Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 4 Issue 2

Solution of the Hamilton jacobi bellman uncertainties by the interval version of adomian decomposition method

Navid Razmjooy,1 Mehdi Ramezani2

1Department of Electrical Engineering, University of Tafresh, Iran
2Department of Mathematics and Control, University of Tafresh, Iran

Correspondence: Navid Razmjooy, Department of Electrical Engineering, University of Tafresh, Iran, Tel +98-914-4539067

Received: June 16, 2017 | Published: March 27, 2018

Citation: Razmjooy N, Ramezani M. Solution of the Hamilton jacobi bellman uncertainties by the interval version of adomian decomposition method. Int Rob Auto J. 2018;4(2):113-117. DOI: 10.15406/iratj.2018.04.00104

Download PDF

Abstract

The main purpose of interval arithmetic is look into the uncertain-ties in the practical models with uncertain-but-bounded parameters, which only requires lower and upper bounds of uncertain parameters and with no in-formation about probability distributions. In this paper, an interval numerical method is proposed for solving the Hamilton Jacobi Bellman (HJB) Equations with uncertainties. An interval version of Adomian Decomposition Method is utilized for solving the interval model parameters in the partial differential equations of the HJB. This study assumes that the uncertainty can be happened in both differential coefficients and initial values. The proposed interval method is applied to solve the linear and nonlinear HJB equations in association with appropriate numerical solvers. A practical discussion problem is also solved to analyze the system robustness and to show that the proposed interval decomposition method is a powerful method for systems in the presence of uncertainties.

Keywords: interval arithmetic, Hamilton Jacobi bellman, partial differential equation, interval adomian decomposition method, nonlinear differential equation, optimal control

Introduction

Optimal control is the policy of getting the optimized control value for minimizing a predefined cost function. Recently, several optimization methods have been introduced for achieving this purpose.1–4 Among these methods, Pontryagins maximum principle5 and the Hamilton Jacobi Bellman equation6 are the most popular. In Pontryagins maximum principle, the optimal control problem will be converted to an ODE problem while the Hamilton Jacobi Bellman method converts the optimal control into a nonlinear partial differential equation. Hamilton Jacobi Bellman method can be utilized in different linear, non-linear and even distributed optimal control problems. Be-cause of difficulty in solving the HJB and the Pontryagins maximum principal method, it is usually necessary to employ the numerical methods to achieve the optimal solutions for the nonlinear practical models. One of the popular semi-numerical methods which is frequently used in the recent years is the Adomian decomposition method.7 Adomian decomposition method and its modifications have been efficiently employed to solve the ordinary and partial differential equations.8–10 Because the method uses no linearization or smallness assumptions in solving the differential equations, it has been an effective method among the other techniques. Generally, in designing the optimal control problems for engineering and practical applications the parameters considered as deterministic, but there is a great deal of uncertain parameters which can greatly affect the system performance. Such an uncertainty can be made by model simplification, manufacture error, design tolerance etc. If the number of the system uncertainties becomes very small, deterministic methods can be employed to solve these problems with little errors. If the number of uncertain parameters has been increased or the ranges of these parameters have become large, the deterministic methods might give the wrong answer. Three different methods have been introduced for solving these uncertain problems: Probabilistic methods, fuzzy methods and interval methods.11 The main purpose of this paper is to introduce an interval version of Adomian decomposition method to solve the Hamilton Jacobi Bellman equation. The proposed method is first applied on a linear optimal control with uncertainties. After that, it is utilized to solve a nonlinear optimal control with uncertain parameters. Finally, a practical distributed system is solved by the proposed method; in this problem, in addition to assuming the presence of uncertainty in parameters, the initial conditions are also considered with uncertainty.

Interval arithmetic

This section describes the basic concepts of the interval arithmetic which is necessary to use the proposed method.12 Generally, basic interval arithmetic operations have described to guarantee the interval results reliability. let: X=[ x _ , x ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq GH9aqpdaWadaqaaiqadIhagaqhaiaacYcaceWG4bGbaebaaiaawUfa caGLDbaaaaa@3D34@  and Y=[ y _ , y ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfacq GH9aqpdaWadaqaaiqadMhagaqhaiaacYcaceWG5bGbaebaaiaawUfa caGLDbaaaaa@3D37@  be interval numbers as: X, Y ∈ R, x _ < x ¯ , y _ < y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga qhaiabgYda8iqadIhagaqeaiaacYcaceWG5bGba0bacqGH8aapceWG 5bGbaebaaaa@3D9F@  and the symbol ⋄ illustrates the basic mathematical operations, i.e. addition , subtraction, multiplication and division for real numbers. In other words,
{ +,,×,÷ } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyiXIaUaeyicI48aamGaaeaadaGadaqaaiabgUcaRiaacYca cqGHsislcaGGSaGaey41aqRaaiilaiabgEpa4cGaay5Eaiaaw2haaa Gaayzxaaaaaa@45CF@ .
By assuming the assumption above, we have:
ΧY={ ΧY|xΧ,yY } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4PdmKaeyiXIaUaamywaiabg2da9maacmaabaGaeu4PdmKa eyiXIaUaamywamXvP5wqonvsaeHbcLMCJHgitrhzaGqbaiab=Xha8j ab=Hha4jabgIGiolabfE6adjaacYcacaWG5bGaeyicI4SaamywaaGa ay5Eaiaaw2haaaaa@52E1@ ,      (1)
where 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgMGipdaa@3771@ Y for preventing the singularity in the division. We can easily prove that the set IR of real compact intervals is closed with respect to the illustrated operations.13 from the explanation above, the basic interval arithmetic operations between two interval numbers X and Y and can be defined as follows:
X+Y=[ x _ + y _ , x ¯ + y ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq GHRaWkcaWGzbGaeyypa0ZaamWaaeaaceWG4bGba0bacqGHRaWkceWG 5bGba0bacaGGSaGabmiEayaaraGaey4kaSIabmyEayaaraaacaGLBb Gaayzxaaaaaa@42F0@ (2)
XY=[ x _ y ¯ , x ¯ y _ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq GHsislcaWGzbGaeyypa0ZaamWaaeaaceWG4bGba0bacqGHsislceWG 5bGbaebacaGGSaGabmiEayaaraGaeyOeI0IabmyEayaaDaaacaGLBb Gaayzxaaaaaa@4311@  (3)
Χ×Y=[ min{ x _ y, x ¯ y _ , x _ y ¯ , x ¯ y ¯ },max{ x _ y, x ¯ y _ , x _ y ¯ , x ¯ y ¯ } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4PdmKaey41aqRaamywaiabg2da9maadmaabaGaciyBaiaa cMgacaGGUbWaaiWaaeaapaGabmiEayaaDaGaamyEaiaacYcaceWG4b GbaebaceWG5bGba0bacaGGSaGabmiEayaaDaGabmyEayaaraGaaiil aiqadIhagaqeaiqadMhagaqeaaWdbiaawUhacaGL9baacaGGSaGaci yBaiaacggacaGG4bWaaiWaaeaapaGabmiEayaaDaGaamyEaiaacYca ceWG4bGbaebaceWG5bGba0bacaGGSaGabmiEayaaDaGabmyEayaara GaaiilaiqadIhagaqeaiqadMhagaqeaaWdbiaawUhacaGL9baaaiaa wUfacaGLDbaaaaa@5E84@ (4)
Χ/Y=Χ× 1 Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4PdmKaai4laiaacMfacqGH9aqpcqqHNoWqcqGHxdaTdaWc aaqaaiaaigdaaeaacaWGzbaaaaaa@3FDF@ (5)
1 Y ={ 1 y |yY } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaeaacaaIXaaabaGaamywaaaacqGH9aqpdaGadaqaamaa laaabaGaaGymaaqaaiaadMhaaaWexLMBb50ujbqegiuAYngAGmfDKb acfaGae8hFaWNaamyEaiabgIGiolaadMfaaiaawUhacaGL9baaaaa@47E2@ , if 0Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaGimaiabgMGiplaadMfaaaa@39B7@ ,
Χ n ={ [ 0,max( x _ n , x ¯ n ) ],n=2k,0Χ, [ min( x _ n , x ¯ n ),max( x _ n , x ¯ n ) ] [ x _ n , x ¯ n ],n=2k+1, ,n=2k,0Χ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4Pdm0aaWbaaeqajuaibaGaamOBaaaajuaGcqGH9aqpdaGa baqaauaabeqadeaaaeaadaWadaqaaiaaicdacaGGSaGaciyBaiaacg gacaGG4bWaaeWaaeaaceWG4bGba0badaahaaqcfasabeaacaWGUbaa aKqbakaacYcaceWG4bGbaebadaahaaqcfasabeaacaWGUbaaaaqcfa OaayjkaiaawMcaaaGaay5waiaaw2faaiaacYcacaWGUbGaeyypa0Ja aGOmaiaadUgacaGGSaGaaGimaiabgIGiolabfE6adjaacYcaaeaada WadaqaaiGac2gacaGGPbGaaiOBamaabmaabaGabmiEayaaDaWaaWba aeqajuaibaGaamOBaaaajuaGcaGGSaGabmiEayaaraWaaWbaaeqaju aibaGaamOBaaaaaKqbakaawIcacaGLPaaacaGGSaGaciyBaiaacgga caGG4bWaaeWaaeaaceWG4bGba0badaahaaqcfasabeaacaWGUbaaaK qbakaacYcaceWG4bGbaebadaahaaqabKqbGeaacaWGUbaaaaqcfaOa ayjkaiaawMcaaaGaay5waiaaw2faaaqaamaadmaabaGabmiEayaaDa WaaWbaaeqajuaibaGaamOBaaaajuaGcaGGSaGabmiEayaaraWaaWba aeqajuaibaGaamOBaaaaaKqbakaawUfacaGLDbaacaGGSaGaamOBai abg2da9iaaikdacaWGRbGaey4kaSIaaGymaiaacYcaaaaacaGL7baa caGGSaGaaiOBaiabg2da9iaaikdacaGGRbGaaiilaiaaicdacqGHji YZcqqHNoWqcaGGSaaaaa@84AE@ (6)

If in mathematical operations, a real number like x gets into operations, it can be described as
x _ = x ¯ =x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga qhaiabg2da9iqadIhagaqeaiabg2da9iaadIhaaaa@3BB8@  and called degenerate interval ; in other words, the interval form for this constant number is X ≡ [x, x].

Description of the Hamilton-Jacobi-Bellman (HJB) formulation under interval uncertainty

In this section, a brief illustration of the optimal control and how to use the Hamilton-Jacobi-Bellman for solving these problems are described. Consider a state space representation system as below:

  x ˙ ( t ) = F( x( t ) , u( t ) , t,[ δ ] ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmiEayaacaWdamaabmaabaWdbiaadshaa8aacaGLOaGaayzk aaWdbiaabccacqGH9aqpcaqGGaGaamOra8aadaqadaqaa8qacaWG4b WdamaabmaabaWdbiaadshaa8aacaGLOaGaayzkaaWdbiaabccacaGG SaGaaeiiaiaadwhapaWaaeWaaeaapeGaamiDaaWdaiaawIcacaGLPa aapeGaaeiiaiaacYcacaqGGaGaamiDaiaacYcapaWaamWaaeaapeGa eqiTdqgapaGaay5waiaaw2faaaGaayjkaiaawMcaa8qacaqGGaGaai ilaaaa@5152@  (7)

where, x(t) is the space vector, u(t) is the control signal and [ δ ] = [ δ _ ,  δ ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba aeaaaaaaaaa8qacqaH0oaza8aacaGLBbGaayzxaaWdbiaabccacqGH 9aqpcaqGGaWdamaadmaabaWdbiqbes7aKzaaDaGaaiilaiaabccacu aH0oazgaqeaaWdaiaawUfacaGLDbaaaaa@4394@ is a coefficient with interval uncertainties. The main purpose is to find a control signal to minimize the following index performance:
J= 0 tf g( x( τ ),u( τ ),τ,[ δ ^ ] ) dτ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOsaiabg2da9maapehabaGaam4zamaabmaabaGaamiEamaa bmaabaGaeqiXdqhacaGLOaGaayzkaaGaaiilaiaadwhadaqadaqaai abes8a0bGaayjkaiaawMcaaiaacYcacqaHepaDcaGGSaWaamWaaeaa cuaH0oazgaqcaaGaay5waiaaw2faaaGaayjkaiaawMcaaaqaaiaaic daaeaacaWG0bGaamOzaaGaey4kIipacaWGKbGaeqiXdqNaaiilaaaa @533F@  (8)
Here, g(.)is an arbitrary convex function, tf is final time of system operation
δ ^  = [ δ _ ^ ,  δ ^ ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGafqiTdqMbaKaacaqGGaGaeyypa0Jaaeiia8aadaWadaqaa8qa cuaH0oazgaqhgaqcaiaacYcacaqGGaGafqiTdqMbaKGbaebaa8aaca GLBbGaayzxaaaaaa@41B1@  is a coefficient with interval uncertainties and J = [J, J] is the lower and upper bounds of the optimized performance index. By supposing the dynamic programming approach, we have:14
V( x( t ),t )= J * ( x( t ),t )= min u( τ ) tτ t f 0 t f g( πx( τ ),u( τ ),τ[ δ ^ ] )dτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaiOvamaabmaabaGaamiEamaabmaabaGaamiDaaGaayjkaiaa wMcaaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0JaamOsamaaCa aabeqaaiaacQcaaaWaaeWaaeaacaWG4bWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWfqa qaaiGac2gacaGGPbGaaiOBaaqaauaabeqaceaaaeaacaWG1bWaaeWa aeaacqaHepaDaiaawIcacaGLPaaaaeaacaWG0bGaeyizImQaeqiXdq NaeyizImQaamiDamaaBaaajuaibaGaamOzaaqcfayabaaaaaqabaWa a8qCaeaacaWGNbWaaeWaaeaacqaHapaCcaWG4bWaaeWaaeaacqaHep aDaiaawIcacaGLPaaacaGGSaGaamyDamaabmaabaGaeqiXdqhacaGL OaGaayzkaaGaaiilaiabes8a0naadmaabaGafqiTdqMbaKaaaiaawU facaGLDbaaaiaawIcacaGLPaaacaWGKbGaeqiXdqhabaGaaGimaaqa aiaadshadaWgaaqcfasaaiaadAgaaeqaaaqcfaOaey4kIipaaaa@74C9@ (9)
Since,
V( x( t ),t )= J * ( x( t ),t )= min u( τ ) tτ t f { t t+Δt g( x( τ ),u( τ ),τ,[ δ ^ ] )dτ+ t+Δt t f g( x( τ ),u( τ ),τ,[ δ ^ ] )dτ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaiOvamaabmaabaGaamiEamaabmaabaGaamiDaaGaayjkaiaa wMcaaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0JaamOsamaaCa aabeqaaiaacQcaaaWaaeWaaeaacaWG4bWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWfqa qaaiGac2gacaGGPbGaaiOBaaqaauaabeqaceaaaeaacaWG1bWaaeWa aeaacqaHepaDaiaawIcacaGLPaaaaeaacaWG0bGaeyizImQaeqiXdq NaeyizImQaamiDamaaBaaajuaibaGaamOzaaqcfayabaaaaaqabaGc daGabaqaaKqbaoaapehabaGaam4zamaabmaabaGaamiEamaabmaaba GaeqiXdqhacaGLOaGaayzkaaGaaiilaiaadwhadaqadaqaaiabes8a 0bGaayjkaiaawMcaaiaacYcacqaHepaDcaGGSaWaamWaaeaacuaH0o azgaqcaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaadsgacqaHepaD cqGHRaWkdaGacaqaamaapehabaGaam4zamaabmaabaGaamiEamaabm aabaGaeqiXdqhacaGLOaGaayzkaaGaaiilaiaadwhadaqadaqaaiab es8a0bGaayjkaiaawMcaaiaacYcacqaHepaDcaGGSaWaamWaaeaacu aH0oazgaqcaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaadsgacqaH epaDaeaacaWG0bGaey4kaSIaeuiLdqKaamiDaaqaaiaadshadaWgaa qcfasaaiaadAgaaKqbagqaaaGaey4kIipaaiaaw2haaaqaaiaadsha aeaacaWG0bGaey4kaSIaeuiLdqKaamiDaaGaey4kIipaaOGaay5Eaa aaaa@97AD@ (10)
By considering the principle of optimality

V( x( t ),t )= min ( τ ) τt+Δt { t t+Δt g( x( τ ),u( τ ),τ,[ δ ^ ] )dτ+ [ V ]( x( t+Δt ),t+Δt,[ δ ^ ] ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaiOvamaabmaabaGaamiEamaabmaabaGaamiDaaGaayjkaiaa wMcaaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaCbeaeaaci GGTbGaaiyAaiaac6gaaeaafaqabeGabaaabaWaaeWaaeaacqaHepaD aiaawIcacaGLPaaaaeaacqGHKjYOcqaHepaDcqGHKjYOcaWG0bGaey 4kaSIaeuiLdqKaamiDaaaaaeqaaOWaaiqaaeaajuaGdaWdXbqaaiaa dEgadaqadaqaaiaadIhadaqadaqaaiabes8a0bGaayjkaiaawMcaai aacYcacaWG1bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacaGGSaGa eqiXdqNaaiilamaadmaabaGafqiTdqMbaKaaaiaawUfacaGLDbaaai aawIcacaGLPaaacaWGKbGaeqiXdqNaey4kaSYaaiGaaeaadaWadaqa aiaadAfaaiaawUfacaGLDbaadaqadaqaaiaadIhadaqadaqaaiaads hacqGHRaWkcqqHuoarcaWG0baacaGLOaGaayzkaaGaaiilaiaadsha cqGHRaWkcqqHuoarcaWG0bGaaiilamaadmaabaGafqiTdqMbaKaaai aawUfacaGLDbaaaiaawIcacaGLPaaaaiaaw2haaaqaaiaadshaaeaa caWG0bGaey4kaSIaeuiLdqKaamiDaaGaey4kIipaaOGaay5Eaaaaaa@83B6@ (11)

And with applying Taylor series, we have:

V( x( t ),t )= min ( τ ) τt+Δt { t t+Δt g( x( τ ),u( τ ),τ,[ δ ^ ] )dτ+ [ V ]( x( t ),t,[ δ ^ ] )+ [ V ] t Δt+ [ V ] x [ x( t+Δt )x( t ) ]+H.O.T } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaiOvamaabmaabaGaamiEamaabmaabaGaamiDaaGaayjkaiaa wMcaaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaCbeaeaaci GGTbGaaiyAaiaac6gaaeaafaqabeGabaaabaWaaeWaaeaacqaHepaD aiaawIcacaGLPaaaaeaacqGHKjYOcqaHepaDcqGHKjYOcaWG0bGaey 4kaSIaeuiLdqKaamiDaaaaaeqaaOWaaiqaaeaajuaGdaWdXbqaaiaa dEgadaqadaqaaiaadIhadaqadaqaaiabes8a0bGaayjkaiaawMcaai aacYcacaWG1bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacaGGSaGa eqiXdqNaaiilamaadmaabaGafqiTdqMbaKaaaiaawUfacaGLDbaaai aawIcacaGLPaaacaWGKbGaeqiXdqNaey4kaSYaaiGaaeaadaWadaqa aiaadAfaaiaawUfacaGLDbaadaqadaqaaiaadIhadaqadaqaaiaads haaiaawIcacaGLPaaacaGGSaGaamiDaiaacYcadaWadaqaaiqbes7a KzaajaaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaey4kaSYaaSaaae aacqGHciITdaWadaqaaiaadAfaaiaawUfacaGLDbaaaeaacqGHciIT caWG0baaaiabfs5aejaadshacqGHRaWkdaWcaaqaaiabgkGi2oaadm aabaGaamOvaaGaay5waiaaw2faaaqaaiabgkGi2kaadIhaaaWaamWa aeaacaWG4bWaaeWaaeaacaWG0bGaey4kaSIaeuiLdqKaamiDaaGaay jkaiaawMcaaiabgkHiTiaadIhadaqadaqaaiaadshaaiaawIcacaGL PaaaaiaawUfacaGLDbaacqGHRaWkcaWGibGaaiOlaiaad+eacaGGUa GaamivaaGaayzFaaaabaGaamiDaaqaaiaadshacqGHRaWkcqqHuoar caWG0baacqGHRiI8aaGccaGL7baaaaa@A07D@ (12)
By assuming 0<Δt1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaGimaiabgYda8iabfs5aejaadshacqWIQjspcaaIXaaaaa@3CCB@ , then τt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiXdqNaeyOKH4QaamiDaaaa@3B44@ [16]. Therefore:
[ V ]( x( t ),t )= min u( τ ) { t t+Δt [ V ]( x,t,[ δ ^ ] )+ [ V ] t Δt+[ δ ] [ V ] x f( x,u,t,[ δ ] )Δx+O( Δt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaamWaaeaacaGGwbaacaGLBbGaayzxaaWaaeWaaeaacaWG4bWa aeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilaiaadshaaiaawIcaca GLPaaacqGH9aqpdaWfqaqaaiGac2gacaGGPbGaaiOBaaqaaiaadwha daqadaqaaiabes8a0bGaayjkaiaawMcaaaqabaGcdaGabaqaaKqbao aapehabaWaamWaaeaacaWGwbaacaGLBbGaayzxaaWaaeWaaeaacaWG 4bGaaiilaiaadshacaGGSaWaamWaaeaacuaH0oazgaqcaaGaay5wai aaw2faaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeyOaIy7aamWa aeaacaWGwbaacaGLBbGaayzxaaaabaGaeyOaIyRaamiDaaaacqqHuo arcaWG0bGaey4kaSYaamWaaeaacqaH0oazaiaawUfacaGLDbaadaWc aaqaaiabgkGi2oaadmaabaGaamOvaaGaay5waiaaw2faaaqaaiabgk Gi2kaadIhaaaGaamOzamaabmaabaGaamiEaiaacYcacaWG1bGaaiil aiaadshacaGGSaWaamWaaeaacqaH0oazaiaawUfacaGLDbaaaiaawI cacaGLPaaacqqHuoarcaWG4bGaey4kaSIaam4tamaabmaabaGaeuiL dqKaamiDaaGaayjkaiaawMcaaaqaaiaadshaaeaacaWG0bGaey4kaS IaeuiLdqKaamiDaaGaey4kIipaaOGaay5Eaaaaaa@8505@  (13)

By applying the division operation into both sides, we obtain:
V t = min u( τ ) { t t+Δt g ( x,u,t,[ δ ^ ] ) + [ V ] t f( x,u,t,[ δ ] ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0YaaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaamiD aaaacqGH9aqpdaWfqaqaaiGac2gacaGGPbGaaiOBaaqaaiaadwhada qadaqaaiabes8a0bGaayjkaiaawMcaaaqabaWaaiqaaeaadaWdXbqa aiaadEgaaeaacaWG0baabaGaamiDaiabgUcaRiabfs5aejaadshaai abgUIiYdaacaGL7baadaqadaqaaiaadIhacaGGSaGaamyDaiaacYca caWG0bGaaiilamaadmaabaGafqiTdqMbaKaaaiaawUfacaGLDbaaai aawIcacaGLPaaadaGacaqaaiabgUcaRmaalaaabaGaeyOaIy7aamWa aeaacaWGwbaacaGLBbGaayzxaaaabaGaeyOaIyRaamiDaaaacaWGMb WaaeWaaeaacaWG4bGaaiilaiaadwhacaGGSaGaamiDaiaacYcadaWa daqaaiabes7aKbGaay5waiaaw2faaaGaayjkaiaawMcaaaGaayzFaa aaaa@6BEA@ (14)

The previous nonlinear time-variant differential equation forms the HJB equation. By using the Hamiltonian function, we have:
H( x, u * V x,t )= min u( τ ) H( x,u, V x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamisamaabmaabaGaamiEaiaacYcacaWG1bWaaWbaaKqbGeqa baGaaiOkaaaajuaGcaWGwbWaaSbaaeaajuaicaWG4bqcfaOaaiilai aadshaaeqaaaGaayjkaiaawMcaaiabg2da9maaxababaGaciyBaiaa cMgacaGGUbaabaGaamyDamaabmaabaGaeqiXdqhacaGLOaGaayzkaa aabeaacaWGibWaaeWaaeaacaWG4bGaaiilaiaadwhacaGGSaGaamOv amaaBaaajuaibaGaamiEaaqcfayabaGaaiilaiaadshaaiaawIcaca GLPaaaaaa@53D9@  (15)
By substitution the Hamiltonian function into the Eq. (14), the nal interval HGB equation can be describes as below:
V t =H( x, u * V x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0YaaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaamiD aaaacqGH9aqpcaWGibWaaeWaaeaacaWG4bGaaiilaiaadwhadaahaa qcfasabeaacaGGQaaaaKqbakaadAfadaWgaaqaaKqbGiaadIhajuaG caGGSaGaamiDaaqabaaacaGLOaGaayzkaaaaaa@4823@ (16)

Interval adomian decomposition method (IADM )

In this section, a brief description of the interval Adomian method for HGB equation is introduced. Suppose that Lt = ∂t∂ . Let consider the HGB equation in the following form:

L t V=H( x, u * ( x, V x ,x,t ), V x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamitamaaBaaajuaibaGaamiDaaqcfayabaGaamOvaiabg2da 9iaadIeadaqadaqaaiaadIhacaGGSaGaamyDamaaCaaajuaibeqaai aacQcaaaqcfa4aaeWaaeaacaWG4bGaaiilaiaadAfadaWgaaqcfasa aiaadIhaaKqbagqaaiaacYcacaWG4bGaaiilaiaadshaaiaawIcaca GLPaaacaGGSaGaamOvamaaBaaajuaibaGaamiEaaqabaqcfaOaaiil aiaadshaaiaawIcacaGLPaaaaaa@4FF9@  (17)
From Eq.15, we obtain:     
u * ( x, V x ,x,t )=f( V x ,x,t,[ δ ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyDamaaCaaajuaibeqaaiaacQcaaaqcfa4aaeWaaeaacaWG 4bGaaiilaiaadAfadaWgaaqcfasaaiaadIhaaKqbagqaaiaacYcaca WG4bGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaeWa aeaacaWGwbWaaSbaaKqbGeaacaWG4baajuaGbeaacaGGSaGaamiEai aacYcacaWG0bGaaiilamaadmaabaGaeqiTdqgacaGLBbGaayzxaaaa caGLOaGaayzkaaaaaa@502C@ (18)
Substituting Eq.16 into Eq.17 yields:              
L t V=H( x,f( V x ,x,t, [ δ ), V x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamitamaaBaaajuaibaGaamiDaaqcfayabaGaamOvaiabg2da 9iaadIeadaqadaqaaiaadIhacaGGSaGaamOzamaabmaabaGaamOvam aaBaaajuaibaGaamiEaaqcfayabaGaaiilaiaadIhacaGGSaGaamiD aiaacYcadaWabaqaaiabes7aKbGaay5waaaacaGLOaGaayzkaaGaai ilaiaadAfadaWgaaqcfasaaiaadIhaaKqbagqaaiaacYcacaWG0baa caGLOaGaayzkaaaaaa@5001@ (19)
Since, the main equation can be considered as:           
L t V=R( V x )+N( V x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamitamaaBaaajuaibaGaamiDaaqcfayabaGaamOvaiabg2da 9iaadkfadaqadaqaaiaadAfadaWgaaqcfasaaiaadIhaaKqbagqaaa GaayjkaiaawMcaaiabgUcaRiaad6eadaqadaqaaiaadAfadaWgaaqc fasaaiaadIhaaKqbagqaaaGaayjkaiaawMcaaaaa@4629@ (20)
where    
R( V x )=[ α ]×R( V x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOuamaabmaabaGaamOvamaaBaaajuaibaGaamiEaaqcfaya baaacaGLOaGaayzkaaGaeyypa0ZaamWaaeaacqaHXoqyaiaawUfaca GLDbaacqGHxdaTcaWGsbWaaeWaaeaacaWGwbWaaSbaaKqbGeaacaWG 4baajuaGbeaaaiaawIcacaGLPaaaaaa@4771@ (21)
N( V x )=[ β ]×N( V x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtamaabmaabaGaamOvamaaBaaajuaibaGaamiEaaqcfaya baaacaGLOaGaayzkaaGaeyypa0ZaamWaaeaacqaHYoGyaiaawUfaca GLDbaacqGHxdaTcaWGobWaaeWaaeaacaWGwbWaaSbaaKqbGeaacaWG 4baajuaGbeaaaiaawIcacaGLPaaaaaa@476B@ (22)
Here, R (Vx) and N (Vx) are the linear and nonlinear terms of the Hamiltonian function, respectively and [α] and [β] are uncertain coefficients for linear and nonlinear terms, respectively. Using the Adomian decomposition method, the nonlinear term (N(Vx)), can be achieved by:
N( V x )= n=0 A n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtamaabmaabaGaamOvamaaBaaajuaibaGaamiEaaqcfaya baaacaGLOaGaayzkaaGaeyypa0ZaaabmaeaacaWGbbWaaSbaaKqbGe aacaWGUbaajuaGbeaaaeaacaWGUbGaeyypa0JaaGimaaqaaiabg6Hi LcGaeyyeIuoaaaa@4554@                 (23)
where, An = An(V0x(x), V1x(x), . . . , Vnx(x)) are the Adomian polynomials:
A n = 1 n! d n d λ n N ( i=0 λ i V ix ( x ) ) λ=0 n=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyqamaaBaaajuaibaGaamOBaaqcfayabaGaeyypa0ZaaSaa aeaacaaIXaaabaGaamOBaiaacgcaaaWaaSaaaeaacaWGKbWaaWbaae qajuaibaGaamOBaaaaaKqbagaacaWGKbGaeq4UdW2aaWbaaeqajuai baGaamOBaaaaaaqcfaOaamOtamaabmaabaWaaabmaeaacqaH7oaBda ahaaqcfasabeaacaWGPbaaaKqbakaadAfadaWgaaqcfasaaiaadMga caWG4baajuaGbeaadaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaaca WGPbGaeyypa0JaaGimaaqaaiabg6HiLcGaeyyeIuoaaiaawIcacaGL PaaadaWgaaqcfasaaiabeU7aSjabg2da9iaaicdaaeqaaKqbakaad6 gacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmaiaacYcacaGG UaGaaiOlaiaac6caaaa@627F@ (24)
By applying the inverse operator ( L t 1 = 0 t [ . ]dτ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaeaacaWGmbWaa0baaKqbGeaacaWG0baabaGaeyOeI0Ia aGymaaaajuaGcqGH9aqpdaWdXbqaamaadmaabaGaaiOlaaGaay5wai aaw2faaiaadsgacqaHepaDaeaacaaIWaaabaGaamiDaaGaey4kIipa aiaawIcacaGLPaaaaaa@46CE@ into the both sides of the Eq. 19
L t 1 L t V= L t 1 R( V x )+ L t 1 N( V x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamitamaaDaaajuaibaGaamiDaaqaaiabgkHiTiaaigdaaaqc faOaamitamaaBaaajuaibaGaamiDaaqabaqcfaOaamOvaiabg2da9i aadYeadaqhaaqcfasaaiaadshaaeaacqGHsislcaaIXaaaaKqbakaa dkfadaqadaqaaiaadAfadaWgaaqcfasaaiaadIhaaKqbagqaaaGaay jkaiaawMcaaiabgUcaRiaadYeadaqhaaqcfasaaiaadshaaeaacqGH sislcaaIXaaaaKqbakaad6eadaqadaqaaiaadAfadaWgaaqcfasaai aadIhaaKqbagqaaaGaayjkaiaawMcaaaaa@5319@  (25)
Since, by considering the given conditions, the final equation can be achieved by:
V=Φ+ L t 1 R( V x )+ L t 1 N( V x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvaiabg2da9iabfA6agjabgUcaRiaadYeadaqhaaqcfasa aiaadshaaeaacqGHsislcaaIXaaaaKqbakaadkfadaqadaqaaiaadA fadaWgaaqcfasaaiaadIhaaKqbagqaaaGaayjkaiaawMcaaiabgUca RiaadYeadaqhaaqcfasaaiaadshaaeaacqGHsislcaaIXaaaaKqbak aad6eadaqadaqaaiaadAfadaWgaaqcfasaaiaadIhaaKqbagqaaaGa ayjkaiaawMcaaaaa@4E7E@  (26)
Where Φ=[ Φ _ , Φ ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuOPdyKaeyypa0ZaamWaaeaacuqHMoGrgaqhaiaacYcacuqH MoGrgaqeaaGaay5waiaaw2faaaaa@3EEB@  illustrates the initial condition interval by the presence of uncertainty. We consider the truncated V as:
V= i=0 n V i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvaiabg2da9maaqahabaGaamOvamaaBaaajuaibaGaamyA aaqabaaajuaGbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaacqGHri s5aaaa@40EB@  (27)
By using Equation (28), we can compute Vi as follows:
{ V 0 =Φ, V n+1 =[ α ]× L t 1 R( V nx )+[ β ]× L t 1 A n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiaadAfadaWgaaqcfasaaiaaicdaaeqaaKqb akabg2da9iabfA6agjaacYcaaeaacaWGwbWaaSbaaKqbGeaacaWGUb Gaey4kaSIaaGymaaqabaqcfaOaeyypa0ZaamWaaeaacqaHXoqyaiaa wUfacaGLDbaacqGHxdaTcaWGmbWaa0baaKqbGeaacaWG0baabaGaey OeI0IaaGymaaaajuaGcaWGsbWaaeWaaeaacaWGwbWaaSbaaKqbGeaa caWGUbGaamiEaaqcfayabaaacaGLOaGaayzkaaGaey4kaSYaamWaae aacqaHYoGyaiaawUfacaGLDbaacqGHxdaTcaWGmbWaa0baaKqbGeaa caWG0baabaGaeyOeI0IaaGymaaaajuaGcaWGbbWaaSbaaKqbGeaaca WGUbaajuaGbeaaaaGaay5Eaaaaaa@601C@ (28)

Illustrative examples

The proposed interval method is studied by three examples to describe the robustness of the approach.

Example 1
Linear LQR system: In the first example, consider a linear system which has equal uncertainty in both control and state terms. Find the optimal control based on minimizing the performance index in below:
J= 1 2 0 1 ( U ( t ) 2 +X ( t ) 2 ) dt,0t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOsaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaa8qC aeaadaqadaqaaiaadwfadaqadaqaaiaadshaaiaawIcacaGLPaaada ahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaadIfadaqadaqaaiaa dshaaiaawIcacaGLPaaadaahaaqabKqbGeaacaaIYaaaaaqcfaOaay jkaiaawMcaaaqaaiaaicdaaeaacaaIXaaacqGHRiI8aiaadsgacaWG 0bGaaiilaiaaicdacqGHKjYOcaGG0bGaeyizImQaaGymaaaa@527E@ (29)
Subject to
X ˙ =δX( t )+ δ ^ U( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmiwayaacaGaeyypa0JaeqiTdqMaamiwamaabmaabaGaamiD aaGaayjkaiaawMcaaiabgUcaRiqbes7aKzaajaGaamyvamaabmaaba GaamiDaaGaayjkaiaawMcaaaaa@437C@ (30)

Where δ= δ ^ =[ 0.1, 0.9 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiTdqMaeyypa0JafqiTdqMbaKaacqGH9aqpdaWadaqaauaa beqabiaaaeaacaaIWaGaaiOlaiaaigdacaGGSaaabaGaaGimaiaac6 cacaaI5aaaaaGaay5waiaaw2faaaaa@4304@ . The problem without uncertainty is solved in (14). From Eq. (15), the HJB equation is achieved as follows:
V t = 1 2 [ δ ^ ] 2 ( V X ) 2 1 2 [ δ ] 2 ( V X ) 2 [ δ ]X V X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaamiDaaaacqGH 9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaadmaabaGafqiTdqMbaK aaaiaawUfacaGLDbaadaahaaqabKqbGeaacaaIYaaaaKqbaoaabmaa baWaaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaamiwaaaaaiaawI cacaGLPaaadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTmaalaaa baGaaGymaaqaaiaaikdaaaWaamWaaeaacqaH0oazaiaawUfacaGLDb aadaahaaqcfasabeaacaaIYaaaaKqbaoaabmaabaWaaSaaaeaacqGH ciITcaWGwbaabaGaeyOaIyRaamiwaaaaaiaawIcacaGLPaaadaahaa qabKqbGeaacaaIYaaaaKqbakabgkHiTmaadmaabaGaeqiTdqgacaGL BbGaayzxaaGaamiwamaalaaabaGaeyOaIyRaamOvaaqaaiabgkGi2k aadIfaaaaaaa@641F@ (31)

From the Eq. (27):

{ V 0 = 1 2 0 t X ( τ ) 2 dτ= 1 2 X 2 t=[ 1 2 X 2 t, 1 2 X 2 t ], V 1 = [ δ ^ ] 2 2 0 t ( V 0 X ) 2 dτ[ δ ] 0 t ( V 0 X ) dτ=[ 0.0016,0.135 ] X 2 t 3 +[ 0.005,0.405 ] X 2 t 2 , V 2 = [ δ ^ ] 2 2 0 t ( V 1 X ) 2 dτ[ δ ] 0 t ( V 1 X ) dτ=[ 64e7,0.0437 ] X 2 t 5 [ 0.001,0.2247 ] X 2 t 4 [ 0.00035,0.255 ] X 2 t 3 , . . . V n+1 = [ δ ^ ] 2 2 0 t ( V 1 X ) 2 dτ[ δ ] 0 t ( V n X ) dτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiaadAfadaWgaaqcfasaaiaaicdaaeqaaKqb akabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaa8qCaeaacaWGyb WaaeWaaeaacqaHepaDaiaawIcacaGLPaaadaahaaqabKqbGeaacaaI YaaaaKqbakaadsgacqaHepaDcqGH9aqpdaWcaaqaaiaaigdaaeaaca aIYaaaaaqaaiaaicdaaeaacaWG0baacqGHRiI8aiaadIfadaahaaqa bKqbGeaacaaIYaaaaKqbakaadshacqGH9aqpdaWadaqaaiabgkHiTm aalaaabaGaaGymaaqaaiaaikdaaaGaamiwamaaCaaajuaibeqaaiaa ikdaaaqcfaOaamiDaKqbGiaacYcacqGHsisljuaGdaWcaaqaaiaaig daaeaacaaIYaaaaiaadIfadaahaaqcfasabeaacaaIYaaaaKqbakaa dshaaiaawUfacaGLDbaacaGGSaaabaGaamOvamaaBaaajuaibaGaaG ymaaqabaqcfaOaeyypa0ZaaSaaaeaadaWadaqaaiqbes7aKzaajaaa caGLBbGaayzxaaWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaaIYa aaamaapehabaWaaeWaaeaadaWcaaqaaiabgkGi2kaadAfadaWgaaqc fasaaiaaicdaaKqbagqaaaqaaiabgkGi2kaadIfaaaaacaGLOaGaay zkaaWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaaIWaaabaGaamiD aaGaey4kIipacaGGKbGaeqiXdqNaeyOeI0YaamWaaeaacqaH0oazai aawUfacaGLDbaadaWdXbqaamaabmaabaWaaSaaaeaacqGHciITcaWG wbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaeaacqGHciITcaWGybaaaa GaayjkaiaawMcaaaqaaiaaicdaaeaacaWG0baacqGHRiI8aiaacsga cqaHepaDcqGH9aqpdaWadaqaaiaaicdacaGGUaGaaGimaiaaicdaca aIXaGaaGOnaiaacYcacaaIWaGaaiOlaiaaigdacaaIZaGaaGynaaGa ay5waiaaw2faaiaacIfadaahaaqabKqbGeaacaaIYaaaaKqbakaacs hadaahaaqabKqbGeaacaaIZaaaaKqbakabgUcaRmaadmaabaGaaGim aiaac6cacaaIWaGaaGimaiaaiwdacaGGSaGaaGimaiaac6cacaaI0a GaaGimaiaaiwdaaiaawUfacaGLDbaacaGGybWaaWbaaeqajuaibaGa aGOmaaaajuaGcaGG0bWaaWbaaeqajuaibaGaaGOmaaaajuaGcaGGSa aabaGaamOvamaaBaaajuaibaGaaGOmaaqabaqcfaOaeyypa0ZaaSaa aeaadaWadaqaaiqbes7aKzaajaaacaGLBbGaayzxaaWaaWbaaeqaju aibaGaaGOmaaaaaKqbagaacaaIYaaaamaapehabaWaaeWaaeaadaWc aaqaaiabgkGi2kaadAfadaWgaaqcfasaaiaaigdaaKqbagqaaaqaai abgkGi2kaadIfaaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOm aaaaaKqbagaacaaIWaaabaGaamiDaaGaey4kIipacaGGKbGaeqiXdq NaeyOeI0YaamWaaeaacqaH0oazaiaawUfacaGLDbaadaWdXbqaamaa bmaabaWaaSaaaeaacqGHciITcaWGwbWaaSbaaKqbGeaacaaIXaaaju aGbeaaaeaacqGHciITcaWGybaaaaGaayjkaiaawMcaaaqaaiaaicda aeaacaWG0baacqGHRiI8aiaacsgacqaHepaDcqGH9aqpdaWadaqaai aaiAdacaaI0aGaamyzaiabgkHiTiaaiEdacaGGSaGaaGimaiaac6ca caaIWaGaaGinaiaaiodacaaI3aaacaGLBbGaayzxaaGaaiiwamaaCa aabeqcfasaaiaaikdaaaqcfaOaaiiDamaaCaaabeqcfasaaiaaiwda aaqcfaOaeyOeI0YaamWaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaG ymaiaacYcacaaIWaGaaiOlaiaaikdacaaIYaGaaGinaiaaiEdaaiaa wUfacaGLDbaacaGGybWaaWbaaeqajuaibaGaaGOmaaaajuaGcaGG0b WaaWbaaeqajuaibaGaaGinaaaajuaGcqGHsisldaWadaqaaiaaicda caGGUaGaaGimaiaaicdacaaIWaGaaG4maiaaiwdacaGGSaGaaGimai aac6cacaaIYaGaaGynaiaaiwdaaiaawUfacaGLDbaacaWGybWaaWba aeqajuaibaGaaGOmaaaajuaGcaWG0bWaaWbaaeqajuaibaGaaG4maa aajuaGcaGGSaaabaGaaiOlaaqaaiaac6caaeaacaGGUaaabaGaamOv amaaBaaajuaibaGaamOBaiabgUcaRiaaigdaaeqaaKqbakabg2da9m aalaaabaWaamWaaeaacuaH0oazgaqcaaGaay5waiaaw2faamaaCaaa beqcfasaaiaaikdaaaaajuaGbaGaaGOmaaaadaWdXbqaamaabmaaba WaaSaaaeaacqGHciITcaWGwbWaaSbaaKqbGeaacaaIXaaajuaGbeaa aeaacqGHciITcaWGybaaaaGaayjkaiaawMcaamaaCaaabeqcfasaai aaikdaaaaajuaGbaGaaGimaaqaaiaadshaaiabgUIiYdGaaiizaiab es8a0jabgkHiTmaadmaabaGaeqiTdqgacaGLBbGaayzxaaWaa8qCae aadaqadaqaamaalaaabaGaeyOaIyRaamOvamaaBaaajuaibaGaamOB aaqcfayabaaabaGaeyOaIyRaamiwaaaaaiaawIcacaGLPaaaaeaaca aIWaaabaGaamiDaaGaey4kIipacaGGKbGaeqiXdqhaaiaawUhaaaaa @3E75@ (32)

Where, [ δ ^ ] 2 = [ δ ] 2 =[ 0.1, 0.9 ]×[ 0.1, 0.9 ]=[ 0.01, 0.81 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaamWaaeaacuaH0oazgaqcaaGaay5waiaaw2faamaaCaaabeqc fasaaiaaikdaaaqcfaOaeyypa0ZaamWaaeaacqaH0oazaiaawUfaca GLDbaadaahaaqabKqbGeaacaaIYaaaaKqbakabg2da9maadmaabaqb aeqabeGaaaqaaiaaicdacaGGUaGaaGymaiaacYcaaeaacaaIWaGaai OlaiaaiMdaaaaacaGLBbGaayzxaaGaey41aq7aamWaaeaafaqabeqa caaabaGaaGimaiaac6cacaaIXaGaaiilaaqaaiaaicdacaGGUaGaaG yoaaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqabiaaaeaa caaIWaGaaiOlaiaaicdacaaIXaGaaiilaaqaaiaaicdacaGGUaGaaG ioaiaaigdaaaaacaGLBbGaayzxaaaaaa@5CB7@ . the closed form of this system for n=3 is shown as follows: Figure 1. A random value for δ= δ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiTdqMaeyypa0JafqiTdqMbaKaaaaa@3AF9@ is applied in the interval [0.1, 0.9] and the solution is stand between two interval. The intervals are characterized by grids.

Example 2
Non-linear quadratic regulation system: In this example, a non-linear LQR system with uncertainty is studied. The target is to find the optimal control based on minimizing the performance index is:
J= 0 1 ( U ( t ) 2 +X ( t ) 2 ) dt,0t1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOsaiabg2da9maapehabaWaaeWaaeaacaWGvbWaaeWaaeaa caWG0baacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaajuaGcq GHRaWkcaWGybWaaeWaaeaacaWG0baacaGLOaGaayzkaaWaaWbaaeqa juaibaGaaGOmaaaaaKqbakaawIcacaGLPaaaaeaacaaIWaaabaGaaG ymaaGaey4kIipacaWGKbGaamiDaiaacYcacaaIWaGaeyizImQaamiD aiabgsMiJkaaigdacaGGSaaaaa@51A8@ (33)
subject to:
X ˙ = δ 2 X 2 ( t )sin( X( t ) )+U( t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmiwayaacaGaeyypa0ZaaSaaaeaacqaH0oazaeaacaaIYaaa aiaadIfadaahaaqabKqbGeaacaaIYaaaaKqbaoaabmaabaGaamiDaa GaayjkaiaawMcaaiGacohacaGGPbGaaiOBamaabmaabaGaamiwamaa bmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRi aadwfadaqadaqaaiaadshaaiaawIcacaGLPaaacaGGSaaaaa@4C9D@ (34)

where δ = [1, 2]. The HJB equation for this problem can be obtained as follows:

V t = [ δ ] x X 2 ( t )sin( X )( V x ) 1 4 ( V x ) 2 + X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaamiDaaaacqGH 9aqpdaWcaaqaamaadmaabaGaeqiTdqgacaGLBbGaayzxaaaabaGaam iEaaaacaWGybWaaWbaaeqajuaibaGaaGOmaaaajuaGdaqadaqaaiaa dshaaiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gadaqadaqaaiaadI faaiaawIcacaGLPaaadaqadaqaamaalaaabaGaeyOaIyRaamOvaaqa aiabgkGi2kaadIhaaaaacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaaca aIXaaabaGaaGinaaaadaqadaqaamaalaaabaGaeyOaIyRaamOvaaqa aiabgkGi2kaadIhaaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaG OmaaaajuaGcqGHRaWkcaWGybWaaWbaaeqajuaibaGaaGOmaaaaaaa@5E7F@  (35)

From the Eq.(27): 

{ V 0 = 0 t X ( τ ) 2 dτ= X 2 t=[ X 2 t, X 2 t ], V 1 = 1 4 0 t ( V 0 X ) 2 dτ [ δ ] 2 0 t X 2 sin( X )( V 0 X )dτ=[ 0.7,0.7 ] X 2 t 3 +[ 0.5,1 ] X 3 sin( X ) t 2 , V 2 =[ 0.07,0.07 ] X 2 t 7 +[ 0.35,0.17 ] X 3 sin( X ) t 6 +[ 0.35,0.175 ] X 3 sin( X ) t 4 +[ 0.25,1 ] X 4 sin 2 t 3 , . . . V n+1 = 1 4 0 t ( V n X ) 2 dτ [ δ ] 2 0 t X 2 sin( X )( V n X ) dτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiaadAfadaWgaaqcfasaaiaaicdaaeqaaKqb akabg2da9maapehabaGaamiwamaabmaabaGaeqiXdqhacaGLOaGaay zkaaWaaWbaaeqajuaibaGaaGOmaaaajuaGcaWGKbGaeqiXdqNaeyyp a0dabaGaaGimaaqaaiaadshaaiabgUIiYdGaamiwamaaCaaabeqcfa saaiaaikdaaaqcfaOaamiDaiabg2da9maadmaabaGaamiwamaaCaaa juaibeqaaiaaikdaaaqcfaOaamiDaKqbGiaacYcajuaGcaWGybWaaW baaKqbGeqabaGaaGOmaaaajuaGcaWG0baacaGLBbGaayzxaaGaaiil aaqaaiaadAfadaWgaaqcfasaaiaaigdaaeqaaKqbakabg2da9iabgk HiTmaalaaabaGaaGymaaqaaiaaisdaaaWaa8qCaeaadaqadaqaamaa laaabaGaeyOaIyRaamOvamaaBaaajuaibaGaaGimaaqcfayabaaaba GaeyOaIyRaamiwaaaaaiaawIcacaGLPaaadaahaaqabKqbGeaacaaI YaaaaaqcfayaaiaaicdaaeaacaWG0baacqGHRiI8aiaacsgacqaHep aDcqGHsisldaWcaaqaamaadmaabaGaeqiTdqgacaGLBbGaayzxaaaa baGaaGOmaaaadaWdXbqaaiaadIfadaahaaqabKqbGeaacaaIYaaaaa qcfayaaiaaicdaaeaacaWG0baacqGHRiI8aiaacohacaGGPbGaaiOB amaabmaabaGaamiwaaGaayjkaiaawMcaamaabmaabaWaaSaaaeaacq GHciITcaWGwbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaeaacqGHciIT caWGybaaaaGaayjkaiaawMcaaiaadsgacqaHepaDcqGH9aqpcqGHsi sldaWadaqaaiaaicdacaGGUaGaaG4naiaacYcacaaIWaGaaiOlaiaa iEdaaiaawUfacaGLDbaacaWGybWaaWbaaeqajuaibaGaaGOmaaaaju aGcaWG0bWaaWbaaeqajuaibaGaaG4maaaajuaGcqGHRaWkdaWadaqa aiaaicdacaGGUaGaaGynaiaacYcacaaIXaaacaGLBbGaayzxaaGaam iwamaaCaaabeqcfasaaiaaiodaaaqcfaOaci4CaiaacMgacaGGUbWa aeWaaeaacaWGybaacaGLOaGaayzkaaGaamiDamaaCaaabeqcfasaai aaikdaaaqcfaOaaiilaaqaaiaadAfadaWgaaqcfasaaiaaikdaaeqa aKqbakabg2da9maadmaabaGaeyOeI0IaaGimaiaac6cacaaIWaGaaG 4naiaacYcacqGHsislcaaIWaGaaiOlaiaaicdacaaI3aaacaGLBbGa ayzxaaGaaiiwamaaCaaabeqcfasaaiaaikdaaaqcfaOaaiiDamaaCa aabeqcfasaaiaaiEdaaaqcfaOaey4kaSYaamWaaeaacqGHsislcaaI WaGaaiOlaiaaiodacaaI1aGaaiilaiabgkHiTiaaicdacaGGUaGaaG ymaiaaiEdaaiaawUfacaGLDbaacaGGybWaaWbaaeqajuaibaGaaG4m aaaajuaGcaGGZbGaaiyAaiaac6gadaqadaqaaiaadIfaaiaawIcaca GLPaaacaGG0bWaaWbaaeqajuaibaGaaGOnaaaajuaGcqGHRaWkdaWa daqaaiabgkHiTiaaicdacaGGUaGaaG4maiaaiwdacaGGSaGaeyOeI0 IaaGimaiaac6cacaaIXaGaaG4naiaaiwdaaiaawUfacaGLDbaacaWG ybWaaWbaaeqajuaibaGaaG4maaaajuaGciGGZbGaaiyAaiaac6gada qadaqaaiaadIfaaiaawIcacaGLPaaacaWG0bWaaWbaaeqajuaibaGa aGinaaaajuaGcqGHRaWkdaWadaqaaiaaicdacaGGUaGaaGOmaiaaiw dacaGGSaGaaGymaaGaay5waiaaw2faaiaadIfadaahaaqabKqbGeaa caaI0aaaaKqbakGacohacaGGPbGaaiOBamaaCaaajuaibeqaaiaaik daaaqcfaOaamiDamaaCaaabeqcfasaaiaaiodaaaqcfaOaaiilaaqa aiaac6caaeaacaGGUaaabaGaaiOlaaqaaiaadAfadaWgaaqcfasaai aad6gacqGHRaWkcaaIXaaabeaajuaGcqGH9aqpdaWcaaqaaiaaigda aeaacaaI0aaaamaapehabaWaaeWaaeaadaWcaaqaaiabgkGi2kaadA fadaWgaaqcfasaaiaad6gaaKqbagqaaaqaaiabgkGi2kaadIfaaaaa caGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaaIWa aabaGaamiDaaGaey4kIipacaGGKbGaeqiXdqNaeyOeI0YaaSaaaeaa daWadaqaaiabes7aKbGaay5waiaaw2faaaqaaiaaikdaaaWaa8qCae aacaWGybWaaWbaaKqbGeqabaGaaGOmaaaajuaGciGGZbGaaiyAaiaa c6gadaqadaqaaiaadIfaaiaawIcacaGLPaaadaqadaqaamaalaaaba GaeyOaIyRaamOvamaaBaaajuaibaGaamOBaaqcfayabaaabaGaeyOa IyRaamiwaaaaaiaawIcacaGLPaaaaeaacaaIWaaabaGaamiDaaGaey 4kIipacaGGKbGaeqiXdqhaaiaawUhaaaaa@2D69@ (36) 

So we can compute and plot the closed form Eq.(25) for n = 3 as follows: Figure 2. A random value for δ is applied in the interval [1, 2] and the solution stands between two intervals. The random value solution is characterized by stars.

Figure 1 The Interval Adomian Solution for the linear LQR system with uncertainty by HGB method.

Figure 2 The Interval Adomian Solution for the nonlinear LQR system with uncertainty by HGB method.

Example 3
In this example, a class of nonlinear diffusion equations subject to initial and boundary conditions is studied which arises during Magnetic Resonance Imaging (MRI). The main reason for prosperity in diffusion MRI is in the powerful concept that during their diffusion-driven, random displacements molecules probe tissue structure at a microscopic scale well beyond the usual image res-olution.15,16 Here, a class of diffusion problem is considered which arises in MRI frequently. The equation is given as below:
{ υ t = ( α( x ) υ x ) x +β( x )F( υ ), υ( x,0 )=f( x ),0<x<1, υ( 0,t )=p( t ),0<t< t f , υ x ( 1,t )=q( t )0< t f , | υ( x,t ) |<K,( x,t )[ 0,1 ]×[ 0, t f ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiabew8a1naaBaaajuaibaGaamiDaaqabaqc faOaeyypa0ZaaeWaaeaacqaHXoqydaqadaqaaiaadIhaaiaawIcaca GLPaaacqaHfpqDdaWgaaqaaiaadIhaaeqaaaGaayjkaiaawMcaamaa BaaabaGaamiEaaqabaGaey4kaSIaeqOSdi2aaeWaaeaacaWG4baaca GLOaGaayzkaaGaamOramaabmaabaGaeqyXduhacaGLOaGaayzkaaGa aiilaaqaaiabew8a1naabmaabaGaamiEaiaacYcacaaIWaaacaGLOa GaayzkaaGaeyypa0JaamOzamaabmaabaGaamiEaaGaayjkaiaawMca aiaacYcacaaIWaGaeyipaWJaamiEaiabgYda8iaaigdacaGGSaaaba GaeqyXdu3aaeWaaeaacaaIWaGaaiilaiaadshaaiaawIcacaGLPaaa cqGH9aqpcaWGWbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilai aaicdacqGH8aapcaWG0bGaeyipaWJaamiDamaaBaaajuaibaGaamOz aaqcfayabaGaaiilaaqaaiabew8a1naaBaaajuaibaGaamiEaaqcfa yabaWaaeWaaeaacaaIXaGaaiilaiaadshaaiaawIcacaGLPaaacqGH 9aqpcaWGXbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGimaiabgY da8iaadshadaWgaaqcfasaaiaadAgaaKqbagqaaiaacYcaaeaadaab daqaaiabew8a1naabmaabaGaamiEaiaacYcacaWG0baacaGLOaGaay zkaaaacaGLhWUaayjcSdGaeyipaWJaam4saiaacYcadaqadaqaaiaa dIhacaGGSaGaamiDaaGaayjkaiaawMcaaiabgIGiopaadmaabaGaaG imaiaacYcacaaIXaaacaGLBbGaayzxaaGaey41aq7aamWaaeaacaaI WaGaaiilaiaadshadaWgaaqcfasaaiaadAgaaeqaaaqcfaOaay5wai aaw2faaiaac6caaaGaay5Eaaaaaa@A180@ (37)
Where f(x), α( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqySde2aaeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@3ABE@ and β( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqOSdi2aaeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@3AC0@ are known functions with uncertainty parameters, K is a known constant and p(x) and q(x) are control variables. For generating a HGB problem, we can have considered the problem below:
{ υ t = ( α( x ) υ x ) x +β( x )F( υ+q( t )x+p( t ) ) q ˙ ( t )x+ p ˙ ( t ), υ( x,0 )=f( x )q( 0 )xp( 0 ),0<x<1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiabew8a1naaBaaajuaibaGaamiDaaqabaqc faOaeyypa0ZaaeWaaeaacqaHXoqydaqadaqaaiaadIhaaiaawIcaca GLPaaacqaHfpqDdaWgaaqcfasaaiaadIhaaKqbagqaaaGaayjkaiaa wMcaamaaBaaajuaibaGaamiEaaqcfayabaGaey4kaSIaeqOSdi2aae WaaeaacaWG4baacaGLOaGaayzkaaGaamOramaabmaabaGaeqyXduNa ey4kaSIaamyCamaabmaabaGaamiDaaGaayjkaiaawMcaaiaadIhacq GHRaWkcaWGWbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGa ayzkaaGaeyOeI0IabmyCayaacaWaaeWaaeaacaWG0baacaGLOaGaay zkaaGaamiEaiabgUcaRiqadchagaGaamaabmaabaGaamiDaaGaayjk aiaawMcaaiaacYcaaeaacqaHfpqDdaqadaqaaiaadIhacaGGSaGaaG imaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiaadIhaaiaa wIcacaGLPaaacqGHsislcaWGXbWaaeWaaeaacaaIWaaacaGLOaGaay zkaaGaamiEaiabgkHiTiaadchadaqadaqaaiaaicdaaiaawIcacaGL PaaacaGGSaGaaGimaiabgYda8iaadIhacqGH8aapcaaIXaGaaiOlaa aacaGL7baaaaa@7E29@ (38)
For instance, consider the equation below:
{ V t = [ δ ] x ( 2 V x 2 )+ [ δ ] x V 2 ,δ=[ 0.8,1.2 ], V( x,0 )= x 4 12 x 3 6 , V( 0,t )=0,0<t< t f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaamaalaaabaGaeyOaIyRaamOvaaqaaiabgkGi 2kaadshaaaGaeyypa0ZaaSaaaeaadaWadaqaaiabes7aKbGaay5wai aaw2faaaqaaiaadIhaaaWaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaa beqcfasaaiaaikdaaaqcfaOaamOvaaqaaiabgkGi2kaadIhadaahaa qabKqbGeaacaaIYaaaaaaaaKqbakaawIcacaGLPaaacqGHRaWkdaWc aaqaamaadmaabaGaeqiTdqgacaGLBbGaayzxaaaabaGaamiEaaaaca WGwbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaGGSaGaeqiTdqMaeyyp a0ZaamWaaeaacaaIWaGaaiOlaiaaiIdacaGGSaGaaGymaiaac6caca aIYaaacaGLBbGaayzxaaGaaiilaaqaaiaadAfadaqadaqaaiaadIha caGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamiEam aaCaaabeqcfasaaiaaisdaaaaajuaGbaGaaGymaiaaikdaaaGaeyOe I0YaaSaaaeaacaWG4bWaaWbaaeqajuaibaGaaG4maaaaaKqbagaaca aI2aaaaiaacYcaaeaacaWGwbWaaeWaaeaacaaIWaGaaiilaiaadsha aiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaicdacqGH8aapca WG0bGaeyipaWJaamiDamaaBaaajuaibaGaamOzaaqcfayabaaaaiaa wUhaaaaa@7B2E@ (39)

From the equation above, it can be seen that the initial condition has also uncertainty in this problem. From the Eq.27, the closed form solution can be achieved by V= i=0 3 V i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvaiabg2da9maaqahabaGaamOvamaaBaaajuaibaGaamyA aaqabaaajuaGbaGaamyAaiabg2da9iaaicdaaeaacaaIZaaacqGHri s5aaaa@40B5@
{ V 0 =[ x 2 12 x 3 6 , x 2 12 x 3 6 ], V 1 =[ 0.8,1.2 ][ ( x1 )+ ( x 4 12 x 3 6 ) 2 ]t, V 2 =[ 1.6,2.4 ] [ ( x 2 4 x 2 )×( x 3 4 x 2 2 )+( x 3 2 x )×( x 4 12 x 3 6 )+2× V 0 × V 1 t 2 2 , . . . V n+1 = δ x 0 t ( 2 V n x 2 )dτ+ [ δ ] x 0 t A n dτ, A n = V 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiqaaqaabeqaaiaadAfadaWgaaqcfasaaiaaicdaaeqaaKqb akabg2da9maadmaabaWaaSaaaeaacaWG4bWaaWbaaeqajuaibaGaaG OmaaaaaKqbagaacaaIXaGaaGOmaaaacqGHsisldaWcaaqaaiaadIha daahaaqabKqbGeaacaaIZaaaaaqcfayaaiaaiAdaaaGaaiilamaala aabaGaamiEamaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaaGymaiaa ikdaaaGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaeqajuaibaGaaG4maa aaaKqbagaacaaI2aaaaaGaay5waiaaw2faaiaacYcaaeaacaWGwbWa aSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpdaWadaqaaiaaicdaca GGUaGaaGioaiaacYcacaaIXaGaaiOlaiaaikdaaiaawUfacaGLDbaa daWadaqaamaabmaabaGaamiEaiabgkHiTiaaigdaaiaawIcacaGLPa aacqGHRaWkdaqadaqaamaalaaabaGaamiEamaaCaaabeqcfasaaiaa isdaaaaajuaGbaGaaGymaiaaikdaaaGaeyOeI0YaaSaaaeaacaWG4b WaaWbaaeqajuaibaGaaG4maaaaaKqbagaacaaI2aaaaaGaayjkaiaa wMcaamaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLBbGaayzxaaGaai iDaiaacYcaaeaacaWGwbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH 9aqpdaWadaqaaiaaigdacaGGUaGaaGOnaiaacYcacaaIYaGaaiOlai aaisdaaiaawUfacaGLDbaadaWabaqaamaabmaabaWaaSaaaeaacaWG 4bWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaaI0aaaaiabgkHiTm aalaaabaGaamiEaaqaaiaaikdaaaaacaGLOaGaayzkaaGaey41aq7a aeWaaeaadaWcaaqaaiaadIhadaahaaqabKqbGeaacaaIZaaaaaqcfa yaaiaaisdaaaGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaeqajuaibaGa aGOmaaaaaKqbagaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRmaabm aabaWaaSaaaeaacaWG4bWaaWbaaeqajuaibaGaaG4maaaaaKqbagaa caaIYaaaaiabgkHiTiaadIhaaiaawIcacaGLPaaacqGHxdaTdaqada qaamaalaaabaGaamiEamaaCaaabeqcfasaaiaaisdaaaaajuaGbaGa aGymaiaaikdaaaGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaeqajuaiba GaaG4maaaaaKqbagaacaaI2aaaaaGaayjkaiaawMcaaiabgUcaRiaa ikdacqGHxdaTcaWGwbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHxd aTcaWGwbWaaSbaaKqbGeaacaaIXaaajuaGbeaadaWcaaqaaiaadsha daahaaqabKqbGeaacaaIYaaaaaqcfayaaiaaikdaaaaacaGLBbaaca GGSaaabaGaaiOlaaqaaiaac6caaeaacaGGUaaabaGaamOvamaaBaaa juaibaGaamOBaiabgUcaRiaaigdaaeqaaKqbakabg2da9maalaaaba GaeqiTdqgabaGaamiEaaaadaWdXbqaamaabmaabaWaaSaaaeaacqGH ciITdaahaaqabKqbGeaacaaIYaaaaKqbakaadAfadaWgaaqcfasaai aad6gaaKqbagqaaaqaaiabgkGi2kaadIhadaahaaqabKqbGeaacaaI YaaaaaaaaKqbakaawIcacaGLPaaacaWGKbGaeqiXdqNaey4kaSYaaS aaaeaadaWadaqaaiabes7aKbGaay5waiaaw2faaaqaaiaadIhaaaWa a8qCaeaacaWGbbWaaSbaaKqbGeaacaWGUbaajuaGbeaacaWGKbGaeq iXdqNaaiilaiaadgeadaWgaaqcfasaaiaad6gaaKqbagqaaiabg2da 9iaadAfadaahaaqabKqbGeaacaaIYaaaaaqcfayaaiaaicdaaeaaca WG0baacqGHRiI8aaqaaiaaicdaaeaacaWG0baacqGHRiI8aiaac6ca aaGaay5Eaaaaaa@E165@ (40)

A random value for [δ] is applied in the interval [0.8, 1.2] and the solution is stand between two intervals. The intervals are characterized by grids (Figure 3).

Figure 3 The Interval Adomian Solution for distributed diffusion problem with uncertainty by HGB method.

Conclusion

In this paper, an uncertain analysis method is proposed for solving the Hamiltonian-Jacobi-Bellman, for systems involving uncertain parameters. The Adomian decomposition method is applied to deal with the interval method to handle the interval uncertainty. Three case studies including linear, nonlinear and a distributed nonlinear optimal control are studied for checking the system robustness. The main advantage of the proposed method over traditional numerical methods is that the proposed method is the first time which is used the interval arithmetic to provide a robust result for HGB equation with uncertain coefficients.

Acknowledgements

None.

Conflict of interest

The authors declare there is no conflict of interest.

References

  1. Dehghan M, Allah Hamedi E, Khosravian-Arab H. A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modi ed Jacobi polynomials. Journal of Vibration and Control. 2016;22(6).
  2. Sabeh Z, Shamsi M Dehghan M. Distributed optimal control of the viscous Burgers equation via a Legendre pseudospectral approach, Mathematical Methods in the Applied Sciences. 2015;39(12):3350–3360.
  3. Razmjooy N, Ramezani M. Analytical Solution for Optimal Control by the Second kind Chebyshev Polynomials Expansion. Iranian Journal of Science and Technology. 2016.
  4. Lions, Louis J. Optimal control of systems governed by partial differential equations. Springer; 1971:170.
  5. Pontryagin, Semenovich L. Boltyanskii VG. Mathematical theory of optimal processes. JSTOR. 1965;19(89):159–161.
  6. Feldbaum AA. Optimal Control Systems. Mathematics in science and engineering. 1965.
  7. Cherruault Y, Adomian G, Abbaoui K, et al. Further remarks on convergence of decomposition method. Int J Biomed Comput. 1995;38(1):89–93.
  8. Wazwaz AM. Adomian decomposition for a reliable treatment of the EmdenFowler equation. Applied Mathematics and Computation. 2005;161(2):543–560.
  9. Yucheng L. Adomian decomposition method with orthogonal polynomials: Legendre polynomials. Mathematical and Computer Modelling. 49(5-6):1268–1273.
  10. Dehghan M, Hamidi A, Shakourifar M. The solution of coupled Burgers equations using AdomianPade technique. Applied Mathematics and Computation. 2007;189(2):1034–1047.
  11. Wu J, Zhang Y, Chen L, et al. Uncertain analysis of vehicle handling using interval method, International journal of vehicle design. 2011;56(2011):81–105.
  12. Tangaramvong S, Tin-Loi F, Yang C, et al. Interval analysis of nonlinear frames with uncertain connection properties, International Journal of Non-Linear Mechanics. 2016;86:83–95.
  13. Alefeld G, Gnter M. Interval analysis: theory and applications. Journal of computational and applied mathematics. 121(1-2):421–464.
  14. Fakharian A, HBMT, Davari A. Solving the Hamilton Jacobi Bellman equation using Adomian decomposition method., International Journal of Computer Mathematics, 2010;87:2769–2785.
  15. Nouri K, Garshasbia J. Damirchi, Application of Adomian decomposition method to solve a class of di usion problem arises during MRI. Mathematical Sciences. 2014;2:207–218.
  16. Frankowska H. Lower semi continuous solutions of Hamilton-Jacobi-Bellman equations. SIAM Journal on Control and Optimization. 1993;31:257–272.
Creative Commons Attribution License

©2018 Razmjooy, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.