Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Mini Review Volume 4 Issue 2

The Method of PID parameters tuning for AMB system at high-frequency

Sun Jinji, Zhou Han, Ju Ziyan

School of Instrumentation Science & Opto-electronics Engineering, Science and Technology on Inertial Laboratory, Beihang University, China

Correspondence: Zhou Han, School of Instrumentation Science & Opto-electronics Engineering, Science and Technology on Inertial Laboratory, Beihang University, China, Tel 8.61082E+11

Received: January 30, 2018 | Published: March 22, 2018

Citation: Jinji Sun, Han Z, Ziyan J. The Method of PID parameters tuning for AMB system at high-frequency. Int Rob Auto J. 2018;4(2):107-108. DOI: 10.15406/iratj.2018.04.00102

Download PDF

Abstract

With the development of industrial technology, magnetic bearing rotor’s speed is getting higher and higher. When the rotor rotates at a high speed, the current stiffness and displacement stiffness of the magnetic bearing will decrease due to the eddy current effect for any kind of structure. In this paper, the analytical model of dynamic stiffness is deduced considering the influence of eddy current. According to characteristic equation and Routh-Hurwitz criterion, the relationship between the stable ranges of PID parameters and rotor frequency is set up based on dynamic stiffness model. Simulation experiments in Matlab/Simulink are made to verify the correctness of theoretical analysis.

Keywords: active magnetic bearing, dynamic stiffness, PID control

Introduction

Active magnetic bearings (AMBs) are widely applied because of its advantages, the bearing forces are actively controlled by means of electromagnets, a feedback control loop, sensors and power amplifiers.1–3 In recent research, PID as a mature and effective algorithm is commonly used in magnetic bearing system, and the bearing stiffness is assumed as a constant, which is not affected by rotor frequency for PID controller design.4,5 Nevertheless, the impact of considerable decrease of AMB stiffness caused by eddy current on system cannot be ignored. Le Yun6 studied the influence of eddy current on the dynamic stiffness of the radial differential magnetic bearing with laminated structure, and optimized the structural parameters. Whereas the dynamic stiffness is not considered into control system. For controller design, PID parameters tuning method is significant and the on-line tuning strategy is usually used in industrial debugging. It is obviously that on-line tuning method is hard to take under the high-frequency situation. Therefore, establishing a theoretical standard for PID parameters tuning based on AMB dynamic stiffness is necessary.

Method and analysis

The typical structure of AMB is shown in the Figure 1. By analyzing the dynamic equivalent magnetic circuit mode, the analytical model of dynamic stiffness is established and is presented as (1) and (2). The relative permeability (μr) of stator and rotor are deduced respectively.7

k i = 32 N 2 I ρ 2 μ 0 l a l p .cos( 22.5 0 ). [ 2g μ 0 l a l p + π( r so + r ei ) iωσ μ 0 μ r d 2 8 μ 0 l a l p ( r so r ei )tanh( iωσ μ 0 μ r d 2 ) + dπ( r so + r ei 2 r si ) iωσ μ 0 μ r 2 μ 0 l a l p tanh( iωσ μ 0 μ r d 2 ) + π( r so + r ei ) 2iωσ μ 0 μ r d 2 8 μ 0 l a l p ( r so r ei )tanh( d 2 iωσ μ 0 μ r ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9maalaaabaGaaG4maiaa ikdacaWGobWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGjbaabaGaeq yWdi3aaWbaaeqajuaibaGaaGOmaaaajuaGcqaH8oqBdaWgaaqcfasa aiaaicdaaKqbagqaaiaadYgadaWgaaqcfasaaiaadggaaKqbagqaai aadYgadaWgaaqcfasaaiaadchaaKqbagqaaaaacaGGUaGaci4yaiaa c+gacaGGZbWaaeWaaeaacaaIYaGaaGOmaiaac6cacaaI1aWaaWbaae qajuaibaGaaGimaaaaaKqbakaawIcacaGLPaaacaGGUaWaamWaaeaa daWcaaqaaiaaikdacaWGNbaabaGaeqiVd02aaSbaaKqbGeaacaaIWa aajuaGbeaacaWGSbWaaSbaaKqbGeaacaWGHbaajuaGbeaacaWGSbWa aSbaaKqbGeaacaWGWbaajuaGbeaaaaGaey4kaSYaaSaaaeaacqaHap aCdaqadaqaaiaadkhadaWgaaqcfasaaiaadohacaWGVbaajuaGbeaa cqGHRaWkcaWGYbWaaSbaaKqbGeaacaWGLbGaamyAaaqabaaajuaGca GLOaGaayzkaaWaaOaaaeaacaWGPbGaeqyYdCNaeq4WdmNaeqiVd02a aSbaaKqbGeaacaaIWaaajuaGbeaacqaH8oqBdaWgaaqcfasaaiaadk haaeqaaaqcfayabaWaaSaaaeaacaWGKbaabaGaaGOmaaaaaeaacaaI 4aGaeqiVd02aaSbaaKqbGeaacaaIWaaajuaGbeaacaWGSbWaaSbaaK qbGeaacaWGHbaajuaGbeaacaWGSbWaaSbaaKqbGeaacaWGWbaajuaG beaadaqadaqaaiaadkhadaWgaaqcfasaaiaadohacaWGVbaajuaGbe aacqGHsislcaWGYbWaaSbaaKqbGeaacaWGLbGaamyAaaqabaaajuaG caGLOaGaayzkaaGaciiDaiaacggacaGGUbGaaiiAamaabmaabaWaaO aaaeaacaWGPbGaeqyYdCNaeq4WdmNaeqiVd02aaSbaaKqbGeaacaaI WaaajuaGbeaacqaH8oqBdaWgaaqcfasaaiaadkhaaeqaaaqcfayaba WaaSaaaeaacaWGKbaabaGaaGOmaaaaaiaawIcacaGLPaaaaaGaey4k aSYaaSaaaeaacaWGKbGaeqiWda3aaeWaaeaacaWGYbWaaSbaaKqbGe aacaWGZbGaam4BaaqcfayabaGaey4kaSIaamOCamaaBaaajuaibaGa amyzaiaadMgaaeqaaKqbakabgkHiTiaaikdacaWGYbWaaSbaaKqbGe aacaWGZbGaamyAaaqabaaajuaGcaGLOaGaayzkaaWaaOaaaeaacaWG PbGaeqyYdCNaeq4WdmNaeqiVd02aaSbaaKqbGeaacaaIWaaajuaGbe aacqaH8oqBdaWgaaqcfasaaiaadkhaaeqaaaqcfayabaaabaGaaGOm aiabeY7aTnaaBaaajuaibaGaaGimaaqcfayabaGaamiBamaaBaaaju aibaGaamyyaaqcfayabaGaamiBamaaBaaajuaibaGaamiCaaqcfaya baGaaiiDaiaacggacaGGUbGaaiiAamaabmaabaWaaOaaaeaacaWGPb GaeqyYdCNaeq4WdmNaeqiVd02aaSbaaKqbGeaacaaIWaaajuaGbeaa cqaH8oqBdaWgaaqcfasaaiaadkhaaeqaaaqcfayabaWaaSaaaeaaca WGKbaabaGaaGOmaaaaaiaawIcacaGLPaaaaaGaey4kaSYaaSaaaeaa cqaHapaCdaqadaqaaiaadkhadaWgaaqcfasaaiaadohacaWGVbaaju aGbeaacqGHRaWkcaWGYbWaaSbaaKqbGeaacaWGLbGaamyAaaqabaaa juaGcaGLOaGaayzkaaWaaOaaaeaacaaIYaGaamyAaiabeM8a3jabeo 8aZjabeY7aTnaaBaaajuaibaGaaGimaaqcfayabaGaeqiVd02aaSba aKqbGeaacaWGYbaabeaaaKqbagqaamaalaaabaGaamizaaqaaiaaik daaaaabaGaaGioaiabeY7aTnaaBaaajuaibaGaaGimaaqcfayabaGa amiBamaaBaaajuaibaGaamyyaaqcfayabaGaamiBamaaBaaajuaiba GaamiCaaqcfayabaWaaeWaaeaacaWGYbWaaSbaaKqbGeaacaWGZbGa am4BaaqcfayabaGaeyOeI0IaamOCamaaBaaajuaibaGaamyzaiaadM gaaeqaaaqcfaOaayjkaiaawMcaaiGacshacaGGHbGaaiOBaiaacIga daqadaqaamaalaaabaGaamizaaqaaiaaikdaaaWaaOaaaeaacaWGPb GaeqyYdCNaeq4WdmNaeqiVd02aaSbaaKqbGeaacaaIWaaajuaGbeaa cqaH8oqBdaWgaaqcfasaaiaadkhaaeqaaaqcfayabaaacaGLOaGaay zkaaaaaaGaay5waiaaw2faamaaCaaabeqcfasaaiabgkHiTiaaikda aaaaaa@1D65@  (1)

k y = 64 N 2 I 2 cos 2 ( 22.5 0 ) ρ 2 μ 0 2 l a 2 l p 2 . [ π( r so r ei ) 8 μ 0 μ r l a ( r so r ei ) + r so + r ei 2 r si μ 0 μ r l a l p + πd( r ro + r ri ) iωσ μ 0 μ r 8 μ 0 μ r l a ( r so + r ri )tanh( d iωσ μ 0 μ r ) + 2g μ 0 μ r l a ] 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqcfasaaiaadMhaaKqbagqaaiabg2da9maalaaabaGaaGOnaiaa isdacaWGobWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGjbWaaWbaaK qbGeqabaGaaGOmaaaajuaGciGGJbGaai4Baiaacohadaahaaqcfasa beaacaaIYaaaaKqbaoaabmaabaGaaGOmaiaaikdacaGGUaGaaGynam aaCaaabeqcfasaaiaaicdaaaaajuaGcaGLOaGaayzkaaaabaGaeqyW di3aaWbaaeqajuaibaGaaGOmaaaajuaGcqaH8oqBdaqhaaqcfasaai aaicdaaeaacaaIYaaaaiaadYgajuaGdaqhaaqcfasaaiaadggaaeaa caaIYaaaaiaadYgajuaGdaqhaaqcfasaaiaadchaaeaacaaIYaaaaa aajuaGcaGGUaWaamWaaeaadaWcaaqaaiabec8aWnaabmaabaGaamOC amaaBaaajuaibaGaam4Caiaad+gaaKqbagqaaiabgkHiTiaadkhada WgaaqcfasaaiaadwgacaWGPbaabeaaaKqbakaawIcacaGLPaaaaeaa caaI4aGaeqiVd02aaSbaaKqbGeaacaaIWaaajuaGbeaacqaH8oqBda WgaaqcfasaaiaadkhaaKqbagqaaiaadYgadaWgaaqcfasaaiaadgga aKqbagqaamaabmaabaGaamOCamaaBaaajuaibaGaam4Caiaad+gaaK qbagqaaiabgkHiTiaadkhadaWgaaqcfasaaiaadwgacaWGPbaabeaa aKqbakaawIcacaGLPaaaaaGaey4kaSYaaSaaaeaacaWGYbWaaSbaaK qbGeaacaWGZbGaam4BaaqcfayabaGaey4kaSIaamOCamaaBaaajuai baGaamyzaiaadMgaaeqaaKqbakabgkHiTiaaikdacaWGYbWaaSbaaK qbGeaacaWGZbGaamyAaaqabaaajuaGbaGaeqiVd02aaSbaaKqbGeaa caaIWaaajuaGbeaacqaH8oqBdaWgaaqcfasaaiaadkhaaKqbagqaai aadYgadaWgaaqcfasaaiaadggaaKqbagqaaiaadYgadaWgaaqcfasa aiaadchaaKqbagqaaaaacqGHRaWkdaWcaaqaaiabec8aWjaadsgada qadaqaaiaadkhadaWgaaqcfasaaiaadkhacaWGVbaajuaGbeaacqGH RaWkcaWGYbWaaSbaaKqbGeaacaWGYbGaamyAaaqabaaajuaGcaGLOa GaayzkaaWaaOaaaeaacaWGPbGaeqyYdCNaeq4WdmNaeqiVd02aaSba aKqbGeaacaaIWaaajuaGbeaacqaH8oqBdaWgaaqcfasaaiaadkhaae qaaaqcfayabaaabaGaaGioaiabeY7aTnaaBaaajuaibaGaaGimaaqc fayabaGaeqiVd02aaSbaaKqbGeaacaWGYbaajuaGbeaacaWGSbWaaS baaKqbGeaacaWGHbaajuaGbeaadaqadaqaaiaadkhadaWgaaqcfasa aiaadohacaWGVbaajuaGbeaacqGHRaWkcaWGYbWaaSbaaKqbGeaaca WGYbGaamyAaaqabaaajuaGcaGLOaGaayzkaaGaciiDaiaacggacaGG UbGaaiiAamaabmaabaGaamizamaakaaabaGaamyAaiabeM8a3jabeo 8aZjabeY7aTnaaBaaajuaibaGaaGimaaqcfayabaGaeqiVd02aaSba aKqbGeaacaWGYbaabeaaaKqbagqaaaGaayjkaiaawMcaaaaacqGHRa WkdaWcaaqaaiaaikdacaWGNbaabaGaeqiVd02aaSbaaKqbGeaacaaI WaaajuaGbeaacqaH8oqBdaWgaaqcfasaaiaadkhaaKqbagqaaiaadY gadaWgaaqcfasaaiaadggaaKqbagqaaaaaaiaawUfacaGLDbaadaah aaqabKqbGeaacqGHsislcaaIZaaaaaaa@E3B0@  (2)
The AMB controlled by digital PID mainly consists of electromagnet, rotor, displacement sensor, PID controller and power amplifier. For Y-direction, the AMB control schematic diagram is shown in Figure 2.

Figure 1 Structure of the AMB.

Figure 2 AMB Control Principle for Y-direction.

Considering the impact of high-frequency noises, the PID controller usually use incomplete differential replace the typical differential. The transfer function of rotor is shown as (3), where | k y (ω) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWGRbWaaSbaaKqbGeaacaWG5baabeaajuaGcaGGOaGaeqyYdCNa aiykaaGaay5bSlaawIa7aaaa@3F97@  and | k i (ω) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWGRbWaaSbaaKqbGeaacaWGPbaabeaajuaGcaGGOaGaeqyYdCNa aiykaaGaay5bSlaawIa7aaaa@3F87@ are respectively the amplitude of displacement stiffness and current stiffness. T y (ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaamyEaaqcfayabaGaaiikaiabeM8a3jaacMcaaaa@3C5E@  and T i (ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaamyAaaqabaqcfaOaaiikaiabeM8a3jaacMcaaaa@3C4E@  could be expressed as T y (ω)=tan( ϕ ki )/ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaamyEaaqcfayabaGaaiikaiabeM8a3jaacMcacqGH 9aqpcqGHsislciGG0bGaaiyyaiaac6gadaqadaqaaiabew9aMnaaBa aajuaibaGaam4AaiaadMgaaeqaaaqcfaOaayjkaiaawMcaaiaac+ca cqaHjpWDaaa@49AE@ and T i (ω)=tan( ϕ ky )/ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaamyAaaqabaqcfaOaaiikaiabeM8a3jaacMcacqGH 9aqpcqGHsislciGG0bGaaiyyaiaac6gadaqadaqaaiabew9aMnaaBa aajuaibaGaam4AaiaadMhaaeqaaaqcfaOaayjkaiaawMcaaiaac+ca cqaHjpWDaaa@49AE@ , where ϕ ky MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaWGRbGaamyEaaqabaaaaa@3A89@  and ϕ ki MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaWGRbGaamyAaaqabaaaaa@3A79@ are the changes of k y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aam aaBaaajuaibaGaamyEaaqabaaaaa@38C1@ and k i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aam aaBaaajuaibaGaamyAaaqabaaaaa@38B1@ phrase compared to static stiffness.
G z ( w )= | k i ( ω ) | m T y ( ω ) s 3 +m s 2 +| k y ( ω ) | . 1+ T y ( ω )s 1+ T i ( ω )s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadQhaaeqaaKqbaoaabmaabaGaam4DaaGaayjkaiaa wMcaaiabg2da9maalaaabaWaaqWaaeaacaWGRbWaaSbaaKqbGeaaca WGPbaabeaajuaGdaqadaqaaiabeM8a3bGaayjkaiaawMcaaaGaay5b SlaawIa7aaqaaiaad2gacaWGubWaaSbaaKqbGeaacaWG5baabeaaju aGdaqadaqaaiabeM8a3bGaayjkaiaawMcaaiaadohadaahaaqcfasa beaacaaIZaaaaKqbakabgUcaRiaad2gacaWGZbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcqGHRaWkdaabdaqaaiaadUgadaWgaaqcfasaaiaa dMhaaeqaaKqbaoaabmaabaGaeqyYdChacaGLOaGaayzkaaaacaGLhW UaayjcSdaaaiaac6cadaWcaaqaaiaaigdacqGHRaWkcaWGubWaaSba aKqbGeaacaWG5baajuaGbeaadaqadaqaaiabeM8a3bGaayjkaiaawM caaiaadohaaeaacaaIXaGaey4kaSIaamivamaaBaaajuaibaGaamyA aaqabaqcfa4aaeWaaeaacqaHjpWDaiaawIcacaGLPaaacaWGZbaaaa aa@6FF9@ (3)

Displacement sensor and power amplifier adopted the typical model.8 Let the integral part coefficient ( K i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqcfa Oaam4samaaBaaajuaibaGaamyAaaqcfayabaaakiaawIcacaGLPaaa aaa@3AA7@ of PID controller equals to 0 and the closed-loop transfer function of AMB system is shown as (4). Where k a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada Wgaaqcfasaaiaadggaaeqaaaaa@389E@ , k m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada Wgaaqcfasaaiaad2gaaKqbagqaaaaa@3938@ and k c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqcfasaaiaadogaaKqbagqaaaaa@392E@  are the amplification factor of AD, power amplifier and sensor respectively. R is the resistance of coil, L is the inductance of coil and m is the mass of rotor. K p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadchaaKqbagqaaaaa@391B@ is the proportional coefficient, K d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadsgaaKqbagqaaaaa@390F@  is the differential coefficient and T d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadsgaaKqbagqaaaaa@3918@ is the differential time constant. The steady state error of the system depends on the parameter K i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3914@ .
G= k a .( K p + K d s 1+ T d s ). k m Ls+R+ k m k a k ico k c . | k i ( ω ) | m T y ( ω ) s 3 +m s 2 +| k y ( ω ) | . 1+ T y ( ω )s 1+ T i ( ω )s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeacq GH9aqpcaWGRbWaaSbaaKqbGeaacaWGHbaajuaGbeaacaGGUaWaaeWa aeaacaWGlbWaaSbaaKqbGeaacaWGWbaajuaGbeaacqGHRaWkdaWcaa qaaiaadUeadaWgaaqcfasaaiaadsgaaKqbagqaaiaadohaaeaacaaI XaGaey4kaSIaamivamaaBaaajuaibaGaamizaaqcfayabaGaam4Caa aaaiaawIcacaGLPaaacaGGUaWaaSaaaeaacaWGRbWaaSbaaKqbGeaa caWGTbaabeaaaKqbagaacaWGmbGaam4CaiabgUcaRiaadkfacqGHRa WkcaWGRbWaaSbaaKqbGeaacaWGTbaajuaGbeaacaWGRbWaaSbaaKqb GeaacaWGHbaabeaajuaGcaWGRbWaaSbaaKqbGeaacaWGPbGaam4yai aad+gaaKqbagqaaiaadUgadaWgaaqcfasaaiaadogaaKqbagqaaaaa caGGUaWaaSaaaeaadaabdaqaaiaadUgadaWgaaqcfasaaiaadMgaaK qbagqaamaabmaabaGaeqyYdChacaGLOaGaayzkaaaacaGLhWUaayjc SdaabaGaamyBaiaadsfadaWgaaqcfasaaiaadMhaaKqbagqaamaabm aabaGaeqyYdChacaGLOaGaayzkaaGaam4CamaaCaaajuaibeqaaiaa iodaaaqcfaOaey4kaSIaamyBaiaadohadaahaaqcfasabeaacaaIYa aaaKqbakabgUcaRmaaemaabaGaam4AamaaBaaajuaibaGaamyEaaqc fayabaWaaeWaaeaacqaHjpWDaiaawIcacaGLPaaaaiaawEa7caGLiW oaaaGaaiOlamaalaaabaGaaGymaiabgUcaRiaadsfadaWgaaqcfasa aiaadMhaaKqbagqaamaabmaabaGaeqyYdChacaGLOaGaayzkaaGaam 4CaaqaaiaaigdacqGHRaWkcaWGubWaaSbaaKqbGeaacaWGPbaabeaa juaGdaqadaqaaiabeM8a3bGaayjkaiaawMcaaiaadohaaaaaaa@9231@ (4)
The stable ranges of K p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadchaaKqbagqaaaaa@391B@ , T d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadsgaaKqbagqaaaaa@3918@ and K d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadsgaaKqbagqaaaaa@390F@  could be determined by characteristic equation of system and Routh Criterion. And the ranges are the function of rotation speed ω. For AMB systems under constant rotation frequency, once T d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadsgaaKqbagqaaaaa@3918@  is set to a concrete value, the range of K p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadchaaKqbagqaaaaa@391B@  could be calculated. Similarly, set K p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadchaaKqbagqaaaaa@391B@  to a certain value and the stability range of K d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadsgaaKqbagqaaaaa@390F@ can be obtained. Several simulations are taken to verify the correctness of the above method proposed, the results is that AMB system is stable at different frequency when the parameters are selected in corresponding ranges (Figure 3), otherwise the unit step response diverges.

Figure 3 Unit Response of AMB system.

Conclusion

In this paper, the analytical model of dynamic stiffness under the influence of eddy current effect is deduced. The method to accurately determine the stable range of PID parameters at different speeds is proposed. The simulations executed in MATLAB/Simulink and the result can prove the correctness of the PID parameters ranges. In general, it is a great significance to adjust PID parameters at high rotation speed and lay the foundation for the higher speed of magnetic bearings.

Acknowledgements

My research project was partially or fully sponsored by the Excellent Youth Science Foundation of China (Grant No.51722501), by the National Natural Science Foundation of China (Grant No.51575025), and by the Preliminary Exploration of Project (Grant No.7131474). In case of no financial assistance for the research work, provide the information regarding the sponsor.

Conflict of interest

The author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Jinji, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.