Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Review Article Volume 4 Issue 4

Modeling and robust fault diagnosis of hybrid system based on hybrid bond graph approach

Mohamed Ilyas Rahal,1,2 Belkacem Ould Bouamama2

1LAT laboratory , Tlemcen university, Algeria
2CRIStAL UMR CNRS 9189 Laboratory, University of Lille 1, France

Correspondence: Mohamed Ilyas Rahal, LAT laboratory, Tlemcen university, Algeria, Tel +213 7 90 54 79 03

Received: January 18, 2018 | Published: August 7, 2018

Citation: Rahal MI Bouamama BO. Modeling and robust fault diagnosis of hybrid system based on hybrid bond graph approach. Int Rob Auto J. 2018;4(4):266-272. DOI: 10.15406/iratj.2018.04.00135

Download PDF

Abstract

In this article, a method for robust Fault Detection and Isolation (FDI) is presented. The scientific interest of this work is use of one tool (Bond Graph) not only for modelling of hybrid system, parametric and measurement uncertainties but also for generation of robust fault indicators and thresholds. For this task, first, the hybrid bond graph (HBG) model is established to model the hybrid system using the controlled junctions. Secondly, all parametric and measurement uncertainties are modeled on the HBG model in derivative causality, from this model and using the causal and structural properties of the bond graph tool, the generation of the fault indicators (residues) and thresholds is done directly, those fault indicators called Generalized Analytical Redundancy Relations (GARRs) are valid at all modes and derived systematically from an HBG model. An application to an hydraulic is used to illustrate this method.

Keywords: hybrid bond graph, fault diagnosis, fault indicators, robust, parameter uncertainties, measurement uncertainties

Introduction

Current systems engineering, industrial and technical processes are increasingly complex; they include sub-systems of various fields of energy. The Bond Graph (BG) is a multi-physics modeling tool based on analogy and exchange of energy power able to model with a single language, systems, regardless of their physical nature. This modeling aspect has been the subject of several publications.1−3 The BG has been used not only for modeling but also for fault detection and isolation (FDI) of complex systems.4−6 The majority of complexes engineering processes are equipped with sensors, actuators, integrated digital circuits and software. In order to protect the complex engineering systems, safety, reliability, availability and maintenance become important to detect rapidly anomalous behavior of the system after the occurrence of a fault, isolate causes of malfunctions, failures and generate alarms: most complex industrial systems are hybrids. Fault diagnosis for hybrid systems has been the subject of intensive research and several approaches have been developed in the literature for the diagnosis of hybrid systems. In 1994, Mosterman and Biswas8 have developed an approach which extends the BG theory,7 called Hybrid Bond Graph (HBG) to model the discrete mode changes of hybrid systems, in addition to the junctions of BGs, the HBG methodology uses controlled junctions. In literature, several studies have been proposed9−12 based on HBG approach for the diagnosis of hybrid systems. The majority of these works does not address robustness. Ghoshal et al.,13 have presented a method for robust diagnosis taking into account parameter uncertainties using pseudo-bond graph to model and diagnosis a hybrid thermo-fluid system, the Linear Fractional Transformation (LFT) form is used to model parameter uncertainties directly on pseudo-bond graph model. The method was tested and the simulations results are given. In the work of Borutzky,14 a method of robust FDI is presented based on incremental bond graph for hybrid systems, the principle of the method is the generation of thresholds taking into account parameter uncertainties and changes in the discrete mode. An application to a converter circuit to illustrate the method is given. And In,15 the author, showed that the incremental bond graphs can be used to determine adaptive mode-dependent ARR thresholds in order to obtain robust diagnosis, the bond graph model for hybrid system and mode identification are presented. The method was illustrated by an application on a power electronic system. In,16 we have developed a method based on HBG-LFT to obtain a robust diagnosis for hybrid systems. The system is modeled using HBG and the parameter uncertainties are modeled graphically using LFT form, the residues and adaptive thresholds are generated from HBG-LFT model. These residues are robust to parameter uncertainties and valid at all modes, the method was tested on a hydraulic hybrid system, and in,17 we have studied robustness with respect to measurement uncertainties by modeling these uncertainties directly on the HBG model. In the work presented in this manuscript; we will consider both parameter and measurement uncertainties18,19 for hybrid system modeled by HBG approach to detect defaults. The innovative interest of the present research is essentially based on the use of the HBG tool for first; modeling the discrete mode changes, second; modeling of the parameter and measurement uncertainties graphically, and third; obtain a robust diagnosis by exploiting the causal and structural proprieties, thereby, the systematic generation of robust fault indicators is systematic. The rest of the article is organized as follows: modeling of parameter and measurement uncertainties by bond graph approach is presented in Section 2 and the proposed method for robust diagnosis taking into account parametric and measurement uncertainties based on hybrid bond graph approach in Section 3. Section 4 presents an application on a hydraulic system to validate this method and a conclusion is given in section 5.

Modeling of parametric and measurement uncertainties by bond graph approach

Modeling of parametric uncertainties

In order to model parametric uncertainties by bond graph approach, two methods are presented in.16 In this work, the method used is based on (bond graph- Linear Fractional Transformation BG-LFT) representation. The principle of this method is to replace the BG elements by the corresponding BG-LFT elements to obtain two parts; nominal part and uncertain part. The nominal part is used for calculation of residue, and the uncertain part for the thresholds. Figure 1 shows a BG- R element in the LFT form. An R element in resistance causality with uncertainties can be presented as following Equation (1):

{ e R = R n ( 1+ δ R ). f R e R = R n f R + δ R . z R e R = R n f R w R δ R = ΔR R n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqabeabbaaaaeaacaWGLbWaaSbaaKqbGeaacaWGsbaajuaGbeaa cqGH9aqpcaWGsbWaaSbaaKqbGeaacaWGUbaajuaGbeaadaqadaqaai aaigdacqGHRaWkcqaH0oazdaWgaaqcfasaaiaadkfaaKqbagqaaaGa ayjkaiaawMcaaiaac6cacaWGMbWaaSbaaKqbGeaacaWGsbaajuaGbe aaaeaacaWGLbWaaSbaaKqbGeaacaWGsbaajuaGbeaacqGH9aqpcaWG sbWaaSbaaKqbGeaacaWGUbaajuaGbeaacaWGMbWaaSbaaKqbGeaaca WGsbaajuaGbeaacqGHRaWkcqaH0oazdaWgaaqcfasaaiaadkfaaKqb agqaaiaac6cacaGG6bWaaSbaaKqbGeaacaWGsbaajuaGbeaaaeaaca WGLbWaaSbaaKqbGeaacaWGsbaajuaGbeaacqGH9aqpcaWGsbWaaSba aKqbGeaacaWGUbaajuaGbeaacaWGMbWaaSbaaKqbGeaacaWGsbaaju aGbeaacqGHsislcaWG3bWaaSbaaeaajuaicaWGsbqcfaOaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqabaaabaGaeqiTdq 2aaSbaaKqbGeaacaWGsbaajuaGbeaacqGH9aqpdaWcaaqaaiabgs5a ejaadkfaaeaacaWGsbWaaSbaaKqbGeaacaWGUbaajuaGbeaaaaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7aaaacaGL7baaaaa@97D7@ (1)

With: z R = R n . f R , R n . δ R ,ΔR, e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiOEam aaBaaajuaibaGaamOuaaqcfayabaGaeyypa0JaamOuamaaBaaajuai baGaamOBaaqcfayabaGaaiOlaiaadAgadaWgaaqcfasaaiaadkfaaK qbagqaaiaacYcacaWGsbWaaSbaaKqbGeaacaWGUbaajuaGbeaacaGG UaGaeqiTdq2aaSbaaKqbGeaacaWGsbaajuaGbeaacaGGSaGaeyiLdq KaamOuaiaacYcacaWGLbWaaSbaaKqbGeaacaWGsbaajuaGbeaaaaa@4DD2@ and f R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaGaamOuaaqcfayabaaaaa@3923@ are respectively, the nominal value, the multiplicative uncertainty, the additive uncertainty, the effort and the flow variable of R element. w R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaGaamOuaaqcfayabaaaaa@3934@ is a fictive input that represents the effort added by the parameter uncertainty. The LFT form in robust diagnosis has advantages among them:

  1. The causality and the structural proprieties of the elements on the nominal model remain unchanged by introducing the uncertainties.
  2. The nominal and uncertain parts are separated, and the parameter uncertainties are easily evaluated and explicitly represented in the graphical tool.13
Figure 1 R element in resistance causality using LFT form.

Modeling of measurement uncertainties in a BG context

Mostly, the information provided by sensors are noisy or obtained with a certain precision, therefore, take account of measurements uncertainties is necessary in the diagnostic scheme in order to avoid the problems related to false alarms and no detections. The interest of using this approach based on BG theory for modeling the measurement uncertainties is to use the properties of the tool (BG) to generate residues and thresholds. In BG methodology, the ARRs are considered as residuals. Theoretically, the residues are equal to zero in normal situation, without considering the uncertainties and model errors. The presence of uncertainties on the sensors uncertainties, and if the measurement errors are an additive and bounded error, then, the residual can be bounded by two thresholds. The latter can be obtained using the BG model. Using the BG theory, measurement errors are modeled by replacing the junction containing the detector by its equivalent (Figure 2). The measurement error is replaced by a virtual source of flow (effort) according to the detector De(Df ).14 Figure 2 shows modeling of measurement uncertainties, the obtained equations are given in Equation (2) and (3).

( a ){ e 1 =SSe e 2 =SSe e 3 =SSe ( b ){ e 1 = e 4 ζ SSe =SSe ζ SSe e 2 = e 5 ζ SSe =SSe ζ SSe e 3 = e 6 ζ SSe =SSe ζ SSe MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGHbaacaGLOaGaayzkaaGaaGPaVlaaykW7daGabaqaauaabeqa deaaaeaacaWGLbWaaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpca WGtbGaam4uaiaadwgaaeaacaWGLbWaaSbaaKqbGeaacaaIYaaajuaG beaacqGH9aqpcaWGtbGaam4uaiaadwgaaeaacaWGLbWaaSbaaKqbGe aacaaIZaaajuaGbeaacqGH9aqpcaWGtbGaam4uaiaadwgaaaaacaGL 7baacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey O0H4TaaGPaVlaaykW7caaMc8UaaGPaVpaabmaabaGaamOyaaGaayjk aiaawMcaaiaaykW7caaMc8+aaiqaaeaafaqabeWabaaabaGaamyzam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaGPaVlaadwgadaWg aaqcfasaaiaaisdaaKqbagqaaiabgkHiTiabeA7a6naaBaaajuaiba Gaam4uaiaadofacaWGLbaajuaGbeaacqGH9aqpcaaMc8Uaam4uaiaa dofacaWGLbGaeyOeI0IaeqOTdO3aaSbaaKqbGeaacaWGtbGaam4uai aadwgaaKqbagqaaaqaaiaadwgadaWgaaqcfasaaiaaikdaaKqbagqa aiabg2da9iaaykW7caWGLbWaaSbaaKqbGeaacaaI1aaajuaGbeaacq GHsislcqaH2oGEdaWgaaqcfasaaiaadofacaWGtbGaamyzaaqcfaya baGaeyypa0JaaGPaVlaadofacaWGtbGaamyzaiabgkHiTiabeA7a6n aaBaaajuaibaGaam4uaiaadofacaWGLbaajuaGbeaaaeaacaWGLbWa aSbaaKqbGeaacaaIZaaajuaGbeaacqGH9aqpcaaMc8UaamyzamaaBa aajuaibaGaaGOnaaqcfayabaGaeyOeI0IaeqOTdO3aaSbaaKqbGeaa caWGtbGaam4uaiaadwgaaKqbagqaaiabg2da9iaaykW7caWGtbGaam 4uaiaadwgacqGHsislcqaH2oGEdaWgaaqcfasaaiaadofacaWGtbGa amyzaaqcfayabaaaaaGaay5EaaGaaGPaVdaa@B640@  (2)

( c ){ f 1 =SSf f 2 =SSf f3=SSf ( d ){ f 1 = f 4 ζ SSe =SSf ζ SSf f 2 = f 5 ζ SSe =SSf ζ SSf f 3 = f 6 ζ SSe =SSf ζ SSf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGJbaacaGLOaGaayzkaaGaaGPaVlaaykW7daGabaqaauaabeqa deaaaeaacaWGMbWaaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpca WGtbGaam4uaiaadAgaaeaacaWGMbWaaSbaaKqbGeaacaaIYaaajuaG beaacqGH9aqpcaWGtbGaam4uaiaadAgaaeaacaWGMbGaaG4maiabg2 da9iaadofacaWGtbGaamOzaaaaaiaawUhaaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGHshI3caaMc8UaaGPaVlaayk W7caaMc8+aaeWaaeaacaWGKbaacaGLOaGaayzkaaGaaGPaVlaaykW7 daGabaqaauaabeqadeaaaeaacaWGMbWaaSbaaKqbGeaacaaIXaaaju aGbeaacqGH9aqpcaaMc8UaamOzamaaBaaajuaibaGaaGinaaqcfaya baGaeyOeI0IaeqOTdO3aaSbaaKqbGeaacaWGtbGaam4uaiaadwgaaK qbagqaaiabg2da9iaaykW7caWGtbGaam4uaiaadAgacqGHsislcqaH 2oGEdaWgaaqcfasaaiaadofacaWGtbGaamOzaaqcfayabaaabaGaam OzamaaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0JaaGPaVlaadAga daWgaaqcfasaaiaaiwdaaKqbagqaaiabgkHiTiabeA7a6naaBaaaju aibaGaam4uaiaadofacaWGLbaajuaGbeaacqGH9aqpcaaMc8Uaam4u aiaadofacaWGMbGaeyOeI0IaeqOTdO3aaSbaaKqbGeaacaWGtbGaam 4uaiaadAgaaKqbagqaaaqaaiaadAgadaWgaaqcfasaaiaaiodaaKqb agqaaiabg2da9iaaykW7caWGMbWaaSbaaKqbGeaacaaI2aaajuaGbe aacqGHsislcqaH2oGEdaWgaaqcfasaaiaadofacaWGtbGaamyzaaqc fayabaGaeyypa0JaaGPaVlaadofacaWGtbGaamOzaiabgkHiTiabeA 7a6naaBaaajuaibaGaam4uaiaadofacaWGMbaajuaGbeaaaaaacaGL 7baacaaMc8oaaa@B579@

The following references are given for more details on the modelling of parameter uncertainties14,16,18,19 for measurements uncertainties, based on BG methodology.

Figure 2 Measurement uncertainly modelling and their equations.

Hybrid bond graph for robust diagnosis

In this section, the proposed method for robust diagnosis based on the HBG approach with controlled junctions and modeling of parametric and measurement uncertainties by BG methodology is presented. The steps of the method are:

  1. The hybrid system is modeled by HBG approach using controlled junctions taking account discrete mode changes; The HBG model of the system is obtained.
  2. The Diagnostic hybrid bond graph model (DHBG) is obtained by applying the sequential causality assignment procedure for hybrid system diagnosis (SCAPHD).20 The SCAPHD represents the extension of the SCAP by affecting the causality of controlled junction according to the concept of the preferred causality of these controlled junctions.
  3. The measurement uncertainties are modeled directly on the DHBG model
  4. The parametric uncertainties are represented graphically.
  5. For each detector whose causality is reversed,21 a robust global candidate residue is generated at this junction.
  6. Using the causal and structural proprieties of the HBG tool, the unknown variables are eliminated by covering the causal paths from unknown variables to known (sensors and sources).22

Application

The objective of this part is to show the proposed method on a hydraulic system: the hybrid system is modeled by hybrid bond graph (HBG) approach with controlled junctions, the DHBG model is obtained by attributing derived causality on the HBG model, then; the parametric and measurement uncertainties are modeled on the obtained DHBG model, the generation of fault indicators is established, residues and thresholds, simulation tests are given to show the residuals with and without defaults. In the following, these steps are detailed. The proposed method is applied to a hybrid hydraulic system shown in Figure 3: The generation of Robust Global Analytical Redundancy Relations (GARRs) with respect to parametric and output (measurements) uncertainties is presented.

Figure 3 The hybrid Two-Tank system.

First step: Modeling of the hybrid system: the system is composed of two tanks, regulated centrifugal pump modeled as a source of pressure pin(t) [Pa] and four valves represented by R1, R2, R3 and R4. A1[m2] and A2[m2] are the cross-section areas of the two tanks. The system contains two pressure sensors (p1(t) and p2(t)) to measure the pressure at the button of tank A1 and tank A2 , respectively; this pressure is proportional to the liquid level, according to:

P i (t)=ρg h t ( t ),i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuam aaBaaajuaibaGaamyAaaqabaqcfaOaaiikaiaadshacaGGPaGaeyyp a0JaeqyWdiNaam4zaiaadIgadaWgaaqcfasaaiaadshaaKqbagqaam aabmaabaGaamiDaaGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadMgacqGH9aqpcaaIXaGaaiilaiaaikdaaa a@50EF@ (4)

Whereis the density of liquid, [kg/m3]; g is the acceleration due to gravity , [m/s2], hi (t) is liquid height in the tank, [m].

Each valve has two states ON and OFF. The valves’ dynamics is given by:

f j ( t )=0,j=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaGaamOAaaqcfayabaWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaadQgacqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaI0aaaaa@483A@ when the valve is closed

f j ( t )= sign( ΔP( t ) ). ΔP( t ) R j =C d j .sign( ΔP( t ) ). ΔP( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaGaamOAaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaWGZbGaamyAaiaadEgacaWGUbWaae WaaeaacqGHuoarcaWGqbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa caGLOaGaayzkaaGaaiOlamaakaaabaGaeyiLdqKaamiuamaabmaaba GaamiDaaGaayjkaiaawMcaaaqabaaabaGaamOuamaaBaaajuaibaGa amOAaaqcfayabaaaaiabg2da9iaadoeacaWGKbWaaSbaaKqbGeaaca WGQbaabeaajuaGcaGGUaGaam4CaiaadMgacaWGNbGaamOBamaabmaa baGaeyiLdqKaamiuamaabmaabaGaamiDaaGaayjkaiaawMcaaaGaay jkaiaawMcaaiaac6cadaGcaaqaaiabgs5aejaadcfadaqadaqaaiaa dshaaiaawIcacaGLPaaaaeqaaaaa@63C3@ (5)

When the valve is opened. Where f j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaGaamOAaaqabaaaaa@38AD@ the liquid-flow through the valve, [m3/s]; Δp( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadchadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@3B57@ is the pressure difference across the valve , [Pa] and C d j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aadsgadaWgaaqcfasaaiaadQgaaeqaaaaa@3973@ is the coefficients of discharge,.

In the HBG model of Figure 4; the two tanks are modeled by two storage components with coefficients C i = A i g ;i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqcfasaaiaadMgaaKqbagqaaiabg2da9maalaaabaGaamyqamaa BaaajuaibaGaamyAaaqabaaajuaGbaGaam4zaaaacaGG7aGaamyAai abg2da9iaaigdacaGGSaGaaGOmaaaa@4279@ The valves are modeled by a set of resistor with parameter ; R j = 1 C d j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfada WgaaqcfasaaiaadQgaaKqbagqaaiabg2da9maalaaabaGaaGymaaqa aiaadoeacaWGKbWaaSbaaKqbGeaacaWGQbaabeaaaaaaaa@3DDC@ j=1,2,3,4, and controlled-junction with boolean variable a cj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggada WgaaqcfasaaiaadogacaWGQbaabeaaaaa@3985@ j =1,2,3,4, representing the state of controlled junctions.

Figure 4 The two-tank acausaled HBG and the finite state automaton of controlled junctions.

Second step: The DHBG (Figure 5) is obtained by affecting all controlled junctions by their preferred causalities, to do this:

  1. The output variables of the controlled junctions 1c3,1c2 and 1c4 are assigned as inputs of R3 , R2 and R4 respectively because these junctions have no source adjacently connected to them.
  2. The output of 1c1 is assigned as input variable of 1-port component R1 since the source Se is connected to1c1.
  3. The source Se and the storage components C1, C2 are assigned in preferred derivative causality and the sensor is reversed (dualized).
Figure 5 The two-tank DHBG.

Third step: The parameter and measurements uncertainties are graphically modeled on the DHBG model. The Figure 6 shows this representation of uncertainties. Two GARRs can be derived from the model of Figure 6;

Figure 6 The model of the two tank system in preferred derivative causality with measurement and parameter uncertainties.

The first candidate GARR is

GAR R 1 = a c1 .C d 1 .[ sign( P in P 1 ) | ( P in P 1 ) | ] C 1 . d dt P 1 a c2.C d 2 .[ sign( P 1 P 2 ) | ( P 1 P 2 ) | ] .( P 1 ζ P 1 ) a c3 .C d 3 . P 1 ( P 1 ζ P 1 )+ w c1 + w c1 P1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai aadgeacaWGsbGaamOuamaaBaaajuaibaGaaGymaaqcfayabaGaeyyp a0JaamyyamaaBaaajuaibaGaam4yaiaaigdaaeqaaKqbakaac6caca WGdbGaamizamaaBaaajuaibaGaaGymaaqabaqcfaOaaiOlamaadmaa baGaam4CaiaadMgacaWGNbGaamOBamaabmaabaGaamiuamaaBaaaju aibaGaamyAaiaad6gaaeqaaKqbakabgkHiTiaadcfadaWgaaqcfasa aiaaigdaaeqaaaqcfaOaayjkaiaawMcaamaakaaabaWaaqWaaeaada qadaqaaiaadcfadaWgaaqcfasaaiaadMgacaWGUbaajuaGbeaacqGH sislcaWGqbWaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPa aaaiaawEa7caGLiWoaaeqaaaGaay5waiaaw2faaiabgkHiTiaadoea daWgaaqcfasaaiaaigdaaeqaaKqbakaac6cadaWcaaqaaiaadsgaae aacaWGKbGaamiDaaaacaWGqbWaaSbaaKqbGeaacaaIXaaabeaajuaG cqGHsislcaWGHbWaaSbaaKqbGeaacaWGJbGaaGOmaKqbakaac6caca WGdbGaamizamaaBaaajuaibaGaaGOmaaqcfayabaGaaiOlamaadmaa baGaam4CaiaadMgacaWGNbGaamOBamaabmaabaGaamiuamaaBaaaju aibaGaaGymaaqcfayabaGaeyOeI0IaamiuamaaBaaajuaibaGaaGOm aaqcfayabaaacaGLOaGaayzkaaWaaOaaaeaadaabdaqaamaabmaaba GaamiuamaaBaaajuaibaGaaGymaaqcfayabaGaeyOeI0Iaamiuamaa BaaajuaibaGaaGOmaaqabaaajuaGcaGLOaGaayzkaaaacaGLhWUaay jcSdaabeaaaiaawUfacaGLDbaaaeqaaiaac6cadaqadaqaaiaadcfa daWgaaqcfasaaiaaigdaaKqbagqaaiabgkHiTiabeA7a6naaBaaaba qcfaIaamiuaKqbaoaaBaaajuaibaGaaGymaaqcfayabaaabeaaaiaa wIcacaGLPaaacqGHsislcaWGHbWaaSbaaKqbGeaacaWGJbGaaG4maa qcfayabaGaaiOlaiaadoeacaWGKbWaaSbaaKqbGeaacaaIZaaabeaa juaGcaGGUaWaaOaaaeaacaWGqbWaaSbaaKqbGeaacaaIXaaajuaGbe aaaeqaamaabmaabaGaamiuamaaBaaajuaibaGaaGymaaqcfayabaGa eyOeI0IaeqOTdO3aaSbaaKqbGeaacaWGqbqcfa4aaSbaaKqbGeaaca aIXaaabeaaaeqaaaqcfaOaayjkaiaawMcaaiabgUcaRiaadEhadaWg aaqcfasaaiaadogacaaIXaaabeaajuaGcqGHRaWkcaWG3bWaaSbaaK qbGeaajuaGdaWccaqcfasaaiaadogacaaIXaaabaGaamiuaiaaigda aaaajuaGbeaaaaa@B33F@

And the second candidate GlobalARR:

GAR R 2 = a c2 .C d 2 .[ sign( P 1 P 2 ) | ( P 1 P 2 ) | ].( P 1 ζ P 1 ) C 2 . d dt P 2 a c4.C d 4 . P 2 ( P 2 ζ P 2 )+ w c2 + w c2 P2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai aadgeacaWGsbGaamOuamaaBaaajuaibaGaaGOmaaqcfayabaGaeyyp a0JaamyyamaaBaaajuaibaGaam4yaiaaikdaaeqaaKqbakaac6caca WGdbGaamizamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiOlamaadmaa baGaam4CaiaadMgacaWGNbGaamOBamaabmaabaGaamiuamaaBaaaju aibaGaaGymaaqabaqcfaOaeyOeI0IaamiuamaaBaaajuaibaGaaGOm aaqabaaajuaGcaGLOaGaayzkaaWaaOaaaeaadaabdaqaamaabmaaba GaamiuamaaBaaajuaibaGaaGymaaqcfayabaGaeyOeI0Iaamiuamaa BaaajuaibaGaaGOmaaqabaaajuaGcaGLOaGaayzkaaaacaGLhWUaay jcSdaabeaaaiaawUfacaGLDbaacaGGUaWaaeWaaeaacaWGqbWaaSba aKqbGeaacaaIXaaabeaajuaGcqGHsislcqaH2oGEdaWgaaqaaKqbGi aadcfajuaGdaWgaaqcfasaaiaaigdaaeqaaaqcfayabaaacaGLOaGa ayzkaaGaeyOeI0Iaam4qamaaBaaajuaibaGaaGOmaaqabaqcfaOaai OlamaalaaabaGaamizaaqaaiaadsgacaWG0baaaiaadcfadaWgaaqc fasaaiaaikdaaeqaaKqbakabgkHiTiaadggadaWgaaqcfasaaiaado gacaaI0aqcfaOaaiOlaiaadoeacaWGKbWaaSbaaKqbGeaacaaI0aaa juaGbeaacaGGUaaabeaadaGcaaqaaiaadcfadaWgaaqcfasaaiaaik daaKqbagqaaaqabaWaaeWaaeaacaWGqbWaaSbaaKqbGeaacaaIYaaa juaGbeaacqGHsislcqaH2oGEdaWgaaqcfasaaiaadcfajuaGdaWgaa qcfasaaiaaikdaaeqaaaqabaaajuaGcaGLOaGaayzkaaGaey4kaSIa am4DamaaBaaajuaibaGaam4yaiaaikdaaeqaaKqbakabgUcaRiaadE hadaWgaaqcfasaaKqbaoaaliaajuaibaGaam4yaiaaikdaaeaacaWG qbGaaGOmaaaaaKqbagqaaaaa@9075@

And the second candidate GlobalARR:

These GARRs can be decomposed in two separate parts; the first nominal, called residue and the second uncertain used to calculate the thresholds.

with: a cj { 0,1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggada WgaaqcfasaaiaadogacaWGQbaabeaacqGHiiIZjuaGdaGadaqaaiaa icdacaGGSaGaaGymaaGaay5Eaiaaw2haaaaa@3FED@ are discrete variables representing the state of controlled junction 1cj

for j{ 1,2,3,4 }, ξ p1 , ξ p2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GHiiIZdaGadaqaaiaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiil aiaaisdaaiaawUhacaGL9baacaGGSaGaeqOVdG3aaSbaaKqbGeaaca WGWbGaaGymaaqabaqcfaOaaiilaiabe67a4naaBaaajuaibaGaamiC aiaaikdaaKqbagqaaaaa@4A20@ are respectively the measurement errors on the first pressure sensor p1 and on the second pressure sensor p2 , These measurement errors are bounded as follows: and the virtual inputs of measurement uncertainties .

| ξ p1 | Δ p1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaeqOVdG3aaSbaaKqbGeaacaWGWbGaaGymaaqabaaajuaGcaGLhWUa ayjcSdGaeyizImQaeyiLdq0aaSbaaKqbGeaacaWGWbGaaGymaaqaba aaaa@4306@ , | ξ p2 | Δ p2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaeqOVdG3aaSbaaKqbGeaacaWGWbGaaGOmaaqcfayabaaacaGLhWUa ayjcSdGaeyizImQaeyiLdq0aaSbaaKqbGeaacaWGWbGaaGOmaaqaba aaaa@4308@ Where: w c1 , w c2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaGaam4yaiaaigdaaeqaaKqbakaacYcacaWG3bWaaSba aKqbGeaacaWGJbGaaGOmaaqabaaaaa@3D9F@ and w c1 P1 , w c2 P2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaqcfa4aaSGaaKqbGeaacaWGJbGaaGymaaqaaiaadcfa caaIXaaaaaqcfayabaGaaiilaiaadEhadaWgaaqcfasaaKqbaoaali aajuaibaGaam4yaiaaikdaaeaacaWGqbGaaGOmaaaaaKqbagqaaaaa @42EA@ are respectively the fictitious inputs of parameter uncertainties and the virtual inputs of measurement uncertainties, δ c 1 , δ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaKqbGeaacaWGJbqcfa4aaSbaaKqbGeaacaaIXaaabeaaaeqa aiaacYcacaaMc8EcfaOaeqiTdq2aaSbaaKqbGeaacaWGJbqcfa4aaS baaKqbGeaacaaIYaaabeaaaeqaaaaa@4236@ are the multiplicative uncertainties on the two storage components C 1,C 2 and fixed as 5% and ξ p1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe67a4n aaBaaajuaibaGaamiCaiaaigdaaeqaaaaa@3A3B@ , ξ p2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe67a4n aaBaaajuaibaGaamiCaiaaikdaaKqbagqaaaaa@3ACA@ are respectively the measurement errors on the first pressure sensor p1 and on the second pressure sensor p2, then errors measures are added to the exact values of the measures of the system. The results presented below show the residues in presence of parameter and output (measurements) uncertainties in normal and faulty operation. The nominal values of parameters used in the simulations of the model are shown in Table 1. Different scenario of simulations was performed to test the effectiveness of the proposed method.

Symbol

Description

Value

Ai

Cross-sectional area of Tanki (i=1,2)

1.54× 10 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac6cacaaI1aGaaGinaiabgEna0kaaigdacaaIWaWaaWbaaeqajuai baGaeyOeI0IaaGOmaaaajuaGcaWGTbWaaWbaaeqajuaibaGaaGOmaa aaaaa@417F@ -2

g

Acceleration due to gravity

9.81m s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGyoai aac6cacaaI4aGaaGymaiaad2gacaWGZbWaaWbaaKqbGeqabaGaeyOe I0IaaGOmaaaaaaa@3D59@

C d 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aadsgadaWgaaqcfasaaiaaigdaaeqaaaaa@393F@

Discharge co efficient of first valve                            1.593× 10 2 kg.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac6cacaaI1aGaaGyoaiaaiodacqGHxdaTcaaIXaGaaGimamaaCaaa juaibeqaaiabgkHiTiaaikdaaaqcfa4aaOaaaeaacaWGRbGaam4zai aac6cacaWGTbaabeaaaaa@43D3@

C d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aadsgadaWgaaqcfasaaiaaikdaaeqaaaaa@3940@

Discharge co efficient of second valve                            1.593× 10 2 kg.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac6cacaaI1aGaaGyoaiaaiodacqGHxdaTcaaIXaGaaGimamaaCaaa juaibeqaaiabgkHiTiaaikdaaaqcfa4aaOaaaeaacaWGRbGaam4zai aac6cacaWGTbaabeaaaaa@43D3@

C d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aadsgadaWgaaqcfasaaiaaiodaaeqaaaaa@3941@

Discharge co efficient of third valve                            1.0× 10 2 kg.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac6cacaaIWaGaey41aqRaaGymaiaaicdadaahaaqabKqbGeaacqGH sislcaaIYaaaaKqbaoaakaaabaGaam4AaiaadEgacaGGUaGaamyBaa qabaaaaa@424E@

C d 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aadsgadaWgaaqcfasaaiaaisdaaeqaaaaa@3942@

Discharge co efficient of fourth valve                         1.0× 10 2 kg.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac6cacaaIWaGaey41aqRaaGymaiaaicdadaahaaqabKqbGeaacqGH sislcaaIYaaaaKqbaoaakaaabaGaam4AaiaadEgacaGGUaGaamyBaa qabaaaaa@424E@

Table 1 Model parameters of the two-tank systems

First scenario

Test1: Normal operation (without default), the valves 1 and 2 are open at t=1s, the valves 3 and 4 are closed. The states of the four valves are shown in Figure 7. The residues r1, r2 in presence of parametric and measurement uncertainties without default are presented in Figure 8: we note that the residues are equal to zero and do not leave the thresholds. The mode change is observed at t=1s.

Figure 7 The states of the four valves.
Figure 8 The residues without default.

Test2: Figure 9 shows the residues in normal operation and the valves 1 and valve 2 are open, and the valves 3 and the valve 4 are closed. The states of the valves are presented in Figure 10.

Figure 9 The residues without default.
Figure 10 The states of the four valves.

Second scenario

Test1: Faulty operation (with default), the four valves are open. The states of the four valves are shown in Figure 11. A default of 0.2 [Pa] on the first sensor p1 is occurred between t=2s and t=4s, the responses of residues are shown in Figure 12 & Figure 13 shows the outputs of the system. We note that the default is detected by the two residues. These residues exceed the thresholds during the presence of default.

Test2: Now the default is considered with the following operation; the mode change is at t= 1s. The operation of the system in different states of the valves (opening of the valve 1 and 2 at t = 1s, the valve 3 open and the valve 4 is closed). The sensors are in Figure 14, the states of the valves are in Figure 15. The reaction of residues is shown in Figure 16. In this test, at t = 1s the mode change at t = 1s and detection of default at t = 2s and 4s.

Figure 11 The states of the four valves.
Figure 12 The responses of residues.
Figure 13 The outputs of the system.
Figure 14 The outputs of the system.
Figure 15 The states of the four valves.
Figure 16 The responses of residues r1, r2.

Test3: Figure 17, 18, 19 show the results of this test. In this case, the default is occurredat t= 1s and t=6s (Figure 17) and the mode change at = 2s (Figure 18). The residues r1, r2 are equal to zero and different when the fault is occurred. We note that the two residues are sensitive to the sensor default exceeding the thresholds, thus, generating a false alarm. We can say that the fault has been detected by these two residues r1, r2 (Figure 19).

Figure 17 The sensors.
Figure 18 The stats of the valves.
Figure 19 The responses of residues r1, r2.

Conclusion

In this article, a method for robust diagnosis is presented. The interest of this method is the use only one tool (hybrid bond graph) not only for modeling of the discrete mode changes of the hybrid system, and modeling of parametric and measurement uncertainties but also for robust diagnosis. The diagnostic system allows detection of fault on the sensors in the presence of parametric and measurement uncertainties, where uncertainties are modeled directly on the hybrid bond graph model. The causal and structural proprieties are used for generation of residues and thresholds. The residues are called GARRs; are generated directly from a diagnostic hybrid bond graph model, robust to parametric and measurement uncertainties, and describe the system at different modes by using different corresponding value of acj. The results presented in this article show the effectiveness of the diagnostic method in terms of detecting defaults on the sensors using bond graph methodology.

Acknowledgements

None

Conflict of interest

The author declares there is no conflict of interest.

References

  1. Ould Bouamama B, Samantaray AK, Staroswiecki M. Derivation of constraint relations from bond graph models for fault detection and isolation. Simulation Series. 2003;35:104–109.
  2. Ould Bouamama B, Samantaray AK, Medjaher K, et al. Model builder using functional and bond graph tools for FDI design. Control Engineering Practice. 2005;13(7):875 –891.
  3. Samantaray A K, Medjaher K, Ould Bouamama B, et al. Component based modelling of thermo-fluid systems for sensor placement and fault detection. Simulation. 2004;80:381–398.
  4. Karnopp D, Margolis DL, Rosenberg RC. Systems dynamics: modeling and simulation of mechatronic systems. 2nd ed. New York: A Wiley-Interscience Publication; 2006.
  5. Mosterman PJ, Biswas G. Behavior generation using model switching: A hybrid bond graph modeling technique. Trans Soc Simul. 1994;27:177–182.
  6. Low CB, Wang D, Arogeti S, et al. Causality assignment and model approximation for hybrid bond graph: Fault diagnosis perspectives. IEEE Transactions on Automation Science and Engineering. 2010;7(3):570–580.
  7. Low CB, Wang D, Arogeti SA, et al. Fault parameter estimation for hybrid systems using hybrid bond graph. Proceedings of the Control Applications, (CCA) Intelligent Control, (ISIC), IEEE; 2009 July 8–10, 2009:1338–1343.
  8. Daigle MJ, Koutsoukos XD, Biswas G. An event-based approach to integrated parametric and discrete fault diagnosis in hybrid systems. Transactions of the Institute of Measurement and Control. 2010;32:487–510.
  9. Arogeti SA, Wang D, Low CB, et al. Fault detection isolation and estimation in a vehicle steering system. IEEE Transactions on Industrial Electronics. 2012;59(12):4810–4820.
  10. Ghoshal SK, Samanta S, Samantaray AK. Robust Fault Detction and Isolation of Hybrid Systems with Uncertain Parameters. Journal of Systems and Control Engineering. 2012;226(8):1013–1028.
  11. Borutzky W. Fault indicators adaptative thresholds from hybrid system models. Proceedings of the 7th Vienna International Conference on Mathematical Modelling; Austria. Vienna University of Technology; 2012. p. 392–397.
  12. Rahal MI, Ould Bouamama B, Meghebbar A. Hybrid Bond Graph for Robust Diagnosis–Application to Hydraulic System, Proceedings of the 3rd IEEE International Conference on Systems and Control, (ICSC’13), Algiers; 2013 Oct 29–31; Algeria. p. 1080–1085.
  13. Djeziri MA, Ould-Bouamama B, Merzouki R.Modelling and robust FDI of steam generator using uncertain bond graph model. J Process Control. 2009;19(1):149–162 .
  14. Touati Y, Merzouki R, Ould Bouamama B. Fault detection and isolation in presence of input and output uncertainties using bond graph approach. Proceedings of the IMAACA; 2011. p. 221–227.
  15. Dauphin-Tanguy G, Rahmani A, Sueur C. Bond graph aided design of controlled systems. Simulation Practice and theory. 1999;7(5-6):493–513.
  16. Kam CS, Dauphin-Tanguy G. Bond graph models of structured parameter uncertainties. Journal of the Franklin Institute. 2005;342(4):379–399.
  17. Rahal MI, Ould Bouamama B, Meghebbar A. Hybrid Bond Graph for robust diagnosis to measurement uncertainties. Proceedings of the 5th IEEE International Conference on Systems and Control, (ICSC’16); 2016 25-27 May. Marrakech, Morocco. 2016. p. 439–444.
  18. Djeziri MA. Diagnostic des Systèmes Incertains par l’Approche Bond Graph, [dissertation]. Lille university, France; 2007.
  19. Touati Y, Merzouki R, Ould Bouamama B. Robust diagnosis to measurement uncertainties using bond graph approach: Application to intelligent autonomous vehicle. Mechatronics. 2012;22(8):1148–1160.
  20. Wang D, Yu M, Low C. B, et al. Model-based health monitoring of hybrid systems. New York: Springer; 2013.
  21. Ould Boumama B. Diagnostic en ligne à base de modèle Bond graph. REE Revue de l’Electricité et de l’Electronique. 2010;(2):111–117.
  22. Merzouki R, Kumar Samantaray A, Mani Pathak P, et al. Intelligent mechatronic systems: modeling, control and diagnosis. London: Springer; 2013.
  23. Borutzky W. Bond Graph model-based system mode identification and mode dependent fault thresholds for hybrid systems. Mathematical and computer modeling of Dynamical systems. 2014;20(6):584–615.
  24. Ould bouamama B, Dauphin-Tanguy G. Modélisation par bond graph: Éléments de base pour l'énergétique. Techniques de l'ingénieur. Génie énergétique. 2006(BE8280).
  25. Marquid-Favre W, Jardin A. Bond Graph pour la concetption des systemes mecatroniques. Techniques de l'ingénieur. 2012.
Creative Commons Attribution License

©2018 Rahal, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.