Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 5 Issue 4

Mathematical models for inertial torques acting on a spinning ring

Ryspek Usubamatov

Department of Automation & Robotics, Kyrgyz State Technical University after I Razzakov, Kyrgyzstan

Correspondence: Ryspek Usubamatov, Department of Automation & Robotics, Kyrgyz State Technical University after I. Razzakov, Kyrgyzstan, Tel +996 553722755

Received: August 18, 2019 | Published: August 30, 2019

Citation: Usubamatov R. Mathematical models for inertial torques acting on a spinning ring. Int Rob Auto J . 2019;5(4):147?151 DOI: 10.15406/iratj.2019.05.00188

Download PDF

Abstract

The main component of the gyroscopic devices is the spinning rotor, which design can be different and represented by the disc, cylinder, ring, etc. forms. These rotating objects manifest gyroscopic effects which action is increased proportionally with the intensification of the angular velocity of their spinning. Recent publications demonstrate the applied torque on gyroscopic devices generates internal resistance and precession torques based on the action of the centrifugal, common inertial, and Coriolis forces, as well as the change in the angular momentum. This internal inertial torques act simultaneously and interdependently around axes of gyroscopic devices. This paper presents mathematical models for the internal inertial torques generated by the mass elements and centre mass of the spinning ring. These models enable for the computing the forces acting on the supports of the spinning ring and describe the motions of the gyroscopic devices in space. The content of the manuscript presents novelty for machine dynamics and engineering.

Keywords: gyroscope theory, property, torque, ring, centrifugal

Introduction

Since the Industrial Revolution, researchers paid attention to the remarkable gyroscope properties of gyroscopic devices and tried to develop the gyroscope theory. The simplified theories of gyroscopes started to publish a hundred years ago.1–4 numerous publications described gyroscopic effects and applications in engineering but none of them explained the physics of gyroscope properties.5–7 the action of the gyroscopic effects is an important aspect of the science of classical mechanics. Fundamental textbooks and manuals have chapters of gyroscope theory.8,9 Many simplified approaches to gyroscope theory are dedicated to gyroscopic effects.10,11 All publications based on assumptions and described gyroscopic effects in terms only of the angular momentum.12–14 Researchers focused attention on the action of inertial forces on the gyroscope but did not represent mathematical models.15,16 The known theories of gyroscopic effects do not adequate to actual motions of rotating objects.17,18 Unsolved gyroscopic problems generated artificial terms as gyroscope resistance, gyroscopic effects and attributed fantastical properties to rotating objects.19,20 Still, gyroscopic effects attract researchers to find true theory.21,22 New investigations in the area of gyroscope theory discovered the action of the system of inertial torques on rotating objects. This work describes the application of new mathematical models for the system of inertial torques generated by the rotating mass of the spinning ring.

Methodology

Centrifugal torques acting on a rotating ring

The ring is a typical component of gyroscopic devices that manifest the gyroscopic effects presented in Figure 1. For computing of the inertial torques acting on the narrow spinning ring with the mass M and a constant angular velocity of ω in a counter-clockwise direction around axis oz. is accepted locations of its mass elements m on the middle radius R. The centrifugal forces are generated by the mass elements of a spinning ring and resisted to the action of an external torque. The scheme for computing the resistance torque generated by the centrifugal forces is the same as presented for the spinning disc22.

Figure 1 Schematic of the spinning ring.

The resistance torque ΔTct produced by the centrifugal force fct.z of the mass element m is expressed by the following:

Δ T ct = f ct.z y m =m a z y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaads fadaWgaaWcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0IaamOz amaaBaaaleaacaWGJbGaamiDaiaac6cacaWG6baabeaakiaadMhada WgaaWcbaGaamyBaaqabaGccqGH9aqpcqGHsislcaWGTbGaamyyamaa BaaaleaacaWG6baabeaakiaadMhadaWgaaWcbaGaamyBaaqabaaaaa@4B4C@             (1)

Where az is the acceleration of the mass element and y ym = Rsinα m is the distance of the disposal of the mass element along axis oy.

The change in the centrifugal force of the mass element is expressed by the following equation:

f ct.z = f ct sinαsinΔγ=( MR ω 2 2π )ΔδsinαsinΔγ= MR ω 2 2π ΔδΔγsinα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4yaiaadshacaGGUaGaamOEaaqabaGccqGH9aqpcaWGMbWa aSbaaSqaaiaadogacaWG0baabeaakiGacohacaGGPbGaaiOBaiabeg 7aHjGacohacaGGPbGaaiOBaiabfs5aejabeo7aNjabg2da9maabmaa baWaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqabaGaaGOmaa aaaOqaaiaaikdacqaHapaCaaaacaGLOaGaayzkaaGaeuiLdqKaeqiT dqMaci4CaiaacMgacaGGUbGaeqySdeMaci4CaiaacMgacaGGUbGaeu iLdqKaeq4SdCMaeyypa0ZaaSaaaeaacaWGnbGaamOuaiabeM8a3naa CaaaleqabaGaaGOmaaaaaOqaaiaaikdacqaHapaCaaGaeuiLdqKaeq iTdqMaeuiLdqKaeq4SdCMaci4CaiaacMgacaGGUbGaeqySdegaaa@7394@              (2)

where f ct = MR ω 2 2π Δδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaWGnbGaamOu aiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacqaHapaCaa GaeuiLdqKaeqiTdqgaaa@4513@ is the centrifugal force of the mass element m; m= M 2πR ΔδR= M 2π Δδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpdaWcaaqaaiaad2eaaeaacaaIYaGaeqiWdaNaamOuaaaacqqHuoar cqaH0oazcaWGsbGaeyypa0ZaaSaaaeaacaWGnbaabaGaaGOmaiabec 8aWbaacqqHuoarcqaH0oazaaa@4886@ ; Δδ is the sector’s angle of the mass element’s location; α is the angle of the mass element’s location; Δγ is the angle of turn for the ring’s plane (sinΔγγ for the small values of the angle) around axis ox.

The resistance torque produced by the centrifugal forces of the mass element is expressed by substituting the defined parameters into Eq. (1).

Δ T ct = MR ω 2 2π ×Δδ×Δγ×sinα× y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaads fadaWgaaWcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacaWGnbGaamOuaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaai aaikdacqaHapaCaaGaey41aqRaeuiLdqKaeqiTdqMaey41aqRaeuiL dqKaeq4SdCMaey41aqRaci4CaiaacMgacaGGUbGaeqySdeMaey41aq RaamyEamaaBaaaleaacaWGTbaabeaaaaa@5950@                     (3)

Where all components are as specified above.

The integrated torque produced by a change in the centrifugal forces is defined by the presentation of components of Eq.(3) in a form appropriate for integration. The axial component of the centrifugal forces is applied to the pseudo centroid at the ring’s semi-circle, which is calculated by the known integrated equation.

y A = α=0 π f ct.z y m dα α=0 π f ct.z dα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamyqaaqabaGccqGH9aqpdaWcaaqaamaapehabaGaamOzamaa BaaaleaacaWGJbGaamiDaiaac6cacaWG6baabeaakiaadMhadaWgaa WcbaGaamyBaaqabaGccaWGKbGaeqySdegaleaacqaHXoqycqGH9aqp caaIWaaabaGaeqiWdahaniabgUIiYdaakeaadaWdXbqaaiaadAgada WgaaWcbaGaam4yaiaadshacaGGUaGaamOEaaqabaGccaWGKbGaeqyS degaleaacqaHXoqycqGH9aqpcaaIWaaabaGaeqiWdahaniabgUIiYd aaaaaa@59CE@                                                                        (4)

Substituting Eq. (4) into Eq. (3) and transformation yields the following.

y A = α=0 π f ct.z y m dα α=0 π f ct.z dα = α=0 π MR ω 2 2π Δδ×Δγ×Rsinαsinαdα α=0 π MR ω 2 2π Δδ×Δγsinαdα = MR ω 2 2π ΔδΔγ α=0 π R sin 2 αdα MR ω 2 2π ΔδΔγ α=0 π sinαdα = R 2 0 π (1cos2α)dα 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyEam aaBaaaleaacaWGbbaabeaakiabg2da9maalaaabaWaa8qCaeaacaWG MbWaaSbaaSqaaiaadogacaWG0bGaaiOlaiaadQhaaeqaaOGaamyEam aaBaaaleaacaWGTbaabeaakiaadsgacqaHXoqyaSqaaiabeg7aHjab g2da9iaaicdaaeaacqaHapaCa0Gaey4kIipaaOqaamaapehabaGaam OzamaaBaaaleaacaWGJbGaamiDaiaac6cacaWG6baabeaakiaadsga cqaHXoqyaSqaaiabeg7aHjabg2da9iaaicdaaeaacqaHapaCa0Gaey 4kIipaaaGccqGH9aqpdaWcaaqaamaapehabaWaaSaaaeaacaWGnbGa amOuaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacqaHap aCaaGaeuiLdqKaeqiTdqMaey41aqRaeuiLdqKaeq4SdCMaey41aqRa amOuaiGacohacaGGPbGaaiOBaiabeg7aHjGacohacaGGPbGaaiOBai abeg7aHjaadsgacqaHXoqyaSqaaiabeg7aHjabg2da9iaaicdaaeaa cqaHapaCa0Gaey4kIipaaOqaamaapehabaWaaSaaaeaacaWGnbGaam OuaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacqaHapaC aaGaeuiLdqKaeqiTdqMaey41aqRaeuiLdqKaeq4SdCMaci4CaiaacM gacaGGUbGaeqySdeMaamizaiabeg7aHbWcbaGaeqySdeMaeyypa0Ja aGimaaqaaiabec8aWbqdcqGHRiI8aaaakiabg2da9aqaamaalaaaba WaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqabaGaaGOmaaaa aOqaaiaaikdacqaHapaCaaGaeuiLdqKaeqiTdqMaeuiLdqKaeq4SdC 2aa8qCaeaacaWGsbGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaqG YaaaaOGaeqySdeMaamizaiabeg7aHbWcbaGaeqySdeMaeyypa0JaaG imaaqaaiabec8aWbqdcqGHRiI8aaGcbaWaaSaaaeaacaWGnbGaamOu aiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacqaHapaCaa GaeuiLdqKaeqiTdqMaeuiLdqKaeq4SdC2aa8qCaeaaciGGZbGaaiyA aiaac6gacqaHXoqycaWGKbGaeqySdegaleaacqaHXoqycqGH9aqpca aIWaaabaGaeqiWdahaniabgUIiYdaaaOGaeyypa0ZaaSaaaeaadaWc aaqaaiaadkfaaeaacaaIYaaaamaapehabaGaaiikaiaaigdacqGHsi slciGGJbGaai4BaiaacohacaaIYaGaeqySdeMaaiykaiaadsgacqaH XoqyaSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaaOqaamaapehaba Gaci4CaiaacMgacaGGUbGaeqySdeMaamizaiabeg7aHbWcbaGaaGim aaqaaiabec8aWbqdcqGHRiI8aaaaaaaa@F5FA@             (5)

Where the expression MR ω 2 2π ΔδΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaiaadkfacqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa eqiWdahaaiabfs5aejabes7aKjabfs5aejabeo7aNbaa@4418@ is accepted as constant for the Eq.(5); the expression sin 2 α=(1cos2α)/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBamaaCaaaleqabaGaaGOmaaaakiabeg7aHjabg2da9iaacIca caaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaGOmaiabeg7aHjaacM cacaGGVaGaaGOmaaaa@471C@ is a trigonometric identity that replaced in the equation, and other parameters are as specified above.

Substituting Eq. (5) into Eq. (3), replacing sinα= 0 π/2 cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBaiabeg7aHjabg2da9maapehabaGaci4yaiaac+gacaGGZbGa eqySdeMaamizaiabeg7aHbWcbaGaaGimaaqaaiabec8aWjaac+caca aIYaaaniabgUIiYdaaaa@49D4@ by the integral expression and converting by the integral form, the following equation emerges:

0 T ct d T ct = MR ω 2 2π × 0 π dδ × 0 γ dγ × 0 π cosαdα × R 0 π (1cos2α)dα 2 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam izaiaadsfadaWgaaadbaGaam4yaiaadshaaOqabaaameaacaaIWaaa baGaamivamaaBaaabaGaam4yaiaadshaaeqaaaGccqGHRiI8aiabg2 da9iabgkHiTmaalaaabaGaamytaiaadkfacqaHjpWDmmaaCaaabeqa aiaaikdaaaaakeaacaaIYaGaeqiWdahaaiabgEna0oaapehabaGaam izaiabes7aKbadbaGaaGimaaqaaiabec8aWbGccqGHRiI8aiabgEna 0oaapehabaGaamizaiabeo7aNbadbaGaaGimaaqaaiabeo7aNbGccq GHRiI8aiabgEna0oaapehabaGaci4yaiaac+gacaGGZbGaeqySdeMa amizaiabeg7aHbadbaGaaGimaaqaaiabec8aWbGccqGHRiI8aiabgE na0oaalaaabaGaamOuamaapehabaGaaiikaiaaigdacqGHsislciGG JbGaai4BaiaacohacaaIYaGaeqySdeMaaiykaiaadsgacqaHXoqyaW qaaiaaicdaaeaacqaHapaCaOGaey4kIipaaeaacaaIYaWaa8qCaeaa ciGGZbGaaiyAaiaac6gacqaHXoqycaWGKbGaeqySdegameaacaaIWa aabaGaeqiWdahakiabgUIiYdaaaaaa@89D7@                            (6)

Where the first integral of the cosines is increased twice due to limits of integration, for the second integral of the cosines remains the same due to the symmetrical location of the centroid.

Integral Eq.(6) is solved and yields the following result

T ct | 0 T ct = MR ω 2 2π ×( δ| 0 π )×( γ| 0 γ )×2( sinα| 0 π/2 )× R( α 1 2 sin2α )| 0 π/2 2cosα| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOWaaqqaaeaadaqhaaWcbaGaaGimaaqa aiaadsfadaWgaaadbaGaam4yaiaadshaaeqaaaaaaOGaay5bSdGaey ypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqa baGaaGOmaaaaaOqaaiaaikdacqaHapaCaaGaey41aq7aaeWaaeaacq aH0oazdaabbaqaamaaDaaaleaacaaIWaaabaGaeqiWdahaaaGccaGL hWoaaiaawIcacaGLPaaacqGHxdaTdaqadaqaaiabeo7aNnaaeeaaba Waa0baaSqaaiaaicdaaeaacqaHZoWzaaaakiaawEa7aaGaayjkaiaa wMcaaiabgEna0kaaikdadaqadaqaaiGacohacaGGPbGaaiOBaiabeg 7aHnaaeeaabaWaa0baaSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOm aaaaaOGaay5bSdaacaGLOaGaayzkaaGaey41aq7aaSaaaeaacaWGsb WaaeWaaeaacqaHXoqycqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaa aiGacohacaGGPbGaaiOBaiaaikdacqaHXoqyaiaawIcacaGLPaaada abbaqaamaaDaaaleaacaaIWaaabaGaeqiWdaNaai4laiaaikdaaaaa kiaawEa7aaqaaiabgkHiTiaaikdaciGGJbGaai4BaiaacohacqaHXo qydaabbaqaamaaDaaaleaacaaIWaaabaGaeqiWdahaaaGccaGLhWoa aaaaaa@87A8@

Thus giving rise to the following:

T ct = MR ω 2 2π ×(π0)×(γ0)×2(10)× R( π 2 0 ) 2(11) = M R 2 ω 2 π 8 ×γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWG nbGaamOuaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacq aHapaCaaGaey41aqRaaiikaiabec8aWjabgkHiTiaaicdacaGGPaGa ey41aqRaaiikaiabeo7aNjabgkHiTiaaicdacaGGPaGaey41aqRaaG OmaiaacIcacaaIXaGaeyOeI0IaaGimaiaacMcacqGHxdaTdaWcaaqa aiaadkfadaqadaqaamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHsi slcaaIWaaacaGLOaGaayzkaaaabaGaeyOeI0IaaGOmaiaacIcacqGH sislcaaIXaGaeyOeI0IaaGymaiaacMcaaaGaeyypa0JaeyOeI0YaaS aaaeaacaWGnbGaamOuamaaCaaaleqabaGaaGOmaaaakiabeM8a3naa CaaaleqabaGaaGOmaaaakiabec8aWbqaaiaaiIdaaaGaey41aqRaeq 4SdCgaaa@73A8@                (7)

The components of Eq.(7) is expressed by the differential equation of time derivative

d T ct dt = M R 2 ω 2 π 8 dγ dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaGcbaGaamizaiaa dshaaaGaeyypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuamaaCaaale qabaGaaGOmaaaakiabeM8a3naaCaaaleqabaGaaGOmaaaakiabec8a WbqaaiaaiIdaaaWaaSaaaeaacaWGKbGaeq4SdCgabaGaamizaiaads haaaaaaa@4B39@                              (8)

where t=α/ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcqaHXoqycaGGVaGaeqyYdChaaa@3D2C@ , dt= dα ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWG0b Gaeyypa0ZaaSaaaeaacaWGKbGaeqySdegabaGaeqyYdChaaaaa@3E5B@ ; dγ dt = ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabeo7aNbqaaiaadsgacaWG0baaaiabg2da9iabeM8a3naaBaaa leaacaWG4baabeaaaaa@3F8C@ is the angular velocity of the ring’s precession around axis ox.

The defined components are substituted into Eq(8) and yield the following differential equation:

ωd T ct dα = M R 2 ω 2 ω x π 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq yYdCNaamizaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaGcbaGa amizaiabeg7aHbaacqGH9aqpcqGHsisldaWcaaqaaiaad2eacaWGsb WaaWbaaSqabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaa aOGaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeqiWdahabaGaaGioaa aaaaa@4C2A@                              (9)

Separating variables of Eq.(9) and presenting by the integral form yield the following equation:

ωd T ct dα = M R 2 ω 2 ω x π 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq yYdCNaamizaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaGcbaGa amizaiabeg7aHbaacqGH9aqpcqGHsisldaWcaaqaaiaad2eacaWGsb WaaWbaaSqabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaa aOGaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeqiWdahabaGaaGioaa aaaaa@4C2A@                     (10)

The integral solution of Eq.(10) yields the following

T ct | 0 T ct = M R 2 ω ω x π 8 α| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOWaaqqaaeaadaqhaaWcbaGaaGimaaqa aiaadsfadaWgaaadbaGaam4yaiaadshaaeqaaaaaaOGaay5bSdGaey ypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuamaaCaaaleqabaGaaGOm aaaakiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiabec8aWb qaaiaaiIdaaaGaeqySde2aaqqaaeaadaqhaaWcbaGaaGimaaqaaiab ec8aWbaaaOGaay5bSdaaaa@5136@

Substituting limits and increasing the result twice because of centrifugal forces act on the upper and lower sides of the ring, yield the expression of the total resistance torque Tct

T ct = 2 π 2 M R 2 ω ω x 8 = 1 4 π 2 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaI YaGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaamytaiaadkfadaahaa WcbeqaaiaaikdaaaGccqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqa baaakeaacaaI4aaaaiabg2da9iabgkHiTmaalaaabaGaaGymaaqaai aaisdaaaGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaamOsaiabeM8a 3jabeM8a3naaBaaaleaacaWG4baabeaaaaa@5356@                  (11)

Where J = MR2 is the thin ring’s mass moment of inertia.

Common inertial forces acting on the spinning ring

The solution for the common inertial forces acting on the spinning ring that generates the element of the precession torque ΔTin is similar as for the rotating disc22 and represented by the following equation:

Δ T in = f in x m =m a z x m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaads fadaWgaaWcbaGaamyAaiaad6gaaeqaaOGaeyypa0JaamOzamaaBaaa leaacaWGPbGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaad2gaaeqaaO Gaeyypa0JaamyBaiaadggadaWgaaWcbaGaamOEaaqabaGccaWG4bWa aSbaaSqaaiaad2gaaeqaaaaa@47BF@                        (12)

Where fin is the inertial force of the spinning ring’s mass element, xm is the distance to the mass element’s location along with axis ox, other components are as specified above.

The distance xm is expressed by Eq.(3) with a change in the index of axis. The acceleration az is defined by the first derivative of the change in tangential velocity and is expressed by the following.

α z = d( V z ) dt = d[VcosαsinΔγ] dt =Vcosα dγ dt =Rω ω x cosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWG6baabeaakiabg2da9maalaaabaGaamizaiaacIcacqGH sislcaWGwbWaaSbaaSqaaiaadQhaaeqaaOGaaiykaaqaaiaadsgaca WG0baaaiabg2da9maalaaabaGaamizaiaacUfacqGHsislcaWGwbGa ci4yaiaac+gacaGGZbGaeqySdeMaci4CaiaacMgacaGGUbGaeuiLdq Kaeq4SdCMaaiyxaaqaaiaadsgacaWG0baaaiabg2da9iaadAfaciGG JbGaai4BaiaacohacqaHXoqydaWcaaqaaiaadsgacqaHZoWzaeaaca WGKbGaamiDaaaacqGH9aqpcaWGsbGaeqyYdCNaeqyYdC3aaSbaaSqa aiaadIhaaeqaaOGaci4yaiaac+gacaGGZbGaeqySdegaaa@69CA@               (13)

where Vz=-VcosαsinΔγ is the change in tangential velocity V, V=, ωx=dγ/dt, t is time, and the other components are as specified above.

The element of torque ΔTin is defined by substituting defined parameters into Eq.(12).

Δ T in = M 2π ×Δδ×Rω ω x sinα× x m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaads fadaWgaaWcbaGaamyAaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacaWG nbaabaGaaGOmaiabec8aWbaacqGHxdaTcqqHuoarcqaH0oazcqGHxd aTcaWGsbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaci4C aiaacMgacaGGUbGaeqySdeMaey41aqRaamiEamaaBaaaleaacaWGTb aabeaaaaa@554B@                   (14)

Equation (14) is similar to Eq.(3) and xm is the same as ym. The following solution yields the equation for precession torque.

T in = 1 4 π 2 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyAaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGinaaaacqaHapaCdaahaaWcbeqaaiaaikdaaaGccaWGkbGaeqyYdC NaeqyYdC3aaSbaaSqaaiaadIhaaeqaaaaa@44CF@                             (15)

where all parameters are as specified above.

Coriolis forces acting on the spinning ring

The torque generated by the Coriolis force of the rotating mass elements is acting on the ring. The equation for the integrated torque should be defined. The solution to this problem is the same as for the spinning disc.22 The element of the resistance torque generated by the Coriolis force is expressed by the following

Δ T cr = f cr y m =m a z y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaads fadaWgaaWcbaGaam4yaiaadkhaaeqaaOGaeyypa0JaeyOeI0IaamOz amaaBaaaleaacaWGJbGaamOCaaqabaGccaWG5bWaaSbaaSqaaiaad2 gaaeqaaOGaeyypa0JaeyOeI0IaamyBaiaadggadaWgaaWcbaGaamOE aaqabaGccaWG5bWaaSbaaSqaaiaad2gaaeqaaaaa@4997@                   (16)

Where all components are represented above

Coriolis acceleration az is defined by the time derivative of the change in tangential velocity and presented by the following equation.

α z = d V z dt = d(VcosαsinΔγ) dt =Vcosα dγ dt =Rω ω x cosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWG6baabeaakiabg2da9maalaaabaGaamizaiaadAfadaWg aaWcbaGaamOEaaqabaaakeaacaWGKbGaamiDaaaacqGH9aqpdaWcaa qaaiaadsgacaGGOaGaeyOeI0IaamOvaiGacogacaGGVbGaai4Caiab eg7aHjGacohacaGGPbGaaiOBaiabfs5aejabeo7aNjaacMcaaeaaca WGKbGaamiDaaaacqGH9aqpcaWGwbGaci4yaiaac+gacaGGZbGaeqyS de2aaSaaaeaacaWGKbGaeq4SdCgabaGaamizaiaadshaaaGaeyypa0 JaamOuaiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiGacoga caGGVbGaai4Caiabeg7aHbaa@671D@         (17)

Where all components are as specified above.

The element of the torque generated by Coriolis force is defined by substituting parameters into Eq. (16) that yields the following.

Δ T cr = MΔδ 2π ×Rω ω x cosα× y C = MRω ω x Δδ 2π cosα× y C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaads fadaWgaaWcbaGaam4yaiaadkhaaeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacaWGnbGaeuiLdqKaeqiTdqgabaGaaGOmaiabec8aWbaacqGHxd aTcaWGsbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaci4y aiaac+gacaGGZbGaeqySdeMaey41aqRaamyEamaaBaaaleaacaWGdb aabeaakiabg2da9iabgkHiTmaalaaabaGaamytaiaadkfacqaHjpWD cqaHjpWDdaWgaaWcbaGaamiEaaqabaGccqqHuoarcqaH0oazaeaaca aIYaGaeqiWdahaaiGacogacaGGVbGaai4Caiabeg7aHjabgEna0kaa dMhadaWgaaWcbaGaam4qaaqabaaaaa@6A73@            (18)

The resulting torque of Coriolis forces acting on the centroid calculated by substituting defined parameters into Eq.(5) and expressed by the following.

y C = α=0 π f ct.z y m dα α=0 π f ct.z dα = 0 π/2 MRω ω x Δδ 2π cosα×Rsinαdα 0 π/2 MRω ω x Δδ 2π cosαdα = 0 π/2 MRω ω x Δδ 2π cosα×Rsinαdα 0 π/2 MRω ω x Δδ 2π cosαdα = M R 2 ω ω x Δδ 2π 0 π/2 cosαsinαdα M R 2 ω ω x Δδ 2π 0 π/2 cosαdα = 0 π/2 1 2 sin2αdα 0 π/2 cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyEam aaBaaaleaacaWGdbaabeaakiabg2da9maalaaabaWaa8qCaeaacaWG MbWaaSbaaSqaaiaadogacaWG0bGaaiOlaiaadQhaaeqaaOGaamyEam aaBaaaleaacaWGTbaabeaakiaadsgacqaHXoqyaSqaaiabeg7aHjab g2da9iaaicdaaeaacqaHapaCa0Gaey4kIipaaOqaamaapehabaGaam OzamaaBaaaleaacaWGJbGaamiDaiaac6cacaWG6baabeaakiaadsga cqaHXoqyaSqaaiabeg7aHjabg2da9iaaicdaaeaacqaHapaCa0Gaey 4kIipaaaGccqGH9aqpdaWcaaqaamaapehabaWaaSaaaeaacaWGnbGa amOuaiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiabfs5aej abes7aKbqaaiaaikdacqaHapaCaaGaci4yaiaac+gacaGGZbGaeqyS deMaey41aqRaamOuaiGacohacaGGPbGaaiOBaiabeg7aHjaadsgacq aHXoqyaSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaqdcqGHRiI8 aaGcbaWaa8qCaeaadaWcaaqaaiaad2eacaWGsbGaeqyYdCNaeqyYdC 3aaSbaaSqaaiaadIhaaeqaaOGaeuiLdqKaeqiTdqgabaGaaGOmaiab ec8aWbaaciGGJbGaai4BaiaacohacqaHXoqycaWGKbGaeqySdegale aacaaIWaaabaGaeqiWdaNaai4laiaaikdaa0Gaey4kIipaaaGccqGH 9aqpdaWcaaqaamaapehabaWaaSaaaeaacaWGnbGaamOuaiabeM8a3j abeM8a3naaBaaaleaacaWG4baabeaakiabfs5aejabes7aKbqaaiaa ikdacqaHapaCaaGaci4yaiaac+gacaGGZbGaeqySdeMaey41aqRaam OuaiGacohacaGGPbGaaiOBaiabeg7aHjaadsgacqaHXoqyaSqaaiaa icdaaeaacqaHapaCcaGGVaGaaGOmaaqdcqGHRiI8aaGcbaWaa8qCae aadaWcaaqaaiaad2eacaWGsbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaa dIhaaeqaaOGaeuiLdqKaeqiTdqgabaGaaGOmaiabec8aWbaaciGGJb Gaai4BaiaacohacqaHXoqycaWGKbGaeqySdegaleaacaaIWaaabaGa eqiWdaNaai4laiaaikdaa0Gaey4kIipaaaGccqGH9aqpaeaadaWcaa qaamaalaaabaGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaH jpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccqqHuoarcqaH0oazae aacaaIYaGaeqiWdahaamaapehabaGaci4yaiaac+gacaGGZbGaeqyS deMaci4CaiaacMgacaGGUbGaeqySdeMaamizaiabeg7aHbWcbaGaaG imaaqaaiabec8aWjaac+cacaaIYaaaniabgUIiYdaakeaadaWcaaqa aiaad2eacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeqyYdCNaeqyYdC 3aaSbaaSqaaiaadIhaaeqaaOGaeuiLdqKaeqiTdqgabaGaaGOmaiab ec8aWbaadaWdXbqaaiGacogacaGGVbGaai4Caiabeg7aHjaadsgacq aHXoqyaSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaqdcqGHRiI8 aaaakiabg2da9maalaaabaWaa8qCaeaadaWcaaqaaiaaigdaaeaaca aIYaaaaiGacohacaGGPbGaaiOBaiaaikdacqaHXoqycaWGKbGaeqyS degaleaacaaIWaaabaGaeqiWdaNaai4laiaaikdaa0Gaey4kIipaaO qaamaapehabaGaci4yaiaac+gacaGGZbGaeqySdeMaamizaiabeg7a HbWcbaGaaGimaaqaaiabec8aWjaac+cacaaIYaaaniabgUIiYdaaaa aaaa@2872@                     (19)

Where the expression MRω ω x Δδ 2π cosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaiaadkfacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccqqH uoarcqaH0oazaeaacaaIYaGaeqiWdahaaiGacogacaGGVbGaai4Cai abeg7aHbaa@478A@ is constant for Eq.(19), 2sinαcosα=sin2α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdaciGGZb GaaiyAaiaac6gacqaHXoqyciGGJbGaai4BaiaacohacqaHXoqycqGH 9aqpciGGZbGaaiyAaiaac6gacaaIYaGaeqySdegaaa@45CA@ is a trigonometric identity that is replaced and other parameters are as specified above.

Substituting Eq.(19) into Eq.(18), the component cosα= 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacogacaGGVb Gaai4Caiabeg7aHjabg2da9maapehabaGaeyOeI0Iaci4CaiaacMga caGGUbGaeqySdeMaamizaiabeg7aHbWcbaGaaGimaaqaaiabec8aWb qdcqGHRiI8aaaa@4952@ is replaced and presented by the integral form that yields the following equation:

0 T cr d T cr = M R 2 ω ω x 2π × 0 π dδ × 0 π sinαdα× 1 2 0 π sin2αdα 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam izaiaadsfadaWgaaadbaGaam4yaiaadkhaaOqabaaameaacaaIWaaa baGaamivamaaBaaabaGaam4yaiaadkhaaeqaaaGccqGHRiI8aiabg2 da9maalaaabaGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaH jpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaaakeaacaaIYaGaeqiWda haaiabgEna0oaapehabaGaamizaiabes7aKbadbaGaaGimaaqaaiab ec8aWbGccqGHRiI8aiabgEna0oaapehabaGaeyOeI0Iaci4CaiaacM gacaGGUbGaeqySdeMaamizaiabeg7aHjabgEna0cadbaGaaGimaaqa aiabec8aWbGccqGHRiI8amaalaaabaWaaSaaaeaacaaIXaaabaGaaG OmaaaadaWdXbqaaiGacohacaGGPbGaaiOBaiaaikdacqaHXoqycaWG KbGaeqySdegaleaacaaIWaaabaGaeqiWdahaniabgUIiYdaakeaada WdXbqaaiGacogacaGGVbGaai4Caiabeg7aHjaadsgacqaHXoqyaSqa aiaaicdaaeaacqaHapaCa0Gaey4kIipaaaaaaa@8069@                             (20)

The solution of integral Eq.(21) yields the following:

T cr | 0 T cr = M R 2 ω ω x 2π ×( δ| 0 π )×( cosα| 0 π )× 1 2×2 cos2α| 0 π/2 sinα| 0 π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOWaaqqaaeaadaqhaaWcbaGaaGimaaqa aiaadsfadaWgaaadbaGaam4yaiaadkhaaeqaaaaaaOGaay5bSdGaey ypa0ZaaSaaaeaacaWGnbGaamOuamaaCaaaleqabaGaaGOmaaaakiab eM8a3jabeM8a3naaBaaaleaacaWG4baabeaaaOqaaiaaikdacqaHap aCaaGaey41aq7aaeWaaeaacqaH0oazdaabbaqaamaaDaaaleaacaaI WaaabaGaeqiWdahaaaGccaGLhWoaaiaawIcacaGLPaaacqGHxdaTda qadaqaaiGacogacaGGVbGaai4Caiabeg7aHnaaeeaabaWaa0baaSqa aiaaicdaaeaacqaHapaCaaaakiaawEa7aaGaayjkaiaawMcaaiabgE na0oaalaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaiabgEna 0kaaikdaaaGaci4yaiaac+gacaGGZbGaaGOmaiabeg7aHnaaeeaaba Waa0baaSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaaaOGaay5b SdaabaGaci4CaiaacMgacaGGUbGaeqySde2aaqqaaeaadaqhaaWcba GaaGimaaqaaiabec8aWjaac+cacaaIYaaaaaGccaGLhWoaaaaaaa@7CAE@                         (21)

Where the limits taken for the quarter of the circle are due to its symmetrical location and the value is the same.

The resultant torque generated by Coriolis forces increased twice due to the action on the upper and lower sides of the ring.

T cr =2× M R 2 ω ω x 2π ×(π0)×(11)× [( 11 )] 4(10) =M R 2 ω ω x =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiabgEna 0oaalaaabaGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaHjp WDcqaHjpWDdaWgaaWcbaGaamiEaaqabaaakeaacaaIYaGaeqiWdaha aiabgEna0kaacIcacqaHapaCcqGHsislcaaIWaGaaiykaiabgEna0k aacIcacqGHsislcaaIXaGaeyOeI0IaaGymaiaacMcacqGHxdaTdaWc aaqaaiaacUfacqGHsisldaqadaqaaiabgkHiTiaaigdacqGHsislca aIXaaacaGLOaGaayzkaaGaaiyxaaqaaiaaisdacaGGOaGaaGymaiab gkHiTiaaicdacaGGPaaaaiabg2da9iabgkHiTiaad2eacaWGsbWaaW baaSqabeaacaaIYaaaaOGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIha aeqaaOGaeyypa0JaeyOeI0IaamOsaiabeM8a3jabeM8a3naaBaaale aacaWG4baabeaaaaa@754F@           (22)

The inertial torque generated by the change in the angular momentum of the ring is presented by the equation:

T am =M R 2 ω ω x =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyyaiaad2gaaeqaaOGaeyypa0JaamytaiaadkfadaahaaWc beqaaiaaikdaaaGccqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqaba GccqGH9aqpcaWGkbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqa aaaa@48FC@                         (23)

Where all components are specified as above.

Attributes of inertial torques acting on the spinning ring

The resistance torques generated by the centrifugal (Eq.(12)) and Coriolis forces22)

act around axis ox in the same direction. The total initial resistance torque acting around axis ox generated by the external torque presented as their sum, whose equation is as follows

T r = T ct + T cr =( π 2 +4 4 )Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaadogacaWG 0baabeaakiabgUcaRiaadsfadaWgaaWcbaGaam4yaiaadkhaaeqaaO Gaeyypa0ZaaeWaaeaadaWcaaqaaiabec8aWnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaisdaaeaacaaI0aaaaaGaayjkaiaawMcaaiaadQ eacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaaaaa@4E19@                      (24)

Where Tr is the total initial resistance torque acting around axis ox.

The torques generated by the common inertial forces (Eq.(16)) and by the change in angular momentum (Eq. (23)) are acted around one axis oy and present a total initial precession torque generated by the external torque presented as their sum, whose equation is as follows

T p = T in + T am =( π 2 +4 4 )Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiCaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaadMgacaWG UbaabeaakiabgUcaRiaadsfadaWgaaWcbaGaamyyaiaad2gaaeqaaO Gaeyypa0ZaaeWaaeaadaWcaaqaaiabec8aWnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaisdaaeaacaaI0aaaaaGaayjkaiaawMcaaiaadQ eacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaaaaa@4E10@                        (25)

where Tp is the total initial precession torque acting around axis oy.

Table 1 presents the torques generated by the inertial pseudo forces of the spinning ring. The inertial torques acting on the spinning ring demonstrates differ in the results compare with a spinning disc.22

Working example

The ring has a mass of 1.0 kg and a mean radius of 0.1 m, spinning at 3000 rpm and precessing with an angular velocity of 0.05 rpm. It is determined the values of the components for resistance and precession torques. This problem is solved based on the equations in Table 1.

  1. The torque generated by the centrifugal Tct and common inertial Tin forces
  2. T ct = T in = 1 4 π 2 Jω ω x = 1 4 π 2 ×1.0× 0.1 2 × 3000×2π 60 × 0.05×2π 60 =0.04058712Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaamivamaaBaaaleaacaWG PbGaamOBaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaai abec8aWnaaCaaaleqabaGaaGOmaaaakiaadQeacqaHjpWDcqaHjpWD daWgaaWcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaaca aI0aaaaiabec8aWnaaCaaaleqabaGaaGOmaaaakiabgEna0kaaigda caGGUaGaaGimaiabgEna0kaaicdacaGGUaGaaGymamaaCaaaleqaba GaaGOmaaaakiabgEna0oaalaaabaGaaG4maiaaicdacaaIWaGaaGim aiabgEna0kaaikdacqaHapaCaeaacaaI2aGaaGimaaaacqGHxdaTda WcaaqaaiaaicdacaGGUaGaaGimaiaaiwdacqGHxdaTcaaIYaGaeqiW dahabaGaaGOnaiaaicdaaaGaeyypa0JaaGimaiaad6cacaaIWaGaaG inaiaaicdacaaI1aGaaGioaiaaiEdacaaIXaGaaGOmaiaad6eacaWG Tbaaaa@77D2@

  3. The torque generated by Coriolis Tcr forces and the change in the angular momentum Tam
  4. T cr = T am =Jω ω x =1.0× 0.1 2 × 3000×2π 60 × 0.05×2π 60 =0.016449340Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0JaamivamaaBaaaleaacaWG HbGaamyBaaqabaGccqGH9aqpcaWGkbGaeqyYdCNaeqyYdC3aaSbaaS qaaiaadIhaaeqaaOGaeyypa0JaaGymaiaac6cacaaIWaGaey41aqRa aGimaiaac6cacaaIXaWaaWbaaSqabeaacaaIYaaaaOGaey41aq7aaS aaaeaacaaIZaGaaGimaiaaicdacaaIWaGaey41aqRaaGOmaiabec8a WbqaaiaaiAdacaaIWaaaaiabgEna0oaalaaabaGaaGimaiaac6caca aIWaGaaGynaiabgEna0kaaikdacqaHapaCaeaacaaI2aGaaGimaaaa cqGH9aqpcaaIWaGaamOlaiaaicdacaaIXaGaaGOnaiaaisdacaaI0a GaaGyoaiaaiodacaaI0aGaaGimaiaad6eacaWGTbaaaa@6DFC@

  5. The initial resistance Tr and precession Tp torques
  6. T r = T p =( π 2 +4 4 )Jω ω x =( π 2 +4 4 )×1.0× 0.1 2 × 3000×2π 60 × 0.05×2π 60 =0.057036461Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaadchaaeqa aOGaeyypa0ZaaeWaaeaadaWcaaqaaiabec8aWnaaCaaaleqabaGaaG OmaaaakiabgUcaRiaaisdaaeaacaaI0aaaaaGaayjkaiaawMcaaiaa dQeacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccqGH9aqpda qadaqaamaalaaabaGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaey4k aSIaaGinaaqaaiaaisdaaaaacaGLOaGaayzkaaGaey41aqRaaGymai aac6cacaaIWaGaey41aqRaaGimaiaac6cacaaIXaWaaWbaaSqabeaa caaIYaaaaOGaey41aq7aaSaaaeaacaaIZaGaaGimaiaaicdacaaIWa Gaey41aqRaaGOmaiabec8aWbqaaiaaiAdacaaIWaaaaiabgEna0oaa laaabaGaaGimaiaac6cacaaIWaGaaGynaiabgEna0kaaikdacqaHap aCaeaacaaI2aGaaGimaaaacqGH9aqpcaaIWaGaamOlaiaaicdacaaI 1aGaaG4naiaaicdacaaIZaGaaGOnaiaaisdacaaI2aGaaGymaiaad6 eacaWGTbaaaa@7B97@

Where J=MR2 is the mass moment of inertia of the ring.8,9

Type of the torque generated by

Equation

Percentage

of action (%)

Centrifugal forces, Tct

T ct = T in = 1 4 π 2 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGJbGaamiDaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaa dMgacaWGUbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaisdaaa GaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaamOsaiabeM8a3jabeM8a 3naaBaaaleaacaWG4baabeaaaaa@47AD@

35.58

Inertial forces, Tin

35.58

Coriolis forces, Tcr

T cr = T am =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGJbGaamOCaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaa dggacaWGTbaabeaakiabg2da9iaadQeacqaHjpWDcqaHjpWDdaWgaa WcbaGaamiEaaqabaaaaa@4369@

14.42

Change in an angular momentum,  Tam

14.42

Total

 

100

 

Resistance torque T r = T ct +  T cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqpcaWG ubWdamaaBaaaleaapeGaam4yaiaadshaa8aabeaak8qacqGHRaWkca qGGaGaamiva8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaaaaa@423D@

T r = T p =( π 2 +4 4 )Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGYbaabeaakiabg2da9iaadsfadaWgaaWcbaGaamiCaaqa baGccqGH9aqpdaqadaqaamaalaaabaGaeqiWda3aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGinaaqaaiaaisdaaaaacaGLOaGaayzkaaGa amOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaaaaa@4845@

50.0

Precession torque T p = T in + T am MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadchaa8aabeaak8qacqGH9aqpcaWG ubWdamaaBaaaleaapeGaamyAaiaad6gaa8aabeaak8qacqGHRaWkca WGubWdamaaBaaaleaapeGaamyyaiaad2gaa8aabeaaaaa@4191@

50.0

Total

 

100

Table 1 Equations of the inertial torques acting on the spinning ring

Results and discussion

The spinning ring is the typical part of movable mechanisms that manifest gyroscopic properties. The gyroscopic effects are dependent on the action of the system of internal torques generated by the rotating mass the spinning ring. The mathematical models for internal torques acting on the spinning ring are derived and now can be used for engineering computing of gyroscopic effects. The inertial torques acting on the spinning ring are generated by known four components presented in publications that acting on other rotating objects. The equations of the inertial torques have different expressions than for the spinning disc and reflect the geometry of the narrow ring. New mathematical models for the inertial torques enable for describing all gyroscope properties and are useful for modeling the behavior of the spinning ring.

Conclusion

The known mathematical models for the theory of gyroscopic effects are presented mostly by the expression of the change in the angular momentum of the rotating objects. Such analytical models do not respond to practical motions of the gyroscopic devices and do not respond to engineering requirements. The new investigations in the area of gyroscopic effects solved this long-time problem presented the equation of the inertial torques and described the physics of gyroscopic defects. The new analytical approach enables for solving gyroscopic problems without application of the complex numerical modeling. The mathematical models for the inertial torques acting on the spinning ring can be used for the computing of forces and motions of mechanisms. The new analytical approach clearly describes gyroscope properties in a new light while setting forth new challenges for future studies of the gyroscope theory.

Notation

fct, fcr., fin.–centrifugal, Coriolis and inertial forces, respectively, generated by mass elements of a spinning ring

J–mass moment of inertia of a ring

M–mass of a ring

m–mass element of a ring

R–radius of a ring

T–load external torque

Tct, Tcr., Tin. Tatorque generated by centrifugal, Coriolis and inertial forces and a change in the angular momentum, respectively

t–time

yc, ym–centroid and distance of the location of the mass element along axis

Δα, α–increment angle and angle of the turn for a ring respectively

Δδ–angle of the ring’s a mass element

Δγ–angle of inclination of a ring’s plane

ω–angular velocity of a ring

ωxangular velocity of precession around axes ox

Acknowledgments

None.

Conflicts of interest

The author declares there are no conflicts of interest.

Funding

None.

References

  1. Armenise MN, Ciminelli C, Dell'Olio FV et al. Advances in gyroscope technologies. Berlin, Springer-verlag berlin and heidelberg gmbh & co. kg; 2010.
  2. Deimel RF. Mechanics of the gyroscope. New York: Dover Publications Inc; 2003.
  3. Greenhill D. Report on gyroscopic theory. London: General Books LLC; 2010.
  4. Scarborough JB. The gyroscope theory and applications. UK: Interscience Publishers Ltd; 1958.
  5. neil b. gyroscope. the charles stark draper laboratory inc. Massachusetts: Cambridge; 2014.
  6. Acar C, Shkel A. MEMS vibratory gyroscopes: structural approaches to improve robustness. New York, Springer science & business media; 2009.
  7. Weinberg H. Gyro mechanical performance: the most important parameter, technical article ms-2158, analog devices. Norwood: MA. 2011; p.1–5.
  8. Hibbeler RC. Dynamics. 12th ed. Singapore: Prentice Hall. 2010.
  9. Gregory DR. Classical mechanics. Cambridge University Press. 2006.
  10. Dicker JJ, Pennock GR, Shigley JE. Theory of machines and mechanisms. 3rd ed. New York: Oxford university press. 2002.
  11. Aardema MD. Analytical dynamics–theory and applications. Springer. 2005.
  12. Jonsson RM. Gyroscope precession in special and general relativity from basic principles. American journal of physics. 2007;75(5):463.
  13. Liang WC, Lee SC. Vorticity, gyroscopic precession, and spin-curvature force. Physical review D. 2013;87:044024.
  14. Butikov E. Inertial rotation of a rigid body. Europien journal of physics. 2006;27(4):913–922.
  15. Tekinalp O, Elmas T, Yavrucuk I. Gimbal angle restricted control moment gyroscope clusters. Proceedings of 4th International Conference on Recent Advances in Space Technologies (RAST). 2009;585–590.
  16. Quinn TJ, Picard A. The mass of spinning rotors: no dependence on speed or sense of rotation. Nature international journal of science. 1990;343:732–735.
  17. Zyga L. Gyroscope's unexplained acceleration may be due to modified inertia. PhysOrg.com. 2011.
  18. Faller JE, Hollander WJ, Nelson PG, et al. Gyroscope-weighing experiment with a null result. Physical Review Letters. 1990;64: 825–826.
  19. Zhang Z, Sun J, Wum K. Error analysis and test study of fibre optic gyroscope north-finder. Advanced sensor systems and applications II, proceedings of SPIE. 2005;5634:611–618.
  20. Kodama  K, Adachi M, Kamimura K. Gyroscopic force measuring system. Transactions of SICE. 2002;38(2):117–123.
  21. Ferrari JA. Gyroscope's precession and the principle of equivalence. Annalen der physik. 1989;501(5):399–400.
  22. Usubamatov R. Inertial forces acting on gyroscope. Journal of mechanical science and technology. 2018;32(1):101–108.
Creative Commons Attribution License

©2019 Usubamatov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.