBaaaleaacqGHRaWkaeqaaOGaaiilaiaadggadaWgaaWcbaGaey4kaScabeaaaaa@3D71@ and ϕ+ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBaaaleaacqGHRaWkaeqaaaaa@39E4@ , denote the standard chemical potential for K+, the activity of K+ in water, and the inner potential of the phase, respectively. Also the same is true of Cl MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiaadYgadaahaaWcbeqaaiabgkHiTaaaaaa@3A01@  in Eq. (2) and additionally R, T, and F show the usual meanings. Secondly, from the two equations, we calculate an average potential (or energy), (μ¯++μ¯)/2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaeWaaeaapaGafqiVd0MbaebadaWgaaWcbaGaey4kaScabeaakiabgUcaRiqbeY7aTzaaraWaaSbaaSqaaiabgkHiTaqabaaak8qacaGLOaGaayzkaaGaai4laiaaikdaaaa@40FE@ , for all the components in this KCl solution as follows.

(μ¯++μ¯)/2=(μ0++μ0)/2+(RT/2)lna+a=(μ0++μ0)/2+RTln(a+a)1/2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaeWaaeaapaGafqiVd0MbaebadaWgaaWcbaGaey4kaScabeaakiabgUcaRiqbeY7aTzaaraWaaSbaaSqaaiabgkHiTaqabaaak8qacaGLOaGaayzkaaGaai4laiaaikdacqGH9aqpdaqadaqaa8aacqaH8oqBdaahaaWcbeqaaiaaicdaaaGcdaWgaaWcbaGaey4kaScabeaakiabgUcaRiabeY7aTnaaCaaaleqabaGaaGimaaaakmaaBaaaleaacqGHsislaeqaaaGcpeGaayjkaiaawMcaaiaac+cacaaIYaGaey4kaSYaaeWaaeaacaWGsbGaamivaiaac+cacaaIYaaacaGLOaGaayzkaaGaciiBaiaac6gacaWGHbGaey4kaSIaamyyaiabgkHiTiabg2da9maabmaabaWdaiabeY7aTnaaCaaaleqabaGaaGimaaaakmaaBaaaleaacqGHRaWkaeqaaOGaey4kaSIaeqiVd02aaWbaaSqabeaacaaIWaaaaOWaaSbaaSqaaiabgkHiTaqabaaak8qacaGLOaGaayzkaaGaai4laiaaikdacqGHRaWkcaWGsbGaamivaiGacYgacaGGUbWaaeWaaeaacaWGHbGaey4kaSIaamyyaiabgkHiTaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@7108@    (3)

Here, the condition of the electroneutrality for the phase corresponds to Fϕ+Fϕ=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamOraiabew9aMnaaBaaaleaacqGHRaWkaeqaaOGaeyOeI0IaamOraiabew9aMnaaBaaaleaacqGHsislaeqaaOGaeyypa0JaaGimaaaa@413C@ . In Eq. (3), we can define ((a+a)1/2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaeWaaeaacaWGHbGaey4kaSIaamyyaiabgkHiTaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@3EA9@  as the mean activity and accordingly do a+a MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyaiabgUcaRiaadggacqGHsislaaa@3AC9@ 1,2 as the activity (aKCl) of the electrolyte B, namely KCl. Moreover, using the relations,1-3 a+=y+C MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyaiabgUcaRiabg2da9iaadMhacqGHRaWkcaWGdbaaaa@3CA4@  and a=yC MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyaiabgkHiTiabg2da9iaadMhacqGHsislcaWGdbaaaa@3CBA@ , for the individual ions, the a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaaaa@3A2E@  is expressed as

a±=aKC11/2=(a+a)1/2=(y+CyC)1/2=(y+y)1/2C, MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGlbGaam4qaiaaigdaaeqaaOWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccqGH9aqpdaqadaqaaiaadggacqGHRaWkcaWGHbGaeyOeI0cacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccqGH9aqpdaqadaqaaiaadMhacqGHRaWkcaWGdbGaeyyXICTaamyEaiabgkHiTiaadoeaaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiabg2da9maabmaabaGaamyEaiabgUcaRiaadMhacqGHsislaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiaadoeacaGGSaaaaa@6061@    (4)

where y+ and y- refer to the activity coefficients of the cation K+ and the anion Cl MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiaadYgadaahaaWcbeqaaiabgkHiTaaaaaa@3A01@ , respectively. Finally, from Eq. (4), we can define (y+y)1/2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaeWaaeaacaWG5bGaey4kaSIaamyEaiabgkHiTaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@3ED9@ as the mean activity coefficient y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgglaXcaa@3A1A@  and C as the mean molar concentration C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiabgglaXcaa@39E4@  for aB at B = KCl.

Case (B): for 2: 1 electrolyte

Similarly, we handle the aqueous solution of C mol/L CaCl2 as this example. Expressing each component with μ̅, the following equations were obtained.

μ¯2+=μ02++RT1na2++2Fϕ+ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeY7aTzaaraWaaSbaaSqaaiaaikdacqGHRaWkaeqaaOGaeyypa0JaeqiVd02aaWbaaSqabeaacaaIWaaaaOWaaSbaaSqaaiaaikdacqGHRaWkaeqaaOGaey4kaSIaamOuaiaadsfacaaIXaGaaeOBaiaadggadaWgaaWcbaGaaGOmaiabgUcaRaqabaGccqGHRaWkcaaIYaGaamOraiabew9aMnaaBaaaleaacqGHRaWkaeqaaaaa@4C68@    (5)

μ¯=μ0+RT1na+Fϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeY7aTzaaraWaaSbaaSqaaiabgkHiTaqabaGccqGH9aqpcqaH8oqBdaahaaWcbeqaaiaaicdaaaGcdaWgaaWcbaGaeyOeI0cabeaakiabgUcaRiaadkfacaWGubGaaGymaiaab6gacaWGHbWaaSbaaSqaaiabgkHiTaqabaGccqGHRaWkcaWGgbGaeqy1dy2aaSbaaSqaaiabgkHiTaqabaaaaa@49A4@     (2)

Next, from these equations, we estimate the average electrochemical potential, (μ¯2++2μ¯)/3 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafqiVd0MbaebadaWgaaWcbaGaaGOmaiabgUcaRaqabaGccqGHRaWkcaaIYaGafqiVd0MbaebadaWgaaWcbaGaeyOeI0cabeaaaOGaayjkaiaawMcaaiaac+cacaaIZaaaaa@4238@ , of this CaCl2 solution as

(μ¯2++2μ¯)/3=(μ02++2μ0)/3+(RT/3)lna2+(a)2+a(2Fϕ+2Fϕ)/3 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaeWaaeaapaGafqiVd0MbaebadaWgaaWcbaGaaGOmaiabgUcaRaqabaGccqGHRaWkcaaIYaGafqiVd0MbaebadaWgaaWcbaGaeyOeI0cabeaaaOWdbiaawIcacaGLPaaacaGGVaGaaG4maiabg2da9maabmaabaWdaiabeY7aTnaaCaaaleqabaGaaGimaaaakmaaBaaaleaacaaIYaGaey4kaScabeaakiabgUcaRiaaikdacqaH8oqBdaahaaWcbeqaaiaaicdaaaGcdaWgaaWcbaGaeyOeI0cabeaaaOWdbiaawIcacaGLPaaacaGGVaGaaG4maiabgUcaRmaabmaabaGaamOuaiaadsfacaGGVaGaaG4maaGaayjkaiaawMcaaiGacYgacaGGUbGaamyyamaaBaaaleaacaaIYaGaey4kaScabeaakmaabmaabaGaamyyaiabgkHiTaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaqadaqaaiaaikdacaWGgbGaeqy1dy2aaSbaaSqaaiabgUcaRaqabaGccqGHsislcaaIYaGaamOraiabew9aMjabgkHiTaGaayjkaiaawMcaaiaac+cacaaIZaaaaa@6D41@     (6)

Also, we can define {a2+(a)2}1/3 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaabaGaamyyamaaBaaaleaacaaIYaGaey4kaScabeaakmaabmaabaGaamyyaiabgkHiTaGaayjkaiaawMcaamaaciaabaWaaWbaaSqabeaacaaIYaaaaaGccaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaaaOGaay5Eaaaaaa@42B0@ as a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaaaa@3A2E@  and do a2+(a)2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacaaIYaGaey4kaScabeaakmaabmaabaGaamyyaiabgkHiTaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@3E2D@  as the activity(aCaCl2) of the electrolyte CaCl2.1,2 Here, the electroneutral condition of 2Fϕ+2Fϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaaGOmaiaadAeacqaHvpGzdaWgaaWcbaGaey4kaScabeaakiabgkHiTiaaikdacaWGgbGaeqy1dy2aaSbaaSqaaiabgkHiTaqabaaaaa@40EA@ basically holds.       So, the a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaaaa@3A2E@  is expressed as

a±={a2+(a)2}1/3={y2+C(y2C)2}1/3=(y2+y2)1/3(41/3C) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaOGaeyypa0ZdamaaceaabaGaamyyamaaBaaaleaacaaIYaGaey4kaScabeaakmaabmaabaGaamyyaiabgkHiTaGaayjkaiaawMcaamaaciaabaWaaWbaaSqabeaacaaIYaaaaaGccaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaaaOGaay5EaaGaeyypa0ZaaiqaaeaacaWG5bWaaSbaaSqaaiaaikdacqGHRaWkaeqaaaGccaGL7baacaWGdbGaeyyXIC9aaeWaaeaacaWG5bGaeyOeI0IaaGOmaiaadoeaaiaawIcacaGLPaaadaGacaqaamaaCaaaleqabaGaaGOmaaaaaOGaayzFaaWaaWbaaSqabeaacaaIXaGaai4laiaaiodaaaGccqGH9aqpdaqadaqaaiaadMhadaWgaaWcbaGaaGOmaiabgUcaRaqabaGccaWG5bGaeyOeI0YaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaiodaaaGcdaqadaqaaiaaisdadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaakiaadoeaaiaawIcacaGLPaaaaaa@686F@    (7)

From this equation, we can immediately define (y2+y2) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaamyEamaaBaaaleaacaaIYaGaey4kaScabeaakiaadMhacqGHsisldaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaa@3E47@  as y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgglaXcaa@3A1A@  and 41/3C as C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiabgglaXcaa@39E4@  for aB at B = CaCl2.

Case (C): for 3: 1 electrolyte

Let’s handle C mol/L LaCl3 solution. Expressing each component with μ̅, the following equations were obtained in addition to Eq. (2).

μ¯3++μ¯3++RTlna3++3Fϕ+ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeY7aTzaaraWaaSbaaSqaaiaaiodacqGHRaWkaeqaaOGaey4kaSIafqiVd0MbaebadaWgaaWcbaGaaG4maiabgUcaRaqabaGccqGHRaWkcaWGsbGaamivaiGacYgacaGGUbGaamyyamaaBaaaleaacaaIZaGaey4kaScabeaakiabgUcaRiaaiodacaWGgbGaeqy1dy2aaSbaaSqaaiabgUcaRaqabaaaaa@4BA7@    (8)

From these equations, we calculate the average μ¯,(μ¯3+3μ¯)/4 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeY7aTzaaraGaaiilamaabmaabaGafqiVd0MbaebadaWgaaWcbaGaaG4maiabgUcaRaqabaGccaaIZaGafqiVd0MbaebacqGHsislaiaawIcacaGLPaaacaGGVaGaaGinaaaa@43A1@ , of this LaCl3 solution as

(μ¯3++3μ¯)/4=(μ03++3μ0)/4+(RT/4)lna3+(a)3+(3Fϕ+3Fϕ)/4 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafqiVd0MbaebadaWgaaWcbaGaaG4maiabgUcaRaqabaGccqGHRaWkcaaIZaGafqiVd0MbaebacqGHsislaiaawIcacaGLPaaacaGGVaGaaGinaiabg2da9maabmaabaGaeqiVd02aaWbaaSqabeaacaaIWaaaaOWaaSbaaSqaaiaaiodacqGHRaWkaeqaaOGaey4kaSIaaG4maiabeY7aTnaaCaaaleqabaGaaGimaaaakiabgkHiTaGaayjkaiaawMcaaiaac+cacaaI0aGaey4kaSYaaeWaaeaacaWGsbGaamivaiaac+cacaaI0aaacaGLOaGaayzkaaGaciiBaiaac6gacaWGHbWaaSbaaSqaaiaaiodacqGHRaWkaeqaaOWaaeWaaeaacaWGHbGaeyOeI0cacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaey4kaSYaaeWaaeaacaaIZaGaamOraiabew9aMnaaBaaaleaacqGHRaWkaeqaaOGaeyOeI0IaaG4maiaadAeacqaHvpGzcqGHsislaiaawIcacaGLPaaacaGGVaGaaGinaaaa@6B9D@     (9)

Also, we can define {a3+(a)3}1/4 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaabaGaamyyamaaBaaaleaacaaIZaGaey4kaScabeaakmaabmaabaGaamyyaiabgkHiTaGaayjkaiaawMcaamaaciaabaWaaWbaaSqabeaacaaIZaaaaaGccaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaGinaaaaaOGaay5Eaaaaaa@42B3@ as a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaaaa@3A2E@  and do a3+(a)3 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaaWcbaGaaG4maiabgUcaRaqabaGcdaqadaqaaiaadggacqGHsislaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaa@3E0F@ as the activity of the electrolyte LaCl3,1,2where the condition of 3Fϕ+=3Fϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiodacaWGgbGaeqy1dy2aaSbaaSqaaiabgUcaRaqabaGccqGH9aqpcaaIZaGaamOraiabew9aMjabgkHiTaaa@40B9@ holds.   Hence, the a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaaaa@3A2E@ is expressed as

a±={a3+(a)3}1/4={y3+C(y3C)3}1/4=(y3+y3)1/4(271/4C) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaOGaeyypa0ZdamaaceaabaGaamyyamaaBaaaleaacaaIZaGaey4kaScabeaakmaabmaabaGaamyyaiabgkHiTaGaayjkaiaawMcaamaaciaabaWaaWbaaSqabeaacaaIZaaaaaGccaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaGinaaaaaOGaay5EaaGaeyypa0ZaaiqaaeaacaWG5bWaaSbaaSqaaiaaiodacqGHRaWkaeqaaaGccaGL7baacaWGdbGaeyyXIC9aaeWaaeaacaWG5bGaeyOeI0IaaG4maiaadoeaaiaawIcacaGLPaaadaGacaqaamaaCaaaleqabaGaaG4maaaaaOGaayzFaaWaaWbaaSqabeaacaaIXaGaai4laiaaisdaaaGccqGH9aqpdaqadaqaaiaadMhadaWgaaWcbaGaaG4maiabgUcaRaqabaGccaWG5bGaeyOeI0YaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaisdaaaGcdaqadaqaaiaaikdacaaI3aWaaWbaaSqabeaacaaIXaGaai4laiaaisdaaaGccaWGdbaacaGLOaGaayzkaaaaaa@6939@     (10)

From this equation, we can immediately define (y3+y3)1/4 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaamyEamaaBaaaleaacaaIZaGaey4kaScabeaakiaadMhacqGHsisldaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVaGaaGinaaaaaaa@40A2@ as y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgglaXcaa@3A1A@  and 271/4C MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaaI3aWaaWbaaSqabeaacaaIXaGaai4laiaaisdaaaGccaWGdbaaaa@3BB6@ as C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiabgglaXcaa@39E4@ for aB at B = LaCl3.

A similar handling can be applied for other electrolytes, such as ZnSO4, Na2SO4, and K4[Fe(CN)6]. In handling these electrolytes and those of the cases (B) and (C), it was assumed that all the electrolytes are strong ones. Also, its procedure is: (i) calculate the average electrochemical potential of the electrolyte, (ii) estimate  from its potential, and then (iii) obtain or define both y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgglaXcaa@3A1A@  and C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiabgglaXcaa@39E4@ from rearranging a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaaaa@3A2E@ . Table 1 summarizes such results, together with the above three cases.2 At least, the results in Table 1 were the same as those in the book.2 Thus, by estimating the average potentials of the electrolytes B, the mathematical styles about their activities aB were essentially derived. Except for the 1: 1 and 2 : 2 electrolytes, it is not still easy to understand physical and chemical meanings of their expressions. However, we can suppose that the C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiabgglaXcaa@39E4@  value is equivalent to a geometrical mean (Table 1) of the molar concentration which is based on the average μ̅ of the electrolyte.

Electrolyte B

Activity aB

Mean Activitya

Mean Activity Coefficienta

Mean Molar Concentrationa

         

KCl

a+a-

(a+a-)1/2

(y+y-)1/2

C

CaCl2

a2+(a-)2

{a2+(a-)2}1/3

(y2+y-2)1/3

41/3C ( MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIKi7caa@38BF@  1.6C )

ZnSO4

a2+a2-

(a2+a2-)1/2

(y2+y2-)1/2

C

Na2SO4

(a+)2a2-

{(a+)2a2-}1/3

(y+2y2-)1/3

41/3C ( MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIKi7caa@38BF@  1.6C )

LaCl3

a3+(a-)3

{a3+(a-)3}1/4

(y3+y-3)1/4

271/4C ( MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIKi7caa@38BF@  2.3C )

K4[Fe(CN)6]

(a+)4a4-

{(a+)4a4-}1/5

(y+4y4-)1/5

2561/5C ( MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIKi7caa@38BF@  3.0C )

Table 1 Representative Equations 2 Expressing a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHXcqSaaa@39E2@ , y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGHXcqSaaa@39FA@ , and C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacqGHXcqSaaa@39C4@ of some Electrolytes B
aA basic style is a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHXcqSaaa@39E2@ = y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGHXcqSaaa@39FA@ C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacqGHXcqSaaa@39C4@

Conclusion

Considering the average potential of the electrolyte B, we can easily derive the equations for the mean activity a± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyyamaaBaaaleaacqGHXcqSaeqaaaaa@3A2E@ , the mean activity coefficient y± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyEaiabgglaXcaa@3A1A@ , and the mean molar concentration C± MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaam4qaiabgglaXcaa@39E4@ . The proposed handling must be applied for other concentration scales, such as the molal concentration and the mole fraction.

Acknowledgments

The author thanks Dr Hideaki Shirota (Chiba University) for his support about the book.3

Conflicts of interest

The author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2021 Kudo. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.