Submit manuscript...
Journal of
eISSN: 2473-0831

Analytical & Pharmaceutical Research

Case Report Volume 5 Issue 3

An Approximation Method for Determining Key Extraction Constants in the Equilibrium-Analysis of Cd(II) Extraction with 18-Crown-6 Ether into Some Diluents

Yoshihiro Kudo

Correspondence: Yoshihiro Kudo, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan, Tel +81 43-290-2786, Fax -3126

Received: June 30, 2017 | Published: July 11, 2017

Citation: Kudo Y (2017) An Approximation Method for Determining Key Extraction Constants in the Equilibrium-Analysis of Cd(II) Extraction with 18-Crown-6 Ether into Some Diluents. J Anal Pharm Res 5(3): 00144. DOI: 10.15406/japlr.2017.05.00144

Download PDF

Abstract

Three key extraction-constants, K ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbWdamaaBaaaleaapeGaamyzaiaadIhaa8aabeaaaaa@3927@ , K ex+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaey4kaScapaqabaaa aa@3B21@ and K Cd/CdL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadoeacaWGKbGaai4laiaadoeacaWG KbGaamitaaWdaeqaaaaa@3D3E@ were determined at 298K with an approximate method. Here K ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbWdamaaBaaaleaapeGaamyzaiaadIhaa8aabeaaaaa@3927@ , K ex+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaey4kaScapaqabaaa aa@3B21@ and were defined as [ CdL A 2 ] org /[ C d 2+ ] [ L ] org [ A ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamitaiaadgeapaWaaSbaaSqa a8qacaaIYaaapaqabaaak8qacaGLBbGaayzxaaWdamaaBaaaleaape Gaam4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qa caWGdbGaamiza8aadaahaaWcbeqaa8qacaaIYaGaey4kaScaaaGcca GLBbGaayzxaaWaamWaa8aabaWdbiaadYeaaiaawUfacaGLDbaapaWa aSbaaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qadaWadaWdae aapeGaamyqa8aadaahaaWcbeqaa8qacqGHsislaaaakiaawUfacaGL DbaapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@52BA@ , [ CdL A + ] org /[ C d 2+ ] [ L ] org [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamitaiaadgeapaWaaWbaaSqa beaapeGaey4kaScaaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam 4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qacaWG dbGaamiza8aadaahaaWcbeqaa8qacaaIYaGaey4kaScaaaGccaGLBb GaayzxaaWaamWaa8aabaWdbiaadYeaaiaawUfacaGLDbaapaWaaSba aSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qadaWadaWdaeaape Gaamyqa8aadaahaaWcbeqaa8qacqGHsislaaaakiaawUfacaGLDbaa aaa@51BA@ and [ Cd L 2+ ] org /[ C d 2+ ] [ L ] org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamita8aadaahaaWcbeqaa8qa caaIYaGaey4kaScaaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam 4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qacaWG dbGaamiza8aadaahaaWcbeqaa8qacaaIYaGaey4kaScaaaGccaGLBb GaayzxaaWaamWaa8aabaWdbiaadYeaaiaawUfacaGLDbaapaWaaSba aSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaaaaa@4D7C@ , respectively: L shows 18-crown-6 ether, A does picrate ion, and the subscript “org” denotes an organic phase. Diluents employed as the org phases were o-dichlorobenzene, bromobenzene, dibutylether, and nitrobenzene. In order to determine briefly these key constants, the following approximate equations were used: K ex D/ [ L ] org [ A ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4baapaqabaGcpeGaeyis ISRaamiraiaac+cadaWadaWdaeaapeGaamitaaGaay5waiaaw2faa8 aadaWgaaWcbaWdbiaad+gacaWGYbGaam4zaaWdaeqaaOWdbmaadmaa paqaa8qacaWGbbWdamaaCaaaleqabaWdbiabgkHiTaaaaOGaay5wai aaw2faa8aadaahaaWcbeqaa8qacaaIYaaaaaaa@48D5@ , and K ex D/ [ L ] org [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4baapaqabaGcpeGaeyis ISRaamiraiaac+cadaWadaWdaeaapeGaamitaaGaay5waiaaw2faa8 aadaWgaaWcbaWdbiaad+gacaWGYbGaam4zaaWdaeqaaOWdbmaadmaa paqaa8qacaWGbbWdamaaCaaaleqabaWdbiabgkHiTaaaaOGaay5wai aaw2faaaaa@47CD@ , where K Cd/CdL D/ [ L ] org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadoeacaWGKbGaai4laiaadoeacaWG KbGaamitaaWdaeqaaOWdbiabgIKi7kaadseacaGGVaWaamWaa8aaba WdbiaadYeaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGVbGaamOC aiaadEgaa8aabeaaaaa@4698@ refers to an experimental distribution ratio of Cd(II) between water and the org phases. The former two constants were compared with the corresponding values previously-determined. By comparing other many values, validity of the method was also examined and it was consequently clarified.

Keywords: extraction constants, distribution ratio, ion-pair formation constants, primary diagnosis, distribution constant of picrate ion,cadmium picrate, 18-crown-6 ether

Abbreviations

ORG, organic; oDCBz, o-dichlorobenzene; BBz, bromobenzene; DBE, dibutylether; NB, nitrobenzene; Cd, cadmium; 18C6, 18-crown-6 ether; Pic−, picrate ion

Introduction

There are many studies for the metal extraction by crown compounds (L) and other extractants similar to L into various diluents, such as benzene, chloroform, 1,2-dichloroethane, and NB.1-17 In these studies, procedures of equilibrium analyses have become more difficult for primary users or outsiders of the field year by year. The authors have also studied so far for the improvements of such procedures.9,15-17 However, such improvements seem to reduce the convenience of the procedures especially for the users. So, one of the authors will report here a user-friendly procedure for analyzing the overall extraction equilibrium. As examples, the results of our previous paper17 reported for the CdPic2 extraction with 18C6 into oDCBz, BBz, DBE, and NB were handled.

Case presentation

Simplification of the convoluted procedures3,4,10,12-17 for the divalent-metal, M(II), extraction systems can stimulate an estimate of L functions by many workers. The overall M(II) extraction system with a univalent pairing anion (A−) can be expressed as the following three extraction equilibria:

C d 2+ +  L org + 2 A CdL A 2,org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgapaWaaWbaaSqabeaapeGaaGOmaiabgUcaRaaakiab gUcaRiaabckacaWGmbWdamaaBaaaleaapeGaam4BaiaadkhacaWGNb aapaqabaGcpeGaey4kaSIaaeiOaiaaikdacaWGbbWdamaaCaaaleqa baWdbiabgkHiTaaakiablYCidkaadoeacaWGKbGaamitaiaadgeapa WaaSbaaSqaa8qacaaIYaGaaiilaiaad+gacaWGYbGaam4zaaWdaeqa aaaa@4FA4@ , (1)

C d 2+ +  L org + 2 A CdL A + org +  A org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgapaWaaWbaaSqabeaapeGaaGOmaiabgUcaRaaakiab gUcaRiaabckacaWGmbWdamaaBaaaleaapeGaam4BaiaadkhacaWGNb aapaqabaGcpeGaey4kaSIaaeiOaiaaikdacaWGbbWdamaaCaaaleqa baWdbiabgkHiTaaakiablYCidkaadoeacaWGKbGaamitaiaadgeapa WaaWbaaSqabeaapeGaey4kaScaaOWdamaaBaaaleaapeGaam4Baiaa dkhacaWGNbaapaqabaGcpeGaey4kaSIaaeiOaiaadgeapaWaaWbaaS qabeaapeGaeyOeI0caaOWdamaaBaaaleaapeGaam4BaiaadkhacaWG Nbaapaqabaaaaa@56C9@ ,(2)

And

C d 2+ +  L org + 2 A Cd L 2+ org + 2 A org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgapaWaaWbaaSqabeaapeGaaGOmaiabgUcaRaaakiab gUcaRiaabckacaWGmbWdamaaBaaaleaapeGaam4BaiaadkhacaWGNb aapaqabaGcpeGaey4kaSIaaeiOaiaaikdacaWGbbWdamaaCaaaleqa baWdbiabgkHiTaaakiablYCidkaadoeacaWGKbGaamita8aadaahaa Wcbeqaa8qacaaIYaGaey4kaScaaOWdamaaBaaaleaapeGaam4Baiaa dkhacaWGNbaapaqabaGcpeGaey4kaSIaaeiOaiaabkdacaWGbbWdam aaCaaaleqabaWdbiabgkHiTaaak8aadaWgaaWcbaWdbiaad+gacaWG YbGaam4zaaWdaeqaaaaa@5774@ . (3)

The expressions of these equilibria as equilibrium constants are

K ex =  [ CdL A 2 ] org /[ C d 2+ ] [ L ] org [ A ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4baapaqabaGcpeGaeyyp a0JaaeiOamaadmaapaqaa8qacaWGdbGaamizaiaadYeacaWGbbWdam aaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaay5waiaaw2faa8aadaWg aaWcbaWdbiaad+gacaWGYbGaam4zaaWdaeqaaOWdbiaac+cadaWada WdaeaapeGaam4qaiaadsgapaWaaWbaaSqabeaapeGaaGOmaiabgUca RaaaaOGaay5waiaaw2faamaadmaapaqaa8qacaWGmbaacaGLBbGaay zxaaWdamaaBaaaleaapeGaam4BaiaadkhacaWGNbaapaqabaGcpeWa amWaa8aabaWdbiaadgeapaWaaWbaaSqabeaapeGaeyOeI0caaaGcca GLBbGaayzxaaWdamaaCaaaleqabaWdbiaaikdaaaaaaa@580E@ , (1a)

K ex± =  [ CdL A + ] org [ A ] org /[ C d 2+ ] [ L ] org [ A ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaeyySaelapaqabaGc peGaeyypa0JaaeiOamaadmaapaqaa8qacaWGdbGaamizaiaadYeaca WGbbWdamaaCaaaleqabaWdbiabgUcaRaaaaOGaay5waiaaw2faa8aa daWgaaWcbaWdbiaad+gacaWGYbGaam4zaaWdaeqaaOWdbmaadmaapa qaa8qacaWGbbWdamaaCaaaleqabaWdbiabgkHiTaaaaOGaay5waiaa w2faa8aadaWgaaWcbaWdbiaad+gacaWGYbGaam4zaaWdaeqaaOWdbi aac+cadaWadaWdaeaapeGaam4qaiaadsgapaWaaWbaaSqabeaapeGa aGOmaiabgUcaRaaaaOGaay5waiaaw2faamaadmaapaqaa8qacaWGmb aacaGLBbGaayzxaaWdamaaBaaaleaapeGaam4BaiaadkhacaWGNbaa paqabaGcpeWaamWaa8aabaWdbiaadgeapaWaaWbaaSqabeaapeGaey OeI0caaaGccaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaaikdaaaaa aa@6169@ , (2a)

And

K ex2± =  [ Cd L 2+ ] org ( [ A ] org ) 2 /[ C d 2+ ] [ L ] org [ A ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaaGOmaiabgglaXcWd aeqaaOWdbiabg2da9iaabckadaWadaWdaeaapeGaam4qaiaadsgaca WGmbWdamaaCaaaleqabaWdbiaaikdacqGHRaWkaaaakiaawUfacaGL DbaapaWaaSbaaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qada qadaWdaeaapeWaamWaa8aabaWdbiaadgeapaWaaWbaaSqabeaapeGa eyOeI0caaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam4Baiaadk hacaWGNbaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWd biaaikdaaaGccaGGVaWaamWaa8aabaWdbiaadoeacaWGKbWdamaaCa aaleqabaWdbiaaikdacqGHRaWkaaaakiaawUfacaGLDbaadaWadaWd aeaapeGaamitaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaad+gaca WGYbGaam4zaaWdaeqaaOWdbmaadmaapaqaa8qacaWGbbWdamaaCaaa leqabaWdbiabgkHiTaaaaOGaay5waiaaw2faa8aadaahaaWcbeqaa8 qacaaIYaaaaaaa@64D5@ . 3,15 (3a)

When one defines conditional distribution ratios, D 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@390B@ , D ± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiabgglaXcWdaeqaaaaa@3A3F@ , and D 2± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaikdacqGHXcqSa8aabeaaaaa@3AFB@ as [ CdL A 2 ] org /[ C d 2+ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamitaiaadgeapaWaaSbaaSqa a8qacaaIYaaapaqabaaak8qacaGLBbGaayzxaaWdamaaBaaaleaape Gaam4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qa caWGdbGaamiza8aadaahaaWcbeqaa8qacaaIYaGaey4kaScaaaGcca GLBbGaayzxaaaaaa@476B@ , [ CdL A + ] org /[ C d 2+ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamitaiaadgeapaWaaWbaaSqa beaapeGaey4kaScaaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam 4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qacaWG dbGaamiza8aadaahaaWcbeqaa8qacaaIYaGaey4kaScaaaGccaGLBb Gaayzxaaaaaa@4773@ , and [ Cd L 2+ ] org /[ C d 2+ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamita8aadaahaaWcbeqaa8qa caaIYaGaey4kaScaaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam 4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qacaWG dbGaamiza8aadaahaaWcbeqaa8qacaaIYaGaey4kaScaaaGccaGLBb Gaayzxaaaaaa@4769@ respectively, Eqs. (1a), (2a), and (3a) become

K ex = D 0 / [ L ] org [ A ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4baapaqabaGcpeGaeyyp a0Jaamira8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGVaWaam Waa8aabaWdbiaadYeaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWG VbGaamOCaiaadEgaa8aabeaak8qadaWadaWdaeaapeGaamyqa8aada ahaaWcbeqaa8qacqGHsislaaaakiaawUfacaGLDbaapaWaaWbaaSqa beaapeGaaGOmaaaaaaa@4958@ , (1b)

K ex± = D ± [ A ] org / [ L ] org [ A ] 2 = D ± K D,A / [ L ] org [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaeyySaelapaqabaGc peGaeyypa0Jaamira8aadaWgaaWcbaWdbiabgglaXcWdaeqaaOWdbm aadmaapaqaa8qacaWGbbWdamaaCaaaleqabaWdbiabgkHiTaaaaOGa ay5waiaaw2faa8aadaWgaaWcbaWdbiaad+gacaWGYbGaam4zaaWdae qaaOWdbiaac+cadaWadaWdaeaapeGaamitaaGaay5waiaaw2faa8aa daWgaaWcbaWdbiaad+gacaWGYbGaam4zaaWdaeqaaOWdbmaadmaapa qaa8qacaWGbbWdamaaCaaaleqabaWdbiabgkHiTaaaaOGaay5waiaa w2faa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0Jaamira8aada WgaaWcbaWdbiabgglaXcWdaeqaaOWdbiaadUeapaWaaSbaaSqaa8qa caWGebGaaiilaiaadgeaa8aabeaak8qacaGGVaWaamWaa8aabaWdbi aadYeaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGVbGaamOCaiaa dEgaa8aabeaak8qadaWadaWdaeaapeGaamyqa8aadaahaaWcbeqaa8 qacqGHsislaaaakiaawUfacaGLDbaaaaa@6697@ , (2b)

And

K ex2± = D 2 ± ( [ A ] org ) 2 / [ L ] org [ A ] 2 = D 2 ± ( K D,A ) 2 / [ L ] org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaaGOmaiabgglaXcWd aeqaaOWdbiabg2da9iaadseapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaWgaaWcbaWdbiabgglaXcWdaeqaaOWdbmaabmaapaqaa8qadaWa daWdaeaapeGaamyqa8aadaahaaWcbeqaa8qacqGHsislaaaakiaawU facaGLDbaapaWaaSbaaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaa aOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiaac+ cadaWadaWdaeaapeGaamitaaGaay5waiaaw2faa8aadaWgaaWcbaWd biaad+gacaWGYbGaam4zaaWdaeqaaOWdbmaadmaapaqaa8qacaWGbb WdamaaCaaaleqabaWdbiabgkHiTaaaaOGaay5waiaaw2faa8aadaah aaWcbeqaa8qacaaIYaaaaOGaeyypa0Jaamira8aadaWgaaWcbaWdbi aaikdaa8aabeaakmaaBaaaleaapeGaeyySaelapaqabaGcpeWaaeWa a8aabaWdbiaadUeapaWaaSbaaSqaa8qacaWGebGaaiilaiaadgeaa8 aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaa kiaac+cadaWadaWdaeaapeGaamitaaGaay5waiaaw2faa8aadaWgaa WcbaWdbiaad+gacaWGYbGaam4zaaWdaeqaaaaa@6AB5@ . (3b)

Moreover, expressing as K ex± / K D,A = K ex+ ( =  [ CdL A + ] org /[ C d 2+ ] [ L ] org [ A ] ) K ex2± / ( K D,A ) 2 = K Cd/CdL ( =  [ Cd L 2+ ] org /[ C d 2+ ] [ L ] org ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGlbWdamaaBaaaleaapeGaamyzaiaadIhacqGHXcqSa8aa beaak8qacaGGVaGaam4sa8aadaWgaaWcbaWdbiaadseacaGGSaGaam yqaaWdaeqaaOWdbiabg2da9iaadUeapaWaaSbaaSqaa8qacaWGLbGa amiEaiabgUcaRaWdaeqaaOWdbmaabmaapaqaa8qacqGH9aqpcaqGGc WaamWaa8aabaWdbiaadoeacaWGKbGaamitaiaadgeapaWaaWbaaSqa beaapeGaey4kaScaaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam 4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qacaWG dbGaamiza8aadaahaaWcbeqaa8qacaaIYaGaey4kaScaaaGccaGLBb GaayzxaaWaamWaa8aabaWdbiaadYeaaiaawUfacaGLDbaapaWaaSba aSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qadaWadaWdaeaape Gaamyqa8aadaahaaWcbeqaa8qacqGHsislaaaakiaawUfacaGLDbaa aiaawIcacaGLPaaacaWGlbWdamaaBaaaleaapeGaamyzaiaadIhaca aIYaGaeyySaelapaqabaGcpeGaai4lamaabmaapaqaa8qacaWGlbWd amaaBaaaleaapeGaamiraiaacYcacaWGbbaapaqabaaak8qacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabg2da 9iaadUeapaWaaSbaaSqaa8qacaWGdbGaamizaiaac+cacaWGdbGaam izaiaadYeaa8aabeaak8qadaqadaWdaeaapeGaeyypa0JaaeiOamaa dmaapaqaa8qacaWGdbGaamizaiaadYeapaWaaWbaaSqabeaapeGaaG OmaiabgUcaRaaaaOGaay5waiaaw2faa8aadaWgaaWcbaWdbiaad+ga caWGYbGaam4zaaWdaeqaaOWdbiaac+cadaWadaWdaeaapeGaam4qai aadsgapaWaaWbaaSqabeaapeGaaGOmaiabgUcaRaaaaOGaay5waiaa w2faamaadmaapaqaa8qacaWGmbaacaGLBbGaayzxaaWdamaaBaaale aapeGaam4BaiaadkhacaWGNbaapaqabaaak8qacaGLOaGaayzkaaaa aaa@9241@ , Eqs. (2b) and (3b) become

K ex+ = D ± / [ L ] org [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaey4kaScapaqabaGc peGaeyypa0Jaamira8aadaWgaaWcbaWdbiabgglaXcWdaeqaaOWdbi aac+cadaWadaWdaeaapeGaamitaaGaay5waiaaw2faa8aadaWgaaWc baWdbiaad+gacaWGYbGaam4zaaWdaeqaaOWdbmaadmaapaqaa8qaca WGbbWdamaaCaaaleqabaWdbiabgkHiTaaaaOGaay5waiaaw2faaaaa @4A66@ (2C), K Cd/CdL = D 2± / [ L ] org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadoeacaWGKbGaai4laiaadoeacaWG KbGaamitaaWdaeqaaOWdbiabg2da9iaadseapaWaaSbaaSqaa8qaca aIYaGaeyySaelapaqabaGcpeGaai4lamaadmaapaqaa8qacaWGmbaa caGLBbGaayzxaaWdamaaBaaaleaapeGaam4BaiaadkhacaWGNbaapa qabaaaaa@490B@ (3c) respectively. Here, although it was a rough handling, we assumed that the D0,

D ± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiabgglaXcWdaeqaaaaa@3A3F@ , D 2± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaikdacqGHXcqSa8aabeaaaaa@3AFB@ values equal the experimental distribution ratio (D).

So, these assumptions were examined experimentally by comparison in K ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbWdamaaBaaaleaapeGaamyzaiaadIhaa8aabeaaaaa@3927@ , K ex+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaey4kaScapaqabaaa aa@3B21@ ,and K 2,org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaaikdacaGGSaGaam4BaiaadkhacaWG Nbaapaqabaaaaa@3C9B@ between the procedures. The K ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbWdamaaBaaaleaapeGaamyzaiaadIhaa8aabeaaaaa@3927@ values can be directly compared with each other. Thevalues can be also compared with those calculated from the relation K ex+ =* K ex± /( * K D,A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaey4kaScapaqabaGc peGaeyypa0JaaiOkaiaadUeapaWaaSbaaSqaa8qacaWGLbGaamiEai abgglaXcWdaeqaaOWdbiaac+cadaqadaWdaeaapeGaaiOkaiaadUea paWaaSbaaSqaa8qacaWGebGaaiilaiaadgeaa8aabeaaaOWdbiaawI cacaGLPaaaaaa@4894@ .15,17Furthermore, the K 2,org ( = [ CdL A 2 ] org / [ CdL A + ] org [ A ] org ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaaikdacaGGSaGaam4BaiaadkhacaWG NbaapaqabaGcpeWaaeWaa8aabaWdbiabg2da9maadmaapaqaa8qaca WGdbGaamizaiaadYeacaWGbbWdamaaBaaaleaapeGaaGOmaaWdaeqa aaGcpeGaay5waiaaw2faa8aadaWgaaWcbaWdbiaad+gacaWGYbGaam 4zaaWdaeqaaOWdbiaac+cadaWadaWdaeaapeGaam4qaiaadsgacaWG mbGaamyqa8aadaahaaWcbeqaa8qacqGHRaWkaaaakiaawUfacaGLDb aapaWaaSbaaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qadaWa daWdaeaapeGaamyqa8aadaahaaWcbeqaa8qacqGHsislaaaakiaawU facaGLDbaapaWaaSbaaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaa aOWdbiaawIcacaGLPaaaaaa@5B2B@ values calculated from K ex / K ex+ ( * K D,A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4baapaqabaGcpeGaai4l aiaadUeapaWaaSbaaSqaa8qacaWGLbGaamiEaiabgUcaRaWdaeqaaO Wdbmaabmaapaqaa8qacaGGQaGaam4sa8aadaWgaaWcbaWdbiaadsea caGGSaGaamyqaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@44F2@ can be compared with those done from * K ex /( * K ex± ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiOkaiaadUeapaWaaSbaaSqaa8qacaWGLbGaamiEaaWdaeqaaOWd biaac+cadaqadaWdaeaapeGaaiOkaiaadUeapaWaaSbaaSqaa8qaca WGLbGaamiEaiabgglaXcWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4329@ .15-17 Here, the symbols K with the asterisks denote the equilibrium constants determined with the other procedure reported in the previous papers15,17 anddenotes a distribution constant, [ A ] org /[ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadgeapaWaaWbaaSqabeaapeGaeyOeI0caaaGc caGLBbGaayzxaaWdamaaBaaaleaapeGaam4BaiaadkhacaWGNbaapa qabaGcpeGaai4lamaadmaapaqaa8qacaWGbbWdamaaCaaaleqabaWd biabgkHiTaaaaOGaay5waiaaw2faaaaa@4360@ of singleion into the org phase. In this report, the author calls this procedure15,17 reported before “the formal procedure”. In all calculations, the data17 reported before were re-used.

In the previous paper,17 the plot of ( D/ [ Pi c ] 2 )versuslog [ L ] BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadseacaGGVaWaamWaa8aabaWdbiaadcfacaWG PbGaam4ya8aadaahaaWcbeqaa8qacqGHsislaaaakiaawUfacaGLDb aapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiaadAha caWGLbGaamOCaiaadohacaWG1bGaam4CaiGacYgacaGGVbGaai4zam aadmaapaqaa8qacaWGmbaacaGLBbGaayzxaaWdamaaBaaaleaapeGa amOqaiaadkeacaWG6baapaqabaaaaa@4FC2@ for L=18C6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitaiabg2da9iaaigdacaaI4aGaam4qaiaaiAdaaaa@3C0A@ and A =Pi c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaahaaWcbeqaa8qacqGHsislaaGccqGH9aqpcaWGqbGa amyAaiaadogapaWaaWbaaSqabeaapeGaeyOeI0caaaaa@3E21@ has given the straight line with the slope (a) of 0.81 and an intercept (b) of 3.90, the value corresponding to log logDversuslog [ L ] BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbGaamiraiaadAhacaWGLbGaamOCaiaadoha caWG1bGaam4CaiGacYgacaGGVbGaai4zamaadmaapaqaa8qacaWGmb aacaGLBbGaayzxaaWdamaaBaaaleaapeGaamOqaiaadkeacaWG6baa paqabaaaaa@4926@ (circle in Figure 1). Here [ L ] BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadYeaaiaawUfacaGLDbaapaWaaSbaaSqaa8qa caWGcbGaamOqaiaadQhaa8aabeaaaaa@3CF7@ , [ Pi c ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadcfacaWGPbGaam4ya8aadaahaaWcbeqaa8qa cqGHsislaaaakiaawUfacaGLDbaaaaa@3D2D@ and [Cd2+]have been calculated in terms of a successive approximation.10,15-17 The same is true of the extraction systems with the other diluents. The slope less than unity shows the dissociation of CdLPi c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgacaWGmbGaamiuaiaadMgacaWGJbWdamaaBaaaleaa peGaaGOmaaWdaeqaaaaa@3D71@ in the BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadkeacaWG6baaaa@39BB@ phase.17

Figure 1 The plots (1B) (circle), (2C) (square), and (3C) (triangle) for the BBz system with L = 18C6.

The plot of log log( D/[ Pi c ] )versuslog [ L ] BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbWaaeWaa8aabaWdbiaadseacaGGVaWaamWa a8aabaWdbiaadcfacaWGPbGaam4ya8aadaahaaWcbeqaa8qacqGHsi slaaaakiaawUfacaGLDbaaaiaawIcacaGLPaaacaWG2bGaamyzaiaa dkhacaWGZbGaamyDaiaadohaciGGSbGaai4BaiaacEgadaWadaWdae aapeGaamitaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadkeacaWG cbGaamOEaaWdaeqaaaaa@5180@ yielded a straight line with a=0.93 and b=1.17 , the b value to log K ex+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbGaam4sa8aadaWgaaWcbaWdbiaadwgacaWG 4bGaey4kaScapaqabaaaaa@3DF1@ (Figure 1). This a value shows the extraction of CdLPi c + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgacaWGmbGaamiuaiaadMgacaWGJbWdamaaCaaaleqa baWdbiabgUcaRaaaaaa@3D89@ into the BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadkeacaWG6baaaa@39BB@ phase. The plot of log logDversuslog [ L ] BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbGaamiraiaaykW7caWG2bGaamyzaiaadkha caWGZbGaamyDaiaadohaciGGSbGaai4BaiaacEgadaWadaWdaeaape GaamitaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadkeacaWGcbGa amOEaaWdaeqaaaaa@4AB1@ gave a straight line with a=1.08 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg2da9iaaigdacaGGUaGaaGimaiaaiIdaaaa@3C03@ and b=0.97 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiabg2da9iabgkHiTiaaicdacaGGUaGaaGyoaiaaiEdaaaa@3CF8@ , the value to log K Cd/CdL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaad+gacaWGNbGaaGPaVlaadUeapaWaaSbaaSqaa8qacaWG dbGaamizaiaac+cacaWGdbGaamizaiaadYeaa8aabeaaaaa@419A@ (Figure 1). This a value shows the extraction ofinto thephase. From these results, one can easily see the co-extraction of Cd L 2+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgacaWGmbWdamaaCaaaleqabaWdbiaaikdacqGHRaWk aaaaaa@3B9A@ , CdLPi c + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgacaWGmbGaamiuaiaadMgacaWGJbWdamaaCaaaleqa baWdbiabgUcaRaaaaaa@3D89@ and Cd L 2+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgacaWGmbWdamaaCaaaleqabaWdbiaaikdacqGHRaWk aaaaaa@3B9A@ into the BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadkeacaWG6baaaa@39BB@ phase. Here, we call the log [ L ] BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbWaamWaa8aabaWdbiaadYeaaiaawUfacaGL DbaapaWaaSbaaSqaa8qacaWGcbGaamOqaiaadQhaa8aabeaaaaa@3FC7@ (x-axis) plots of log( D/ [ Pi c ] 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbWaaeWaa8aabaWdbiaadseacaGGVaWaamWa a8aabaWdbiaadcfacaWGPbGaam4ya8aadaahaaWcbeqaa8qacqGHsi slaaaakiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaaGOmaaaaaOGa ayjkaiaawMcaaaaa@4433@ , log( D/[ Pi c ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbWaaeWaa8aabaWdbiaadseacaGGVaWaamWa a8aabaWdbiaadcfacaWGPbGaam4ya8aadaahaaWcbeqaa8qacqGHsi slaaaakiaawUfacaGLDbaaaiaawIcacaGLPaaaaaa@4321@ and logD the plots (1B), (2C), and (3C), respectively. Similar data calculated for other systems are summarized in Table 1. The plots (1B) clearly indicate the dissociation of CdLPi c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadsgacaWGmbGaamiuaiaadMgacaWGJbWdamaaBaaaleaa peGaaGOmaaWdaeqaaaaa@3D71@ in the oDCBz and NB phases.

Diluent

Plot (1B)1)

Plot (2C)

Plot (3C)

A2)

b2,3)

a2)

b2,4)

a2)

b2,5)

oDCBz

0.76

3.39

1.02

2.01

0.94

−0.51

DBE

1.02

4.61

0.96

0.78

0.99

−1.53

NB

0.55

4.80

0.99

4.92

1.05

3.23

Table 1 Data of the plots for composition determination of extracted species in the CdPic2 extraction with 18C6 at 298 K

In discussing the data obtained from the above plots, it is important to examine the overlap of the [L]org or ionic strength (I) values used for the data analyses; especially, the (Iorg) values of the org phases are important for the latter case. The larger overlaps among the data make comparisons among them possible. Figure 2 shows the overlap of IBBz among the plots for the extraction system with org=BBz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadkhacaWGNbGaeyypa0JaamOqaiaadkeacaWG6baaaa@3D98@ . On the other hand, Figure 3 shows an example of a minimum I NB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaad6eacaWGcbaapaqabaaaaa@39F0@ overlap in the report. The BBz system indicates the better overlap, while the NB one does the less one. The latter suggests the larger deviation of the data determined with the present approximate procedure from the data with “the formal one”. A degree of the Iorg overlap increased with the order, org=NB<oDCBz<BBz<DBE. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadkhacaWGNbGaeyypa0JaamOtaiaadkeacqGH8aapcaWG VbGaamiraiaadoeacaWGcbGaamOEaiabgYda8iaadkeacaWGcbGaam OEaiabgYda8iaadseacaWGcbGaamyraiaac6caaaa@4995@

Figure 2 A distribution in IBBz among the plots, (1B), (2C), and (3C) for the BBz extraction system. The symbol N refers to the number of data.

Figure 3 A distribution in INB among the plots, (1B), (2C), and (3C) for the NB extraction system; see Figure 2 for N. This is the case of the minimum overlap in the report.

Table 2 lists the data of mainly logKex and logKex+ for comparison. The both values agreed with each other within experimental errors, except for the NB systems. Also, the values for the oDCBz system were close to those17 reported before. Considering the order, the both values even for the NB system agreed with each other. These facts indicate that the procedure proposed here, the approximate one, is effective for the determination of such extraction constants. The approximation procedure can be used for the primary diagnosis of the system at least.

Diluent

log Kex

log Kex+

log KCd/CdL

This Report

Ref. [17]1)

This Report

Calculated1,2)

This Report

oDCBz

4.44 ± 0.46

4.31, 4.21

1.98 ± 0.22

2.46 ± 0.28

−0.25 ± 0.20

BBz

4.26 ± 0.45

4.38

1.70 ± 0.57

1.97 ± 0.42

−1.11 ± 0.39

DBE

3.81 ± 0.53

4.2

1.13 ± 0.34

1.81 ± 0.53

−1.33 ± 0.32

NB

6.63 ± 0.40

6.14

4.96 ± 0.04

4.61 ± 0.14

2.95 ± 0.03

Table 2 Fundamental data for comparisons between the both procedures
1)Values determined with the formal procedure. 2) Values calculated from the data in ref. 17 by using log Kex+ = log {*Kex+/(*KD,Pic)}

The orders in Kex , Kex+ , and KCd/CdL were DBE≤BBz≤oDCBz<NB , except for the Kex order in the reference.17 Such orders were also observed in the plots, (2C) and (3C), with the a values of about unity (Table 1). A plot of log (approximate Kex , Kex+ , or K2,org ) versus log (formal *Kex , *Kex or *K2,org ) yielded a straight line of a=1.16 and b=−0.74 at R=0.995 and N=13

(Figure 4). Similarly, these facts indicate that the results of the approximate procedure well reflect those of the formal one.

Figure 4 A plot of log (approximate Kex, Kex+, or K2,org) vs. log (formal *Kex, *Kex+, or *K2,org)17 for the CdPic2 extraction with 18C6.

From the values in Table 2, the following constants were obtainable:

K 1,org { = K ex+ / K Cd/CdL ( * K D,Pic ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaaigdacaGGSaGaam4BaiaadkhacaWG NbaapaqabaGcpeWaaiWaa8aabaWdbiabg2da9iaadUeapaWaaSbaaS qaa8qacaWGLbGaamiEaiabgUcaRaWdaeqaaOWdbiaac+cacaWGlbWd amaaBaaaleaapeGaam4qaiaadsgacaGGVaGaam4qaiaadsgacaWGmb aapaqabaGcpeWaaeWaa8aabaWdbiaacQcacaWGlbWdamaaBaaaleaa peGaamiraiaacYcacaWGqbGaamyAaiaadogaa8aabeaaaOWdbiaawI cacaGLPaaaaiaawUhacaGL9baaaaa@52B2@ , K 2,org { = K ex / K ex+ ( * K D,Pic ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaaikdacaGGSaGaam4BaiaadkhacaWG NbaapaqabaGcpeWaaiWaa8aabaWdbiabg2da9iaadUeapaWaaSbaaS qaa8qacaWGLbGaamiEaaWdaeqaaOWdbiaac+cacaWGlbWdamaaBaaa leaapeGaamyzaiaadIhacqGHRaWka8aabeaak8qadaqadaWdaeaape GaaiOkaiaadUeapaWaaSbaaSqaa8qacaWGebGaaiilaiaadcfacaWG PbGaam4yaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5Eaiaaw2haaa aa@4FB4@ 15-17, K D,CdL ( = K Cd/CdL K D,L / K CdL ; K D,L = [ L ] org /[ L ], K CdL [ Cd L 2+ ]/[ C d 2+ ][ L ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadseacaGGSaGaam4qaiaadsgacaWG mbaapaqabaGcpeWaaeWaa8aabaWdbiabg2da9iaadUeapaWaaSbaaS qaa8qacaWGdbGaamizaiaac+cacaWGdbGaamizaiaadYeaa8aabeaa k8qacaWGlbWdamaaBaaaleaapeGaamiraiaacYcacaWGmbaapaqaba GcpeGaai4laiaadUeapaWaaSbaaSqaa8qacaWGdbGaamizaiaadYea a8aabeaak8qacaGG7aGaam4sa8aadaWgaaWcbaWdbiaadseacaGGSa GaamitaaWdaeqaaOWdbiabg2da9maadmaapaqaa8qacaWGmbaacaGL BbGaayzxaaWdamaaBaaaleaapeGaam4BaiaadkhacaWGNbaapaqaba GcpeGaai4lamaadmaapaqaa8qacaWGmbaacaGLBbGaayzxaaGaaiil aiaadUeapaWaaSbaaSqaa8qacaWGdbGaamizaiaadYeaa8aabeaak8 qadaWadaWdaeaapeGaam4qaiaadsgacaWGmbWdamaaCaaaleqabaWd biaaikdacqGHRaWkaaaakiaawUfacaGLDbaacaGGVaWaamWaa8aaba WdbiaadoeacaWGKbWdamaaCaaaleqabaWdbiaaikdacqGHRaWkaaaa kiaawUfacaGLDbaadaWadaWdaeaapeGaamitaaGaay5waiaaw2faaa GaayjkaiaawMcaaaaa@70A9@ , and K ex2± { = K Cd/CdL ( * K D.Pic ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaaGOmaiabgglaXcWd aeqaaOWdbmaacmaapaqaa8qacqGH9aqpcaWGlbWdamaaBaaaleaape Gaam4qaiaadsgacaGGVaGaam4qaiaadsgacaWGmbaapaqabaGcpeWa aeWaa8aabaWdbiaacQcacaWGlbWdamaaBaaaleaapeGaamiraiaac6 cacaWGqbGaamyAaiaadogaa8aabeaaaOWdbiaawIcacaGLPaaapaWa aWbaaSqabeaapeGaaGOmaaaaaOGaay5Eaiaaw2haaaaa@4F55@ .14 These constants K1,org , K2,org , and K D,CdL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadseacaGGSaGaam4qaiaadsgacaWG mbaapaqabaaaaa@3C53@ , are defined as [ CdLPi c + ] org / [ Cd L 2+ ] org [ Pi c ] org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamitaiaadcfacaWGPbGaam4y a8aadaahaaWcbeqaa8qacqGHRaWkaaaakiaawUfacaGLDbaapaWaaS baaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qacaGGVaWaamWa a8aabaWdbiaadoeacaWGKbGaamita8aadaahaaWcbeqaa8qacaaIYa Gaey4kaScaaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam4Baiaa dkhacaWGNbaapaqabaGcpeWaamWaa8aabaWdbiaadcfacaWGPbGaam 4ya8aadaahaaWcbeqaa8qacqGHsislaaaakiaawUfacaGLDbaapaWa aSbaaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaaaaa@56A4@ , [ CdLPi c 2 ] org / [ CdLPi c + ] org [ Pi c ] org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamitaiaadcfacaWGPbGaam4y a8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawUfacaGLDbaapa WaaSbaaSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qacaGGVaWa amWaa8aabaWdbiaadoeacaWGKbGaamitaiaadcfacaWGPbGaam4ya8 aadaahaaWcbeqaa8qacqGHRaWkaaaakiaawUfacaGLDbaapaWaaSba aSqaa8qacaWGVbGaamOCaiaadEgaa8aabeaak8qadaWadaWdaeaape GaamiuaiaadMgacaWGJbWdamaaCaaaleqabaWdbiabgkHiTaaaaOGa ay5waiaaw2faa8aadaWgaaWcbaWdbiaad+gacaWGYbGaam4zaaWdae qaaaaa@588B@ , and [ Cd L 2+ ] org /[ Cd L 2+ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbGaamita8aadaahaaWcbeqaa8qa caaIYaGaey4kaScaaaGccaGLBbGaayzxaaWdamaaBaaaleaapeGaam 4BaiaadkhacaWGNbaapaqabaGcpeGaai4lamaadmaapaqaa8qacaWG dbGaamizaiaadYeapaWaaWbaaSqabeaapeGaaGOmaiabgUcaRaaaaO Gaay5waiaaw2faaaaa@483A@ , respectively. Their logarithmic values are summarized in Table 3. The K1,org values were larger than or equal to the K2,org ones. These facts suggest that a coordination structure around Cd(II) does not almost change in the two-step reactions with Pic−.18 Also, the K2,org values thus-calculated were the same as those done from the formal procedures within experimental errors. As similar to the results in Table 2, these facts show the validity of the present procedure.

Diluent (log *KD,Pic)2)

log K1,org

log K2,org )2)

log KD,CdL

log Kex2±

oDCBz (−5.5, −4.2)

8.20 ± 0.37

7.95 ± 0.53 (7.3, 7.5)

−1.33

−11.23 ± 0.28

BBz (−4.6)

7.72 ± 0.61

7.20 ± 0.75 (7.0)

−2.18

−10.39 ± 0.49

DBE (−5.1)

8.21 ± 0.75

7.75 ± 0.76 (7.5)

−4.05

−11.48 ± 0.68

NB (−2.35)

4.02 ± 0.15

4.02 ± 0.40 (3.9)

2.00

−1.76 ± 0.07

Table 3 Some equilibrium constants estimated from Kex, Kex+, and KCd/CdL for the CdPic2 extraction with 18C6 at 298K1)
1)See the text. 2) Values reported in ref.17

Figure 2& 3 show the degrees of the overlap of the IBBz and INB data used for calculation. These degrees, together with those of the other two systems, rationally make comparisons between or among the data, such as Kex , Kex+ , and K1,org , possible, although the finding of the NB system may create dissatisfaction.

Discussion

Simplification of the convoluted procedures3,4,10,12-17 for the M(II) extraction systems, compared with the procedures1-3,5,6,8,9,11 for the monovalent-metal extraction ones, must stimulate an estimate of L functions by many workers. Unfortunately, there are still complicated treatments for the evaluation of equilibrium concentrations, such as [ C d 2+ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadoeacaWGKbWdamaaCaaaleqabaWdbiaaikda cqGHRaWkaaaakiaawUfacaGLDbaaaaa@3CE4@ , [ L ] org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadYeaaiaawUfacaGLDbaapaWaaSbaaSqaa8qa caWGVbGaamOCaiaadEgaa8aabeaaaaa@3D41@ and [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadgeapaWaaWbaaSqabeaapeGaeyOeI0caaaGc caGLBbGaayzxaaaaaa@3B48@ , by the successive approximation,17 before the use of the present procedure. However, the procedure proposed here can be useful for the workers who expect a primary diagnostic determination of some extraction constants, because the procedure uses directly the experimental D values. Besides, such constants derive valuable component equilibrium-constants from several thermodynamic cycles, as shown in Case Presentation. Additionally, Figure 2 & 3 suggest an importance of the ionic strength for the phases in the determination of the equilibrium constants by the extraction experiments.1,6,8-11,13

Conclusion

It was shown that Eqs. (1b), (2c), and (3c) with D( = D 0 = D ± = D 2± ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiramaabmaapaqaa8qacqGH9aqpcaWGebWdamaaBaaaleaapeGa aGimaaWdaeqaaOWdbiabg2da9iaadseapaWaaSbaaSqaa8qacqGHXc qSa8aabeaak8qacqGH9aqpcaWGebWdamaaBaaaleaapeGaaGOmaiab gglaXcWdaeqaaaGcpeGaayjkaiaawMcaaaaa@45BA@ are useful for the primary-diagnostic determination of K ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4baapaqabaaaaa@3A3F@ , K ex+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaey4kaScapaqabaaa aa@3B21@ ,and K Cd/CdL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadoeacaWGKbGaai4laiaadoeacaWG KbGaamitaaWdaeqaaaaa@3D3E@ respectively. In the present extraction systems, the K 1,org MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaaigdacaGGSaGaam4BaiaadkhacaWG Nbaapaqabaaaaa@3C9A@ and K ex2± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaaGOmaiabgglaXcWd aeqaaaaa@3CE9@ values were newly obtained from the K ex+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadwgacaWG4bGaey4kaScapaqabaaa aa@3B21@ and K Cd/CdL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadoeacaWGKbGaai4laiaadoeacaWG KbGaamitaaWdaeqaaaaa@3D3E@ values. These results facilitate applications for next stages with the extraction experiments by other users.

Conflicts of interest

Any financial interest or any conflict of interest does not exist in the report.

References

  1. Frensdorff HK. Salt complexes of cyclic polyethers. Distribution equilibria. J Am Chem Soc. 1971;93(19):4684–4688.
  2. Danesi PR, Meider-Gorican H, Chiarizia R. Extraction selectivity of organic solutions of a cyclic polyether with respect to the alkali cations. J Inorg Nucl Chem. 1975;37:1479–1483.
  3. Jawaid M, Ingman F. Ion-pair extraction of Na+, K+, and Ca2+ with some organic counter-ions and dicyclohexyl-18-crown-6 as adduct-formation reagent. Talanta. 1978;25:91–95.
  4. Takeda Y, Katō H. The solvent extraction of bivalent metal picrates by 15-crown-5, 18-crown-6, and dibenzo-18-crown-6. Bull Chem Soc Jpn. 1979;52(4):1027–1030.
  5. Iwachido T, Minami M, Naito H, et al. The extractability of potassium as picrates (KPic and K(L)Pic, L: 18-crown-6) and its relationship to the properties of the solvents. Bull Chem Soc Jpn. 1982;55(8):2378–2382.
  6. Kolthoff IM, Chantooni MK, Wang WJ. Partitioning of crown ether complexed univalent metal dichloropicrates between water and 1,2-dichloroethane at 298 K. Thermodynamic representation. J Chem Eng Data. 1993;38(4):556–559.
  7. Mohapatra PK, Manchanda VK. Ion-pair extraction of tetravalent plutonium from hydrochloric acid medium using crown ethers. J Incl Phenom Mol Recognition Chem. 1996;25(4):257–265.
  8. Kikuchi Y, Sakamoto Y, Sawada K. Partition of alkali-metal ions and complex formation with poly(oxyethylene) derivatives in 1,2-dichloroethane. J Chem Soc Faraday Trans. 1998;91(4):105–109.
  9. Takeda Y, Kawarabayashi A, Endō K, et al. Solvent extraction of alkali metal (Li-Cs) picrates with 18-crown-6 into various diluents. Elucidation of fundamental equilibria which govern the extraction-ability and -selectivity. Anal Sci. 1998;14(1):215–223.
  10. Kastuta S, Tuchiya F, Takeda Y. Equilibrium studies on complexation in water and solvent extraction of zinc(II) and cadmium(II) with benzo-18-crown-6. Talanta. 2000;51:634–644.
  11. Levitskaia TG, Maya L, Van Berkel GJ, et al. Anion partitioning and ion-pairing behavior of anions in the extraction of cesium salts by 4,5’’-bis(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-dichloroethane. Inorg Chem. 2007;46(1):261–272.
  12. Touati M, Benna Zayani M, Kbir Ariguib N, et al. Extraction of cadmium from phosphoric acid media by di(2-ethylhexyl) dithiophosphoric acid. Solvent Extraction & Ion Exchange. 2008;26(4):420–434.
  13. Makrlík E, Vaňura P. Solvent extraction of calcium into nitrobenzene by using hydrogen dicarbollylcobaltate in the presence of dicyclohexano-18-crown-6 and dicyclohexano-24-crown-8. J Radioanal Nucl Chem. 2010;285:593–598.
  14. Kudo Y, Katsuta S, Takeda Y. Evaluation of the overall extraction constants for the crown ether-complex ions of alkali and alkaline-earth metal with counter picrate ion from water into nitrobenzene based on their component equilibrium constants. J Mol Liquids. 2012;173:66–70.
  15. Kudo Y, Horiuchi N, Katsuta S. Extraction of cadmium bromide and picrate by 18-crown-6 ether into various less-polar diluents: analysis of overall extraction equilibria based on their component equilibria with formation of their ion pairs in water. J Mol Liquids. 2013;177:257–266.
  16. Kudo Y, Takahashi Y, Numako C. Extraction of lead picrate by 18-crown-6 ether into various diluents: examples of sub-analysis of overall extraction equilibrium based on component equilibria. J Mol Liquids. 2014;194:121–129.
  17. Kudo Y, Katsuta S, Ohsawa Y, et al. Solvent extraction of cadmium picrate by 18-crown-6 ether into several less-polar diluents and nitrobenzene: re-evaluation of the corresponding overall extraction systems. J Thermodyn Catal. 2015;6(2): 6.
  18. Shriver DF, Atkins PW. Inorganic Chemistry. (3rd edn), Oxford University Press, Oxford, UK, 2002. p. 241–243.
Creative Commons Attribution License

©2017 Kudo. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.