Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 2 Issue 4

Stability analysis of a multilink flexible manipulator: nonlinear observers

Qimin Xu, Zhonglian Jing, Shiqiang Hu

School of Aeronautics and Astronautics, Shanghai Jiao Tong University, China

Correspondence: Qimin Xu, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, China

Received: March 17, 2017 | Published: June 2, 2017

Citation: Xu Q, Jing Z, Hu S. Stability analysis of a multilink flexible manipulator: nonlinear observers. Int Rob Auto J. 2017;2(4):107-117. DOI: 10.15406/iratj.2017.02.00024

Download PDF

Abstract

This paper is concerned with stability analysis problem of nonlinear observer design for a class of multilink flexible manipulators (MLFMs). Specifically, the dynamics of the MLFM is modeled by the use of a Lagrangian approach. In a unified algebraic Riccati matrix equality (ARME) framework, one corresponding error-state system is proven to be asymptotic stable in the mean square (ASMS) for a nonlinear observer design with a known feedback gain; However, since feedback control input is dependent of systematic uncertainty, nonlinear observer design problem with an unknown feedback gain is investigated in the first place. Further, one expansion augment system is proven to remain ASMS in the nonlinear observer design. Therefore, sufficient and necessary conditions of the two desired nonlinear observers can be designed and derived from the developed theory. Finally, simulation studies are used to verify the electiveness of the proposed approach is illustrated by simulation studies.

Keywords: Multilink flexible manipulator; Algebraic Riccati matrix equality, Nonlinear observer, Asymptotic stable

Abbreviations

MLFMs: Multilink Flexible Manipulators; FMs: Flexible Manipulators; DOF: Degree Of Freedom; VSO: Variable Structure Observer

Introduction

As is well known, MLFMs are generally lightweight materials with typically low payload-to-arm weight ratio, so they are of interest in many application fields.1-3 And the modeling of MLFMs has stimulated the interest of many researchers.4-6 Nevertheless, the difficulty of the modeling and control of flexible manipulators (FMs) is aggravated, since the linear effects of flexibility can’t be separated from typical nonlinear effects of multi body rigid dynamics in7 and the authors addressed some dynamics problems in view of the structural flexibility of lightweight structures. It should be noted that in the control system of FMs, there was the fact that the number of controlled variables was strictly less than the number of mechanical degrees of freedom. Also, during the high-velocity maneuver of the manipulators, a high degree of elastic vibration was derived. But when the lightweight manipulator was operating at low velocities, a very complicated dynamics was developed from the structural joint friction. Moreover, the dynamic equations of motion were nonlinear and of large dimensions. At many special situations, without some consideration of these dynamics problems in the total control system design, the measurements used for feedback control will often be not adequate enough for acceptable control system performance. However, the relevant robust state estimation (filtering) problem1,8,9 has been studied extensively for nonlinear systems.

In the past decades, most researchers adopted several algebra or geometry approaches10-12 to deal with different kinds of actuated systems of FMs. For instance, by changing cable lengths to represent cable flexibility, various adaptations of the lumped-mass method for cable-driven systems were found in.13-14 Extending this work, by introducing a modified input-output map, Caverly et al.6 developed a dynamic model of a single DOF cable-actuated system and implemented passivity-based control. In that work, a Lagrangian approach was used to derive the dynamic model of the half system, and thus the dynamic model of the complete system could be found by using the null-space method.15 But without external disturbances transverse cable vibrations are often negligible, only longitudinal cable flexibility is considered. More recently, it is worth noting that for FMs, the system uncertainties, nonlinearities, and disturbances are unavoidable in modeling of dynamic system,9,16-18 so the robust observer design problems are not easy to derive. In order to preserve the observer action under system uncertainties as well as nonlinearities, various methods to design of robust state observers (estimation or filtering), such as algebraic, geometric, generalized inverse, and variable structure observer (VSO) techniques have been used to the observer design in.8,12,19,20 In many practice applications, the design of robust nonlinear observers is close to the actual dynamic behavior of nonlinear systems with uncertainty disturbance rather than linear observers. For examples, in a unified LMI framework, Zhang et al.21 discussed the non-linear observer design for one-sided Lipchitz non-linear systems by establishing sufficient conditions of the existence of the observer. Though the proposed approach was less conservative and simpler than some existing results in recent literature, the measured noise or disturbances in the nonlinear observer design was unfortunately not taken into account. In this context, Tian et al.22 investigated mode-dependent H∞ filtering for discrete-time switched systems with known sojourn probabilities and nonlinearities. In this work, sufficient conditions were established for the filter design to meet the H∞ performance constraint by using Lyapunov functional method. One advantage of the use of sojourn probabilities is easier to obtain than the transition probabilities commonly used in Markovian jump systems, but this article does not consider the system uncertainty and necessary conditions of the filter design. Extending to uncertain systems in,23 Li & Zhang 23 presented necessary and sufficient conditions for quadratic stability of observer-based fractional-order (0<α<1) linear (FOL) uncertain systems to design robust observer-based state feedback controllers by the matrix’s singular value decomposition and linear matrix inequality.

To the best of the authors’ knowledge, there have been few papers studying nonlinear observer design problem in the simultaneous presence of nonlinearity, disturbance, and parametric uncertainty, which is still challenged. Comparing with the mentioned approaches in,24,25 the present research is motivated on designing robust nonlinear observers for one class of dynamic systems of MLFMs against model nonlinearities and all admissible norm-bounded time-varying uncertainties. In this paper, we focus on nonlinear observer design problem for a class of MLFMs by analyzing its stability conditions. First, we describe an uncertain nonlinear system by dynamic modeling of the flexible manipulator. In a unified ARME framework, we investigate an error-state system to remain ASMS for a nonlinear observer design with a known feedback gain. Because feedback control input is not independent of the systematic uncertainty, we design a nonlinear observer with an unknown feedback gain. Further, we develop one augment system with the nonlinear observer, where the system is proven to be ASMS. We give the two analytical expressions of the desired nonlinear observers by providing sufficient and necessary conditions of the developed theory. Finally, we demonstrate the effectiveness of the proposed approach by comparing to the approach in.24 The remainder of the present paper is organized as follows. In Section 2, preliminaries and some basic concepts with respect to an uncertain nonlinear system presented by dynamic modeling of the FM are introduced. The main results as well as detailed derivations are given in section 3 and in section 4, including sufficient and necessary conditions of the explicit expression of the desired robust nonlinear observers with a known feedback gain and with an unknown feedback gain, respectively. The efficiency of the proposed approach is checked out through two examples in section 5. Finally, some concluding remarks are included in Section 6.

Problem Formulation

This paper presented a class of MLFMs are considered as a combination of multiple Variable Geometry Truss (VGT) flexible modules shown in Figure 1. To our investigation, the VGT FM is a statically determinate truss4 which can be altered its configuration into an arbitrary curve in three dimensional spaces by only controlling lengths of active links. Thus, the kind of FMs can finish some special operations, such as grasping encapsulated or recycling spatial float objects at complex situations. In fact, the kind of the VGT link-flexible manipulator shown in Figure 1a is equivalent to a simplified single cable-driven FM displayed in Figure 1b by implementing some transformation of angles, since the two flexible structures have simultaneous deformation behaviors in keeping flexural down warping or up warping. Provided that the link deformation is kept limited, satis-factory results might be obtained at the end-effector level. By utilizing a Lagrangian modeling approach, the dynamics of the VGT FM is modeled in the following subsection.

Figure 1 Multibody system of flexible manipulator.

Lagrangian dynamic modeling of MLFM

Generally, the dynamic modeling aims at the derivation of the motion equations of the manipulator as a function of the forces and moments acting on it. Both the Lagranges equation and the Newton Eulers equation are mainly used to derive the dynamic model, several methods are available in the robotics literature (e.g.,2,3,16 To derive the dynamic equations of motion of the VGT FM, a set of generalized coordinates of the system are constituted referenced in.1,6,-7,12

The following assumptions are made on the VGT flexible manipulator.

Assumption 1:The number of significant modes Qi is sufficient to obtain a good approximationof the elastic deformation of the i-th link.

Assumption 2:The manipulator moves so slowly that its structural vibration can be neglected.

In this paper, the difficulty encountered in this modeling can be traced to the distributed nature of the system, for example, the structural deformation by introducing the joint angles θ and the elastic modes λ. But for Assumption 1, the elastic deformation of the link at a distance from the joint can be expressed as the sum of appropriate basis functions multiplied by the modal coordinates, so the equations of motion of the manipulator are described as

{ ρ=ρ( θ,λ ) θ= h 1 ( ϕ ) λ= h 2 f( l ),θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaceaaea qabeaacqaHbpGCcqGH9aqpcqaHbpGCdaqadaqaaiabeI7aXjaacYca cqaH7oaBaiaawIcacaGLPaaaaeaacqaH4oqCcqGH9aqpcaWGObWaaS baaKqbGeaacaaIXaaajuaGbeaadaqadaqaaiabew9aMbGaayjkaiaa wMcaaaqaaiabeU7aSjabg2da9iaadIgadaWgaaqcfasaaiaaikdaae qaaKqbakabgMYiHlaadAgadaqadaqaaiaadYgaaiaawIcacaGLPaaa caGGSaGaeqiUdeNaeyOkJepaaiaawUhaaaaa@58E4@

Where, ρ is the end-effector position or forward kinematic solution ϕ={ ϕ 1 , ϕ 2 , ϕ 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMj abg2da9maacmaabaGaeqy1dy2aaSbaaKqbGeaacaaIXaaabeaajuaG caGGSaGaeqy1dy2aaSbaaKqbGeaacaaIYaaajuaGbeaacaGGSaGaeq y1dy2aaSbaaKqbGeaacaaIZaaajuaGbeaaaiaawUhacaGL9baaaaa@46FB@  is cross
longer on face angles between the lateral and the bottom. λ is the time varying weight function of a certain mode shape for the active link. Since there are nonlinear disturbance and unknown parameters during in the analysis of dynamic systematic structure, it illustrates that the search for solutions of the kinematic of the manipulator is hampered by the fact that the solutions depend strongly on the boundary conditions. Nevertheless, the generalized coordinates of the FM are finite from the Hamiltonian principle, as a function of the forces and moments acting on the derivation of the motion equation (1) of the manipulator, the dynamics of the manipulator with the generalized coordinates q= ( θ, λ T ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghacq GH9aqpdaqadaqaaiabeI7aXjaacYcacqaH7oaBdaahaaqabKqbGeaa caWGubaaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiaadsfaaa aaaa@40F8@  can be derived by using the Lagrangian approach13 which leads to

M q ¨ +D q ˙ +Kq=Bτ+f( q, q ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eace WGXbGbamaacqGHRaWkcaWGebGabmyCayaacaGaey4kaSIaam4saiaa dghacqGH9aqpcaWGcbGaeqiXdqNaey4kaSIaamOzamaabmaabaGaam yCaiaacYcaceWGXbGbaiaaaiaawIcacaGLPaaaaaa@472A@  (2)

Where, f( q, q ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadghacaGGSaGabmyCayaacaaacaGLOaGaayzkaaaaaa@3B92@ is considered as nonlinear generalized forces can be approximated, by using boundary constraints of nonlinear perturbations. And then, M and D are bounded functions if q and q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadghaga Gaaaaa@3778@ are bounded. M is a symmetric and positive definite matrix.

Formulation and assumptions

A pseudo-linear state-space representation for the flexible manipulator is given by

x ˙ =[ 0 I M 1 K M 1 D ]x+[ 0 M 1 B ]τ+[ 0 M 1 ] τ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga Gaaiabg2da9maadmaabaqbaeqabiGaaaqaaiaaicdaaeaacaWGjbaa baGaeyOeI0IaamytamaaCaaabeqcfasaaiabgkHiTiaaigdaaaqcfa Oaam4saaqaaiabgkHiTiaad2eadaahaaqcfasabeaacqGHsislcaaI XaaaaKqbakaadseaaaaacaGLBbGaayzxaaGaamiEaiabgUcaRmaadm aabaqbaeqabiqaaaqaaiaaicdaaeaacaWGnbWaaWbaaKqbGeqabaGa eyOeI0IaaGymaaaajuaGcaWGcbaaaaGaay5waiaaw2faaiabes8a0j abgUcaRmaadmaabaqbaeqabiqaaaqaaiaaicdaaeaacaWGnbWaaWba aKqbGeqabaGaeyOeI0IaaGymaaaaaaaajuaGcaGLBbGaayzxaaGaeq iXdq3aaSbaaKqbGeaacaWGUbaajuaGbeaaaaa@5B36@  (3)

With a new state vector x= [ q T q ˙ T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GH9aqpdaWadaqaauaabeqabiaaaeaacaWGXbWaaWbaaeqajuaibaGa amivaaaaaKqbagaaceWGXbGbaiaadaahaaqabKqbGeaacaWGubaaaa aaaKqbakaawUfacaGLDbaadaahaaqabKqbGeaacaWGubaaaaaa@4107@  and nonlinear forcing terms τ n =f( q, q ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaBaaajuaibaGaamOBaaqcfayabaGaeyypa0JaamOzamaabmaabaGa amyCaiaacYcaceWGXbGbaiaaaiaawIcacaGLPaaaaaa@402D@  Eq.(3) can
be rewritten by

x ˙ ( t )=A( x,t )x( t )+B( x,t )u( t )+E( x,t )f( x( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga GaamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaadgeadaqa daqaaiaadIhacaGGSaGaamiDaaGaayjkaiaawMcaaiaadIhadaqada qaaiaadshaaiaawIcacaGLPaaacqGHRaWkcaWGcbWaaeWaaeaacaWG 4bGaaiilaiaadshaaiaawIcacaGLPaaacaWG1bWaaeWaaeaacaWG0b aacaGLOaGaayzkaaGaey4kaSIaamyramaabmaabaGaamiEaiaacYca caWG0baacaGLOaGaayzkaaGaamOzamaabmaabaGaamiEamaabmaaba GaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@589D@  (4)

Where, the nonlinear system matrices A(x), B(x), E(x) are the function of the state vector x(t). Through the design of the controller is to ensure bounded ness of the control inputs, a measurement is introduced

y( t )=α( t )x( t )+ x ˙ ( t )=C( x,t )x( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada qadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpcqaHXoqydaqadaqa aiaadshaaiaawIcacaGLPaaacaWG4bWaaeWaaeaacaWG0baacaGLOa GaayzkaaGaey4kaSIabmiEayaacaWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaeyypa0Jaam4qamaabmaabaGaamiEaiaacYcacaWG0baaca GLOaGaayzkaaGaamiEamaabmaabaGaamiDaaGaayjkaiaawMcaaaaa @5085@  (5)

In this paper, we linearize the nonlinear system (4) at an operating point. Both parameter perturbations of system dynamics and additive disturbance term are investigated in,7 and then a non-linearized system is considered as follows:

x ˙ ( t )=( A+ΔA )x( t )+( B+ΔB )u( t )+( E+ΔE )f( x( t ) )+ D 1 w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga GaamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maabmaabaGa amyqaiabgUcaRiabgs5aejaadgeaaiaawIcacaGLPaaacaWG4bWaae WaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaWGcbGa ey4kaSIaeyiLdqKaamOqaaGaayjkaiaawMcaaiaadwhadaqadaqaai aadshaaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaadweacqGHRaWk cqGHuoarcaWGfbaacaGLOaGaayzkaaGaamOzamaabmaabaGaamiEam aabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUca RiaadseadaWgaaqcfasaaiaaigdaaeqaaKqbakaadEhadaqadaqaai aadshaaiaawIcacaGLPaaaaaa@609E@  (6)

Together with the measurement equation

y( t )=( C+ΔC )x( t )+ D 2 w(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada qadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadoea cqGHRaWkcqGHuoarcaWGdbaacaGLOaGaayzkaaGaamiEamaabmaaba GaamiDaaGaayjkaiaawMcaaiabgUcaRiaadseadaWgaaqcfasaaiaa ikdaaeqaaKqbakaadEhacaGGOaGaamiDaiaacMcaaaa@4A72@  (7)

where x(t) ∈ Rn is the state, the term w(t) ∈ Rr is used to describe the additive disturbance with a zero mean Gaussian white-noise process with intensity W ∈ (0, I], and it reflects the combination of the rest of higher order term of the nonlinear term τn = f (q, ˙q), due to the gravity and its strain energy, and external disturbance of the MLFM from the link’s flexibility. Y (t) ∈ Rp is the controlled output. A, B, E, D1, D2, C are known constant matrices with appropriate dimensions, ΔA, ΔB, ΔE, ΔC are real-valued matrix functions representing norm-bounded parameter uncertainties, we have

[ ΔA ΔC ]=[ M 1 M 2 ]F( t ) N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba qbaeqabiqaaaqaaiabgs5aejaadgeaaeaacqGHuoarcaWGdbaaaaGa ay5waiaaw2faaiabg2da9maadmaabaqbaeqabiqaaaqaaiaad2eada Wgaaqcfasaaiaaigdaaeqaaaqcfayaaiaad2eadaWgaaqcfasaaiaa ikdaaeqaaaaaaKqbakaawUfacaGLDbaacaWGgbWaaeWaaeaacaWG0b aacaGLOaGaayzkaaGaamOtamaaBaaajuaibaGaaGymaaqabaaaaa@49D8@  (8)

[ ΔA ΔB ΔE ]= M 1 F( t )[ N 1 N 2 N 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba qbaeqabeWaaaqaaiabgs5aejaadgeaaeaacqGHuoarcaWGcbaabaGa eyiLdqKaamyraaaaaiaawUfacaGLDbaacqGH9aqpcaWGnbWaaSbaaK qbGeaacaaIXaaabeaajuaGcaWGgbWaaeWaaeaacaWG0baacaGLOaGa ayzkaaWaamWaaeaafaqabeqadaaabaGaamOtamaaBaaajuaibaGaaG ymaaqabaaajuaGbaGaamOtamaaBaaajuaibaGaaGOmaaqabaaajuaG baGaamOtamaaBaaajuaibaGaaG4maaqcfayabaaaaaGaay5waiaaw2 faaaaa@4F08@  (9)

Where M1, M2, N1, N2, N3 are known real constant matrices with appropriate dimensions. A time-varying vector F(t) ∈ Rn×n is a real uncertain constant matrix with Lebesgue measurable elements satisfying

F T ( t )F( t )I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada ahaaqabKqbGeaacaWGubaaaKqbaoaabmaabaGaamiDaaGaayjkaiaa wMcaaiaadAeadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHKjYOca WGjbaaaa@414D@  (10)

The uncertainties ΔA, ΔB, ΔE, ΔC are said to be admissible if the formulae from (8) to (10) are satisfied, the structure of the uncertainties in (8)-(10) can be used to deal with robust control and estimation problems,(e.g.,9,19-23) references therein. Throughout this paper, we will make the following assumptions.

Assumption 3: The system matrix A is asymptotically stable.

Assumption 4: The matrix C is of full row rank.

Assumption 5: The nonlinear vector function f (x(t)) satisfies global Lipschitz condition.

f( x 1 ( t )f( x 2 ( t ) ) )    F 1 ( x 1 ( t ) x 2 ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamOzamaabmaabaGaamiEamaaBaaajuaibaGaaGymaaqabaqcfa4a aeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaamOzamaabmaaba GaamiEamaaBaaajuaibaGaaGOmaaqabaqcfa4aaeWaaeaacaWG0baa caGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLjW UaayPcSdaeaaaaaaaaa8qacaGGGcWdaiabgsMiJ+qacaGGGcWdamaa fmaabaGaamOramaaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaaca WG4bWaaSbaaKqbGeaacaaIXaaajuaGbeaadaqadaqaaiaadshaaiaa wIcacaGLPaaacqGHsislcaWG4bWaaSbaaKqbGeaacaaIYaaajuaGbe aadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaa wMa7caGLkWoaaaa@601E@  (11)

For all x1, x2 ∈ Rn. F1 ∈ Rn×n is known constant matrix. Clearly, the system (6)-(7) admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial data ζ = 0. To ensure the stability of the referenced dynamic system for the addressed nonlinearity as well as all admissible parameter uncertainties, the following concept and lemmas will be used to design the desired nonlinear observers.

Definition 1: For the system (6)-(7) and every ζ ∈ L2F0 (Rr;R2n), the trivial solution is asymptotically stable in the mean square if

lim n E | x( t;ζ ) | 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaCbeaeaaciGGSbGaaiyAaiaac2gaaeaacaWGUbGaeyOKH4Qa eyOhIukabeaacaWGfbWaaqWaaeaacaWG4bWaaeWaaeaacaWG0bGaai 4oaiabeA7a6bGaayjkaiaawMcaaaGaay5bSlaawIa7amaaCaaabeqc fasaaiaaikdaaaqcfaOaeyypa0JaaGimaaaa@4B29@  (12)

Lemma 1: Let a positive scalar ε1>0 and a positive definite matrix P > 0. If Assumption 5 and inequality (10) are held, then we have9

f T ( x( t ) ) E f T P x f ( t )+ x f T ( t )P E f f( x( t ) ) ε 1 x f T ( t )+ x f T ( t ) ( F 1 F f ) T ( F 1 F f ) x f ( t )+ ε 1 1 ( t )P E f E f T P x f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaWGMbWaaWbaaeqajuaibaGaamivaaaajuaGdaqadaqa aiaadIhadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPa aacaWGfbWaa0baaKqbGeaacaWGMbaabaGaamivaaaajuaGcaWGqbGa amiEamaaBaaajuaibaGaamOzaaqabaqcfa4aaeWaaeaacaWG0baaca GLOaGaayzkaaGaey4kaSIaamiEamaaDaaajuaibaGaamOzaaqaaiaa dsfaaaqcfa4aaeWaaeaacaWG0baacaGLOaGaayzkaaGaamiuaiaadw eadaWgaaqcfasaaiaadAgaaKqbagqaaiaadAgadaqadaqaaiaadIha daqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHKj YOcqaH1oqzdaWgaaqcfasaaiaaigdaaeqaaKqbakaadIhadaqhaaqc fasaaiaadAgaaeaacaWGubaaaKqbaoaabmaabaGaamiDaaGaayjkai aawMcaaiabgUcaRiaadIhadaqhaaqcfasaaiaadAgaaeaacaWGubaa aKqbaoaabmaabaGaamiDaaGaayjkaiaawMcaamaabmaabaGaamOram aaBaaajuaibaGaaGymaaqabaqcfaOaamOramaaBaaajuaibaGaamOz aaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaamivaaaaaO qaaKqbaoaabmaabaGaamOramaaBaaajuaibaGaaGymaaqabaqcfaOa amOramaaBaaajuaibaGaamOzaaqcfayabaaacaGLOaGaayzkaaGaam iEamaaBaaajuaibaGaamOzaaqcfayabaWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaey4kaSIaeqyTdu2aa0baaKqbGeaacaaIXaaabaGaey OeI0IaaGymaaaajuaGdaqadaqaaiaadshaaiaawIcacaGLPaaacaWG qbGaamyramaaBaaajuaibaGaamOzaaqcfayabaGaamyramaaDaaaju aibaGaamOzaaqaaiaadsfaaaqcfaOaamiuaiaadIhadaWgaaqcfasa aiaadAgaaKqbagqaamaabmaabaGaamiDaaGaayjkaiaawMcaaaaaaa@9388@

Lemma 2: For arbitrary positive scalar ε2 > 0 and positive definite matrix P>0, we have23

( Δ A f ) T P+P( Δ A f )     ε 2 P M f M f T P+ ε 2 1 N f T N f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaeaacqGHuoarcaWGbbWaaSbaaKqbGeaacaWGMbaajuaG beaaaiaawIcacaGLPaaadaahaaqabKqbGeaacaWGubaaaKqbakaadc facqGHRaWkcaWGqbWaaeWaaeaacqGHuoarcaWGbbWaaSbaaKqbGeaa caWGMbaajuaGbeaaaiaawIcacaGLPaaacaGGGcGaaiiOaiabgsMiJk aacckacaGGGcGaeqyTdu2aaSbaaKqbGeaacaaIYaaajuaGbeaacaWG qbGaamytamaaBaaajuaibaGaamOzaaqcfayabaGaamytamaaDaaaju aibaGaamOzaaqaaiaadsfaaaqcfaOaamiuaiabgUcaRiabew7aLnaa DaaajuaibaGaaGOmaaqaaiabgkHiTiaaigdaaaqcfaOaamOtamaaDa aajuaibaGaamOzaaqaaiaadsfaaaqcfaOaamOtamaaBaaajuaibaGa amOzaaqcfayabaaaaa@62F0@

For ( Δ A f )= M f M f F N f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaeaacqGHuoarcaWGbbWaaSbaaKqbGeaacaWGMbaajuaG beaaaiaawIcacaGLPaaacqGH9aqpcaWGnbWaaSbaaKqbGeaacaWGMb aajuaGbeaacaWGnbWaaSbaaKqbGeaacaWGMbaajuaGbeaacaWGgbGa amOtamaaBaaajuaibaGaamOzaaqcfayabaaaaa@45B7@

Lemma 3: Let a positive scalar ε3 > 0 and a positive definite matrix P > 0. If Assumption 5 and inequality (10) are true, then we have24

f T ( x( t ) )Δ E f T P x f ( t )+ x f T ( t )PΔ E f f( x( t ) ) ε 3 x f T ( t ) P 2 x f ( t ) + ε 3 1 λ max ( M ¯ f T M ¯ f ) x f T ( t )( N ¯ f F 1 F f ) x f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaWGMbWaaWbaaeqajuaibaGaamivaaaajuaGdaqadaqa aiaadIhadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPa aacqGHuoarcaWGfbWaa0baaKqbGeaacaWGMbaabaGaamivaaaajuaG caWGqbGaamiEamaaBaaajuaibaGaamOzaaqcfayabaWaaeWaaeaaca WG0baacaGLOaGaayzkaaGaey4kaSIaamiEamaaDaaajuaibaGaamOz aaqaaiaadsfaaaqcfa4aaeWaaeaacaWG0baacaGLOaGaayzkaaGaam iuaiabgs5aejaadweadaWgaaqcfasaaiaadAgaaKqbagqaaiaadAga daqadaqaaiaadIhadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawI cacaGLPaaacqGHKjYOcqaH1oqzdaWgaaqcfasaaiaaiodaaeqaaKqb akaadIhadaqhaaqcfasaaiaadAgaaeaacaWGubaaaKqbaoaabmaaba GaamiDaaGaayjkaiaawMcaaiaadcfadaahaaqcfasabeaacaaIYaaa aKqbakaadIhadaWgaaqcfasaaiaadAgaaKqbagqaamaabmaabaGaam iDaaGaayjkaiaawMcaaaGcbaqcfaOaey4kaSIaeqyTdu2aa0baaKqb GeaacaaIZaaabaGaeyOeI0IaaGymaaaajuaGcqaH7oaBdaWgaaqcfa saaiGac2gacaGGHbGaaiiEaaqabaqcfa4aaeWaaeaaceWGnbGbaeba daqhaaqcfasaaiaadAgaaeaacaWGubaaaKqbakqad2eagaqeamaaBa aajuaibaGaamOzaaqabaaajuaGcaGLOaGaayzkaaGaamiEamaaDaaa juaibaGaamOzaaqaaiaadsfaaaqcfa4aaeWaaeaacaWG0baacaGLOa GaayzkaaWaaeWaaeaaceWGobGbaebadaWgaaqcfasaaiaadAgaaeqa aKqbakaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAeadaWgaa qcfasaaiaadAgaaKqbagqaaaGaayjkaiaawMcaaiaadIhadaWgaaqc fasaaiaadAgaaKqbagqaamaabmaabaGaamiDaaGaayjkaiaawMcaaa aaaa@95F4@

Noting that the detail proof of Lemma 1-Lemma 3 sees in [9], [23], and [24], respectively, so here it is omitted.

Stability Analysis of the error system for nonlinear observer design with a known feedback gain

Due to Lebesgue measurability of uncertainty parameter perturbations, some full-order nonlinear state observers under consideration are of the form in.21-24 It is noted that Assumption 4 does not lose any generality, a nonlinear observer-based state feedback controller for non-linear system (6)-(7) is stated by

{ x ˙ ( t )=( A+ΔA ) x ^ ( t )+( B+ΔB ) u ^ ( t )+( E+ΔE )f( x ^ ( t ) )+ G ( y( t ) y ^ ( t ) ) u ^ ( t )= K x ^ ( t ) y ^ ( t )=( C+ΔC ) x ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaceaaea qabeaaceWG4bGbaiaadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaaiaadgeacqGHRaWkcqGHuoarcaWGbbaacaGLOaGaay zkaaGabmiEayaajaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4k aSYaaeWaaeaacaWGcbGaey4kaSIaeyiLdqKaamOqaaGaayjkaiaawM caaiqadwhagaqcamaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaamyraiabgUcaRiabgs5aejaadweaaiaawIcacaGLPa aacaWGMbWaaeWaaeaaceWG4bGbaKaadaqadaqaaiaadshaaiaawIca caGLPaaaaiaawIcacaGLPaaacqGHRaWkcaWGhbWaaWbaaeqajuaiba Gaey4fIOcaaKqbaoaabmaabaGaamyEamaabmaabaGaamiDaaGaayjk aiaawMcaaiabgkHiTiqadMhagaqcamaabmaabaGaamiDaaGaayjkai aawMcaaaGaayjkaiaawMcaaaqaaiqadwhagaqcamaabmaabaGaamiD aaGaayjkaiaawMcaaiabg2da9iaadUeadaahaaqabKqbGeaacqGHxi IkaaqcfaOabmiEayaajaWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa baGabmyEayaajaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0 ZaaeWaaeaacaWGdbGaey4kaSIaeyiLdqKaam4qaaGaayjkaiaawMca aiqadIhagaqcamaabmaabaGaamiDaaGaayjkaiaawMcaaaaacaGL7b aaaaa@8075@  (13)

Where the constant matrix K∗ is a feedback gain. According to expressions (6) and (7), a closed-loop system is obtained

{ x ˙ ( t )=( A+ΔA )x( t )+( B+ΔB )u( t )+( E+ΔE )f( x( t ) )+ D 1 w( t ) u( t )= K x( t ) y( t )=( C+ΔC )x( t )+ D 2 w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaceaaea qabeaaceWG4bGbaiaadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaaiaadgeacqGHRaWkcqGHuoarcaWGbbaacaGLOaGaay zkaaGaamiEamaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRmaa bmaabaGaamOqaiabgUcaRiabgs5aejaadkeaaiaawIcacaGLPaaaca WG1bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSYaaeWaaeaa caWGfbGaey4kaSIaeyiLdqKaamyraaGaayjkaiaawMcaaiaadAgada qadaqaaiaadIhadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIca caGLPaaacqGHRaWkcaWGebWaaSbaaKqbGeaacaaIXaaajuaGbeaaca WG3bWaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaamyDamaabmaa baGaamiDaaGaayjkaiaawMcaaiabg2da9iaadUeadaahaaqabKqbGe aacqGHxiIkaaqcfaOaamiEamaabmaabaGaamiDaaGaayjkaiaawMca aaqaaiaadMhadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpda qadaqaaiaadoeacqGHRaWkcqGHuoarcaWGdbaacaGLOaGaayzkaaGa amiEamaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRiaadseada WgaaqcfasaaiaaikdaaKqbagqaaiaadEhadaqadaqaaiaadshaaiaa wIcacaGLPaaaaaGaay5Eaaaaaa@8087@  (14)

Define the error state e( t )=x( t ) x ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyzamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaa dIhadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislceWG4bGbaK aadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@4306@ then subtracting the observer equation (13) from the system (14), one obtains

e ˙ ( t )=[ ( A c +Δ A c ) G +( C+ΔC ) ]e( t )+( E+ΔE )( f( x( t ) )f( x ^ ( t ) ) ) +( D 1 G D 2 )w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm yzayaacaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0ZaamWa aeaadaqadaqaaiaadgeadaWgaaqcfasaaiaadogaaKqbagqaaiabgU caRiabgs5aejaadgeadaWgaaqcfasaaiaadogaaKqbagqaaaGaayjk aiaawMcaaiabgkHiTiaadEeadaahaaqcfasabeaacqGHxiIkaaqcfa Oaey4kaSYaaeWaaeaacaWGdbGaey4kaSIaeyiLdqKaam4qaaGaayjk aiaawMcaaaGaay5waiaaw2faaiaadwgadaqadaqaaiaadshaaiaawI cacaGLPaaacqGHRaWkdaqadaqaaiaadweacqGHRaWkcqGHuoarcaWG fbaacaGLOaGaayzkaaWaaeWaaeaacaWGMbWaaeWaaeaacaWG4bWaae WaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0Ia amOzamaabmaabaGabmiEayaajaWaaeWaaeaacaWG0baacaGLOaGaay zkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaakeaajuaGcqGHRaWk daqadaqaaiaadseadaWgaaqcfasaaiaaigdaaeqaaKqbakabgkHiTi aadEeadaahaaqcfasabeaacqGHxiIkaaqcfaOaamiramaaBaaajuai baGaaGOmaaqabaaajuaGcaGLOaGaayzkaaGaam4DamaabmaabaGaam iDaaGaayjkaiaawMcaaaaaaa@7689@  (15)

Where, A c =A+B K ,Δ A c = M 1 F( t ) N 1 + N 2 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyqamaaBaaajuaibaGaam4yaaqcfayabaGaeyypa0Jaamyq aiabgUcaRiaadkeacaWGlbWaaWbaaKqbGeqabaGaey4fIOcaaKqbak aacYcacqGHuoarcaWGbbWaaSbaaKqbGeaacaWGJbaabeaajuaGcqGH 9aqpcaWGnbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaWGgbWaaeWaae aacaWG0baacaGLOaGaayzkaaGaamOtamaaBaaajuaibaGaaGymaaqa baqcfaOaey4kaSIaamOtamaaBaaajuaibaGaaGOmaaqabaqcfaOaam 4samaaCaaajuaibeqaaiabgEHiQaaaaaa@525D@
Stand for the output of error states, by defining

A f :=A+ΔA( t )+( B+ΔB( t ) ) K G ( C+ΔC ), ξ( t ):=f( x( t ) )f( x ^ ( t ) ), E f :=E+ΔE, D f := D 1 G D 2 , F f :=[ I 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaWGbbWaaSbaaKqbGeaacaWGMbaajuaGbeaacaGG6aGa eyypa0JaamyqaiabgUcaRiabgs5aejaadgeadaqadaqaaiaadshaai aawIcacaGLPaaacqGHRaWkdaqadaqaaiaadkeacqGHRaWkcqGHuoar caWGcbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaa Gaam4samaaCaaajuaibeqaaiabgEHiQaaajuaGcqGHsislcaWGhbWa aWbaaeqajuaibaGaey4fIOcaaKqbaoaabmaabaGaam4qaiabgUcaRi abgs5aejaadoeaaiaawIcacaGLPaaacaGGSaaabaGaeqOVdG3aaeWa aeaacaWG0baacaGLOaGaayzkaaGaaiOoaiabg2da9iaadAgadaqada qaaiaadIhadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGL PaaacqGHsislcaWGMbWaaeWaaeaaceWG4bGbaKaadaqadaqaaiaads haaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaabaGaaiyramaa BaaajuaibaGaamOzaaqcfayabaGaaiOoaiabg2da9iaadweacqGHRa WkcqGHuoarcaWGfbGaaiilaaqaaiaadseadaWgaaqcfasaaiaadAga aeqaaiaacQdajuaGcqGH9aqpcaWGebWaaSbaaKqbGeaacaaIXaaabe aajuaGcqGHsislcaWGhbWaaWbaaeqajuaibaGaey4fIOcaaKqbakaa dseadaWgaaqcfasaaiaaikdaaKqbagqaaiaacYcaaeaacaWGgbWaaS baaKqbGeaacaWGMbaabeaajuaGcaGG6aGaeyypa0ZaamWaaeaafaqa beqacaaabaGaamysaaqaaiaaicdaaaaacaGLBbGaayzxaaaaaaa@87EF@ (16)

Observe from the definition of (16), the system (14) becomes

e ˙ ( t )= A f e( t )+ E f ξ( t )+ D f w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmyzayaacaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyyp a0JaamyqamaaBaaajuaibaGaamOzaaqcfayabaGaamyzamaabmaaba GaamiDaaGaayjkaiaawMcaaiabgUcaRiaadweadaWgaaqcfasaaiaa dAgaaKqbagqaaiabe67a4naabmaabaGaamiDaaGaayjkaiaawMcaai abgUcaRiaadseadaWgaaqcfasaaiaadAgaaKqbagqaaiaadEhadaqa daqaaiaadshaaiaawIcacaGLPaaaaaa@4FB8@  (17)

In this literature, if the parameter uncertainties structure of (8)-(10) is selected, then the nonlinear observer structure of (13)-(14) will be utilized to account for the influence from the operating environment. In next section, we will establish both the existence and the analytical expression of the expected observer to make the current error system be ASMS.

Stability analysis of the current error system

This subsection is devoted to the stability analysis of the current error system. Suppose that the observer structure be known, we will study sufficient conditions of ASMS for the error-state system (17). Hence, the theorem stated below will enforce the desired robust ASMS constraint upon a modified ARME.

Theorem 1: Let the observer parameters G∗ and K∗ be given. If there exist positive scalars
ε1, ε2, ε3, ε4 > 0, such that the matrix equation

Γ := ( A+B K G * C ) T P+P( A+B K G C ) + ε 1 ( F 1 F f ) T ( F 1 F f )+ ε 1 1 PE E T P+ ε 2 1 λ max ( M 1 T M 1 )( N 3 F 1 F f ) + ε 3 P( M 1 G M 2 ) ( M 1 G M 2 ) T P+ ε 3 1 N 1 N 1 T + ε 4 P M 1 M 1 T P+ ε 4 1 ( N 2 K ) ( N 2 K * ) T + δ 1 I=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHtoWrdaahaaqabKqbGeaacqGHxiIkaaqcfaOaaiOo aiabg2da9maabmaabaGaamyqaiabgUcaRiaadkeacaWGlbWaaWbaaK qbGeqabaGaey4fIOcaaKqbakabgkHiTiaadEeadaahaaqcfasabeaa caGGQaaaaKqbakaadoeaaiaawIcacaGLPaaadaahaaqabKqbGeaaca WGubaaaKqbakaadcfacqGHRaWkcaWGqbWaaeWaaeaacaWGbbGaey4k aSIaamOqaiaadUeadaahaaqabKqbGeaacqGHxiIkaaqcfaOaeyOeI0 Iaam4ramaaCaaabeqcfasaaiabgEHiQaaajuaGcaWGdbaacaGLOaGa ayzkaaaabaGaey4kaSIaeqyTdu2aaSbaaKqbGeaacaaIXaaabeaaju aGdaqadaqaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAea daWgaaqcfasaaiaadAgaaKqbagqaaaGaayjkaiaawMcaamaaCaaabe qcfasaaiaadsfaaaqcfa4aaeWaaeaacaWGgbWaaSbaaKqbGeaacaaI XaaabeaajuaGcaWGgbWaaSbaaKqbGeaacaWGMbaajuaGbeaaaiaawI cacaGLPaaacqGHRaWkcqaH1oqzdaqhaaqcfasaaiaaigdaaeaacqGH sislcaaIXaaaaKqbakaadcfacaWGfbGaamyramaaCaaabeqcfasaai aadsfaaaqcfaOaamiuaiabgUcaRiabew7aLnaaDaaajuaibaGaaGOm aaqaaiabgkHiTiaaigdaaaqcfaOaeq4UdW2aaSbaaKqbGeaaciGGTb GaaiyyaiaacIhaaKqbagqaamaabmaabaGaamytamaaDaaajuaibaGa aGymaaqaaiaadsfaaaqcfaOaamytamaaBaaajuaibaGaaGymaaqaba aajuaGcaGLOaGaayzkaaWaaeWaaeaacaWGobWaaSbaaKqbGeaacaaI ZaaajuaGbeaacaWGgbWaaSbaaKqbGeaacaaIXaaajuaGbeaacaWGgb WaaSbaaKqbGeaacaWGMbaabeaaaKqbakaawIcacaGLPaaaaeaacqGH RaWkcqaH1oqzdaWgaaqcfasaaiaaiodaaKqbagqaaiaadcfadaqada qaaiaad2eadaWgaaqcfasaaiaaigdaaKqbagqaaiabgkHiTiaadEea daahaaqcfasabeaacqGHxiIkaaqcfaOaamytamaaBaaajuaibaGaaG OmaaqabaaajuaGcaGLOaGaayzkaaWaaeWaaeaacaWGnbWaaSbaaKqb GeaacaaIXaaabeaajuaGcqGHsislcaWGhbWaaWbaaKqbGeqabaGaey 4fIOcaaKqbakaad2eadaWgaaqcfasaaiaaikdaaeqaaaqcfaOaayjk aiaawMcaamaaCaaajuaibeqaaiaadsfaaaqcfaOaamiuaiabgUcaRi abew7aLnaaDaaajuaibaGaaG4maaqaaiabgkHiTiaaigdaaaqcfaOa amOtamaaBaaajuaibaGaaGymaaqcfayabaGaamOtamaaDaaajuaiba GaaGymaaqaaiaadsfaaaaajuaGbaGaey4kaSIaeqyTdu2aaSbaaKqb GeaacaaI0aaabeaajuaGcaWGqbGaamytamaaBaaajuaibaGaaGymaa qabaqcfaOaamytamaaDaaajuaibaGaaGymaaqaaiaadsfaaaqcfaOa amiuaiabgUcaRiabew7aLnaaDaaajuaibaGaaGinaaqaaiabgkHiTi aaigdaaaqcfa4aaeWaaeaacaWGobWaaSbaaKqbGeaacaaIYaaajuaG beaacaWGlbWaaWbaaeqajuaibaGaey4fIOcaaaqcfaOaayjkaiaawM caamaabmaabaGaamOtamaaBaaajuaibaGaaGOmaaqcfayabaGaam4s amaaCaaajuaibeqaaiaacQcaaaaajuaGcaGLOaGaayzkaaWaaWbaae qajuaibaGaamivaaaajuaGcqGHRaWkcqaH0oazdaWgaaqcfasaaiaa igdaaeqaaKqbakaadMeacqGH9aqpcaaIWaaaaaa@DBA3@  (18)

has a positive definite solution P>0 for a sufficiently small positive constants δ1 > 0, then the nonlinear error-state system (17) is asymptotically stable in the mean square. Proof: Choosing Lyapunov function candidate as Y(e(t), t) = eT (t)Pe(t), the detail proof of Theorem 1 sees in20,24 by utilizing Lyapunov stability theory, so here it is omitted. Note that Theorem 1 offers sufficient conditions for the solvability of the robust nonlinear observer design problem in the current error-state system. The purpose of the rest of the section is to parameterize the observer gains G∗ and K∗.

Nonlinear observer gain G∗ design of the current error system

The goal of a robust nonlinear observer design problem is to find the nonlinear observer gain G∗, such that, for the nonlinearity f (x(t)) and all admissible parameter uncertainties ΔA, ΔB, ΔC, and ΔE, the current error-state system (17) maintains ASMS. For simplicity, some definitions are expressed

Θ :=C+ ε 3 M 2 M 1 T P Ω:= ε 1 1 E E T + ε 2 I+( ε 3 + ε 4 ) M 1 M 1 T Ψ := ( A+B K * ) T P+P( A+B K )+PΩP+ ε 1 ( F 1 F f ) T ( F 1 F f ) + ε 2 1 λ max ( M 1 T M 1 ) ( N 3 F 1 F f ) T ( N 3 F 1 F f )+ ε 3 1 N 1 N 1 T + ε 4 1 ( N 2 K ) T + δ 1 I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHyoqudaahaaqcfasabeaacqGHxiIkaaqcfaOaaiOo aiabg2da9iaadoeacqGHRaWkcqaH1oqzdaWgaaqcfasaaiaaiodaaK qbagqaaiaad2eadaWgaaqcfasaaiaaikdaaeqaaKqbakaad2eadaqh aaqcfasaaiaaigdaaeaacaWGubaaaKqbakaadcfaaeaacqqHPoWvca GG6aGaeyypa0JaeqyTdu2aa0baaKqbGeaacaaIXaaabaGaeyOeI0Ia aGymaaaajuaGcaWGfbGaamyramaaCaaabeqcfasaaiaadsfaaaqcfa Oaey4kaSIaeqyTdu2aaSbaaKqbGeaacaaIYaaajuaGbeaacaWGjbGa ey4kaSYaaeWaaeaacqaH1oqzdaWgaaqcfasaaiaaiodaaeqaaKqbak abgUcaRiabew7aLnaaBaaajuaibaGaaGinaaqabaaajuaGcaGLOaGa ayzkaaGaamytamaaBaaajuaibaGaaGymaaqabaqcfaOaamytamaaDa aajuaibaGaaGymaaqaaiaadsfaaaaajuaGbaGaeuiQdK1aaWbaaKqb GeqabaGaey4fIOcaaKqbakaacQdacqGH9aqpdaqadaqaaiaadgeacq GHRaWkcaWGcbGaam4samaaCaaajuaibeqaaiaacQcaaaaajuaGcaGL OaGaayzkaaWaaWbaaeqajuaibaGaamivaaaajuaGcaWGqbGaey4kaS IaamiuamaabmaabaGaamyqaiabgUcaRiaadkeacaWGlbWaaWbaaeqa juaibaGaey4fIOcaaaqcfaOaayjkaiaawMcaaiabgUcaRiaadcfacq qHPoWvcaWGqbGaey4kaSIaeqyTdu2aaSbaaKqbGeaacaaIXaaabeaa juaGdaqadaqaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadA eadaWgaaqcfasaaiaadAgaaKqbagqaaaGaayjkaiaawMcaamaaCaaa beqcfasaaiaadsfaaaqcfa4aaeWaaeaacaWGgbWaaSbaaKqbGeaaca aIXaaabeaajuaGcaWGgbWaaSbaaKqbGeaacaWGMbaajuaGbeaaaiaa wIcacaGLPaaaaeaacqGHRaWkcqaH1oqzdaqhaaqcfasaaiaaikdaae aacqGHsislcaaIXaaaaKqbakabeU7aSnaaBaaabaGaciyBaiaacgga caGG4baabeaadaqadaqaaiaad2eadaqhaaqcfasaaiaaigdaaeaaca WGubaaaKqbakaad2eadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjk aiaawMcaamaabmaabaGaamOtamaaBaaajuaibaGaaG4maaqabaqcfa OaamOramaaBaaajuaibaGaaGymaaqabaqcfaOaamOramaaBaaajuai baGaamOzaaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaam ivaaaajuaGdaqadaqaaiaad6eadaWgaaqcfasaaiaaiodaaeqaaKqb akaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAeadaWgaaqcfa saaiaadAgaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRiabew7aLnaa DaaajuaibaGaaG4maaqaaiabgkHiTiaaigdaaaqcfaOaamOtamaaBa aajuaibaGaaGymaaqabaqcfaOaamOtamaaDaaajuaibaGaaGymaaqa aiaadsfaaaqcfaOaey4kaSIaeqyTdu2aa0baaKqbGeaacaaI0aaaba GaeyOeI0IaaGymaaaajuaGdaqadaqaaiaad6eadaWgaaqcfasaaiaa ikdaaeqaaKqbakaadUeadaahaaqabKqbGeaacqGHxiIkaaaajuaGca GLOaGaayzkaaWaaWbaaKqbGeqabaGaamivaaaajuaGcqGHRaWkcqaH 0oazdaWgaaqcfasaaiaaigdaaeqaaKqbakaadMeaaaaa@D801@  (19)

Theorem 2: Under Assumptions 3-5, the current error-state system (17) remain ASMS, and there exists a parameter vector (ε1, ε2, ε3, ε4, P) with a known feedback gain K∗ is achievable if and only if Eq.(18) and the matrix inequality

Ψ + Θ T ( ε 3 M 2 M 2 T ) 1 Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaeuiQdK1aaWbaaeqajuaibaGaey4fIOcaaKqbakab gUcaRiabfI5arnaaCaaajuaibeqaaiabgEHiQiaadsfaaaqcfa4aae WaaeaacqaH1oqzdaWgaaqcfasaaiaaiodaaeqaaKqbakaad2eadaWg aaqcfasaaiaaikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaae aacaWGubaaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiabgkHi TiaaigdaaaqcfaOaeuiMde1aaWbaaKqbGeqabaGaey4fIOcaaKqbak abgwMiZkaaicdaaaa@52A5@

Hold and the maximum rank of

Ψ + Θ T ( ε 3 M 2 M 2 T ) 1 Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaeuiQdK1aaWbaaeqajuaibaGaey4fIOcaaKqbakab gUcaRiabfI5arnaaCaaajuaibeqaaiabgEHiQiaadsfaaaqcfa4aae WaaeaacqaH1oqzdaWgaaqcfasaaiaaiodaaeqaaKqbakaad2eadaWg aaqcfasaaiaaikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaae aacaWGubaaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiabgkHi TiaaigdaaaqcfaOaeuiMde1aaWbaaKqbGeqabaGaey4fIOcaaaaa@4F97@

is p, where Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuiMde1aaWbaaKqbGeqabaGaey4fIOcaaaaa@394F@ and Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuiQdK1aaWbaaeqajuaibaGaey4fIOcaaaaa@3967@ are defined in (19). Furthermore, in this case, the observer gain related to the achievable vector (ε1, ε2, ε3, ε4, P) can be parameterized by

G = P 1 Θ T ( ε 3 M 2 M 2 T ) 1 P 1 U * V * ( ε 3 M 2 M 2 T ) 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4ramaaCaaajuaibeqaaiabgEHiQaaajuaGcqGH9aqpcaWG qbWaaWbaaeqajuaibaGaeyOeI0IaaGymaaaajuaGcqqHyoqudaahaa qcfasabeaacqGHxiIkcaWGubaaaKqbaoaabmaabaGaeqyTdu2aaSba aKqbGeaacaaIZaaajuaGbeaacaWGnbWaaSbaaKqbGeaacaaIYaaabe aajuaGcaWGnbWaa0baaKqbGeaacaaIYaaabaGaamivaaaaaKqbakaa wIcacaGLPaaadaahaaqcfasabeaacqGHsislcaaIXaaaaKqbakabgk HiTiaadcfadaahaaqcfasabeaacqGHsislcaaIXaaaaKqbakaadwfa daahaaqabKqbGeaacaGGQaaaaKqbakaadAfadaahaaqcfasabeaaca GGQaaaaKqbaoaabmaabaGaeqyTdu2aaSbaaKqbafaacaaIZaaajuaG beaacaWGnbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGnbWaa0baaK qbGeaacaaIYaaabaGaamivaaaaaKqbakaawIcacaGLPaaadaahaaqc fasabeaacqGHsislcaaIWaGaaiOlaiaaiwdaaaaaaa@65C7@  (22)

Where U R n×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyvamaaCaaajuaibeqaaiabgEHiQaaajuaGcqGHiiIZcaWG sbWaaWbaaeqajuaibaGaamOBaiabgEna0kaadchaaaaaaa@3FEA@  is the square root of Ψ + Θ T ( ε 3 M 2 M 2 T ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaeuiQdK1aaWbaaKqbGeqabaGaey4fIOcaaKqbakab gUcaRiabfI5arnaaCaaajuaibeqaaiabgEHiQiaadsfaaaqcfa4aae WaaeaacqaH1oqzdaWgaaqcfasaaiaaiodaaKqbagqaaiaad2eadaWg aaqcfasaaiaaikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaae aacaWGubaaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiabgkHi Tiaaigdaaaaaaa@4C53@  and V R p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvamaaCaaajuaibeqaaiabgEHiQaaajuaGcqGHiiIZcaWG sbWaaWbaaeqajuaibaGaamiCaiabgEna0kaadchaaaaaaa@3FED@  is an arbitrary orthogonal matrix.

Proof: (Necessity) From the analysis of Theorem 1, the current error-state system (17) is ASMS, since the sufficient condition of the stability is obtained by (18), when the Lyapunov function candidate is selected as Y( e( t ),t )= e T ( t )Pe( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamywamaabmaabaGaamyzamaabmaabaGaamiDaaGaayjkaiaa wMcaaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0JaamyzamaaCa aabeqcfasaaiaadsfaaaqcfa4aaeWaaeaacaWG0baacaGLOaGaayzk aaGaamiuaiaadwgadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@487F@ . (Sufficiency) Without of loss generality, in the definition of Ψ∗ and Θ∗, Eq(18) is rearranged as follows

P G * ( ε 3 M 2 M 2 T ) ( P G ) T P G Θ T ( P G ) T + Ψ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiuaiaadEeadaahaaqabKqbGeaacaGGQaaaaKqbaoaabmaa baGaeqyTdu2aaSbaaKqbGeaacaaIZaaajuaGbeaacaWGnbWaaSbaaK qbGeaacaaIYaaabeaajuaGcaWGnbWaa0baaKqbGeaacaaIYaaabaGa amivaaaaaKqbakaawIcacaGLPaaadaqadaqaaiaadcfacaWGhbWaaW baaeqajuaibaGaey4fIOcaaaqcfaOaayjkaiaawMcaamaaCaaabeqc fasaaiaadsfaaaqcfaOaeyOeI0IaamiuaiaadEeadaahaaqcfasabe aacqGHxiIkaaqcfaOaeuiMde1aaWbaaeqajuaibaGaey4fIOIaamiv aaaajuaGdaqadaqaaiaadcfacaWGhbWaaWbaaeqajuaibaGaey4fIO caaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiaadsfaaaqcfaOa ey4kaSIaeuiQdK1aaWbaaKqbGeqabaGaey4fIOcaaKqbakabg2da9i aaicdaaaa@6012@  (23)

This can be equivalently expressed by

[ P G * ( ε 3 M 2 M 2 T ) 0.5 + Θ T ( ε 3 M 2 M 2 T ) 0.5 ] × [ P G * ( ε 3 M 2 M 2 T ) 0.5 + Θ T ( ε 3 M 2 M 2 T ) 0.5 ] T = Ψ + Θ T ( ε 3 M 2 M 2 T ) 1 Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qadaWadaqaaiabgkHiTiaadcfacaWGhbWaaWbaaeqajuai baGaaiOkaaaajuaGdaqadaqaaiabew7aLnaaBaaajuaibaGaaG4maa qcfayabaGaamytamaaBaaajuaibaGaaGOmaaqabaqcfaOaamytamaa DaaajuaibaGaaGOmaaqaaiaadsfaaaaajuaGcaGLOaGaayzkaaWaaW baaeqajuaibaGaaGimaiaac6cacaaI1aaaaKqbakabgUcaRiabfI5a rnaaCaaabeqcfasaaiabgEHiQiaadsfaaaqcfa4aaeWaaeaacqaH1o qzdaWgaaqcfasaaiaaiodaaKqbagqaaiaad2eadaWgaaqcfasaaiaa ikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaaeaacaWGubaaaa qcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiaaicdacaGGUaGaaGyn aaaaaKqbakaawUfacaGLDbaaaeaacqGHxdaTdaWadaqaaiabgkHiTi aadcfacaWGhbWaaWbaaeqajuaibaGaaiOkaaaajuaGdaqadaqaaiab ew7aLnaaBaaajuaibaGaaG4maaqcfayabaGaamytamaaBaaajuaiba GaaGOmaaqabaqcfaOaamytamaaDaaajuaibaGaaGOmaaqaaiaadsfa aaaajuaGcaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGimaiaac6caca aI1aaaaKqbakabgUcaRiabfI5arnaaCaaabeqcfasaaiabgEHiQiaa dsfaaaqcfa4aaeWaaeaacqaH1oqzdaWgaaqcfasaaiaaiodaaKqbag qaaiaad2eadaWgaaqcfasaaiaaikdaaeqaaKqbakaad2eadaqhaaqc fasaaiaaikdaaeaacaWGubaaaaqcfaOaayjkaiaawMcaamaaCaaabe qcfasaaiaaicdacaGGUaGaaGynaaaaaKqbakaawUfacaGLDbaadaah aaqabKqbGeaacaWGubaaaaqcfayaaiabg2da9iabgkHiTiabfI6azn aaCaaabeqcfasaaiabgEHiQaaajuaGcqGHRaWkcqqHyoqudaahaaqc fasabeaacqGHxiIkcaWGubaaaKqbaoaabmaabaGaeqyTdu2aaSbaaK qbGeaacaaIZaaajuaGbeaacaWGnbWaaSbaaKqbGeaacaaIYaaabeaa juaGcaWGnbWaa0baaKqbGeaacaaIYaaabaGaamivaaaaaKqbakaawI cacaGLPaaadaahaaqcfasabeaacqGHsislcaaIXaaaaKqbakabfI5a rnaaCaaajuaibeqaaiabgEHiQaaaaaaa@A095@  (24)

Note that the dimension of the observer gain G∗ is n×p and p ≤ n, the sufficient and necessary condition is provided for the achievability of a given parameter vector (ε1, ε2, ε3, ε4, P), we take the square root decomposition

Ψ + Θ T ( ε 3 M 2 M 2 T ) 1 Θ = U U T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaeuiQdK1aaWbaaeqajuaibaGaey4fIOcaaKqbakab gUcaRiabfI5arnaaCaaajuaibeqaaiabgEHiQiaadsfaaaqcfa4aae WaaeaacqaH1oqzdaWgaaqcfasaaiaaiodaaKqbagqaaiaad2eadaWg aaqcfasaaiaaikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaae aacaWGubaaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiabgkHi TiaaigdaaaqcfaOaeuiMde1aaWbaaKqbGeqabaGaey4fIOcaaKqbak abg2da9iaadwfadaahaaqcfasabeaacqGHxiIkaaqcfaOaamyvamaa CaaajuaibeqaaiabgEHiQiaadsfaaaaaaa@56C4@  (25)

For U R np MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyvamaaCaaabeqcfasaaiabgEHiQaaajuaGcqGHiiIZcaWG sbWaaWbaaKqbGeqabaGaamOBaiabgEHiQiaadchaaaaaaa@3EC2@ , and then (24) holds if and only if

P G ( ε 3 M 2 M 2 T ) 0.5 + Θ T ( ε 3 M 2 M 2 T ) 0.5 = U V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaamiuaiaadEeadaahaaqabKqbGeaacqGHxiIkaaqc fa4aaeWaaeaacqaH1oqzdaWgaaqcfasaaiaaiodaaKqbagqaaiaad2 eadaWgaaqcfasaaiaaikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaa ikdaaeaacaWGubaaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaai aaicdacaGGUaGaaGynaaaajuaGcqGHRaWkcqqHyoqudaahaaqcfasa beaacqGHxiIkcaWGubaaaKqbaoaabmaabaGaeqyTdu2aaSbaaKqbGe aacaaIZaaajuaGbeaacaWGnbWaaSbaaKqbGeaacaaIYaaabeaajuaG caWGnbWaa0baaKqbGeaacaaIYaaabaGaamivaaaaaKqbakaawIcaca GLPaaadaahaaqcfasabeaacqGHsislcaaIWaGaaiOlaiaaiwdaaaqc faOaeyypa0JaamyvamaaCaaajuaibeqaaiabgEHiQaaajuaGcaWGwb WaaWbaaKqbGeqabaGaey4fIOcaaaaa@61AD@  (26)

where V * R pp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvamaaCaaabeqcfasaaiaacQcaaaqcfaOaeyicI4SaamOu amaaCaaajuaibeqaaiaadchacqGHxiIkcaWGWbaaaaaa@3E84@ is arbitrary orthogonal (i.e., V * V *T = I np MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvamaaCaaabeqcfasaaiaacQcaaaqcfaOaamOvamaaCaaa beqcfasaaiaacQcacaGGubaaaKqbakabg2da9iaadMeadaWgaaqcfa saaiaad6gacaWGWbaabeaaaaa@404A@ ). Therefore, Eq.(22) follows immediately. The proof of this theorem is completed. Throughout the previous mentioned Theorem 2, a nonlinear observer design algorithm with a known feedback gain is described in Table 1.

Table 1 Systematic design algorithm of nonlinear observer with a known feedback gain

Remark 1: From Theorem 2, it should be pointed out that, the present design algorithm of nonlinear observer is convergence, since sufficient and necessary conditions of the design of the expected nonlinear observer gain G∗ with a known feedback gain K∗ are guaranteed in the structure of (13) satisfied with (22), to make the error-state system (17) be ASMS for an arbitrary orthogonal matrix V * I np MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvamaaCaaabeqcfasaaiaacQcaaaqcfaOaeyicI4Saamys amaaBaaajuaibaGaamOBaiaadchaaeqaaaaa@3D89@ .

Stability Analysis of the error system for nonlinear observer design with a known feedback gain

In many practice situations, several nonlinear disturbances in the dynamic system of MLFMs are unknown and uncertain. With the consideration of the nonlinear system (6)-(7), the uncertain term ΔB is rely on the control input u(t), several full-order nonlinear state observers under consideration are of the form in.25 Here, a nonlinear state observer is formulated as the following structure,

{ x ^ ( t )=( A+ΔA ) x ^ ( t )+( B+ΔB ) u ^ ( t )+( E+ΔE )f( x ^ ( t ) )+ G ( y( t ) y ^ ( t ) ) u ^ ( t )= K 1 x( t )+ K 2 x ^ ( t ) y ^ ( t )=( C+ΔC ) x ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiqadIhagaqcamaabmaabaGaamiDaaGaayjk aiaawMcaaiabg2da9maabmaabaGaamyqaiabgUcaRiabgs5aejaadg eaaiaawIcacaGLPaaaceWG4bGbaKaadaqadaqaaiaadshaaiaawIca caGLPaaacqGHRaWkdaqadaqaaiaadkeacqGHRaWkcqGHuoarcaWGcb aacaGLOaGaayzkaaGabmyDayaajaWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaey4kaSYaaeWaaeaacaWGfbGaey4kaSIaeyiLdqKaamyraa GaayjkaiaawMcaaiaadAgadaqadaqaaiqadIhagaqcamaabmaabaGa amiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaadEeada WgaaqcfasaaiabgEHiQaqcfayabaWaaeWaaeaacaWG5bWaaeWaaeaa caWG0baacaGLOaGaayzkaaGaeyOeI0IabmyEayaajaWaaeWaaeaaca WG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGabmyDayaajaWa aeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0Jaam4samaaBaaaju aibaGaaGymaaqcfayabaGaamiEamaabmaabaGaamiDaaGaayjkaiaa wMcaaiabgUcaRiaadUeadaWgaaqcfasaaiaaikdaaeqaaKqbakqadI hagaqcamaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiqadMhagaqc amaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maabmaabaGaam 4qaiabgUcaRiabgs5aejaadoeaaiaawIcacaGLPaaaceWG4bGbaKaa daqadaqaaiaadshaaiaawIcacaGLPaaaaaGaay5Eaaaaaa@8730@ (27)

Where, the constant matrix K∗ = [K1, K2] for K1, K2 ∈ Rn×n. This matrix is an unknown variable with respect to the system (6)-(7), the resulting closed-loop system is derived as follows:

{ x ˙ ( t )=( A+ΔA )x( t )+( B+ΔB )u( t )+( E+ΔE )f( x( t ) )+ D 1 w( t ) u( t )= K 1 x( t ) y( t )=( C+ΔC ) x ^ ( t )+ D 2 w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiqadIhagaGaamaabmaabaGaamiDaaGaayjk aiaawMcaaiabg2da9maabmaabaGaamyqaiabgUcaRiabgs5aejaadg eaaiaawIcacaGLPaaacaWG4bWaaeWaaeaacaWG0baacaGLOaGaayzk aaGaey4kaSYaaeWaaeaacaWGcbGaey4kaSIaeyiLdqKaamOqaaGaay jkaiaawMcaaiaadwhadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH RaWkdaqadaqaaiaadweacqGHRaWkcqGHuoarcaWGfbaacaGLOaGaay zkaaGaamOzamaabmaabaGaamiEamaabmaabaGaamiDaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaiabgUcaRiaadseadaWgaaqcfasaaiaaig daaKqbagqaaiaadEhadaqadaqaaiaadshaaiaawIcacaGLPaaaaeaa caWG1bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0Jaam4sam aaBaaajuaibaGaaGymaaqcfayabaGaamiEamaabmaabaGaamiDaaGa ayjkaiaawMcaaaqaaiaadMhadaqadaqaaiaadshaaiaawIcacaGLPa aacqGH9aqpdaqadaqaaiaadoeacqGHRaWkcqGHuoarcaWGdbaacaGL OaGaayzkaaGabmiEayaajaWaaeWaaeaacaWG0baacaGLOaGaayzkaa Gaey4kaSIaamiramaaBaaajuaibaGaaGOmaaqcfayabaGaam4Damaa bmaabaGaamiDaaGaayjkaiaawMcaaaaacaGL7baaaaa@8082@ (28)

Define the error state e(t) = x(t)−x(t), then it follows from the system description of (27)-(28), the definition of the error-state is determined by

e ˙ ( t )=( B+ΔB ) K 2 x( t )+( A+ΔA ) G ( C+ΔC )+( B+ΔB ) K 2 e( t ) +( E+ΔE )( f( x( t ) )f( x ^ ( t ) ) )+( D 1 G D 2 )w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qaceWGLbGbaiaadaqadaqaaiaadshaaiaawIcacaGLPaaa cqGH9aqpcqGHsisldaqadaqaaiaadkeacqGHRaWkcqGHuoarcaWGcb aacaGLOaGaayzkaaGaam4samaaBaaajuaibaGaaGOmaaqabaqcfaOa amiEamaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRmaabmaaba GaamyqaiabgUcaRiabgs5aejaadgeaaiaawIcacaGLPaaacqGHsisl caWGhbWaaSbaaKqbGeaacqGHxiIkaeqaaKqbaoaabmaabaGaam4qai abgUcaRiabgs5aejaadoeaaiaawIcacaGLPaaacqGHRaWkdaqadaqa aiaadkeacqGHRaWkcqGHuoarcaWGcbaacaGLOaGaayzkaaGaam4sam aaBaaajuaibaGaaGOmaaqcfayabaGaamyzamaabmaabaGaamiDaaGa ayjkaiaawMcaaaqaaiabgUcaRmaabmaabaGaamyraiabgUcaRiabgs 5aejaadweaaiaawIcacaGLPaaadaqadaqaaiaadAgadaqadaqaaiaa dIhadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacq GHsislcaWGMbWaaeWaaeaaceWG4bGbaKaadaqadaqaaiaadshaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkda qadaqaaiaadseadaWgaaqcfasaaiaaigdaaeqaaKqbakabgkHiTiaa dEeadaWgaaqcfasaaiabgEHiQaqcfayabaGaamiramaaBaaajuaiba GaaGOmaaqcfayabaaacaGLOaGaayzkaaGaam4DamaabmaabaGaamiD aaGaayjkaiaawMcaaaaaaa@8573@  (29)

For simplicity, we give the following definitions:

x f  : = [ x( t ) e( t ) ],  A ¯ f  : = [ A+B K 1 0 B K 2 A G * C+B K 2 ], Δ A ¯ f  : = [ ΔA+ΔB K 1 0 ΔB K 2 ΔA G * ΔC+ΔB K 2 ], E ¯ f  : = [ E E ] , D ¯ f  : = [ D 1 D 1 G * D 2 ], M ¯ f  : = [ M 1 M 1 ] ,  N ¯ f  : = [ N 3 0 ] , Δ E ¯ f  : = M ¯ f F( t ) N ¯ f , ξ f ( t ) : = [ f( x( t ) ) ξ( t ) ] , ξ( t ) : =f( x( t ) )f( x ^ ( t ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam iEamaaBaaajuaibaGaamOzaaqcfayabaaeaaaaaaaaa8qacaGGGcWd aiaacQdapeGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWadaqaauaabe qaceaaaeaacaWG4bWaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGa amyzamaabmaabaGaamiDaaGaayjkaiaawMcaaaaaaiaawUfacaGLDb aacaGGSaWdbiaacckapaGabmyqayaaraWaaSbaaKqbGeaacaWGMbaa juaGbeaapeGaaiiOa8aacaGG6aWdbiaacckapaGaeyypa0Zdbiaacc kapaWaamWaaeaafaqabeGacaaabaGaamyqaiabgUcaRiaadkeacaWG lbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaeaacaaIWaaabaGaeyOeI0 IaamOqaiaadUeadaWgaaqcfasaaiaaikdaaeqaaaqcfayaaiaadgea cqGHsislcaWGhbWaaSbaaKqbGeaacaGGQaaabeaajuaGcaWGdbGaey 4kaSIaamOqaiaadUeadaWgaaqcfasaaiaaikdaaKqbagqaaaaaaiaa wUfacaGLDbaacaGGSaaabaGaeyiLdqKabmyqayaaraWaaSbaaKqbGe aacaWGMbaabeaajuaGpeGaaiiOa8aacaGG6aWdbiaacckapaGaeyyp a0ZdbiaacckapaWaamWaaeaafaqabeGacaaabaGaeyiLdqKaamyqai abgUcaRiabgs5aejaadkeacqGHflY1caWGlbWaaSbaaKqbGeaacaaI XaaabeaaaKqbagaacaaIWaaabaGaeyOeI0IaeyiLdqKaamOqaiabgw SixlaadUeadaWgaaqcfasaaiaaikdaaeqaaaqcfayaaiabgs5aejaa dgeacqGHsislcaWGhbWaaSbaaKqbGeaacaGGQaaabeaajuaGcqGHuo arcaWGdbGaey4kaSIaeyiLdqKaamOqaiabgwSixlaadUeadaWgaaqc fasaaiaaikdaaeqaaaaaaKqbakaawUfacaGLDbaacaGGSaaabaGabm yrayaaraWaaSbaaKqbGeaacaWGMbaajuaGbeaapeGaaiiOa8aacaGG 6aWdbiaacckapaGaeyypa0ZdbiaacckapaWaamWaaeaafaqabeGaba aabaGaamyraaqaaiaadweaaaaacaGLBbGaayzxaaWdbiaacckapaGa aiilaiqadseagaqeamaaBaaajuaibaGaamOzaaqabaqcfa4dbiaacc kapaGaaiOoa8qacaGGGcWdaiabg2da98qacaGGGcWdamaadmaabaqb aeqabiqaaaqaaiaadseadaWgaaqcfasaaiaaigdaaeqaaaqcfayaai aadseadaWgaaqcfasaaiaaigdaaeqaaKqbakabgkHiTiaadEeadaWg aaqcfasaaiaacQcaaeqaaKqbakaadseadaWgaaqcfasaaiaaikdaae qaaaaaaKqbakaawUfacaGLDbaacaGGSaaabaGabmytayaaraWaaSba aKqbGeaacaWGMbaabeaajuaGpeGaaiiOa8aacaGG6aWdbiaacckapa Gaeyypa0ZdbiaacckapaWaamWaaeaafaqabeGabaaabaGaamytamaa BaaajuaibaGaaGymaaqabaaajuaGbaGaamytamaaBaaajuaibaGaaG ymaaqabaaaaaqcfaOaay5waiaaw2faa8qacaGGGcWdaiaacYcapeGa aiiOa8aaceWGobGbaebadaWgaaqcfasaaiaadAgaaeqaaKqba+qaca GGGcWdaiaacQdapeGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWadaqa auaabeqabiaaaeaacaWGobWaaSbaaKqbGeaacaaIZaaabeaaaKqbag aacaaIWaaaaaGaay5waiaaw2faa8qacaGGGcWdaiaacYcapeGaaiiO a8aacqGHuoarceWGfbGbaebadaWgaaqcfasaaiaadAgaaeqaaKqba+ qacaGGGcWdaiaacQdapeGaaiiOa8aacqGH9aqpceWGnbGbaebadaWg aaqcfasaaiaadAgaaKqbagqaaiaadAeadaqadaqaaiaadshaaiaawI cacaGLPaaaceWGobGbaebadaWgaaqcfasaaiaadAgaaeqaaKqbakaa cYcaaeaacqaH+oaEdaWgaaqcfasaaiaadAgaaeqaaKqbaoaabmaaba GaamiDaaGaayjkaiaawMcaa8qacaGGGcWdaiaacQdapeGaaiiOa8aa cqGH9aqppeGaaiiOa8aadaWadaqaauaabeqaceaaaeaacaWGMbWaae WaaeaacaWG4bWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGa ayzkaaaabaGaeqOVdG3aaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa Gaay5waiaaw2faa8qacaGGGcWdaiaacYcapeGaaiiOa8aacqaH+oaE daqadaqaaiaadshaaiaawIcacaGLPaaapeGaaiiOa8aacaGG6aWdbi aacckapaGaeyypa0JaamOzamaabmaabaGaamiEamaabmaabaGaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHiTiaadAgadaqada qaaiqadIhagaqcamaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjk aiaawMcaaiaac6caaaaa@1E35@  (30)

And combining (28), (29) and noting the above updated matrices defined in (30), therefore, the following augmented system is derived by

x ˙ f ( t )=( A ¯ f +Δ A ¯ f ) x f ( t )+( E ¯ f +Δ E ¯ f ) ξ f ( t )+ D ¯ f w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga GaamaaBaaajuaibaGaamOzaaqabaqcfa4aaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyypa0ZaaeWaaeaaceWGbbGbaebadaWgaaqcfasaai aadAgaaKqbagqaaiabgUcaRiabgs5aejqadgeagaqeamaaBaaajuai baGaamOzaaqcfayabaaacaGLOaGaayzkaaGaamiEamaaBaaajuaiba GaamOzaaqcfayabaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4k aSYaaeWaaeaaceWGfbGbaebadaWgaaqcfasaaiaadAgaaKqbagqaai abgUcaRiabgs5aejqadweagaqeamaaBaaajuaibaGaamOzaaqcfaya baaacaGLOaGaayzkaaGaeqOVdG3aaSbaaKqbGeaacaWGMbaajuaGbe aadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHRaWkceWGebGbaeba daWgaaqcfasaaiaadAgaaKqbagqaaiaadEhadaqadaqaaiaadshaai aawIcacaGLPaaaaaa@6252@  (31)

In next subsection, both the existence and the analytical expression of the expected observer will be designed to make the current augment system (31) be ASMS.

Stability analysis of the present augment system

This subsection is devoted to the stability analysis of the present augment system. Taking into account for the nonlinear observer structure of (27), sufficient conditions of ASMS for the augment system (31) are studied by using the following theorem.

Theorem 3: Let the observer parameters G∗. If there exist positive scalars ε5, ε6 > 0, such that the matrix equation

Γ * := A ¯ f T P+P A ¯ f +Δ A ¯ f T P+PΔ A ¯ f + ε 5 ( F 1 F f ) T ( F 1 F f )+ ε 5 1 P E ¯ f E ¯ f T P+ δ 2 I + ε 6 P 2 + ε 6 1 λ max ( M 1 T M 1 ) ( N 3 F 1 F f ) T ( N 3 F 1 F f )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaeu 4KdC0aaSbaaKqbGeaacaGGQaaajuaGbeaacaGG6aGaeyypa0Jabmyq ayaaraWaa0baaKqbGeaacaWGMbaabaGaamivaaaajuaGcaWGqbGaey 4kaSIaamiuaiqadgeagaqeamaaBaaajuaibaGaamOzaaqcfayabaGa ey4kaSIaeyiLdqKabmyqayaaraWaa0baaKqbGeaacaWGMbaabaGaam ivaaaajuaGcaWGqbGaey4kaSIaamiuaiabgs5aejqadgeagaqeamaa BaaajuaibaGaamOzaaqcfayabaaabaGaey4kaSIaeqyTdu2aaSbaaK qbGeaacaaI1aaabeaajuaGdaqadaqaaiaadAeadaWgaaqcfasaaiaa igdaaKqbGfqaaKqbakaadAeadaWgaaqcfasaaiaadAgaaKqbagqaaa GaayjkaiaawMcaamaaCaaajuaibeqaaiaadsfaaaqcfa4aaeWaaeaa caWGgbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaWGgbWaaSbaaKqbGe aacaWGMbaajuaGbeaaaiaawIcacaGLPaaacqGHRaWkcqaH1oqzdaqh aaqcfasaaiaaiwdaaeaacqGHsislcaaIXaaaaKqbakaadcfaceWGfb GbaebadaWgaaqcfasaaiaadAgaaKqbagqaaiqadweagaqeamaaDaaa juaibaGaamOzaaqaaiaadsfaaaqcfaOaamiuaiabgUcaRiabes7aKn aaBaaajuaibaGaaGOmaaqabaqcfaOaamysaaqaaiabgUcaRiabew7a LnaaBaaajuaibaGaaGOnaaqabaqcfaOaamiuamaaCaaajuaibeqaai aaikdaaaqcfaOaey4kaSIaeqyTdu2aa0baaKqbGeaacaaI2aaabaGa eyOeI0IaaGymaaaajuaGcqaH7oaBdaWgaaqcfasaaiGac2gacaGGHb GaaiiEaaqcfayabaWaaeWaaeaacaWGnbWaa0baaKqbGeaacaaIXaaa baGaamivaaaajuaGcaWGnbWaaSbaaKqbGeaacaaIXaaabeaaaKqbak aawIcacaGLPaaadaqadaqaaiaad6eadaWgaaqcfasaaiaaiodaaeqa aKqbakaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAeadaWgaa qcfasaaiaadAgaaeqaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqa aiaadsfaaaqcfa4aaeWaaeaacaWGobWaaSbaaKqbGeaacaaIZaaabe aajuaGcaWGgbWaaSbaaKqbGeaacaaIXaaajuaGbeaacaWGgbWaaSba aKqbGeaacaWGMbaajuaGbeaaaiaawIcacaGLPaaacqGH9aqpcaaIWa aaaaa@A477@ (32)

has a positive definite solution P>0 for a sufficiently small positive constants δ2>0, then the nonlinear error-state system (31) is asymptotically stable in the mean square.

Proof: Choosing Lyapunov function candidate as Y( x f ( t ),t )= x f T ( t )P x f( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfada qadaqaaiaadIhadaWgaaqcfasaaiaadAgaaeqaaKqbaoaabmaabaGa amiDaaGaayjkaiaawMcaaiaacYcacaWG0baacaGLOaGaayzkaaGaey ypa0JaamiEamaaDaaajuaibaGaamOzaaqaaiaadsfaaaqcfa4aaeWa aeaacaWG0baacaGLOaGaayzkaaGaamiuaiaadIhadaWgaaqaaKqbGi aadAgajuaGdaqadaqaaiaadshaaiaawIcacaGLPaaaaeqaaaaa@4D13@ the detail proof of Theorem 3 sees in (e.g.,20,24,25) by utilizing Lyapunov stability theory, so we omit this derivation. Note that Theorem 3 offers sufficient conditions of the ASMS of the augment system (31) in the robust nonlinear observer design. The result may be conservative mainly due to the introduction of Eq. (32). Thus, the purpose of the rest of the section is to obtain the solution of the observer gain parameters G∗ and K∗.

Nonlinear observer parameters G∗ and K∗ design of the present augment system

In this subsection, throughout the nonlinear observer structure of (27), the following definitions will be useful in deriving a desired robust nonlinear observer gain G∗ and an unknown feedback gain K∗, such that for the addressed nonlinearity and all admissible uncertainties, the proposed augment system (31) is ASMS.

Nonlinear observer parameters G∗ and K∗ design of the present augment system

In this subsection, throughout the nonlinear observer structure of (27), the following definitions will be useful in deriving a desired robust nonlinear observer gain G∗ and an unknown feedback gain K∗, such that for the addressed nonlinearity and all admissible uncertainties, the proposed augment system (31) is ASMS. Prior to stating one of the main results of this paper, we first give the following definitions for the sake of simplicity:

Σ 11 :  = ( A+B K 1 ) T P 1 + P 1 ( A+B K 1 ) +  ε 5 ( F 1 F f ) T ( F 1 F f ) +  ε 6 P 1 2 + ε 7 P 1 M 1 M 1 T P 1  +  ε 5 1 P 1 E E T P 1 +  ε 6 1 λ max ( M 1 T M 1 ) ( N 3 F 1 F f ) T ( N 3 F 1 F f ) +  ε 7 1 ( N 1 + N 2 K 1 ) T ( N 1 K 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaeu 4Odm1aaSbaaKqbGeaacaaIXaGaaGymaaqabaqcfaOaaiOoaOaeaaaa aaaaa8qacaGGGcGaaiiOaKqba+aacqGH9aqpdaqadaqaaiaadgeacq GHRaWkcaWGcbGaam4samaaBaaajuaibaGaaGymaaqabaaajuaGcaGL OaGaayzkaaWaaWbaaeqajuaibaGaamivaaaajuaGcaWGqbWaaSbaaK qbGeaacaaIXaaabeaajuaGcqGHRaWkcaWGqbWaaSbaaKqbGeaacaaI XaaabeaajuaGdaqadaqaaiaadgeacqGHRaWkcaWGcbGaam4samaaBa aajuaibaGaaGymaaqcfayabaaacaGLOaGaayzkaaaabaGaey4kaSYd biaacckapaGaeqyTdu2aaSbaaKqbGeaacaaI1aaajuaGbeaadaqada qaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAeadaWgaaqc fasaaiaadAgaaeqaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaai aadsfaaaqcfa4aaeWaaeaacaWGgbWaaSbaaKqbGeaacaaIXaaajuaG beaacaWGgbWaaSbaaKqbGeaacaWGMbaajuaGbeaaaiaawIcacaGLPa aapeGaaiiOa8aacqGHRaWkpeGaaiiOa8aacqaH1oqzdaWgaaqcfasa aiaaiAdaaeqaaKqbakaadcfadaqhaaqcfasaaiaaigdaaeaacaaIYa aaaKqbakabgUcaRiabew7aLnaaBaaajuaibaGaaG4naaqcfayabaGa amiuamaaBaaajuaibaGaaGymaaqabaqcfaOaamytamaaBaaajuaiba GaaGymaaqabaqcfaOaamytamaaDaaajuaibaGaaGymaaqaaiaadsfa aaqcfaOaamiuamaaBaaajuaibaGaaGymaaqabaqcfa4dbiaacckapa Gaey4kaSYdbiaacckapaGaeqyTdu2aa0baaKqbGeaacaaI1aaabaGa eyOeI0IaaGymaaaajuaGcaWGqbWaaSbaaKqbGeaacaaIXaaabeaaju aGcaWGfbGaamyramaaCaaabeqcfasaaiaadsfaaaqcfaOaamiuamaa BaaajuaibaGaaGymaaqcfayabaaabaGaey4kaSYdbiaacckapaGaeq yTdu2aa0baaKqbGeaacaaI2aaabaGaeyOeI0IaaGymaaaajuaGcqaH 7oaBdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaWaaeWaae aacaWGnbWaa0baaKqbGeaacaaIXaaabaGaamivaaaajuaGcaWGnbWa aSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaadaqadaqaai aad6eadaWgaaqcfasaaiaaiodaaeqaaKqbakaadAeadaWgaaqcfasa aiaaigdaaeqaaKqbakaadAeadaWgaaqcfasaaiaadAgaaKqbagqaaa GaayjkaiaawMcaamaaCaaabeqcfasaaiaadsfaaaqcfa4aaeWaaeaa caWGobWaaSbaaKqbGeaacaaIZaaabeaajuaGcaWGgbWaaSbaaKqbGe aacaaIXaaabeaajuaGcaWGgbWaaSbaaKqbGeaacaWGMbaajuaGbeaa aiaawIcacaGLPaaapeGaaiiOa8aacqGHRaWkpeGaaiiOa8aacqaH1o qzdaqhaaqcfasaaiaaiEdaaeaacqGHsislcaaIXaaaaKqbaoaabmaa baGaamOtamaaBaaajuaibaGaaGymaaqabaqcfaOaey4kaSIaamOtam aaBaaajuaibaGaaGOmaaqabaqcfaOaam4samaaBaaajuaibaGaaGym aaqabaaajuaGcaGLOaGaayzkaaWaaWbaaeqajuaibaGaamivaaaaju aGdaqadaqaaiaad6eadaWgaaqcfasaaiaaigdaaeqaaKqbakaadUea daWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawMcaaiaacYcaaa aa@D279@
Σ 12 :  = ( B K 2 M 1 F( t ) N 2 K 2 + ε 5 1 E E T P 1 ) T P 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aaBaaajuaibaGaaGymaiaaikdaaeqaaKqbakaacQdakabaaaaaaaaa peGaaiiOaiaacckajuaGpaGaeyypa0ZaaeWaaeaacqGHsislcaWGcb Gaam4samaaBaaajuaibaGaaGOmaaqabaqcfaOaeyOeI0Iaamytamaa BaaajuaibaGaaGymaaqabaqcfaOaamOramaabmaabaGaamiDaaGaay jkaiaawMcaaiaad6eadaWgaaqcfasaaiaaikdaaeqaaKqbakaadUea daWgaaqcfasaaiaaikdaaeqaaKqbakabgUcaRiabew7aLnaaDaaaju aibaGaaGynaaqaaiabgkHiTiaaigdaaaqcfaOaamyraiaadweadaah aaqabKqbGeaacaWGubaaaKqbakaadcfadaWgaaqcfasaaiaaigdaae qaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiaadsfaaaqcfaOa amiuamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaaaa@609E@

Σ 22 :  = ( A G * C+B K 2 ) T P 2 + P 2 ( A G * C+B K 2 ) + ε 8 P 2 ( M 1 G * M 2 )  ( M 1 G * M 2 ) T P 2 +  ε 6 P 2 2 + ε 9 P 2 M 1 M 1 T P 2 + ε 5 1 P 2 E E 1 T P 2  +  ε 8 1 N 1 T N 1 + ε 9 1 ( N 2 K 2 ) T ( N 2 K 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaeu 4Odm1aaSbaaKqbGeaacaaIYaGaaGOmaaqabaqcfaOaaiOoaOaeaaaa aaaaa8qacaGGGcGaaiiOaKqba+aacqGH9aqpdaqadaqaaiaadgeacq GHsislcaWGhbWaaSbaaKqbGeaacaGGQaaajuaGbeaacaWGdbGaey4k aSIaamOqaiaadUeadaWgaaqcfasaaiaaikdaaeqaaaqcfaOaayjkai aawMcaamaaCaaabeqcfasaaiaadsfaaaqcfaOaamiuamaaBaaajuai baGaaGOmaaqabaqcfaOaey4kaSIaamiuamaaBaaajuaibaGaaGOmaa qabaqcfa4aaeWaaeaacaWGbbGaeyOeI0Iaam4ramaaBaaajuaibaGa aiOkaaqcfayabaGaam4qaiabgUcaRiaadkeacaWGlbWaaSbaaKqbGe aacaaIYaaabeaaaKqbakaawIcacaGLPaaaaeaacqGHRaWkcqaH1oqz daWgaaqcfasaaiaaiIdaaKqbagqaaiaadcfadaWgaaqcfasaaiaaik daaKqbagqaamaabmaabaGaamytamaaBaaajuaibaGaaGymaaqabaqc faOaeyOeI0Iaam4ramaaBaaajuaibaGaaiOkaaqabaqcfaOaamytam aaBaaajuaibaGaaGOmaaqcfayabaaacaGLOaGaayzkaaWdbiaaccka paWaaeWaaeaacaWGnbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHsi slcaWGhbWaaSbaaKqbGeaacaGGQaaabeaajuaGcaWGnbWaaSbaaKqb GeaacaaIYaaabeaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaaca WGubaaaKqbakaadcfadaWgaaqcfasaaiaaikdaaeqaaaqcfayaaiab gUcaR8qacaGGGcWdaiabew7aLnaaBaaajuaibaGaaGOnaaqcfayaba GaamiuamaaDaaajuaibaGaaGOmaaqaaiaaikdaaaqcfaOaey4kaSIa eqyTdu2aaSbaaKqbGeaacaaI5aaabeaajuaGcaWGqbWaaSbaaKqbGe aacaaIYaaabeaajuaGcaWGnbWaaSbaaKqbGeaacaaIXaaabeaajuaG caWGnbWaa0baaKqbGeaacaaIXaaabaGaamivaaaajuaGcaWGqbWaaS baaKqbGeaacaaIYaaabeaajuaGcqGHRaWkcqaH1oqzdaqhaaqcfasa aiaaiwdaaeaacqGHsislcaaIXaaaaKqbakaadcfadaWgaaqcfasaai aaikdaaeqaaKqbakaadweacaWGfbWaa0baaKqbGeaacaaIXaaabaGa amivaaaajuaGcaWGqbWaaSbaaKqbGeaacaaIYaaabeaajuaGpeGaai iOa8aacqGHRaWkpeGaaiiOa8aacqaH1oqzdaqhaaqcfasaaiaaiIda aeaacqGHsislcaaIXaaaaKqbakaad6eadaqhaaqcfasaaiaaigdaae aacaWGubaaaKqbakaad6eadaWgaaqcfasaaiaaigdaaeqaaKqbakab gUcaRiabew7aLnaaDaaajuaibaGaaGyoaaqaaiabgkHiTiaaigdaaa qcfa4aaeWaaeaacaWGobWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWG lbWaaSbaaKqbGeaacaaIYaaabeaaaKqbakaawIcacaGLPaaadaahaa qabKqbGeaacaWGubaaaKqbaoaabmaabaGaamOtamaaBaaajuaibaGa aGOmaaqabaqcfaOaam4samaaBaaajuaibaGaaGOmaaqabaaajuaGca GLOaGaayzkaaGaaiilaaaaaa@C3B1@

Φ *  :  =  A T P 1  +  P 1 A +  ε 6 P 1 2  +  ε 7 P 1 M 1 M 1 T P 1  +  ε 5 1 P 1 E E T P 1 +  ε 5 ( F 1 F f ) T ( F 1 F f ) +  ε 6 1 λ max ( M 1 T M 1 ) ( N 3 F 1 F f ) T ( N 3 F 1 F f )  +  ε 7 1 N 1 T N 1 +  δ 3 I, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaeu OPdy0aaSbaaeaacaGGQaaabeaaqaaaaaaaaaWdbiaacckapaGaaiOo a8qacaGGGcGccaGGGcqcfa4daiabg2da98qacaGGGcWdaiaadgeada ahaaqcfasabeaacaWGubaaaKqbakaadcfadaWgaaqcfasaaiaaigda aeqaaKqba+qacaGGGcWdaiabgUcaR8qacaGGGcWdaiaadcfadaWgaa qcfasaaiaaigdaaKqbagqaaiaadgeapeGaaiiOa8aacqGHRaWkpeGa aiiOa8aacqaH1oqzdaWgaaqcfasaaKqbaoaaBaaajuaibaGaaGOnaa qabaaabeaajuaGcaWGqbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaa juaGpeGaaiiOa8aacqGHRaWkpeGaaiiOa8aacqaH1oqzdaWgaaqcfa saaiaaiEdaaKqbagqaaiaadcfadaWgaaqcfasaaiaaigdaaKqbagqa aiaad2eadaWgaaqcfasaaiaaigdaaeqaaKqbakaad2eadaqhaaqcfa saaiaaigdaaeaacaWGubaaaKqbakaadcfadaWgaaqcfasaaiaaigda aeqaaKqba+qacaGGGcWdaiabgUcaR8qacaGGGcWdaiabew7aLnaaDa aajuaibaGaaGynaaqaaiabgkHiTiaaigdaaaqcfaOaamiuamaaBaaa juaibaGaaGymaaqabaqcfaOaamyraiaadweadaahaaqabKqbGeaaca WGubaaaKqbakaadcfadaWgaaqcfasaaiaaigdaaeqaaaqcfayaaiab gUcaR8qacaGGGcWdaiabew7aLnaaBaaajuaibaGaaGynaaqabaqcfa 4aaeWaaeaacaWGgbWaaSbaaKqbGeaacaaIXaaajuaGbeaacaWGgbWa aSbaaKqbGeaacaWGMbaajuaGbeaaaiaawIcacaGLPaaadaahaaqcfa sabeaacaWGubaaaKqbaoaabmaabaGaamOramaaBaaajuaibaGaaGym aaqabaqcfaOaamOramaaBaaajuaibaGaamOzaaqcfayabaaacaGLOa GaayzkaaWdbiaacckapaGaey4kaSYdbiaacckapaGaeqyTdu2aa0ba aKqbGeaacaaI2aaabaGaeyOeI0IaaGymaaaajuaGcqaH7oaBdaWgaa qcfasaaiaad2gacaWGHbGaamiEaaqabaqcfa4aaeWaaeaacaWGnbWa a0baaKqbGeaacaaIXaaabaGaamivaaaajuaGcaWGnbWaaSbaaKqbGe aacaaIXaaabeaaaKqbakaawIcacaGLPaaadaqadaqaaiaad6eadaWg aaqcfasaaiaaiodaaKqbagqaaiaadAeadaWgaaqcfasaaiaaigdaae qaaKqbakaadAeadaWgaaqcfasaaiaadAgaaKqbagqaaaGaayjkaiaa wMcaamaaCaaabeqcfasaaiaadsfaaaqcfa4aaeWaaeaacaWGobWaaS baaKqbGeaacaaIZaaabeaajuaGcaWGgbWaaSbaaKqbGeaacaaIXaaa juaGbeaacaWGgbWaaSbaaKqbGeaacaWGMbaajuaGbeaaaiaawIcaca GLPaaapeGaaiiOaaqaa8aacqGHRaWkpeGaaiiOa8aacqaH1oqzdaqh aaqcfasaaiaaiEdaaeaacqGHsislcaaIXaaaaKqbakaad6eadaqhaa qcfasaaiaaigdaaeaacaWGubaaaKqbakaad6eadaWgaaqcfasaaiaa igdaaeqaaKqbakabgUcaR8qacaGGGcWdaiabes7aKnaaBaaajuaiba GaaG4maaqabaqcfaOaamysaiaacYcaaaaa@C98F@

Θ ¯ *  :  =  P 1 B+  ε 7 1 N 1 T N 2 , R ¯ *   :  =  ε 7 1 N 2 T N 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOafu iMdeLbaebadaWgaaqcfasaaiaacQcaaKqbagqaaabaaaaaaaaapeGa aiiOa8aacaGG6aWdbiaacckacaGGGcGaeyypa0JaaiiOaiaadcfada WgaaqcfasaaiaaigdaaeqaaKqbakaadkeacqGHRaWkcaGGGcGaeqyT du2aa0baaKqbGeaacaaI3aaabaGaeyOeI0IaaGymaaaajuaGcaWGob Waa0baaKqbGeaacaaIXaaabaGaamivaaaajuaGcaWGobWaaSbaaKqb GeaacaaIYaaajuaGbeaacaGGSaaabaGabmOuayaaraWaaSbaaKqbGe aacaGGQaGaaiiOaaqcfayabaGaaiiOaiaacQdacaGGGcGaaiiOaiab g2da9iaacckacqaH1oqzdaqhaaqcfasaaiaaiEdaaeaacqGHsislca aIXaaaaKqbakaad6eadaqhaaqcfasaaiaaikdaaeaacaWGubaaaKqb akaad6eadaWgaaqcfasaaiaaikdaaeqaaKqbakaacYcaaaaa@65F8@

Ψ *  :  =  ( A+B K 2 ) T P 2 + P 2 ( A+B K 2 )+  ε 9 1 ( N 2 K 2 ) +  ε 6 P 2 2 + ( ε 8 + ε 9 ) P 2 M 1 M 1 T P 2 +  ε 5 1 P 2 E E T P 2 +  ε 8 1 N 1 T N 1 +  δ 4 I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHOoqwdaWgaaqcfasaaiaacQcaaeqaaKqbakaaccka caGG6aGaaiiOaiaacckacqGH9aqpcaGGGcWaaeWaaeaacaWGbbGaey 4kaSIaamOqaiaadUeadaWgaaqcfasaaiaaikdaaeqaaaqcfaOaayjk aiaawMcaamaaCaaabeqcfasaaiaadsfaaaqcfaOaamiuamaaBaaaju aibaGaaGOmaaqcfayabaGaey4kaSIaamiuamaaBaaajuaibaGaaGOm aaqabaqcfa4aaeWaaeaacaWGbbGaey4kaSIaamOqaiaadUeadaWgaa qcfasaaiaaikdaaeqaaaqcfaOaayjkaiaawMcaaiabgUcaRiaaccka cqaH1oqzdaqhaaqcfasaaiaaiMdaaeaacqGHsislcaaIXaaaaKqbao aabmaabaGaamOtamaaBaaajuaibaGaaGOmaaqcfayabaGaam4samaa BaaajuaibaGaaGOmaaqcfayabaaacaGLOaGaayzkaaaabaGaey4kaS IaaiiOaiabew7aLnaaBaaajuaibaGaaGOnaaqcfayabaGaamiuamaa DaaajuaibaGaaGOmaaqaaiaaikdaaaqcfaOaey4kaSIaaiiOamaabm aabaGaeqyTdu2aaSbaaKqbGeaacaaI4aaabeaajuaGcqGHRaWkcqaH 1oqzdaWgaaqcfasaaiaaiMdaaeqaaaqcfaOaayjkaiaawMcaaiaadc fadaWgaaqcfasaaiaaikdaaeqaaKqbakaad2eadaWgaaqcfasaaiaa igdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaigdaaeaacaWGubaaaK qbakaadcfadaWgaaqcfasaaiaaikdaaKqbagqaaiabgUcaRiaaccka cqaH1oqzdaqhaaqcfasaaiaaiwdaaeaacqGHsislcaaIXaaaaKqbak aadcfadaWgaaqcfasaaiaaikdaaeqaaKqbakaadweacaWGfbWaaWba aeqajuaibaGaamivaaaajuaGcaWGqbWaaSbaaKqbGeaacaaIYaaabe aajuaGcqGHRaWkcaGGGcGaeqyTdu2aa0baaKqbGeaacaaI4aaabaGa eyOeI0IaaGymaaaajuaGcaWGobWaa0baaKqbGeaacaaIXaaabaGaam ivaaaajuaGcaWGobWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHRaWk caGGGcGaeqiTdq2aaSbaaKqbGeaacaaI0aaabeaajuaGcaWGjbaaaa a@A168@

Θ *  :  = C+  ε 8 M 2 M 1 T P 2 , R *  :  =  ε 8 M 2 M 2 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHyoqudaWgaaqcfasaaiaacQcaaKqbagqaaiaaccka caGG6aGaaiiOaiaacckacqGH9aqpcaGGGcGaam4qaiabgUcaRiaacc kacqaH1oqzdaWgaaqcfasaaiaaiIdaaeqaaKqbakaad2eadaWgaaqc fasaaiaaikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaigdaaeaaca WGubaaaKqbakaadcfadaWgaaqcfasaaiaaikdaaeqaaKqbakaacYca aeaacaWGsbWaaSbaaKqbGeaacaGGQaaabeaajuaGcaGGGcGaaiOoai aacckacaGGGcGaeyypa0JaaiiOaiabew7aLnaaBaaajuaibaGaaGio aaqabaqcfaOaamytamaaBaaajuaibaGaaGOmaaqabaqcfaOaamytam aaDaaajuaibaGaaGOmaaqaaiaadsfaaaaaaaa@5FF5@ (33)

Theorem 4: Under Assumptions 3-5, two nonlinear observer gain parameter matrices G∗ and K∗ such that the augmented system (31) is ASMS if and only if there exist sufficiently small positive constants δ3, δ4, and a positive achievable parameter vector (ε5, ε6, ε7, ε8, ε9, P) such that the following algebraic Riccati matrix equalities

Γ *1  :  =  ( A+B K 1 ) T P 1 + P 1 ( A+B K 1 ) +  ε 5 ( F 1 F f ) T ( F 1 F f ) +  ε 6 P 1 2 +  ε 7 P 1 M 1 M 1 T P 1 +  ε 5 1 P 1 E E T P 1 +  ε 6 1 λ max ( M 1 T M 1 ) ( N 3 F 1 F f ) T ( N 3 F 1 F f ) +   ε 7 1 ( N 1 + N 2 K 1 ) T ( N 1 + N 2 K ) +  δ 3 I= 0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHtoWrdaWgaaqcfasaaiaacQcacaaIXaaajuaGbeaa caGGGcGaaiOoaiaacckacaGGGcGaeyypa0JaaiiOamaabmaabaGaam yqaiabgUcaRiaadkeacaWGlbWaaSbaaKqbGeaacaaIXaaajuaGbeaa aiaawIcacaGLPaaadaahaaqcfasabeaacaWGubaaaKqbakaadcfada WgaaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaadcfadaWgaaqcfasa aiaaigdaaeqaaKqbaoaabmaabaGaamyqaiabgUcaRiaadkeacaWGlb WaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaaaeaacqGH RaWkcaGGGcGaeqyTdu2aaSbaaKqbGeaacaaI1aaajuaGbeaadaqada qaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAeadaWgaaqc fasaaiaadAgaaeqaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaai aadsfaaaqcfa4aaeWaaeaacaWGgbWaaSbaaKqbGeaacaaIXaaabeaa juaGcaWGgbWaaSbaaKqbGeaacaWGMbaabeaaaKqbakaawIcacaGLPa aacaGGGcGaey4kaSIaaiiOaiabew7aLnaaBaaajuaibaGaaGOnaaqc fayabaGaamiuamaaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaey 4kaSIaaiiOaiabew7aLnaaBaaajuaibaGaaG4naaqcfayabaGaamiu amaaBaaajuaibaGaaGymaaqabaqcfaOaamytamaaBaaajuaibaGaaG ymaaqabaqcfaOaamytamaaDaaajuaibaGaaGymaaqaaiaadsfaaaqc faOaamiuamaaBaaajuaibaGaaGymaaqabaqcfaOaey4kaSIaaiiOai abew7aLnaaDaaajuaibaGaaGynaaqaaiabgkHiTiaaigdaaaqcfaOa amiuamaaBaaajuaibaGaaGymaaqabaqcfaOaamyraiaadweadaahaa qcfasabeaacaWGubaaaKqbakaadcfadaWgaaqcfasaaiaaigdaaeqa aaqcfayaaiabgUcaRiaacckacqaH1oqzdaqhaaqcfasaaiaaiAdaae aacqGHsislcaaIXaaaaKqbakabeU7aSnaaBaaajuaibaGaamyBaiaa dggacaWG4baabeaajuaGdaqadaqaaiaad2eadaqhaaqcfasaaiaaig daaeaacaWGubaaaKqbakaad2eadaWgaaqcfasaaiaaigdaaeqaaaqc faOaayjkaiaawMcaamaabmaabaGaamOtamaaBaaajuaibaGaaG4maa qabaqcfaOaamOramaaBaaajuaibaGaaGymaaqabaqcfaOaamOramaa BaaajuaibaGaamOzaaqabaaajuaGcaGLOaGaayzkaaWaaWbaaKqbGe qabaGaamivaaaajuaGdaqadaqaaiaad6eadaWgaaqcfasaaiaaioda aeqaaKqbakaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAeada WgaaqcfasaaiaadAgaaeqaaaqcfaOaayjkaiaawMcaaiaacckacqGH RaWkaeaacaGGGcGaeqyTdu2aa0baaKqbGeaacaaI3aaabaGaeyOeI0 IaaGymaaaajuaGdaqadaqaaiaad6eadaWgaaqcfasaaiaaigdaaeqa aKqbakabgUcaRiaad6eadaWgaaqcfasaaiaaikdaaeqaaKqbakaadU eadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawMcaamaaCaaa juaibeqaaiaadsfaaaqcfa4aaeWaaeaacaWGobWaaSbaaKqbGeaaca aIXaaabeaajuaGcqGHRaWkcaWGobWaaSbaaKqbGeaacaaIYaaabeaa juaGcaWGlbaacaGLOaGaayzkaaGaaiiOaiabgUcaRiaacckacqaH0o azdaWgaaqcfasaaiaaiodaaeqaaKqbakaadMeacqGH9aqpcaGGGcGa aGimaiaacckaaaaa@DF40@  (34)

Γ *2  :  =  ( A G * C+B K 2 ) T P 2 + P 2 ( A G * C+B K 2 ) +  ε 8 P 2 ( M 1 G * M 2 ) ( M 1 G * M 2 ) T P 2 +  ε 6 P 2 2 + ε 9 P 2 M 1 M 1 T P 2  +  ε 8 1 T N 1 T N 1 + ε 9 1 ( N 2 K 2 )  +   δ 4 I=  0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHtoWrdaWgaaqcfasaaiaacQcacaaIYaaajuaGbeaa caGGGcGaaiOoaiaacckacaGGGcGaeyypa0JaaiiOamaabmaabaGaam yqaiabgkHiTiaadEeadaWgaaqcfasaaiaacQcaaKqbagqaaiaadoea cqGHRaWkcaWGcbGaam4samaaBaaajuaibaGaaGOmaaqcfayabaaaca GLOaGaayzkaaWaaWbaaKqbGeqabaGaamivaaaajuaGcaWGqbWaaSba aKqbGeaacaaIYaaabeaajuaGcqGHRaWkcaWGqbWaaSbaaKqbGeaaca aIYaaabeaajuaGdaqadaqaaiaadgeacqGHsislcaWGhbWaaSbaaeaa caGGQaaabeaacaWGdbGaey4kaSIaamOqaiaadUeadaWgaaqcfasaai aaikdaaKqbagqaaaGaayjkaiaawMcaaaqaaiabgUcaRiaacckacqaH 1oqzdaWgaaqcfasaaiaaiIdaaKqbagqaaiaadcfadaWgaaqcfasaai aaikdaaeqaaKqbaoaabmaabaGaamytamaaBaaajuaibaGaaGymaaqc fayabaGaeyOeI0Iaam4ramaaBaaajuaibaGaaiOkaaqcfayabaGaam ytamaaBaaajuaibaGaaGOmaaqabaaajuaGcaGLOaGaayzkaaWaaeWa aeaacaWGnbWaaSbaaKqbGeaacaaIXaaajuaGbeaacqGHsislcaWGhb WaaSbaaKqbGeaacaGGQaaajuaGbeaacaWGnbWaaSbaaKqbGeaacaaI YaaabeaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaacaWGubaaaK qbakaadcfadaWgaaqcfasaaiaaikdaaeqaaaqcfayaaiabgUcaRiaa cckacqaH1oqzdaWgaaqcfasaaiaaiAdaaKqbagqaaiaadcfadaqhaa qcfasaaiaaikdaaeaacaaIYaaaaKqbakabgUcaRiabew7aLnaaBaaa juaibaGaaGyoaaqabaqcfaOaamiuamaaBaaajuaibaGaaGOmaaqaba qcfaOaamytamaaBaaajuaibaGaaGymaaqabaqcfaOaamytamaaDaaa juaibaGaaGymaaqaaiaadsfaaaqcfaOaamiuamaaBaaajuaibaGaaG OmaaqabaqcfaOaaiiOaiabgUcaRiaacckacqaH1oqzdaWgaaqaamaa DaaajuaibaGaaGioaaqaaiabgkHiTiaaigdaaaaajuaGbeaadaahaa qcfasabeaacaWGubaaaKqbakaad6eadaqhaaqcfasaaiaaigdaaeaa caWGubaaaKqbakaad6eadaWgaaqcfasaaiaaigdaaeqaaKqbakabgU caRiabew7aLnaaDaaajuaibaGaaGyoaaqaaiabgkHiTiaaigdaaaqc fa4aaeWaaeaacaWGobWaaSbaaKqbGeaacaaIYaaajuaGbeaacaWGlb WaaSbaaKqbGeaacaaIYaaabeaaaKqbakaawIcacaGLPaaacaGGGcGa aiiOaiabgUcaRiaacckacaGGGcGaeqiTdq2aaSbaaKqbGeaacaaI0a aabeaajuaGcaWGjbGaeyypa0JaaiiOaiaacckacaaIWaGaaiilaaaa aa@BC8B@  (35)

Holds, respectively, have positive-definite solutions P = diag (P1,P2) with P1 > 0 and P2 > 0, where all the matrices Φ * ,  Θ ¯ * ,  R ¯ * ,  Ψ * ,  Θ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfA6agn aaBaaajuaibaGaaiOkaaqabaqcfaOaaiilaabaaaaaaaaapeGaaiiO a8aacuqHyoqugaqeamaaBaaajuaibaGaaiOkaaqabaqcfaOaaiila8 qacaGGGcWdaiqadkfagaqeamaaBaaabaWaaSbaaKqbGeaacaGGQaaa beaaaKqbagqaaiaacYcapeGaaiiOa8aacqqHOoqwdaWgaaqcfasaai aacQcaaeqaaKqbakaacYcapeGaaiiOa8aacqqHyoqudaWgaaqcfasa aiaacQcaaeqaaaaa@4C9D@ and R * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfada WgaaqcfasaaiaacQcaaeqaaaaa@384D@  are defined in (33), then the nonlinear observer gains of (27) are parameterized by

K 1 =  R ¯ * 0.5 V ¯ * T U ¯ * R ¯ * 1 Θ ¯ * , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4samaaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0JaaiiO aiqadkfagaqeamaaDaaajuaibaGaaiOkaaqaaiabgkHiTiaaicdaca GGUaGaaGynaaaajuaGceWGwbGbaebadaqhaaqcfasaaiaacQcaaeaa caWGubaaaKqbakqadwfagaqeamaaBaaajuaibaGaaiOkaaqcfayaba GaeyOeI0IabmOuayaaraWaa0baaKqbGeaacaGGQaaabaGaeyOeI0Ia aGymaaaajuaGcuqHyoqugaqeamaaBaaajuaibaGaaiOkaaqcfayaba Gaaiilaaaa@4F6D@ (36)

K 2 =  ε 5 1 E E T P 1 B+q λ max ( M 1 T M 1 ) N 2 T N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4samaaBaaajuaibaGaaGOmaaqabaqcfaOaeyypa0JaaiiO amaalaaabaGaeqyTdu2aa0baaKqbGeaacaaI1aaabaGaeyOeI0IaaG ymaaaajuaGcaWGfbGaamyramaaCaaabeqcfasaaiaadsfaaaqcfaOa amiuamaaBaaajuaibaGaaGymaaqabaaajuaGbaGaamOqaiabgUcaRi aadghadaGcaaqaaiabeU7aSnaaBaaajuaibaGaciyBaiaacggacaGG 4baajuaGbeaadaqadaqaaiaad2eadaqhaaqcfasaaiaaigdaaeaaca WGubaaaKqbakaad2eadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjk aiaawMcaaiaad6eadaqhaaqcfasaaiaaikdaaeaacaWGubaaaKqbak aad6eadaWgaaqcfasaaiaaikdaaeqaaaqcfayabaaaaaaa@5ADD@  (37)

G * = P 2 1 Θ * T R * 1 P 2 1 U * V * R * 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4ramaaBaaajuaibaGaaiOkaaqabaqcfaOaeyypa0Jaamiu amaaDaaajuaibaGaaGOmaaqaaiabgkHiTiaaigdaaaqcfaOaeuiMde 1aa0baaKqbGeaacaGGQaaabaGaamivaaaajuaGcaWGsbWaa0baaKqb GeaacaGGQaaabaGaeyOeI0IaaGymaaaajuaGcqGHsislcaWGqbWaa0 baaKqbGeaacaaIYaaabaGaeyOeI0IaaGymaaaajuaGcaWGvbWaaSba aKqbGeaacaGGQaaabeaajuaGcaWGwbWaaSbaaKqbGeaacaGGQaaabe aajuaGcaWGsbWaa0baaKqbGeaacaGGQaaabaGaeyOeI0IaaGimaiaa c6cacaaI1aaaaaaa@54B0@  (38)

Where,

  1. V ¯ * R p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmOvayaaraWaaSbaaKqbGeaacaGGQaaabeaajuaGcqGHiiIZ caWGsbWaaWbaaeqajuaibaGaamiCaiabgEna0kaadchaaaaaaa@3FC3@ is an arbitrary orthogonal matrix (i.e., V ¯ * V ¯ * T =I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmOvayaaraWaaSbaaKqbGeaacaGGQaaabeaajuaGceWGwbGb aebadaWgaaqcfasaaiaacQcaaeqaaKqbaoaaCaaabeqcfasaaiaads faaaqcfaOaeyypa0Jaamysaaaa@3F20@ ), U ¯ * R n×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmyvayaaraWaaSbaaKqbGeaacaGGQaaabeaajuaGcqGHiiIZ caWGsbWaaWbaaeqajuaibaGaamOBaiabgEna0kaadchaaaaaaa@3FC0@ is an arbitrary matrix meeting Φ * +  U ¯ *   U ¯ T *   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaeuOPdy0aaSbaaKqbGeaacaGGQaaabeaajuaGcqGH RaWkcaGGGcGabmyvayaaraWaaSbaaKqbGeaacaGGQaaabeaajuaGca GGGcGabmyvayaaraWaaWbaaKqbGeqabaGaamivaaaajuaGdaWgaaqc fasaaiaacQcaaeqaaKqbakaacckajuaicqGHLjYSjuaGcaGGGcqcfa IaaGimaaaa@4A18@ and Φ∗ is defined in (33);
  2. V ¯ * R p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmOvayaaraWaaSbaaKqbGeaacaGGQaaabeaajuaGcqGHiiIZ caWGsbWaaWbaaeqajuaibaGaamiCaiabgEna0kaadchaaaaaaa@3FC3@ is an arbitrary orthogonal matrix (i.e., V ¯ * V ¯ * T =I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmOvayaaraWaaSbaaKqbGeaacaGGQaaabeaajuaGceWGwbGb aebadaWgaaqcfasaaiaacQcaaeqaaKqbaoaaCaaabeqcfasaaiaads faaaqcfaOaeyypa0Jaamysaaaa@3F20@ ), U ¯ * R n×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmyvayaaraWaaSbaaKqbGeaacaGGQaaabeaajuaGcqGHiiIZ caWGsbWaaWbaaeqajuaibaGaamOBaiabgEna0kaadchaaaaaaa@3FC0@ is an arbitrary matrix satisfying Ψ * + U *   U * T   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaeuiQdK1aaSbaaKqbGeaacaGGQaaabeaacqGHRaWk juaGcaWGvbWaaSbaaKqbGeaacaGGQaaabeaajuaGcaGGGcGaamyvam aaBaaajuaibaGaaiOkaaqabaqcfa4aaWbaaKqbGeqabaGaamivaaaa juaGcaGGGcGaeyyzImRaaiiOaiaaicdaaaa@47EF@ and Ψ∗ is expressed in (33).

Proof: (Necessity) Setting P=[ P 1 0 0 P 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiuaiabg2da9maadmaabaqbaeqabiGaaaqaaiaadcfadaWg aaqcfasaaiaaigdaaeqaaaqcfayaaiaaicdaaeaacaaIWaaabaGaam iuamaaBaaajuaibaGaaGOmaaqabaaaaaqcfaOaay5waiaaw2faaaaa @40C5@  it is note that Assumption 4 does not lose any generality, so the matrix M2 is of full row rank, and R ¯ * 1 , R * 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadkfaga qeamaaDaaajuaibaGaaiOkaaqaaiabgkHiTiaaigdaaaqcfaOaaiil aiaadkfadaqhaaqcfasaaiaacQcaaeaacqGHsislcaaIXaaaaaaa@3EC9@ exist. Simultaneously, some definitions of A ¯ f ,Δ A ¯ f , E ¯ f ,Δ E ¯ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgeaga qeamaaBaaajuaibaGaamOzaaqcfayabaGaaiilaiabgs5aejqadgea gaqeamaaBaaajuaibaGaamOzaaqabaqcfaOaaiilaiqadweagaqeam aaBaaajuaibaGaamOzaaqabaqcfaOaaiilaiabgs5aejqadweagaqe amaaBaaajuaibaGaamOzaaqcfayabaaaaa@45F7@ are considered in (30), by using the Lyapunov function candidate as Y( t )= x f T ( t )P x f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfada qadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaa0baaKqb GeaacaWGMbaabaGaamivaaaajuaGdaqadaqaaiaadshaaiaawIcaca GLPaaacaWGqbGaamiEamaaBaaajuaibaGaamOzaaqcfayabaWaaeWa aeaacaWG0baacaGLOaGaayzkaaaaaa@471C@  then the time derivative of Y(t) along a given trajectory (31) is governed by

dY( t ) dt := x ˙ f T ( t )P x f ( t )+ x f T ( t )P x ˙ f ( t ) = x f T ( t )( A ¯ f T P+P A ¯ f T +Δ A ¯ f T P+PΔ A ¯ f ) x f ( t ) + ξ f T ( t ) E ¯ f T P x f ( t )+ x f T ( t )PΔ E ¯ f ξ f ( t ) + ξ f T ( t )Δ E ¯ f T P x f ( t )+ x f T ( t )PΔ E ¯ f ξ f ( t )+2 x f T ( t )P D ¯ f w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aaS aaaeaacaWGKbGaamywamaabmaabaGaamiDaaGaayjkaiaawMcaaaqa aiaadsgacaWG0baaaiaacQdacqGH9aqpceGG4bGbaiaadaqhaaqcfa saaiaadAgaaeaacaWGubaaaKqbaoaabmaabaGaamiDaaGaayjkaiaa wMcaaiaadcfacaWG4bWaaSbaaKqbGeaacaWGMbaajuaGbeaadaqada qaaiaadshaaiaawIcacaGLPaaacqGHRaWkcaWG4bWaa0baaKqbGeaa caWGMbaabaGaamivaaaajuaGdaqadaqaaiaadshaaiaawIcacaGLPa aacaWGqbGabmiEayaacaWaaSbaaKqbGeaacaWGMbaabeaajuaGdaqa daqaaiaadshaaiaawIcacaGLPaaaaeaacqGH9aqpcaGG4bWaa0baaK qbGeaacaWGMbaabaGaamivaaaajuaGdaqadaqaaiaadshaaiaawIca caGLPaaadaqadaqaaiqadgeagaqeamaaDaaajuaibaGaamOzaaqaai aadsfaaaqcfaOaamiuaiabgUcaRiaadcfaceWGbbGbaebadaqhaaqc fasaaiaadAgaaeaacaWGubaaaKqbakabgUcaRiabgs5aejqadgeaga qeamaaDaaajuaibaGaamOzaaqaaiaadsfaaaqcfaOaamiuaiabgUca RiaadcfacqGHuoarceWGbbGbaebadaWgaaqcfasaaiaadAgaaKqbag qaaaGaayjkaiaawMcaaiaadIhadaWgaaqcfasaaiaadAgaaKqbagqa amaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiabgUcaRiabe67a4n aaDaaajuaibaGaamOzaaqaaiaadsfaaaqcfa4aaeWaaeaacaWG0baa caGLOaGaayzkaaGabmyrayaaraWaa0baaKqbGeaacaWGMbaabaGaam ivaaaajuaGcaWGqbGaamiEamaaBaaajuaibaGaamOzaaqabaqcfa4a aeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSIaamiEamaaDaaaju aibaGaamOzaaqaaiaadsfaaaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaGaamiuaiabgs5aejqadweagaqeamaaBaaajuaibaGaamOzaa qcfayabaGaeqOVdG3aaSbaaKqbGeaacaWGMbaajuaGbeaadaqadaqa aiaadshaaiaawIcacaGLPaaaaeaacqGHRaWkcqaH+oaEdaqhaaqcfa saaiaadAgaaeaacaWGubaaaKqbaoaabmaabaGaamiDaaGaayjkaiaa wMcaaiabgs5aejqadweagaqeamaaDaaajuaibaGaamOzaaqaaiaads faaaqcfaOaamiuaiaadIhadaWgaaqcfasaaiaadAgaaKqbagqaamaa bmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRiaadIhadaqhaaqcfa saaiaadAgaaeaacaWGubaaaKqbaoaabmaabaGaamiDaaGaayjkaiaa wMcaaiaadcfacqGHuoarceWGfbGbaebadaWgaaqcfasaaiaadAgaaK qbagqaaiabe67a4naaBaaajuaibaGaamOzaaqabaqcfa4aaeWaaeaa caWG0baacaGLOaGaayzkaaGaey4kaSIaaGOmaiaadIhadaqhaaqcfa saaiaadAgaaeaacaWGubaaaKqbaoaabmaabaGaamiDaaGaayjkaiaa wMcaaiaadcfaceWGebGbaebadaWgaaqcfasaaiaadAgaaKqbagqaai aadEhadaqadaqaaiaadshaaiaawIcacaGLPaaaaaaa@D2B2@  (39)

By adopting from Lemma 1 to Lemma 3, Eq.(39) is replaced by

dY( t ) dt := x f T ( t )Π x f ( t ) x f T ( t )Σ x f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaiaadMfadaqadaqaaiaadshaaiaawIcacaGLPaaaaeaacaWG KbGaamiDaaaacaGG6aGaeyypa0JaaiiEamaaDaaajuaibaGaamOzaa qaaiaadsfaaaqcfa4aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeuiO daLaamiEamaaBaaajuaibaGaamOzaaqcfayabaWaaeWaaeaacaWG0b aacaGLOaGaayzkaaGaeyizImQaamiEamaaDaaajuaibaGaamOzaaqa aiaadsfaaaqcfa4aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeu4Odm LaamiEamaaBaaajuaibaGaamOzaaqabaqcfa4aaeWaaeaacaWG0baa caGLOaGaayzkaaaaaa@59FE@  (40)

Where, Π = [ Π 11 Π 12 Π 12 T Π 22 ], Σ = [ Σ 11 Σ 12 Σ 12 T Σ 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfc6aqb baaaaaaaaapeGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWadaqaauaa beqaciaaaeaacqqHGoaudaWgaaqcfasaaiaaigdacaaIXaaajuaGbe aaaeaacqqHGoaudaWgaaqcfasaaiaaigdacaaIYaaajuaGbeaaaeaa cqqHGoaudaqhaaqcfasaaiaaigdacaaIYaaabaGaamivaaaaaKqbag aacqqHGoaudaWgaaqcfasaaiaaikdacaaIYaaajuaGbeaaaaaacaGL BbGaayzxaaGaaiila8qacaGGGcWdaiabfo6at9qacaGGGcWdaiabg2 da98qacaGGGcWdamaadmaabaqbaeqabiGaaaqaaiabfo6atnaaBaaa juaibaGaaGymaiaaigdaaKqbagqaaaqaaiabfo6atnaaBaaajuaiba GaaGymaiaaikdaaKqbagqaaaqaaiabfo6atnaaDaaajuaibaGaaGym aiaaikdaaeaacaWGubaaaaqcfayaaiabfo6atnaaBaaajuaibaGaaG OmaiaaikdaaKqbagqaaaaaaiaawUfacaGLDbaaaaa@66F6@ , and

Π 11  :  =  ( A+B K 1 ) T P 1 + P 1 ( A+B K 1 ) + ( M 1 F( t )( N 1 + N 2 K 1 ) ) T P 1 + P 1 ( M 1 F( t )( N 1 + N 2 K 1 ) ) +  ε 5 ( F 1 F f ) T ( F 1 F f ) +  ε 6 P 1 2 +  ε 5 1 P 1 E E T P 1  +   ε 6 1 λ max ( M 1 T M 1 ) ( N 3 F 1 F f ) T ( N 3 F 1 F f ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHGoaudaWgaaqcfasaaiaaigdacaaIXaaabeaajuaG caGGGcGaaiOoaiaacckacaGGGcGaeyypa0JaaiiOamaabmaabaGaam yqaiabgUcaRiaadkeacaWGlbWaaSbaaKqbGeaacaaIXaaabeaaaKqb akaawIcacaGLPaaadaahaaqabKqbGeaacaWGubaaaKqbakaadcfada WgaaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaadcfadaWgaaqcfasa aiaaigdaaeqaaKqbaoaabmaabaGaamyqaiabgUcaRiaadkeacaWGlb WaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaaaeaacqGH RaWkdaqadaqaaiaad2eadaWgaaqcfasaaiaaigdaaeqaaKqbakaadA eadaqadaqaaiaadshaaiaawIcacaGLPaaadaqadaqaaiaad6eadaWg aaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaad6eadaWgaaqcfasaai aaikdaaeqaaKqbakaadUeadaWgaaqcfasaaiaaigdaaeqaaaqcfaOa ayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaajuaibeqaaiaadsfaaa qcfaOaamiuamaaBaaajuaibaGaaGymaaqabaqcfaOaey4kaSIaamiu amaaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaacaWGnbWaaSbaaK qbGeaacaaIXaaabeaajuaGcaWGgbWaaeWaaeaacaWG0baacaGLOaGa ayzkaaWaaeWaaeaacaWGobWaaSbaaKqbGeaacaaIXaaabeaajuaGcq GHRaWkcaWGobWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGlbWaaSba aKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaaaiaawIcacaGLPa aaaeaacqGHRaWkcaGGGcGaeqyTdu2aaSbaaKqbGeaacaaI1aaajuaG beaadaqadaqaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbakaadA eadaWgaaqcfasaaiaadAgaaeqaaaqcfaOaayjkaiaawMcaamaaCaaa beqcfasaaiaadsfaaaqcfa4aaeWaaeaacaWGgbWaaSbaaKqbGeaaca aIXaaabeaajuaGcaWGgbWaaSbaaKqbGeaacaWGMbaabeaaaKqbakaa wIcacaGLPaaacaGGGcGaey4kaSIaaiiOaiabew7aLnaaBaaajuaiba GaaGOnaaqcfayabaGaamiuamaaDaaajuaibaGaaGymaaqaaiaaikda aaqcfaOaey4kaSIaaiiOaiabew7aLnaaDaaajuaibaGaaGynaaqaai abgkHiTiaaigdaaaqcfaOaamiuamaaBaaajuaibaGaaGymaaqabaqc faOaamyraiaadweadaahaaqcfasabeaacaWGubaaaKqbakaadcfada WgaaqcfasaaiaaigdaaeqaaKqbakaacckacqGHRaWkaeaacaGGGcGa eqyTdu2aa0baaKqbGeaacaaI2aaabaGaeyOeI0IaaGymaaaajuaGcq aH7oaBdaWgaaqcfasaaiaad2gacaWGHbGaamiEaaqcfayabaWaaeWa aeaacaWGnbWaa0baaKqbGeaacaaIXaaabaGaamivaaaajuaGcaWGnb WaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaadaqadaqa aiaad6eadaWgaaqcfasaaiaaiodaaeqaaKqbakaadAeadaWgaaqaaK qbGiaaigdaaKqbagqaaiaadAeadaWgaaqcfasaaiaadAgaaKqbagqa aaGaayjkaiaawMcaamaaCaaabeqcfasaaiaadsfaaaqcfa4aaeWaae aacaWGobWaaSbaaKqbGeaacaaIZaaabeaajuaGcaWGgbWaaSbaaeaa juaicaaIXaaajuaGbeaacaWGgbWaaSbaaKqbGeaacaWGMbaajuaGbe aaaiaawIcacaGLPaaacaGGSaaaaaa@D4C3@

Π 12  :  =  ( B K 2 M 1 F( t ) N 2 K 2 + ε 5 1 E E T P 1 ) T P 2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuiOda1aaSbaaKqbGeaacaaIXaGaaGOmaaqabaqcfaOaaiiO aiaacQdacaGGGcGaaiiOaiabg2da9iaacckadaqadaqaaiabgkHiTi aadkeacaWGlbWaaSbaaKqbGeaacaaIYaaabeaajuaGcqGHsislcaWG nbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaWGgbWaaeWaaeaacaWG0b aacaGLOaGaayzkaaGaamOtamaaBaaajuaibaGaaGOmaaqabaqcfaOa am4samaaBaaajuaibaGaaGOmaaqabaqcfaOaey4kaSIaeqyTdu2aa0 baaKqbGeaacaaI1aaabaGaeyOeI0IaaGymaaaajuaGcaWGfbGaamyr amaaCaaabeqcfasaaiaadsfaaaqcfaOaamiuamaaBaaajuaibaGaaG ymaaqabaaajuaGcaGLOaGaayzkaaWaaWbaaeqajuaibaGaamivaaaa juaGcaWGqbWaaSbaaeaajuaicaaIYaqcfaOaaiilaaqabaaaaa@6239@

Π 22  :  =  ( A G * C+B K 2 ) T P 2 + P 2 ( A G * C+B K 2 ) + [ ( M 1 G * M 2 )F( t ) N 1 + M 1 F( t ) N 2 K 2 ] T P 2 + P 2 [ ( M 1 G * M 2 )F( t ) N 1 + M 1 F( t ) N 2 K 2 ] + P 2 ( ε 5 1 E E T + ε 6 I ) P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacqqHGoaudaWgaaqcfasaaiaaikdacaaIYaaabeaajuaG caGGGcGaaiOoaiaacckacaGGGcGaeyypa0JaaiiOamaabmaabaGaam yqaiabgkHiTiaadEeadaWgaaqcfasaaiaacQcaaeqaaKqbakaadoea cqGHRaWkcaWGcbGaam4samaaBaaajuaibaGaaGOmaaqcfayabaaaca GLOaGaayzkaaWaaWbaaKqbGeqabaGaamivaaaajuaGcaWGqbWaaSba aKqbGeaacaaIYaaajuaGbeaacqGHRaWkcaWGqbWaaSbaaKqbGeaaca aIYaaabeaajuaGdaqadaqaaiaadgeacqGHsislcaWGhbWaaSbaaKqb GeaacaGGQaaabeaajuaGcaWGdbGaey4kaSIaamOqaiaadUeadaWgaa qcfasaaiaaikdaaeqaaaqcfaOaayjkaiaawMcaaaqaaiabgUcaRmaa dmaabaWaaeWaaeaacaWGnbWaaSbaaKqbGeaacaaIXaaabeaajuaGcq GHsislcaWGhbWaaSbaaKqbGeaacaGGQaaabeaajuaGcaWGnbWaaSba aKqbGeaacaaIYaaabeaaaKqbakaawIcacaGLPaaacaWGgbWaaeWaae aacaWG0baacaGLOaGaayzkaaGaamOtamaaBaaajuaibaGaaGymaaqa baqcfaOaey4kaSIaamytamaaBaaajuaibaGaaGymaaqabaqcfaOaam OramaabmaabaGaamiDaaGaayjkaiaawMcaaiaad6eadaWgaaqcfasa aiaaikdaaeqaaKqbakaadUeadaWgaaqcfasaaiaaikdaaeqaaaqcfa Oaay5waiaaw2faamaaCaaabeqaamaaCaaajuaibeqaaiaadsfaaaaa aKqbakaadcfadaWgaaqaamaaBaaajuaibaGaaGOmaaqabaaajuaGbe aaaeaacqGHRaWkcaWGqbWaaSbaaKqbGeaacaaIYaaabeaajuaGdaWa daqaamaabmaabaGaamytamaaBaaajuaibaGaaGymaaqabaqcfaOaey OeI0Iaam4ramaaBaaajuaibaGaaiOkaaqabaqcfaOaamytamaaBaaa juaibaGaaGOmaaqabaaajuaGcaGLOaGaayzkaaGaamOramaabmaaba GaamiDaaGaayjkaiaawMcaaiaad6eadaWgaaqcfasaaiaaigdaaeqa aKqbakabgUcaRiaad2eadaWgaaqcfasaaiaaigdaaeqaaKqbakaadA eadaqadaqaaiaadshaaiaawIcacaGLPaaacaWGobWaaSbaaKqbGeaa caaIYaaabeaajuaGcaWGlbWaaSbaaKqbGeaacaaIYaaabeaaaKqbak aawUfacaGLDbaaaeaacqGHRaWkcaWGqbWaaSbaaKqbGeaacaaIYaaa beaajuaGdaqadaqaaiabew7aLnaaDaaajuaibaGaaGynaaqaaiabgk HiTiaaigdaaaqcfaOaamyraiaadweadaahaaqabeaadaahaaqabeaa daahaaqcfasabeaacaWGubaaaaaaaaqcfaOaey4kaSIaeqyTdu2aaS baaKqbGeaacaaI2aaabeaajuaGcaWGjbaacaGLOaGaayzkaaGaamiu amaaBaaajuaibaGaaGOmaaqabaaaaaa@B34E@

According to Lyapunov theory, the augmented system (31) is ASMS for the addressed nonlinearity as well as all admissible uncertainties if only and if the inequality (40) is strictly less than zero. Fortunately, noting that the definition (33) and the sufficient conditions of Theorem 3, if the ARME (34) is implemented into inequality (40), then we obtain Σ 11 = δ 3 I0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4Odm1aaSbaaKqbGeaacaaIXaGaaGymaaqabaqcfaOaeyyp a0JaeyOeI0IaeqiTdq2aaSbaaKqbGeaacaaIZaaajuaGbeaacaWGjb GaeSOEIaNaaGimaaaa@42C7@ . Observing from the definition of positive matrix P, non-diagonal elements of (32) will be equal to zero, thus it is easy to get Σ12 = 0. Moreover, once the ARME (35) is true, it implies that Σ 22 = δ 4 I0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4Odm1aaSbaaKqbGeaacaaIYaGaaGOmaaqabaqcfaOaeyyp a0JaeyOeI0IaeqiTdq2aaSbaaKqbGeaacaaI0aaajuaGbeaacaWGjb GaeSOEIaNaaGimaaaa@42CA@ . Subsequently, there is dY( t ) dt 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaeaacaWGKbGaamywamaabmaabaGaamiDaaGaayjkaiaa wMcaaaqaaiaadsgacaWG0baaaiablQNiWjaaicdaaaa@3F2B@ . Therefore, the necessity proof of this theorem is to an end. (Sufficiency) The following derivation is focused on designing of the unknown feedback gain K * =[ K 1 K 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4saOWaaWbaaSqabeaadaWgaaadbaGaaiOkaaqabaaaaKqb akabg2da9maadmaabaqbaeqabeGaaaqaaiaadUeadaWgaaqcfasaai aaigdaaeqaaaqcfayaaiaadUeadaWgaaqcfasaaiaaikdaaKqbagqa aaaaaiaawUfacaGLDbaaaaa@40DF@ and the nonlinear observer gain G∗, by developing the following discussion.

  1. Considering of the definition (33), Σ12 = 0 is replaced by

( B K 2 M 1 F( t ) N 2 K 2 + ε 5 1 E E T P 1 ) T P 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeyOeI0IaamOqaiaadUeadaWgaaqcfasaaiaaikdaaeqaaKqbakab gkHiTiaad2eadaWgaaqcfasaaiaaigdaaeqaaKqbakaadAeadaqada qaaiaadshaaiaawIcacaGLPaaacaWGobWaaSbaaKqbGeaacaaIYaaa beaajuaGcaWGlbWaaSbaaeaadaWgaaqcfasaaiaaikdaaeqaaaqcfa yabaGaey4kaSIaeqyTdu2aa0baaKqbGeaacaaI1aaabaGaeyOeI0Ia aGymaaaajuaGcaWGfbGaamyramaaCaaabeqcfasaaiaadsfaaaqcfa OaamiuamaaBaaajuaibaGaaGymaaqabaaajuaGcaGLOaGaayzkaaWa aWbaaeqajuaibaGaamivaaaajuaGcaWGqbWaaSbaaKqbGeaacaaIYa aabeaajuaGcqGH9aqpcaaIWaaaaa@5924@  (41)

In term of Σ12 by the formula (33) and P2 > 0, K2 is estimated as Eq. (37), where the existence of a positive constant q ∈ [0, 1) is to make the matrix B+q λ max ( M 1 T M 1 ) N 2 T N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeacq GHRaWkcaWGXbWaaOaaaeaacqaH7oaBdaWgaaqcfasaaiaad2gacaWG HbGaamiEaaqcfayabaWaaeWaaeaacaWGnbWaa0baaKqbGeaacaaIXa aabaGaamivaaaajuaGcaWGnbWaaSbaaKqbGeaacaaIXaaabeaaaKqb akaawIcacaGLPaaacaWGobWaa0baaKqbGeaacaaIYaaabaGaamivaa aajuaGcaWGobWaaSbaaKqbGeaacaaIYaaajuaGbeaaaeqaaaaa@4B77@ remain invertible.

  1. By resorting Σ11, Φ∗, and Θ ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbfI5arz aaraWaaSbaaKqbGeaacaGGQaaajuaGbeaaaaa@3993@ in the definition (33), and substituting Σ11 into Eq. (34), the expression Σ11 is rearranged

[ K 1 T ( ε 7 1 N 2 T N 2 ) 0.5 +  Θ ¯ * T   ( ε 7 1 N 2 T N 2 ) 0.5 ] [ K 1 T ( ε 7 1 N 2 T N 2 ) 0.5 +  Θ ¯ * T   ( ε 7 1 N 2 T N 2 ) 0.5 ] T = Φ * + Θ ¯ * T ( ε 7 1 N 2 T N 2 ) 1 Θ ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aam WaaeaacaWGlbWaa0baaKqbGeaacaaIXaaabaGaamivaaaajuaGdaqa daqaaiabew7aLnaaDaaajuaibaGaaG4naaqaaiabgkHiTiaaigdaaa qcfaOaamOtamaaDaaajuaibaGaaGOmaaqaaiaadsfaaaqcfaOaamOt amaaBaaajuaibaGaaGOmaaqabaaajuaGcaGLOaGaayzkaaWaaWbaaK qbGeqabaGaaGimaiaac6cacaaI1aaaaKqbakabgUcaRabaaaaaaaaa peGaaiiOa8aacuqHyoqugaqeamaaDaaajqwba+FaaiaacQcaaeaaca WGubaaaKqba+qacaGGGcWdamaabmaabaGaeqyTdu2aa0baaKqbGeaa caaI3aaabaGaeyOeI0IaaGymaaaajuaGcaWGobWaa0baaKqbGeaaca aIYaaabaGaamivaaaajuaGcaWGobWaaSbaaKqbGeaacaaIYaaajuaG beaaaiaawIcacaGLPaaadaahaaqabKqbGeaacqGHsislcaaIWaGaai OlaiaaiwdaaaaajuaGcaGLBbGaayzxaaaabaWaamWaaeaacaWGlbWa a0baaKqbGeaacaaIXaaabaGaamivaaaajuaGdaqadaqaaiabew7aLn aaDaaajuaibaGaaG4naaqaaiabgkHiTiaaigdaaaqcfaOaamOtamaa DaaajuaibaGaaGOmaaqaaiaadsfaaaqcfaOaamOtamaaBaaajuaiba GaaGOmaaqabaaajuaGcaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGim aiaac6cacaaI1aaaaKqbakabgUcaR8qacaGGGcWdaiqbfI5arzaara Waa0baaKazfa4=baGaaiOkaaqaaiaadsfaaaqcfa4dbiaacckapaWa aeWaaeaacqaH1oqzdaqhaaqcfasaaiaaiEdaaeaacqGHsislcaaIXa aaaKqbakaad6eadaqhaaqcfasaaiaaikdaaeaacaWGubaaaKqbakaa d6eadaWgaaqcfasaaiaaikdaaKqbagqaaaGaayjkaiaawMcaamaaCa aabeqcfasaaiabgkHiTiaaicdacaGGUaGaaGynaaaaaKqbakaawUfa caGLDbaadaahaaqabKqbGeaacaWGubaaaaqcfayaaiabg2da9iabgk HiTiabfA6agnaaBaaajuaibaGaaiOkaaqcfayabaGaey4kaSIafuiM deLbaebadaqhaaqcfasaaiaacQcaaeaacaWGubaaaKqbaoaabmaaba GaeqyTdu2aa0baaKqbGeaacaaI3aaabaGaeyOeI0IaaGymaaaajuaG caWGobWaa0baaKqbGeaacaaIYaaabaGaamivaaaajuaGcaWGobWaaS baaKqbGeaacaaIYaaabeaaaKqbakaawIcacaGLPaaadaahaaqcfasa beaacqGHsislcaaIXaaaaKqbakqbfI5arzaaraWaaSbaaKqbGeaaca GGQaaajuaGbeaaaaaa@AF27@  (42)

In the light of the orthogonality of U ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwfaga qeaOWaaSbaaSqaaiaacQcaaeqaaaaa@384F@ , and the definition Φ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfA6agn aaBaaajuaibaGaaiOkaaqcfayabaaaaa@397E@ and Θ ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbfI5arz aaraWaaSbaaKqbGeaacaGGQaaajuaGbeaaaaa@3993@ of (33), it is easy to observe that

Φ * +  Θ ¯ * T ( ε 7 1 N 2 T N 2 ) 1 Θ ¯ * =  U ¯ * U ¯ * T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi abfA6agnaaBaaajuaibaGaaiOkaaqcfayabaGaey4kaSceaaaaaaaa a8qacaGGGcWdaiqbfI5arzaaraWaa0baaKqbGeaacaGGQaaabaGaam ivaaaajuaGdaqadaqaaiabew7aLnaaDaaajuaibaGaaG4naaqaaiab gkHiTiaaigdaaaqcfaOaamOtamaaDaaajuaibaGaaGOmaaqaaiaads faaaqcfaOaamOtamaaBaaajuaibaGaaGOmaaqabaaajuaGcaGLOaGa ayzkaaWaaWbaaKqbGeqabaGaeyOeI0IaaGymaaaajuaGcuqHyoquga qeamaaBaaajuaibaGaaiOkaaqcfayabaGaeyypa0ZdbiaacckapaGa bmyvayaaraGcdaWgaaWcbaGaaiOkaaqabaqcfaOabmyvayaaraWaa0 baaKqbGeaacaGGQaaabaGaamivaaaaaaa@59D3@  (43)

Instead of the matrix equality (42),

K 1 T ( ε 7 1 N 2 T N 2 ) 0.5 +  Θ ¯ * T   ( ε 7 1 N 2 T N 2 ) 0.5 = U ¯ * V ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada qhaaqcfasaaiaaigdaaeaacaWGubaaaKqbaoaabmaabaGaeqyTdu2a a0baaKqbGeaacaaI3aaabaGaeyOeI0IaaGymaaaajuaGcaWGobWaa0 baaKqbGeaacaaIYaaabaGaamivaaaajuaGcaWGobWaaSbaaKqbGeaa caaIYaaabeaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaacaaIWa GaaiOlaiaaiwdaaaqcfaOaey4kaSceaaaaaaaaa8qacaGGGcWdaiqb fI5arzaaraWaa0baaKazfa4=baGaaiOkaaqaaiaadsfaaaqcfa4dbi aacckapaWaaeWaaeaacqaH1oqzdaqhaaqcfasaaiaaiEdaaeaacqGH sislcaaIXaaaaKqbakaad6eadaqhaaqcfasaaiaaikdaaeaacaWGub aaaKqbakaad6eadaWgaaqcfasaaiaaikdaaKqbagqaaaGaayjkaiaa wMcaamaaCaaabeqcfasaaiabgkHiTiaaicdacaGGUaGaaGynaaaaju aGcqGH9aqpceWGvbGbaebadaWgaaqcfasaaiaacQcaaeqaaKqbakqa dAfagaqeamaaBaaajuaibaGaaiOkaaqabaaaaa@67AE@  (44)

for V ¯ * R p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgcGiIi qadAfagaqeamaaBaaajuaibaGaaiOkaaqabaqcfaOaeyicI4SaamOu amaaCaaabeqcfasaaiaadchacqGHxdaTcaWGWbaaaaaa@4073@ . By the definition of R ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadkfaga qeamaaBaaajuaibaGaaiOkaaqcfayabaaaaa@38F3@ , Eq.(36) follows immediately.

  1. By using the definitions of Σ22, Ψ∗, and Θ∗ in (33), substituting (37) into Σ22, the expression (35) Is re-expanded by

P 2 G * ( ε 8 M 2 M 2 T ) ( P 2 G * ) T  ( P 2 G * ) ( C+ ε 8 M 2 M 2 T P 2 ) ( C+ ε 8 M 2 M 1 T P 2 ) T ( P 2 G * )+ Ψ * = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam iuamaaBaaajuaibaGaaGOmaaqabaqcfaOaam4ramaaBaaajuaibaGa aiOkaaqcfayabaWaaeWaaeaacqaH1oqzdaWgaaqcfasaaiaaiIdaae qaaKqbakaad2eadaWgaaqcfasaaiaaikdaaeqaaKqbakaad2eadaqh aaqcfasaaiaaikdaaeaacaWGubaaaaqcfaOaayjkaiaawMcaamaabm aabaGaamiuamaaBaaajuaibaGaaGOmaaqabaqcfaOaam4ramaaBaaa juaibaGaaiOkaaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqajuaiba GaamivaaaajuaGcqGHsislqaaaaaaaaaWdbiaacckapaWaaeWaaeaa caWGqbWaaSbaaKqbGeaacaaIYaaajuaGbeaacaWGhbWaaSbaaKqbGe aacaGGQaaajuaGbeaaaiaawIcacaGLPaaapeGaaiiOa8aadaqadaqa aiaadoeacqGHRaWkcqaH1oqzdaWgaaqcfasaaiaaiIdaaeqaaKqbak aad2eadaWgaaqcfasaaiaaikdaaeqaaKqbakaad2eadaqhaaqcfasa aiaaikdaaeaacaWGubaaaKqbakaadcfadaWgaaqcfasaaiaaikdaae qaaaqcfaOaayjkaiaawMcaaaqaaiabgkHiTmaabmaabaGaam4qaiab gUcaRiabew7aLnaaBaaajuaibaGaaGioaaqabaqcfaOaamytamaaBa aajuaibaGaaGOmaaqabaqcfaOaamytamaaDaaajuaibaGaaGymaaqa aiaadsfaaaqcfaOaamiuamaaBaaajuaibaGaaGOmaaqabaaajuaGca GLOaGaayzkaaWaaWbaaKqbGeqabaGaamivaaaajuaGdaqadaqaaiaa dcfadaWgaaqcfasaaiaaikdaaeqaaKqbakaadEeadaWgaaqcfasaai aacQcaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRiabfI6aznaaBaaa juaibaGaaiOkaaqcfayabaGaeyypa0ZdbiaacckapaGaaGimaaaaaa@84B8@  (45)

This can be equivalently expressed by

[ P 2 G * ( ε 8 M 2 M 2 T ) 0.5 +  ( C+ ε 8 M 2 M 2 T P 2 ) T ( ε 8 M 2 M 2 T ) 0.5 ] [ P 2 G * ( ε 8 M 2 M 2 T ) 0.5 +  ( C+ ε 8 M 2 M 2 T P 2 ) T ( ε 8 M 2 M 2 T ) 0.5 ] T =  Ψ * + ( C+ ε 8 M 2 M 1 T P 2 ) T ( ε 8 M 2 M 2 T ) 1 ( C+ ε 8 M 2 M 1 T P 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aam WaaeaacaWGqbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGhbWaaSba aKqbGeaacaGGQaaajuaGbeaadaqadaqaaiabew7aLnaaBaaajuaiba GaaGioaaqabaqcfaOaamytamaaBaaajuaibaGaaGOmaaqabaqcfaOa amytamaaDaaajuaibaGaaGOmaaqaaiaadsfaaaaajuaGcaGLOaGaay zkaaWaaWbaaKqbGeqabaGaaGimaiaac6cacaaI1aaaaiabgUcaRKqb acbaaaaaaaaapeGaaiiOa8aadaqadaqaaiaadoeacqGHRaWkcqaH1o qzdaWgaaqcfasaaiaaiIdaaeqaaKqbakaad2eadaWgaaqcfasaaiaa ikdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaaeaacaWGubaaaK qbakaadcfadaWgaaqcfasaaiaaikdaaeqaaaqcfaOaayjkaiaawMca amaaCaaajuaibeqaaiaadsfaaaqcfa4aaeWaaeaacqaH1oqzdaWgaa qcfasaaiaaiIdaaeqaaKqbakaad2eadaWgaaqcfasaaiaaikdaaeqa aKqbakaad2eadaqhaaqcfasaaiaaikdaaeaacaWGubaaaaqcfaOaay jkaiaawMcaamaaCaaajuaibeqaaiabgkHiTiaaicdacaGGUaGaaGyn aaaaaKqbakaawUfacaGLDbaaaeaadaWadaqaaiaadcfadaWgaaqcfa saaiaaikdaaeqaaKqbakaadEeadaWgaaqcfasaaiaacQcaaKqbagqa amaabmaabaGaeqyTdu2aaSbaaKqbGeaacaaI4aaabeaajuaGcaWGnb WaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGnbWaa0baaKqbGeaacaaI YaaabaGaamivaaaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaaca aIWaGaaiOlaiaaiwdaaaGaey4kaSscfa4dbiaacckapaWaaeWaaeaa caWGdbGaey4kaSIaeqyTdu2aaSbaaKqbGeaacaaI4aaabeaajuaGca WGnbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGnbWaa0baaKqbGeaa caaIYaaabaGaamivaaaajuaGcaWGqbWaaSbaaKqbGeaacaaIYaaabe aaaKqbakaawIcacaGLPaaadaahaaqcfasabeaacaWGubaaaKqbaoaa bmaabaGaeqyTdu2aaSbaaKqbGeaacaaI4aaabeaajuaGcaWGnbWaaS baaKqbGeaacaaIYaaabeaajuaGcaWGnbWaa0baaKqbGeaacaaIYaaa baGaamivaaaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaacqGHsi slcaaIWaGaaiOlaiaaiwdaaaaajuaGcaGLBbGaayzxaaWaaWbaaeqa juaibaGaamivaaaaaKqbagaacqGH9aqppeGaaiiOa8aacqGHsislcq qHOoqwdaWgaaqcfasaaiaacQcaaeqaaKqbakabgUcaRmaabmaabaGa am4qaiabgUcaRiabew7aLnaaBaaajuaibaGaaGioaaqabaqcfaOaam ytamaaBaaajuaibaGaaGOmaaqabaqcfaOaamytamaaDaaajuaibaGa aGymaaqaaiaadsfaaaqcfaOaamiuamaaBaaajuaibaGaaGOmaaqaba aajuaGcaGLOaGaayzkaaWaaWbaaKqbGeqabaGaamivaaaajuaGdaqa daqaaiabew7aLnaaBaaajuaibaGaaGioaaqabaqcfaOaamytamaaBa aajuaibaGaaGOmaaqabaqcfaOaamytamaaDaaajuaibaGaaGOmaaqa aiaadsfaaaaajuaGcaGLOaGaayzkaaWaaWbaaeqajuaibaGaeyOeI0 IaaGymaaaajuaGdaqadaqaaiaadoeacqGHRaWkcqaH1oqzdaWgaaqc fasaaiaaiIdaaeqaaKqbakaad2eadaWgaaqcfasaaiaaikdaaeqaaK qbakaad2eadaqhaaqcfasaaiaaigdaaeaacaWGubaaaKqbakaadcfa daWgaaqcfasaaiaaikdaaeqaaaqcfaOaayjkaiaawMcaaaaaaa@D5B0@  (46)

Further, when the achievable parameter vector (ε5, ε6, ε7, ε8, ε9, P) is given, we take the square root decomposition

Ψ * + Θ * T ( ε 8 M 2 M 2 T ) 1 Θ * = U * U * T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi abfI6aznaaBaaajuaibaGaaiOkaaqcfayabaGaey4kaSIaeuiMde1a a0baaKqbGeaacaGGQaaabaGaamivaaaajuaGdaqadaqaaiabew7aLn aaBaaajuaibaGaaGioaaqabaqcfaOaamytamaaBaaajuaibaGaaGOm aaqabaqcfaOaamytamaaDaaajuaibaGaaGOmaaqaaiaadsfaaaaaju aGcaGLOaGaayzkaaWaaWbaaeqajuaibaGaeyOeI0IaaGymaaaajuaG cqqHyoqudaWgaaqcfasaaiaacQcaaKqbagqaaiabg2da9iaadwfada WgaaqcfasaaiaacQcaaKqbagqaaiaadwfadaqhaaqcfasaaiaacQca aeaacaWGubaaaaaa@5561@  (47)

and then (46) holds if and only if

P 2 G * ( ε 8 M 2 M 2 T ) 0.5 + ( C+ ε 8 M 2 M 1 T P 2 ) T ( ε 8 M 2 M 2 T ) 0.5 =  U * V * , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aadcfadaWgaaqcfasaaiaaikdaaKqbagqaaiaadEeadaWgaaqcfasa aiaacQcaaeqaaKqbaoaabmaabaGaeqyTdu2aaSbaaKqbGeaacaaI4a aabeaajuaGcaWGnbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGnbWa a0baaKqbGeaacaaIYaaabaGaamivaaaaaKqbakaawIcacaGLPaaada ahaaqcfasabeaacaaIWaGaaiOlaiaaiwdaaaGaey4kaSscfa4aaeWa aeaacaWGdbGaey4kaSIaeqyTdu2aaSbaaKqbGeaacaaI4aaajuaGbe aacaWGnbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGnbWaa0baaKqb GeaacaaIXaaabaGaamivaaaajuaGcaWGqbWaaSbaaKqbGeaacaaIYa aajuaGbeaaaiaawIcacaGLPaaadaahaaqabKqbGeaacaWGubaaaKqb aoaabmaabaGaeqyTdu2aaSbaaKqbGeaacaaI4aaabeaajuaGcaWGnb WaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGnbWaa0baaKqbGeaacaaI YaaabaGaamivaaaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaacq GHsislcaaIWaGaaiOlaiaaiwdaaaqcfaOaeyypa0deaaaaaaaaa8qa caGGGcWdaiaadwfadaWgaaqcfasaaiaacQcaaKqbagqaaiaadAfada WgaaqcfasaaiaacQcaaeqaaiaacYcaaaa@709D@  (48)

Therefore, Eq. (38) follows immediately, for the arbitrary V * R p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaacQcaaeqaaKqbakabgIGiolaadkfadaahaaqcfasa beaacaWGWbGaey41aqRaamiCaaaaaaa@3F8B@ . The proof of this theorem is completed. From Theorem 4, a modified nonlinear observer design algorithm with an unknown feedback gain is presented in Table 2.

Table 2 Systematic design algorithm of nonlinear observer with an unknown feedback gain.

Remark 2: Throughout the design approach of the desired nonlinear observer gain parameters G∗ and K∗ in Theorem 4, the algorithm described in Table 2 is convergence, since the nonlinear augmented system (31) can be proven to maintain ASMS for the addressed nonlinearity and all admissible uncertainties. More importantly, sufficient and necessary conditions of the desired nonlinear observer with an unknown feedback gain can be designed and derived from the developed theory. As a result, structure parameters G∗ and K∗ of the desired nonlinear observer (27) can be selected from the algebraic Riccati equations (36)-(38), for appropriate arbitrary orthogonal matrices V ¯ * R p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qeamaaBaaajuaibaGaaiOkaaqabaqcfaOaeyicI4SaamOuamaaCaaa juaibeqaaiaadchacqGHxdaTcaWGWbaaaaaa@3FA3@ and V * R p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaacQcaaeqaaKqbakabgIGiolaadkfadaahaaqcfasa beaacaWGWbGaey41aqRaamiCaaaaaaa@3F8B@ .

Numerical examples

In this section, for the purpose of illustrating the usefulness of the theory developed, two simulation examples are presented. The first example considers stability analysis of the error state system (17) as well as nonlinear observer gain G∗ design. Further, the second example investigates stability analysis of the augment system (31) and nonlinear observer gain parameters G∗ and K∗ design.

Example 1: Consider the nonlinear uncertain stochastic system (13)-(17)

A = [ 2 1 1 0.5 ], B = [ 0.3 0.1 1 0.75 ], C = [ 0.5 0.5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaqa aaaaaaaaWdbiaacckapaGaeyypa0ZdbiaacckapaWaamWaaeaafaqa beGacaaabaGaeyOeI0IaaGOmaaqaaiaaigdaaeaacaaIXaaabaGaaG imaiaac6cacaaI1aaaaaGaay5waiaaw2faaiaacYcapeGaaiiOa8aa caWGcbWdbiaacckapaGaeyypa0ZdbiaacckapaWaamWaaeaafaqabe GacaaabaGaaGimaiaac6cacaaIZaaabaGaaGimaiaac6cacaaIXaaa baGaaGymaaqaaiabgkHiTiaaicdacaGGUaGaaG4naiaaiwdaaaaaca GLBbGaayzxaaGaaiila8qacaGGGcWdaiaadoeapeGaaiiOa8aacqGH 9aqppeGaaiiOa8aadaWadaqaauaabeqabiaaaeaacaaIWaGaaiOlai aaiwdaaeaacaaIWaGaaiOlaiaaiwdaaaaacaGLBbGaayzxaaaaaa@5FEF@

E = [ 0 0.1 0.1 0 ],  D 1  = [ 0.1 0.1 ],  D 2  = 0.1, f( x( t ) ) = 0.1sin x 1 , F( t ) = sint I 2 , M 1  = 0.05 I 2 ,  M 2 = [ 0.08 0.06 ], N 1  = 0.08 I 2 ,  N 2 = 0.06 I 2 ,  N 3 = 0.04 I 2 F 1  = [ 0.2 0 0 0.1 ],  U * = [ 0.5 0.5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaGGfbGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWadaqa auaabeqaciaaaeaacaaIWaaabaGaaGimaiaac6cacaaIXaaabaGaaG imaiaac6cacaaIXaaabaGaaGimaaaaaiaawUfacaGLDbaacaGGSaWd biaacckacaGGebWaaSbaaKqbGeaacaaIXaaabeaajuaGcaGGGcWdai abg2da98qacaGGGcWdamaadmaabaqbaeqabiqaaaqaaiaaicdacaGG UaGaaGymaaqaaiaaicdacaGGUaGaaGymaaaaaiaawUfacaGLDbaaca GGSaWdbiaacckapaGaamiramaaBaaajuaibaGaaGOmaaqabaWdbiaa cckajuaGpaGaeyypa0ZdbiaacckapaGaaGimaiaac6cacaaIXaGaai ilaaqaaiaacAgadaqadaqaaiaadIhadaqadaqaaiaadshaaiaawIca caGLPaaaaiaawIcacaGLPaaapeGaaiiOa8aacqGH9aqppeGaaiiOa8 aacaaIWaGaaiOlaiaaigdaciGGZbGaaiyAaiaac6gacaWG4bWaaSba aKqbGeaacaaIXaaajuaGbeaacaGGSaWdbiaacckapaGaamOramaabm aabaGaamiDaaGaayjkaiaawMcaa8qacaGGGcWdaiabg2da98qacaGG GcWdaiGacohacaGGPbGaaiOBaiaadshacaWGjbWaaSbaaKqbGeaaca aIYaaabeaacaGGSaaajuaGbaGaamytamaaBaaajuaibaGaaGymaaqa baqcfa4dbiaacckacqGH9aqpcaGGGcGaaGimaiaac6cacaaIWaGaaG yna8aacaWGjbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaGGSaWdbiaa cckacaWGnbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaGGGc WaamWaaeaafaqabeqacaaabaGaaGimaiaac6cacaaIWaGaaGioaaqa aiaaicdacaGGUaGaaGimaiaaiAdaaaaacaGLBbGaayzxaaGaaiilaa qaaiaad6eapaWaaSbaaKqbGeaacaaIXaaabeaajuaGpeGaaiiOaiab g2da9iaacckacaaIWaGaaiOlaiaaicdacaaI4aWdaiaadMeadaWgaa qcfasaaiaaikdaaeqaaKqba+qacaGGSaGaaiiOaiaad6eadaWgaaqc fasaaiaaikdaaKqbagqaaiabg2da9iaacckacaaIWaGaaiOlaiaaic dacaaI2aWdaiaadMeadaWgaaqcfasaaiaaikdaaeqaaKqba+qacaGG SaGaaiiOaiaad6eadaWgaaqcfasaaiaaiodaaKqbagqaaiabg2da9i aacckacaaIWaGaaiOlaiaaicdacaaI0aWdaiaadMeadaWgaaqcfasa aiaaikdaaeqaaaqcfayaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaK qba+qacaGGGcWdaiabg2da98qacaGGGcWdamaadmaabaqbaeqabiGa aaqaaiaaicdacaGGUaGaaGOmaaqaaiaaicdaaeaacaaIWaaabaGaaG imaiaac6cacaaIXaaaaaGaay5waiaaw2faaiaacYcapeGaaiiOa8aa caWGvbWaaWbaaKqbGeqabaGaaiOkaaaajuaGcqGH9aqppeGaaiiOa8 aadaWadaqaauaabeqabiaaaeaacaaIWaGaaiOlaiaaiwdaaeaacaaI WaGaaiOlaiaaiwdaaaaacaGLBbGaayzxaaaaaaa@D3DC@

Choose appropriate parameters as ε1 = 0.5256, ε2 = 0.5256, ε3 = 8.7729, ε4 = 8.7729, δ1 = 0.0001, and feedback gain K∗ = 10. Then, by solving the Riccati equation (18), we obtain

P= [ 3.4437 4.5607 4.5607 16.1160 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfacq GH9aqpqaaaaaaaaaWdbiaacckapaWaamWaaeaafaqabeGacaaabaGa aG4maiaac6cacaaI0aGaaGinaiaaiodacaaI3aaabaGaaGinaiaac6 cacaaI1aGaaGOnaiaaicdacaaI3aaabaGaaGinaiaac6cacaaI1aGa aGOnaiaaicdacaaI3aaabaGaaGymaiaaiAdacaGGUaGaaGymaiaaig dacaaI2aGaaGimaaaaaiaawUfacaGLDbaaaaa@4E03@

Furthermore, substituting V∗ = 1 into (21) yields the desired nonlinear observer gains

G * =[ 1.7358 0.1709 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada ahaaqabKqbGeaacaGGQaaaaKqbakabg2da9maadmaabaqbaeqabiqa aaqaaiaaigdacaGGUaGaaG4naiaaiodacaaI1aGaaGioaaqaaiaaic dacaGGUaGaaGymaiaaiEdacaaIWaGaaGyoaaaaaiaawUfacaGLDbaa aaa@44A7@

On the other hand, the result obtained in24 is recorded

G W * =[ 0.9318 0.0751 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada qhaaqcfasaaiaadEfaaeaacaGGQaaaaKqbakabg2da9maadmaabaqb aeqabiqaaaqaaiaaicdacaGGUaGaaGyoaiaaiodacaaIXaGaaGioaa qaaiabgkHiTiaaicdacaGGUaGaaGimaiaaiEdacaaI1aGaaGymaaaa aiaawUfacaGLDbaaaaa@4669@

Subsequently, the values of nonlinear observer gain with a known feedback gain for the error state system (17) are shown in Table 3 through comparing with the results of the method presented in.24 From Table 3, it can be concluded that

Methods

Feedback Gain

Nonlinear Observer Gain

Theorem 2

K*

G*

24

K*

Gw*

Table 3 Obtained nonlinear observer gain by comparing to the method in24

  1. G∗ obtained by Theorem 2 is better than the obtained by the approach in;24
  2. The results obtained by the method of Theorem 2 are better when G∗ is larger.

Hence, the mentioned conclusion implies that G∗ is larger, the nonlinearity and uncertainty degree of the proposed system is higher, for the expected nonlinear observer (13), so that some transient performance requirements (e.g., achievablity, ASMS) are easier to be satisfied. In the Table 1 framework, for the desired nonlinear observer G∗ in Table 3 with a known feedback gain, the dynamics of error-state system (17) is shown in Figure 2.

Figure 2 Single VGT module of flexible manipulator.

The error e defined in (15) between the desired trajectory x and the estimated, is a vector of auxiliary signal. It is seen from Figure 3 that the error-state is asymptotically convergence to zero-dynamics, which illustrates that the closed-loop system (17) is stable. So the effectiveness of the developed theory (e.g., Theorem 1 and Theorem 2) is verified.

Figure 3 An equivalent simplified structure of VGT flexible module.

Example 2: Consider the nonlinear augment system (27)-(31) with parameters.

A = [ 5 0.1 0.3 0.2 3 0.1 0.2 0.3 2 ], B = [ 3.3 0.06 0.03 0.4 2.02 2.4 0.308 0.27 0.652 ] C = [ 0.5 0 0 0 0.5 0 ], E = [ 0 0.1 0.1 0 0.2 0.2 ],  D ¯  = [ 0.1 0.1 0.1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yqaabaaaaaaaaapeGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWadaqa auaabeqadmaaaeaacqGHsislcaaI1aaabaGaaGimaiaac6cacaaIXa aabaGaeyOeI0IaaGimaiaac6cacaaIZaaabaGaaGimaiaac6cacaaI YaaabaGaeyOeI0IaaG4maaqaaiabgkHiTiaaicdacaGGUaGaaGymaa qaaiaaicdacaGGUaGaaGOmaaqaaiabgkHiTiaaicdacaGGUaGaaG4m aaqaaiaaikdaaaaacaGLBbGaayzxaaGaaiila8qacaGGGcWdaiaadk eapeGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWadaqaauaabeqadmaa aeaacaaIZaGaaiOlaiaaiodaaeaacqGHsislcaaIWaGaaiOlaiaaic dacaaI2aaabaGaeyOeI0IaaGimaiaac6cacaaIWaGaaG4maaqaaiab gkHiTiaaicdacaGGUaGaaGinaaqaaiabgkHiTiaaikdacaGGUaGaaG imaiaaikdaaeaacaaIYaGaaiOlaiaaisdaaeaacqGHsislcaaIWaGa aiOlaiaaiodacaaIWaGaaGioaaqaaiabgkHiTiaaicdacaGGUaGaaG OmaiaaiEdaaeaacqGHsislcaaIWaGaaiOlaiaaiAdacaaI1aGaaGOm aaaaaiaawUfacaGLDbaaaeaacaWGdbWdbiaacckacqGH9aqpcaGGGc WaamWaaeaafaqabeGadaaabaGaaGimaiaac6cacaaI1aaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaiaac6cacaaI1aaabaGaaG imaaaaaiaawUfacaGLDbaacaGGSaGaaiiOa8aacaWGfbWdbiaaccka paGaeyypa0ZdbiaacckadaWadaqaauaabeqadiaaaeaacaaIWaaaba GaaGimaiaac6cacaaIXaaabaGaaGimaiaac6cacaaIXaaabaGaaGim aaqaaiaaicdacaGGUaGaaGOmaaqaaiaaicdacaGGUaGaaGOmaaaaai aawUfacaGLDbaacaGGSaGaaiiOaiqadseagaqeaiaacckacqGH9aqp caGGGcWaamWaaeaafaqabeWabaaabaGaaGimaiaac6cacaaIXaaaba GaaGimaiaac6cacaaIXaaabaGaaGimaiaac6cacaaIXaaaaaGaay5w aiaaw2faaaaaaa@A705@

f( x )= [ 0.1sin x 1 0.1sin x 2 ], F( t )=sint I 3 M 1  = [ 0.5 0 0 0 0.05 0 0 0 0.05 ],   M 2  = [ 0.08 0 0 0 0.02 0.06 ],  N 1   = 0.08 I 3 , N 2 =0.06 I 3 , N 3 =0.04 I 3 , F 1  = [ 0.2 0 0 0 0.1 0 0 0 0.3 ],  U ¯ *  = [ 10.8 0 0.8 0.2 0 0.1 ],  U * = [ 0.5 0 0.5 0.1 0 0.3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam OzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9abaaaaaaaaa peGaaiiOa8aadaWadaqaauaabeqaceaaaeaacaaIWaGaaiOlaiaaig daciGGZbGaaiyAaiaac6gacaWG4bWaaSbaaKqbGeaacaaIXaaabeaa aKqbagaacaaIWaGaaiOlaiaaigdaciGGZbGaaiyAaiaac6gacaWG4b WaaSbaaKqbGeaacaaIYaaabeaaaaaajuaGcaGLBbGaayzxaaGaaiil a8qacaGGGcGaaiOramaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2 da9iGacohacaGGPbGaaiOBaiaadshacaWGjbWaaSbaaKqbGeaacaaI ZaaabeaaaKqbagaapaGaamytamaaBaaajuaibaGaaGymaaqabaqcfa 4dbiaacckapaGaeyypa0ZdbiaacckapaWaamWaaeaafaqabeWadaaa baGaaGimaiaac6cacaaI1aaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaiaac6cacaaIWaGaaGynaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdacaGGUaGaaGimaiaaiwdaaaaacaGLBbGaay zxaaGaaiila8qacaGGGcGaaiiOaiaad2eadaWgaaqcfasaaiaaikda aeqaaKqbakaacckacqGH9aqpcaGGGcWaamWaaeaafaqabeGadaaaba GaaGimaiaac6cacaaIWaGaaGioaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdacaGGUaGaaGimaiaaikdaaeaacaaIWaGaaiOlai aaicdacaaI2aaaaaGaay5waiaaw2faaiaacYcacaGGGcaabaGaaiOt amaaBaaajuaibaGaaGymaaqabaqcfaOaaiiOaiaacckacqGH9aqpca GGGcGaaGimaiaac6cacaaIWaGaaGioaiaadMeadaWgaaqcfasaaiaa iodaaeqaaKqbakaacYcacaWGobWaaSbaaKqbGeaacaaIYaaabeaaju aGcqGH9aqpcaaIWaGaaiOlaiaaicdacaaI2aGaamysamaaBaaajuai baGaaG4maaqabaqcfaOaaiilaiaad6eadaWgaaqcfasaaiaaiodaaK qbagqaaiabg2da9iaaicdacaGGUaGaaGimaiaaisdacaWGjbWaaSba aKqbGeaacaaIZaaabeaajuaGcaGGSaaabaWdaiaadAeadaWgaaqcfa saaiaaigdaaKqbagqaa8qacaGGGcWdaiabg2da98qacaGGGcWaamWa aeaafaqabeWadaaabaGaaGimaiaac6cacaaIYaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaiaac6cacaaIXaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGimaiaac6cacaaIZaaaaaGaay5wai aaw2faaiaacYcacaGGGcGabmyvayaaraWaaSbaaKqbGeaacaGGQaaa beaajuaGcaGGGcGaeyypa0JaaiiOamaadmaabaqbaeqabmGaaaqaai aaigdacaaIWaGaaiOlaiaaiIdaaeaacaaIWaaabaGaaGimaiaac6ca caaI4aaabaGaaGimaiaac6cacaaIYaaabaGaaGimaaqaaiaaicdaca GGUaGaaGymaaaaaiaawUfacaGLDbaacaGGSaGaaiiOaiaadwfadaWg aaqcfasaaiaacQcaaeqaaKqbakabg2da9iaacckadaWadaqaauaabe qadiaaaeaacaaIWaGaaiOlaiaaiwdaaeaacaaIWaaabaGaaGimaiaa c6cacaaI1aaabaGaaGimaiaac6cacaaIXaaabaGaaGimaaqaaiaaic dacaGGUaGaaG4maaaaaiaawUfacaGLDbaaaaaa@DF41@

We can choose some sufficient small positive constants ε5 = 0.8055, ε6 = 10.1072, ε7 = 12.4537, ε8 = 17.7075, ε9 = 75.3355, δ3 = 0.0001, δ4 = 0.0001. Then the positive definite solution P1 to the matrix Riccati equation (34) and matrices Θ ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGafuiMdeLbaebadaWgaaqcfasaaiaacQcaaeqaaaaa@3925@ , R ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmOuayaaraWaaSbaaKqbGeaacaGGQaaabeaaaaa@3885@  are given by

P 1 = [ 0.8010 101184 108741 0.0184 103969 2.0069 0.8741 2.0069 36.1614 ] Θ ¯ 1 = [ 203668 0.3208 0.5900 0.1201 202810 2.0439 7.4504 5.7616 18.7344 ] R ¯ * =  10 3 [ 0.0321 0.0964 0 0.0964 0.8030 0 0 0 0.2891 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaWGqbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqp caGGGcWaamWaaeaafaqabeWadaaabaGaaGimaiaac6cacaaI4aGaaG imaiaaigdacaaIWaaabaGaaGymaiaaicdacaaIXaGaaGymaiaaiIda caaI0aaabaGaaGymaiaaicdacaaI4aGaaG4naiaaisdacaaIXaaaba GaaGimaiaac6cacaaIWaGaaGymaiaaiIdacaaI0aaabaGaaGymaiaa icdacaaIZaGaaGyoaiaaiAdacaaI5aaabaGaeyOeI0IaaGOmaiaac6 cacaaIWaGaaGimaiaaiAdacaaI5aaabaGaaGimaiaac6cacaaI4aGa aG4naiaaisdacaaIXaaabaGaeyOeI0IaaGOmaiaac6cacaaIWaGaaG imaiaaiAdacaaI5aaabaGaaG4maiaaiAdacaGGUaGaaGymaiaaiAda caaIXaGaaGinaaaaaiaawUfacaGLDbaaaeaacuqHyoqugaqeamaaBa aajuaibaGaaGymaaqabaqcfaOaeyypa0JaaiiOamaadmaabaqbaeqa bmWaaaqaaiaaikdacaaIWaGaaG4maiaaiAdacaaI2aGaaGioaaqaai abgkHiTiaaicdacaGGUaGaaG4maiaaikdacaaIWaGaaGioaaqaaiaa icdacaGGUaGaaGynaiaaiMdacaaIWaGaaGimaaqaaiaaicdacaGGUa GaaGymaiaaikdacaaIWaGaaGymaaqaaiabgkHiTiaaikdacaaIWaGa aGOmaiaaiIdacaaIXaGaaGimaaqaaiaaikdacaGGUaGaaGimaiaais dacaaIZaGaaGyoaaqaaiabgkHiTiaaiEdacaGGUaGaaGinaiaaiwda caaIWaGaaGinaaqaaiabgkHiTiaaiwdacaGGUaGaaG4naiaaiAdaca aIXaGaaGOnaaqaaiaaigdacaaI4aGaaiOlaiaaiEdacaaIZaGaaGin aiaaisdaaaaacaGLBbGaayzxaaaabaGabmOuayaaraWaaSbaaKqbGe aacaGGQaaajuaGbeaacqGH9aqpcaGGGcGaaGymaiaaicdadaahaaqa beaacaaIZaaaamaadmaabaqbaeqabmWaaaqaaiaaicdacaGGUaGaaG imaiaaiodacaaIYaGaaGymaaqaaiaaicdacaGGUaGaaGimaiaaiMda caaI2aGaaGinaaqaaiaaicdaaeaacaaIWaGaaiOlaiaaicdacaaI5a GaaGOnaiaaisdaaeaacaaIWaGaaiOlaiaaiIdacaaIWaGaaG4maiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaGaaiOlai aaikdacaaI4aGaaGyoaiaaigdaaaaacaGLBbGaayzxaaaaaaa@BCC5@

Further, by the use of expressions (36), (38) for the orthogonal matrix V ¯ * = V * =13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qeamaaBaaajuaibaGaaiOkaaqabaGaeyypa0tcfaOaamOvamaaBaaa juaibaGaaiOkaaqabaqcfaOaeyypa0JaaGymaiaaiodaaaa@3EE1@ , a positive definite solution P2 to meet the Riccati matrix equality (35), and matrices Θ∗, R∗ are presented by

P 2 = [ 16.9752 3.8009 0.9295 3.8009 22.8890 4.1436 0.9295 4.1436 30.2289 ] Θ * = [ 12.5235 2.6922 0.6584 0.0179 1.1254 1.6792 0.002 0.001 0.0003 ] R * = [ 0.1133 0 0 0 1.0708 0 0 0 0.002 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaWGqbWaaSbaaKqbGeaacaaIYaaabeaajuaGcqGH9aqp caGGGcWaamWaaeaafaqabeWadaaabaGaaGymaiaaiAdacaGGUaGaaG yoaiaaiEdacaaI1aGaaGOmaaqaaiaaiodacaGGUaGaaGioaiaaicda caaIWaGaaGyoaaqaaiabgkHiTiaaicdacaGGUaGaaGyoaiaaikdaca aI5aGaaGynaaqaaiaaiodacaGGUaGaaGioaiaaicdacaaIWaGaaGyo aaqaaiaaikdacaaIYaGaaiOlaiaaiIdacaaI4aGaaGyoaiaaicdaae aacaaI0aGaaiOlaiaaigdacaaI0aGaaG4maiaaiAdaaeaacqGHsisl caaIWaGaaiOlaiaaiMdacaaIYaGaaGyoaiaaiwdaaeaacaaI0aGaai OlaiaaigdacaaI0aGaaG4maiaaiAdaaeaacaaIZaGaaGimaiaac6ca caaIYaGaaGOmaiaaiIdacaaI5aaaaaGaay5waiaaw2faaaqaaiabfI 5arnaaBaaajuaibaGaaiOkaaqabaqcfaOaeyypa0JaaiiOamaadmaa baqbaeqabmWaaaqaaiaaigdacaaIYaGaaiOlaiaaiwdacaaIYaGaaG 4maiaaiwdaaeaacaaIYaGaaiOlaiaaiAdacaaI5aGaaGOmaiaaikda aeaacqGHsislcaaIWaGaaiOlaiaaiAdacaaI1aGaaGioaiaaisdaae aacaaIWaGaaiOlaiaaicdacaaIXaGaaG4naiaaiMdaaeaacaaIXaGa aiOlaiaaigdacaaIYaGaaGynaiaaisdaaeaacaaIXaGaaiOlaiaaiA dacaaI3aGaaGyoaiaaikdaaeaacaaIWaGaaiOlaiaaicdacaaIWaGa aGOmaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIXaaabaGaaGimai aac6cacaaIWaGaaGimaiaaicdacaaIZaaaaaGaay5waiaaw2faaaqa aiaadkfadaWgaaqcfasaaiaacQcaaKqbagqaaiabg2da9iaacckada WadaqaauaabeqadmaaaeaacaaIWaGaaiOlaiaaigdacaaIXaGaaG4m aiaaiodaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaGaai OlaiaaicdacaaI3aGaaGimaiaaiIdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGOmaaaaaiaawU facaGLDbaaaaaa@AF33@

Therefore, the structure parameters as G∗ and K∗ of the desired nonlinear observer design in (27), are obtained

K * = [ 0.0038 0.0005 0.0002 0.0096 1.0746 30.2905 0.0152 0.0047 0.0017 0.0568 0.0568 0.3637 0.0022 0.0068 0.0054 0.3479 0.6081 5.2712 ] G * = [ 6.4461 0.0762 0.1011 0.5697 0.0199 0.6665 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qacaWGlbWaaSbaaKqbGeaacaGGQaaajuaGbeaacqGH9aqp caGGGcWaamWaaeaafaqabeWagaaaaeaacaaIWaGaaiOlaiaaicdaca aIWaGaaG4maiaaiIdaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGim aiaaiwdaaeaacqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGimai aaikdaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGyoaiaaiAdaaeaa caaIXaGaaiOlaiaaicdacaaI3aGaaGinaiaaiAdaaeaacqGHsislca aIZaGaaGimaiaac6cacaaIYaGaaGyoaiaaicdacaaI1aaabaGaaGim aiaac6cacaaIWaGaaGymaiaaiwdacaaIYaaabaGaaGimaiaac6caca aIWaGaaGimaiaaisdacaaI3aaabaGaeyOeI0IaaGimaiaac6cacaaI WaGaaGimaiaaigdacaaI3aaabaGaeyOeI0IaaGimaiaac6cacaaIWa GaaGynaiaaiAdacaaI4aaabaGaeyOeI0IaaGimaiaac6cacaaIWaGa aGynaiaaiAdacaaI4aaabaGaaGimaiaac6cacaaIZaGaaGOnaiaaio dacaaI3aaabaGaaGimaiaac6cacaaIWaGaaGimaiaaikdacaaIYaaa baGaaGimaiaac6cacaaIWaGaaGimaiaaiAdacaaI4aaabaGaeyOeI0 IaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaI0aaabaGaeyOeI0Ia aGimaiaac6cacaaIZaGaaGinaiaaiEdacaaI5aaabaGaaGimaiaac6 cacaaI2aGaaGimaiaaiIdacaaIXaaabaGaaGynaiaac6cacaaIYaGa aG4naiaaigdacaaIYaaaaaGaay5waiaaw2faaaqaaiaadEeadaWgaa qcfasaaiaacQcaaeqaaKqbakabg2da9iaacckadaWadaqaauaabeqa diaaaeaacaaI2aGaaiOlaiaaisdacaaI0aGaaGOnaiaaigdaaeaacq GHsislcaaIWaGaaiOlaiaaicdacaaI3aGaaGOnaiaaikdaaeaacqGH sislcaaIWaGaaiOlaiaaigdacaaIWaGaaGymaiaaigdaaeaacaaIWa GaaiOlaiaaiwdacaaI2aGaaGyoaiaaiEdaaeaacaaIWaGaaiOlaiaa icdacaaIXaGaaGyoaiaaiMdaaeaacaaIWaGaaiOlaiaaiAdacaaI2a GaaGOnaiaaiwdaaaaacaGLBbGaayzxaaaaaaa@B607@

respectively. In the Table 2 framework, for the desired nonlinear observer gain G∗ with an unknown feedback gain K∗ in the structure of (27) satisfied with (36-38), the dynamics of augment-state system (31) is displayed in Figure 4 & 5. It is seen from both Figure 4 & 5 that the augment-state system is asymptotically convergence to zero-dynamics, which implies that the closed-loop system (31) is stable. Therefore, the proposed theory (e.g., Theorem 3 and Theorem 4) is reasonable. It is worth noting that sufficient and necessary conditions of the nonlinear observer G∗ with an unknown feedback gain K∗ are obtained as the parameterized expressions (36-38) in the structure of (27). As a result, from Theorem 4, the design of nonlinear observer with an appropriate parameter achieve vector can be guaranteed, such that the proposed system (31) meets the desired transient performance requirements (e.g., achievability, ASMS) Figure 6.

Figure 4 The error trajectories of the present error-state system (17) with e1 (solid) and e2 (dashed).

Figure 5 The state trajectories of the proposed augment system (31) with x1 (solid), x2 (point), x3 (Dashed).

Figure 6 The error trajectories of the proposed augment system (31) with e1 (solid), e2 (point), e3 (Dashed).

Conclusion

In this paper, by utilizing several parameterized achievable conditions for stability analysis of a class of MLFMs, nonlinear observer design problem is discussed. First, by dynamic modeling of the flexible manipulator, an uncertain nonlinear system is unfolded. In a unified ARME framework, to derive sufficient and necessary conditions of ASMS for the proposed system with appropriate nonlinear observers, an error-state system with a known feedback gain and one expansion augment system with an unknown feedback gain is designed, respectively. Moreover, two systematic nonlinear observers design algorithms are presented in Tables 1 & 2. To illustrate the effectiveness of the developed theory, two numerical examples are demonstrated.

Acknowledgment

The author would like to thank the editor(s) and anonymous reviewers for their constructive comments which helped to improve the present paper. This paper is jointly supported by the Natural Science Foundation of China (Grant 61175028, Grant 61374161), and the Key Project of Natural Science Foundation of Shanghai (16JC1401100).

Conflict of interest

Author declares that there is none of the conflicts.

References

  1. Martinez JIM, Sawut U, Nakano K. Application of non–linear observer with simultaneous perturbation stochastic approximation method to single flexible link SMC. SICE Conference. 2008. p. 2150–2155.
  2. Caverly RJ, Forbes JR. Dynamic modeling and no collocated control of a flexible planar Cable–driven manipulator. IEEE Trans Robot. 2014;30(6):1386–1397.
  3. Jiang JJ, Franco PD, Astolfi A. Shared control for the kinematic and dynamic models of a mobile robot. IEEE Trans Contr Syst Technol. 2016;24(6):2112–2124.
  4. Robert LW II. Kinematic modeling of a double octahedral variable geometry truss (VGT) as an extensible Gimbal. NASA Technical Memorandum. 1994. 109127.
  5. Vakil M, Fotouhi R, Nikiforuk P. Maneuver control of the multilink flexible manipulators. Int J NonLin Mech. 2009;44(8):831–844.
  6. Caverly RJ, Forbes JR, Mohammadshahi D. Dynamic modeling and passivity–based control of a single degree of freedom cable–actuated system. IEEE Trans Contr Syst Technol. 2015;23(3):898–909.
  7. Wang Z, Zeng H, Ho DWC, et al. Multiobjective control of a four–link flexible manipulator: A robust H∞ IEEE Trans Contr Syst Technol. 2002;10(6):866–875.
  8. Wu HN, Shi P. Adaptive variable structure state estimation for uncertain systems with persistently bounded disturbances. Int J Robust Nonlin Control. 2010;20(17):2003–2015.
  9. Wang Z, Burnham KJ. Robust filtering for a class of stochastic uncertain nonlinear time–delay systems via exponential state estimation. IEEE Trans Signal Processing. 2001;49(4):794–804.
  10. Chen SH, Fu LC. Output feedback sliding mode control for a Stewart platform with a nonlinear observer–based forward kinematics solution. IEEE Trans Contr Syst Technol. 2013;21(1):176–185.
  11. Zhao Y, Gupta V. Feedback passivation of discrete–time systems under communication constraints. IEEE Trans Autom Control. 2016;61(11):3521–3526.
  12. Mauroy A, Mezic I. Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans Autom Control. 2016;61(11):3356–3369.
  13. Driscoll FR, Lueck RG, Nahon M. Development and validation of a lumped–mass dynamics model of a deep–sea ROV system. Appl Ocean Res. 2000;22(3):169–182.
  14. Zhang Y, Agrawal SK. Lyapunov controller design for transverse vibration of a cable–linked transporter system. Multibody Syst Dyn. 2006;15(3):287–304.
  15. De Jalon JG, BayoE. Kinematic and dynamic simulation of multibody systems: the real–time challenge. Springer–Verlag. 1994.
  16. Ulrich S, Sasiadek JZ, Barkana I. Nonlinear adaptive output feedback control of flexible–joint space robot manipulators. AIAA Guidance Navigation Control Conf. 2013. p. 19–22.
  17. Jiang T, H Wu. A framework for stability analysis of high–order nonlinear systems based on the CMAC method. Sci China Inform Sci. 2016;59(11):112201.
  18. Kuljaca O, Horvat K, Horvatek H. Adaptive neural network controller with linear observer for thermal power system frequency control. Eur Control Conf. 2013. p. 1504–1511.
  19. Lin CF, Su WC. Linear observer design using the inverse method for systems with matched disturbances. American Control Conf. 2010. p. 617–622.
  20. Hinamoto T, Doi A, Lu WS. Optimal error feedback and realization for roundoff noise minimization in linear discrete–time systems with full–order state observer feedback. IEEE Int Symposium Circuits and Systems. 2015. p. 2956–2959.
  21. WZhang, HS Su, Y Liang, et al. Non–linear observer design for one–sided Lipschitz systems: a linear matrix inequality approach. IET Control Theory Appl. 2012;6(9):1297–1303.
  22. Tian E, Wong WK, Yue D, et al. H∞ filtering for discrete–time switched systems with known sojourn probabilities. IEEE Trans Autom Control. 2015;60(9):2446–2651.
  23. Li B, Zhang X. Observer–based robust control of (0<α<1) fractional–order linear uncertain control systems. IET Control Theory Appl. 2016;10(14):1724–1731.
  24. Wang Z, Unbehauen H. Nonlinear observers for a class of continuous–time uncertain state delayed systems. Int J Syst Sci. 2000;31(5):555–562.
  25. Ekramian M, Hosseinnia S, Sheikholeslam F. General framework in designing Luenberger–like non–linear observer. IET Control Theory & Applications. 2013;7(2):253–260.
Creative Commons Attribution License

©2017 Xu, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.