Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 9 Issue 1

Research and analysis of the efficiency fiber-optic communication lines using DWDM technologies

Bayram Ibrahimov

Department of Radio Engineering and Telecommunication, Azerbaijan

Correspondence: Bayram Ibrahimov, Department of Radio Engineering and Telecommunication, Azerbaijan Technical University, Baku, Azerbaijan, Tel 99470-649-07-79

Received: March 13, 2023 | Published: March 28, 2023

Citation: Ibrahimov B. Research and analysis of the efficiency fiber-optic communication lines using DWDM technologies. Int Rob Auto J. 2023;9(1):35-38 DOI: 10.15406/iratj.2023.09.00260

Download PDF

Abstract

The performance indicators fiber-optic communication lines using spectral technology with separation communication channels are analyzed. The effectiveness of the use network resources optical telecommunication systems using spectral technologies based on the architectural concept of the next NGN (NGN, Next Generation Network) and future FN (FN, Future Network) networks has been studied. This work is devoted to the construction methods for calculating the indicators optical networks and the study methods and tools for improving the efficiency using network and channel resources fiber-optic communication lines using dense spectral multiplexing optical signals with separation communication channels.

The problem ensuring effective management channel and network resources in optical communication networks are considered. As a result of the study technology spectral multiplexing, a new approach to the construction of a calculation method is proposed that describes the efficiency managing network and channel resources in fiber-optic communication lines, taking into account the numerous requirements their parameters and transfer characteristics. On the basis of the calculation method, analytical expressions are obtained that allow estimating the resources of the system, indicators informational and spectral efficiency of the functioning fiber-optic communication lines.

The results of the research can be applied by cellular operators when designing an optical telecommunications network, in particular, to determine the optimal value of the capacity optical systems based on wavelength multiplexing technology and modulation spectral efficiencies.

Keywords: throughput, spectral efficiency, fiber-optic communication lines, bit rate, advanced optical technology, OSNR, wavelength, DWDM systems, channel resource

Introduction

At present, multi-service telecommunication systems and communication networks, as well as their telecommunications industry, are developing an unprecedented change associated with the transition from the NGN concept to the future FN architectural concepts. This is a consequence of the rapid development optical, quantum and digital end-to-end technologies and a variety network applications.1,2 Therefore, one of the main requirements for fiber optic communication lines and optical networks is the ability to quickly increase the number communication channels and the bandwidth broadband multichannel systems in accordance with the growth in the amount heterogeneous traffic transmitted.3,4 The conducted studies and analysis showed 2,5-7 that one of the main advantages of the technology spectral channel separation of optical systems operating in the multi-user spectral wave mode is the possibility organizing broadband multi-channel communication systems with efficient use of network resources.

To ensure the effective functioning optical information transmission systems, it is necessary to choose the optimal strategy for the maintenance fiber-optic communication lines using spectral technology [6, 8, 9, 10]. These include the following information fiber optic technologies WDM/DWDM and HDWDM (Wavelength Division Multiplexing/Dense WDM & High Dense WDM) with wavelength λ i =0.85,...,1.55mkm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW 2cdaWgaaqaaKqzadGaamyAaaWcbeaajugibiabg2da9iaaicdacaGG UaGaaGioaiaaiwdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaaig dacaGGUaGaaGynaiaaiwdacaaMc8UaamyBaiaadUgacaWGTbaaaa@4AE6@ . For fiber-optic communication lines, the main element which are receiving optical modules, fiber-optic cables and transmitting optical modules.8-10

Thus, this work is devoted to the study of methods and means increasing the efficiency using network resources fiber-optic communication lines using dense spectral multiplexing of optical signals with separation communication channels.

General statement of the problem

In this case, for the efficient use network resources in an optics system, the task is to be able to transmit a large amount messages to several communication channels simultaneously due to the formation of several parallel data streams, which can significantly increase the throughput optical telecommunication systems using fiber optic communication lines. In this case, the information and spectral efficiency can be additionally increased by using various dynamic strategies for organizing broadband communication channels that take into account the current state of the optical systems.2,6‒10

The rapid development fiber-optic communication lines based on wavelength multiplexing for regular expansion of the range multimedia services and applications provided to subscribers leads to the fact that optical communication companies have to operate a significant number heterogeneous communication channels and terminal equipment.3,9,10

This raises the problem managing network and channel resources and their most efficient distribution in the nodes of the communication network to provide various services to different groups users, taking into account numerous parameters.

Based on,2,3,6‒10 the coefficient of effective use network and channel resources fiber-optic communication lines R N ( λ i , N k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaO WaaSbaaSqaaKqzadGaamOtaaWcbeaajugibiaacIcacqaH7oaBlmaa BaaabaqcLbmacaWGPbaaleqaaKqzGeGaaiilaiaaykW7caWGobWcda WgaaqaaKqzadGaam4AaaWcbeaajugibiaacMcaaaa@4726@  when using spectral technologies is as follows:

R N ( λ i , N k )= R k ( N k , λ i )+ R n [ η SE ( λ i )],i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaO WaaSbaaSqaaKqzadGaamOtaaWcbeaajugibiaacIcacqaH7oaBlmaa BaaabaqcLbmacaWGPbaaleqaaKqzGeGaaiilaiaaykW7caWGobWcda WgaaqaaKqzadGaam4AaaWcbeaajugibiaacMcacqGH9aqpcaWGsbWc daWgaaqaaKqzadGaam4AaaWcbeaajugibiaacIcacaWGobWcdaWgaa qaaKqzadGaam4AaaWcbeaajugibiaacYcacaaMc8Uaeq4UdW2cdaWg aaqaaKqzadGaamyAaaWcbeaajugibiaacMcacqGHRaWkcaWGsbWcda WgaaqaaKqzadGaamOBaaWcbeaajugibiaabUfacqaH3oaAkmaaBaaa leaajugWaiaadofacaWGfbaaleqaaKqzGeGaaiikaiabeU7aSTWaaS baaeaajugWaiaadMgaaSqabaqcLbsacaGGPaGaaiyxaiaacYcacaWG PbGaeyypa0JcdaqdaaqaaKqzGeGaaGymaiaacYcacaaMb8UaaGPaVl aad6gaaaaaaa@7223@   (1)

where R k ( N k , λ i ), R n [ η SE ( λ i )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaS WaaSbaaeaajugWaiaadUgaaSqabaqcLbsacaGGOaGaamOtaOWaaSba aSqaaKqzadGaam4AaaWcbeaajugibiaacYcacaaMc8Uaeq4UdW2cda WgaaqaaKqzadGaamyAaaWcbeaajugibiaacMcacaGGSaGaaGPaVlaa dkfakmaaBaaaleaajugWaiaad6gaaSqabaqcLbsacaqGBbGaeq4TdG 2cdaWgaaqaaKqzadGaam4uaiaadweaaSqabaqcLbsacaGGOaGaeq4U dW2cdaWgaaqaaKqzadGaamyAaaWcbeaajugibiaacMcacaGGDbGaey OeI0caaa@5B23@ accordingly, the coefficient of effective use of channel and network resources fiber-optic communication lines when using spectral technology and the DWDM system, taking into account the number channels, spectral efficiencies and wavelength λ i ,i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW 2cdaWgaaqaaKqzadGaamyAaaWcbeaacaGGSaGccaWGPbGaeyypa0Za a0aaaeaacaaIXaGaaiilaiaaygW7caaMc8UaamOBaaaaaaa@43D6@ .

Expressions (1) provide a guarantor in order to increase the maximum throughput value for trunk channels and the transmission range of the system, which functional dependencies are described as follows:

R N ( λ i , L max , N k )=W [C max (N k , λ i )],i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaO WaaSbaaSqaaKqzadGaamOtaaWcbeaajugibiaacIcacqaH7oaBlmaa BaaabaqcLbmacaWGPbaaleqaaKqzGeGaaiilaiaadYealmaaBaaaba qcLbmaciGGTbGaaiyyaiaacIhaaSqabaqcLbsacaGGSaGaaGPaVlaa d6ealmaaBaaabaqcLbmacaWGRbaaleqaaKqzGeGaaiykaiabg2da9i aabEfacaaMc8Uaae4waiaaboealmaaBaaabaqcLbmacaqGTbGaaeyy aiaabIhaaSqabaqcLbmacaaMc8EcLbsacaqGOaGaaeOtaSWaaSbaae aajugWaiaabUgaaSqabaqcLbsacaqGSaGaaGPaVlabeU7aSTWaaSba aeaajugWaiaabMgaaSqabaqcLbsacaqGPaGaaeyxaiaabYcakiaadM gacqGH9aqpdaqdaaqaaiaaigdacaGGSaGaaGzaVlaaykW7caWGUbaa aaaa@6EE3@   (2)

where C max (N k , λ i )- MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaae4qaS WaaSbaaeaajugWaiaab2gacaqGHbGaaeiEaaWcbeaajugibiaaykW7 caqGOaGaaeOtaSWaaSbaaeaajugWaiaabUgaaSqabaqcLbsacaqGSa GaaGPaVlabeU7aSTWaaSbaaeaajugWaiaabMgaaSqabaqcLbsacaqG PaGaaeylaaaa@4B39@  the maximum value of the bandwidth of optical communication channels, taking into account the number of channels Nk and wavelength λ i ,i= 1,n ¯ ; L max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW 2cdaWgaaqaaKqzadGaamyAaaWcbeaacaGGSaGccaWGPbGaeyypa0Za a0aaaeaacaaIXaGaaiilaiaaygW7caaMc8UaamOBaaaacaGG7aqcLb sacaWGmbWcdaWgaaqaaKqzadGaciyBaiaacggacaGG4baaleqaaKqz GeGaeyOeI0caaa@4BAA@ maximum transmission distance optical systems.

Taking into account the above assumptions, the statement of the problem is investigated and a new approach to its solution is proposed.

Terminal equipment DWDM systems

It is worth noting that the reason for the emergence of this problem lies in the fact that at present, issues related to the analysis of the quality of operation of optical networks using WDM and DWDM technologies have acquired considerable importance. By itself, WDM and DWDM technologies have the necessary mechanisms to ensure high throughput, security, transmission reliability and message delivery assurance.2,3,10,11

In addition, a key advantage WDM and DWDM is that it is protocol and bit rate independent. Optical networks based on DWDM can transmit data in IP (IP, Internet Protocol), ATM (ATM, Asynchronous Transfer Mode), SDH (SDH, Synchronous Digital Hierarchy), SONET (SONET, Synchronous Optical Network), and Ethernet.2,5‒10. Thus, DWDM-based optical networks can transmit different types of traffic at different rates over an optical channel. Voice, e-mail, video and multimedia transmissions are just some examples of services that can be simultaneously transmitted in WDM and DWDM systems.

DWDM systems have channels at wavelengths spaced apart 0.0004mkm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacaGGUa GaaGimaiaaicdacaaIWaGaaGinaiaaykW7caWGTbGaam4Aaiaad2ga aaa@3FC5@  (50 GHz) or 0.0008mkm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacaGGUa GaaGimaiaaicdacaaIWaGaaGioaiaaykW7caWGTbGaam4Aaiaad2ga aaa@3FC9@  (100 GHz). DWDM systems have channels at wavelengths located at a distance DWDM system usually consists of five components: optical transmitters / receivers, DWDM Mux / DMux filters, Optical Add / Drop Multiplexers (OADMs - Optical Add-Drop Multiplexer), optical amplifiers, transponders - wavelength converters. DWDM transponders of the latest generation make it possible to build the most balanced solution between the throughput and transmission range of the system.2,5‒8 These devices are the terminal equipment of the DWDM system - the technology dense spectral multiplexing.

Now, let's look at the important devices - transponders and muxponders in a general way, and then explain the difference between them. Both devices transmit a linear signal at the desired wavelength within the selected WDM and DWDM format.5‒10

The components in the transmitting part (lasers and modulators), as well as forward error correction algorithms, ensure its sufficient resistance to noise and distortion.

The use of modern modulation formats in transponder/muxponder units makes it possible to provide high network throughput.2,10,11 On the other hand, transceiver modules provide a transparent transformation various client interfaces into a linear one with monitoring and error control capabilities. To evaluate the effectiveness such strategies, adequate methods for calculating the network and channel resources optical telecommunication systems using the technology multiplexing optical channels by wavelength are required.

To solve this problem, in addition to the above, we consider the network and channel resources fiber-optic communication lines using the technology of multiplexing optical channels by wavelength.5,10,11 Here, as an indirect task, from the point of view of the information aspect, is the possibility transmitting data streams, both useful and service, to several users simultaneously due to the formation of several parallel communication channels.

This raises the requirement to create distributed multichannel communication systems as optical message transmission systems with increased bandwidth using WDM and DWDM technology.

Descriptions DWDM system calculation methods

Currently, the task increasing the throughput modern fiber-optic communication systems remains relevant, since the number channels and users is constantly growing and the volume transmitted streaming data is increasing. In contrast to the extensive approach increasing the number broadband multichannel systems, which is not always beneficial from an economic point view. However, perhaps from a technical point view, one of the effective approaches is the use WDM and DWDM multichannel transmission technology.2,3,5

The main difference between this optical technology and classical information, network and computer technologies is the use of several communication systems both on the transmitting and receiving sides.2,3

A more detailed description features of the functioning this system will be given below. Nevertheless, despite the increase in data transmission speed over communication channels provided by the use DWDM technology itself, it is possible to achieve better system capacity and user throughput in such telecommunication systems through the use effective strategies for organizing multichannel communications.2,3,5‒10

In particular, in the article,6,8‒10 several variants of strategies for the information and network resource distribution scheduler were proposed in both single-user and multi-user modes.

The authors built a mathematical model of the DWDM system in the form of a system for calculating the transfer characteristics in continuous time under the conditions each of the proposed strategies. And conclusions are drawn and recommendations are given regarding the effectiveness of a particular strategy and methods based on numerical experiments of the capacity of the DWDM system.2,3,10,11

Creation noise-resistant fiber-optic communication lines with increased bandwidth, operating via digital optical communication channels with the introduction spectral technologies, will help increase the reliability digital information reception.

In modern fiber-optic communication lines using spectral technologies, the reliability of the transmission digital optical signals and the probability of a bit error for a given interference are mainly determined, which are described in the form objective functions as follows:

Q EF. (λ ) i =W[ max λ i R N ( λ i , N k )],i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyuaS WaaSbaaeaajugWaiaadweacaWGgbGaaiOlaaWcbeaajugibiaacIca cqaH7oaBlmaaBeaabaqcLbmacaWGPbaaleqaaKqzGeGaaiykaiabg2 da9iaadEfacaGGBbGcdaWfqaqaaKqzGeGaciyBaiaacggacaGG4baa leaajugWaiabeU7aSTWaaSbaaWqaaKqzadGaamyAaaadbeaaaSqaba qcLbsacaWGsbWcdaWgaaqaaKqzadGaamOtaaWcbeaajugibiaacIca cqaH7oaBlmaaBaaabaqcLbmacaWGPbaaleqaaKqzGeGaaiilaiaayk W7caWGobGcdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaiykaiaa c2facaGGSaGccaWGPbGaeyypa0Zaa0aaaeaacaaIXaGaaiilaiaayg W7caaMc8UaamOBaaaaaaa@677D@    (3)

under the following restrictions

OSNR( λ i )OSN R доп. ( λ i ), V b ( λ i ) V b.доп. ( λ i ), C an. ( λ i ) C an.доп. ( λ i ),i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGpbGaam4uaiaad6eacaWGsbGaaiikaiabeU7aSTWaaSbaaeaajugW aiaadMgaaSqabaqcLbsacaGGPaGaeyyzImRaam4taiaadofacaWGob GaamOuaOWaaSbaaSqaaKqzadGaamineiaad6dbcaWG=qqcLbsacaGG UaaaleqaaKqzGeGaaiikaiabeU7aSTWaaSbaaeaajugWaiaadMgaaS qabaqcLbsacaGGPaGaaiilaiaadAfakmaaBaaaleaajugWaiaadkga aSqabaqcLbsacaGGOaGaeq4UdW2cdaWgaaqaaKqzadGaamyAaaWcbe aajugibiaacMcacqGHLjYScaWGwbGcdaWgaaWcbaqcLbmacaWGIbGa aiOlaiaadsdbcaWG+qGaam4peKqzGeGaaiOlaaWcbeaajugibiaacI cacqaH7oaBlmaaBaaabaqcLbmacaWGPbaaleqaaKqzGeGaaiykaiaa cYcaaOqaaiaadoeadaWgaaWcbaqcLbmacaWGHbGaamOBaSGaaiOlaa qabaGccaGGOaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaOGaaiykaiab gsMiJkaadoeadaWgaaWcbaGaamyyaiaad6gacaGGUaGaamineiaad6 dbcaWG=qGaaiOlaaqabaGccaGGOaGaeq4UdW2aaSbaaSqaaiaadMga aeqaaOGaaiykaiaacYcacaWGPbGaeyypa0Zaa0aaaeaacaaIXaGaai ilaiaaygW7caaMc8UaamOBaaaaaaaa@89D4@   (4)

where RNi,Nk)— coefficient of effective use network resources fiber-optic communication lines when using spectral technologies, taking into account the number channels N k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaam4Aaaqabaaaaa@38FD@  and wavelength λ i ,i= 1,n ¯ ; V b ( λ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGPbaabeaakiaacYcacaWGPbGaeyypa0Zaa0aaaeaacaaI XaGaaiilaiaaygW7caaMc8UaamOBaaaacaGG7aGaamOvamaaBaaale aacaWGIbaabeaakiaacIcacqaH7oaBdaWgaaWcbaGaamyAaaqabaGc caGGPaGaeyOeI0caaa@49E3@  bit rate of optical signal transmission over fiber-optic communication lines; Сап(λi) – cost of optical signal transmission lines and fiber-optic communication lines hardware and software using fiber optic cable, receiving and transmitting optical modules; SN R out. ( E b , λ i , N 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGob GaamOuamaaBaaaleaacaWGVbGaamyDaiaadshacaGGUaaabeaakiaa cIcacaWGfbWaaSbaaSqaaiaadkgaaeqaaOGaaiilaiabeU7aSnaaBa aaleaacaWGPbaabeaakiaacYcacaaMc8UaamOtamaaBaaaleaacaaI WaaabeaakiaacMcacqGHsislaaa@4912@ optical signal-to-noise ratio at the fiber-optic communication lines output, (Optical Signal to Noise Rate) taking into account the bit signal energy E b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamOyaaqabaaaaa@38EB@ and the noise power spectral density N 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaaGimaaqabaaaaa@38C7@ , which characterize the system resources and complex indicators communication quality when using the wavelength λ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGPbaabeaaaaa@39DC@  and is expressed as follows:

SN R out. ( E b , λ i , N 0 )=OSN R T ( P S )+Δ α Z ,i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGob GaamOuamaaBaaaleaacaqGVbGaaeyDaiaabshacaqGUaaabeaakiaa cIcacaWGfbWaaSbaaSqaaiaadkgaaeqaaOGaaiilaiabeU7aSnaaBa aaleaacaWGPbaabeaakiaacYcacaaMc8UaamOtamaaBaaaleaacaaI WaaabeaakiaacMcacqGH9aqpcaWGpbGaam4uaiaad6eacaWGsbWaaS baaSqaaiaadsfaaeqaaOGaaiikaiaadcfadaWgaaWcbaGaam4uaaqa baGccaGGPaGaey4kaSIaeuiLdqKaeqySde2aaSbaaSqaaiaadQfaae qaaOGaaiilaiaadMgacqGH9aqpdaqdaaqaaiaaigdacaGGSaGaaGza VlaaykW7caWGUbaaaaaa@5DE9@   (5)

where OSN R T ( P S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGtb GaamOtaiaadkfadaWgaaWcbaGaamivaaqabaGccaGGOaGaamiuamaa BaaaleaacaWGtbaabeaakiaacMcacqGHsislaaa@3F9C@  the value OSNR required by the receiver to receive a signal with an error P BER MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamOqaiaadweacaWGsbaabeaaaaa@3A77@  rate not exceeding some given level P BER =( 10 10 ,..., 10 12 ) P BER all. ;Δ α Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamOqaiaadweacaWGsbaabeaakiabg2da9iaacIcacaaIXaGa aGimamaaCaaaleqabaGaeyOeI0IaaGymaiaaicdaaaGccaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIXaGaaGOmaaaakiaacMcacqGHKjYOcaWGqbWaa0baaSqaai aadkeacaWGfbGaamOuaaqaaiaadggacaWGSbGaamiBaiaac6caaaGc caGG7aGaeuiLdqKaeqySde2aaSbaaSqaaiaadQfaaeqaaOGaeyOeI0 caaa@56DD@  safety factor [2, 3, 5] is usually taken within, 3,…,5 dB .

Expressions (1) , (2), (3), (4) and (5) describe the essence of the new approach under consideration, taking into account the complex indicators fiber-optic communication lines, on the basis of which a method for calculating the noise immunity of optical signal reception is proposed.

In addition, expressions (1), (2), (3), (4) and (5) determine the possibilities of the method for calculating the noise immunity indicators fiber-optic communication lines taking into account the transfer characteristics of fiber-optic communication lines based on spectral technologies and are a simple analytical record of the reliability function optical systems when assessing their quality of operation.

In order to fulfill the objective function (3) for the noise immunity of the fiber-optic communication lines operation and their specified restrictions (4) and (5), it is necessary to investigate:

  • Methods for receiving optical signals multimedia traffic;
  • methods for implementing optical signal-code structures;
  • methods for increasing the optical signal-to-noise ratio OSNR( E b , λ i , N 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGtb GaamOtaiaadkfacaGGOaGaamyramaaBaaaleaacaWGIbaabeaakiaa cYcacqaH7oaBdaWgaaWcbaGaamyAaaqabaGccaGGSaGaaGPaVlaad6 eadaWgaaWcbaGaaGimaaqabaGccaGGPaaaaa@452A@ at the receiver input;
  • Efficient error correction decoding algorithms and circuit solutions of receiving optical modules.

Research and evaluation spectral efficiency of the system

The operation algorithm of the WDM and DWDM system is based on wavelength multiplexing technology and is based on the fact that one fiber can transmit optical signals at many wavelengths.5,6,10,11 At the same time, the capacity optical lines E(t, λ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacaGGOa GaamiDaiaacYcacaaMc8Uaeq4UdW2aaSbaaSqaaiaadMgaaeqaaOGa aiykaaaa@3F3D@ can be increased by increasing both the bit rate V b (t, λ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamOyaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@406B@ and the number channels of the DWDM system, which is expressed as follows:

E c (t, λ i )= N k V b (t, λ i ),i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaam4yaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaad6eadaWgaaWcba Gaam4AaaqabaGccqGHflY1caWGwbWaaSbaaSqaaiaadkgaaeqaaOGa aiikaiaadshacaGGSaGaaGPaVlabeU7aSnaaBaaaleaacaWGPbaabe aakiaacMcacaGGSaGaamyAaiabg2da9maanaaabaGaaGymaiaacYca caaMc8UaamOBaaaaaaa@559F@   (6)

Using optical WDM and DWDM technology, let's consider the analysis and research of the dependence transmission speed on the signal-to-impedance ratio, which is a quality indicator optical telecommunication systems, in communication channels organized by the multiplexing method. For this, first of all, let's look at the indicators of the studied system.

According to the results of the study, taking into account the optimal conditions of the receiving system, the indicators are generally evaluated as follows. Bit rate in communication channels [2, 10]:

V b (t, λ i )= η SE ( λ i )Δ F k ,i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamOyaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iabeE7aOnaaBaaale aacaWGtbGaamyraaqabaGccaGGOaGaeq4UdW2aaSbaaSqaaiaadMga aeqaaOGaaiykaiabgwSixlabfs5aejaadAeadaWgaaWcbaGaam4Aaa qabaGccaGGSaGaamyAaiabg2da9maanaaabaGaaGymaiaacYcacaaM c8UaamOBaaaaaaa@5565@   (7)

where η SE ( λ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaWGtbGaamyraaqabaGccaGGOaGaeq4UdW2aaSbaaSqaaiaa dMgaaeqaaOGaaiykaiabgkHiTaaa@3FB0@ spectral efficiency of the system based on wavelength λ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGPbaabeaaaaa@39DC@  based on optical DWDM technology;

Δ F k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadA eadaWgaaWcbaGaam4AaaqabaGccqGHsislaaa@3B52@ was the width of the inter-channel frequency interval, Δ F k =50,...,200GHz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadA eadaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaaI1aGaaGimaiaaykW7 caaMc8UaaiilaiaaykW7caGGUaGaaiOlaiaac6cacaGGSaGaaGPaVl aaykW7caaIYaGaaGimaiaaicdacaaMc8UaaGPaVlaadEeacaWGibGa amOEaaaa@4FEF@ .

Considering the expression (6) in the formula (7), it is possible to determine the spectral efficiency of the DWDM system as

η SE ( λ i )= N k V b (t, λ i ) (Δ F k ) 1 ,i= 1,n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaWGtbGaamyraaqabaGccaGGOaGaeq4UdW2aaSbaaSqaaiaa dMgaaeqaaOGaaiykaiabg2da9iaad6eadaWgaaWcbaGaam4Aaaqaba GccqGHflY1caWGwbWaaSbaaSqaaiaadkgaaeqaaOGaaiikaiaadsha caGGSaGaaGPaVlabeU7aSnaaBaaaleaacaWGPbaabeaakiaacMcacq GHflY1caGGOaGaeuiLdqKaamOramaaBaaaleaacaWGRbaabeaakiaa cMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGSaGaamyAaiabg2 da9maanaaabaGaaGymaiaacYcacaaMc8UaamOBaaaaaaa@5CE0@   (8)

Expressions (8), in this case, in this representation, the spectral efficiency of the DWDM system depends explicitly on the bit rates and the number channels, and is also inversely proportional to the bandwidth of the optical channel.

Numerical calculations indicators fiber-optic communication lines and conclusions

Based on the results obtained, the modeling of the performance fiber-optic communication lines based on DWDM technologies in transport telecommunication systems was carried out using the Communications Toolbox package - an extension of the standard Matlab environment (R 2019b, 9.7, 64-bit), designed to calculate and simulate the characteristics communication systems.

The results obtained are included in the explicit form below. Based on the methods for calculating the value SN R out. ( E b , λ i , N 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaWGob GaamOuamaaBaaaleaacaqGVbGaaeyDaiaabshacaqGUaaabeaakiaa cIcacaWGfbWaaSbaaSqaaiaadkgaaeqaaOGaaiilaiabeU7aSnaaBa aaleaacaWGPbaabeaakiaacYcacaaMc8UaamOtamaaBaaaleaacaaI WaaabeaakiaacMcaaaa@481E@ , it is customary to estimate for the same value Δ F k =12.5GHz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadA eadaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaaIXaGaaGOmaiaac6ca caaI1aGaaGPaVlaaykW7caWGhbGaamisaiaadQhaaaa@4401@ , appropriate resolution optical spectrum analyzer, OSA (OSA, Optical Spectrum analyzer) Δλ=0.0001mkm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabeU 7aSjabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaGymaiaa ykW7caWGTbGaam4Aaiaad2gaaaa@43E2@ и λ i =1.55mkm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGPbaabeaakiabg2da9iaaigdacaGGUaGaaGynaiaaiwda caaMc8UaamyBaiaadUgacaWGTbaaaa@4236@ . For transponder without FEC (FEC, Forward Error Correction) in the format NRZ (NRZ, Non Return Zero) OSN R T ( P S )=21dB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGtb GaamOtaiaadkfadaWgaaWcbaGaamivaaqabaGccaGGOaGaamiuamaa BaaaleaacaWGtbaabeaakiaacMcacqGH9aqpcaaIYaGaaGymaiaayk W7caWGKbGaamOqaaaa@4467@ at V b (t, λ i )=10Gbps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamOyaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaaigdacaaIWaGaaG PaVlaadEeacaWGIbGaamiCaiaadohaaaa@4811@ and P BER = 10 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamOqaiaadweacaWGsbaabeaakiabg2da9iaaigdacaaIWaWa aWbaaSqabeaacqGHsislcaaIXaGaaGOmaaaaaaa@3F8D@ , if OSN R T ( P S )=15dB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGtb GaamOtaiaadkfadaWgaaWcbaGaamivaaqabaGccaGGOaGaamiuamaa BaaaleaacaWGtbaabeaakiaacMcacqGH9aqpcaaIXaGaaGynaiaayk W7caWGKbGaamOqaaaa@446A@  at V b (t, λ i )2.5Gbps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamOyaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaiabgsMiJkaaikdacaGGUaGaaG ynaiaaykW7caaMc8Uaam4raiaadkgacaWGWbGaam4Caaaa@4B03@ and P BER = 10 12 P BER all. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamOqaiaadweacaWGsbaabeaakiabg2da9iaaigdacaaIWaWa aWbaaSqabeaacqGHsislcaaIXaGaaGOmaaaakiabgsMiJkaadcfada qhaaWcbaGaamOqaiaadweacaWGsbaabaGaamyyaiaadYgacaWGSbGa aiOlaaaaaaa@4830@ .3,9,10

The results of numerical calculations indicate that the use FEC significantly improves the situation in the system, for example, OSN R T ( P S )=9dB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGtb GaamOtaiaadkfadaWgaaWcbaGaamivaaqabaGccaGGOaGaamiuamaa BaaaleaacaWGtbaabeaakiaacMcacqGH9aqpcaaI5aGaaGPaVlaads gacaWGcbaaaa@43B3@ for V b (t, λ i )=10Gbps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamOyaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaaigdacaaIWaGaaG PaVlaadEeacaWGIbGaamiCaiaadohaaaa@4811@ and OSN R T ( P S )=7dB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGtb GaamOtaiaadkfadaWgaaWcbaGaamivaaqabaGccaGGOaGaamiuamaa BaaaleaacaWGtbaabeaakiaacMcacqGH9aqpcaaI3aGaaGPaVlaads gacaWGcbaaaa@43B1@  for V b (t, λ i )2.5Gbps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamOyaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaiabgsMiJkaaikdacaGGUaGaaG ynaiaaykW7caaMc8Uaam4raiaadkgacaWGWbGaam4Caaaa@4B03@ .

Let's assume that V b (t, λ i )=12.5Gbps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamOyaaqabaGccaGGOaGaamiDaiaacYcacaaMc8Uaeq4UdW2a aSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaaigdacaaIYaGaai OlaiaaiwdacaaMc8UaaGPaVlaadEeacaWGIbGaamiCaiaadohaaaa@4B0F@ and N k =4,...,16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaam4AaaqabaGccqGH9aqpcaaI0aGaaeilaiaab6cacaqGUaGa aeOlaiaabYcacaaIXaGaaGOnaaaa@3FB7@ , then the spectral efficiency is η SE ( λ i )0.45bps/Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaWGtbGaamyraaqabaGccaGGOaGaeq4UdW2aaSbaaSqaaiaa dMgaaeqaaOGaaiykaiabgwMiZkaaicdacaGGUaGaaGinaiaaiwdaca aMc8UaamOyaiaadchacaWGZbGaai4laiaadIeacaWG6baaaa@4A50@ .

Thus, as a result of the study methods and means increasing the efficiency using network and channel resources fiber-optic communication lines using dense wavelength multiplexing, a method for calculating the indicators of a DWDM system is proposed.

Based on the calculation methods, an analytical expression was obtained for estimating the line capacity of a DWDM system, the spectral efficiency modulation formats, and the probability bit errors.

Numerical calculations were carried out using methods for calculating the DWDM system throughput from the signal-to-noise ratio at the output of the communication channel for a given wavelength and the probability bit errors.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Chomez B. Planning fiber optic networks. New-York: McGraw-Hill: 2009; 1–400 p.   
  2. Ibrahimov BG, Hasanov MH. Research and analysis of indicators optical telecommunication networks based on  PON, WDM and DWDM technology. Proc. 2020 International Conference Engineering Management of Communication and Technology. 2020;1– 4 p.   
  3. Ibrahimov BG, Ismaylov ZA, Orujova MY, et al. About one problem of control network  and channel resources in communication networks during processing useful and service message signals. 2022, Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). 2022;1‒4 p.
  4. Listvin VN, Treshchikov VN. DWDM systems. Moscow, Technosfera: 2015;12‒256 p.
  5. Ibrahimov BG, Hasanov AH. Research and evaluation of the effectiveness of NGN / IMS multiservice networks in the transmission multimedia traffic. T-Comm, Telecommunications and transport. 2017;11(2):15‒18 p.
  6. Gringeri S, Bitar N, Xia TJ. Extending software defined network principles to include optical transport. IEEE Communications Magazine, March: 2013;32–40 p.
  7. Ibrаhimov BG, Namazov MB, Quliev MN. Analysis performance indicators network multiservice infrastructure using innovative technologies. Proceedings of the 7-th International Conference on Control and Optimization with Industrial Applications (COIA-20). 2020;Vol. II:176‒178 p.
  8. Skoda P, Radil J. Analyses of 100 Gbps coherent system performances. Radio engineering, Prague. 22(2):632‒637.
  9. Ibrahimov BG. Research and estimation characteristics of terminal equipment a part of multiservice communication networks. Automatic Control and Computer Sciences. 2010;48(6):54‒59 p.
  10. Winzer P. Energy-efficient optical transport capacity scaling through spatial multiplexing. Photon Technol Lett. 2013;23:851‒853 p.
  11. Ibrahimov BG, Huseynov FI. Research and analysis mathematical model for evaluating noise immunity in telecommunication system. Synchroinfo Journal, IEEE Austria Section. 2020;1:2‒6p.
Creative Commons Attribution License

©2023 Ibrahimov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.