Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 6 Issue 1

Kinematic and dynamic analysis of a scho?nflies parallel manipulator with horizontal rotation axis

Pegah Ghaf Ghanbari, Mostafa Taghizadeh, Mahmood Mazare

School of Mechanical Engineering, Shahid Beheshti University, Iran

Correspondence: Mahmood Mazare, School of Mechanical Engineering, Shahid Beheshti University, Tehran, Iran

Received: November 16, 2019 | Published: February 28, 2020

Citation: Ghanbari PG, Taghizadeh M, Mazare M. Kinematic and dynamic analysis of a scho?nflies parallel manipulator with horizontal rotation axis. Int Rob Auto J . 2020;6(1):42?51. DOI: 10.15406/iratj.2020.06.00200

Download PDF

Abstract

This paper addresses the kinematic and dynamic analysis of a 4-DOF parallel manipulator with Schönflies motion, designed for pick-and-place applications. Its low inertia makes it a suitable choice for pick-and-place applications, which demands high velocity and acceleration. So, the dynamic characteristics of the robot are of high importance. Kinematic analysis is performed via geometric method. After extracting the constraint equations, velocity analysis is performed and Jacobian matrices are evaluated. Using the constraint equations and joint limits, reachable workspace is determined applying point-to-point search algorithm and the existing singularities are identified by the inverse and direct Jacobian matrices. For dynamic modeling, Euler-Lagrange formulation and Virtual work principle are applied. To verify the validity of the extracted kinematic and dynamic model, first the mechanism is designed in CATIA and then imported in ADAMS software. Simulation results of the extracted models are compared to ADAMS model. 

Keyword: high-speed parallel robot, schönflies motion generator, kinematics, dynamics

Introduction

Parallel manipulators have proven their superiority over the conventional serial ones, in terms of high accuracy, velocity, stiffness, payload capacity and great dynamic performance.1,2 Although early generation benefited from 6-DOF, nowadays mechanisms with less degrees of freedom are preferred, thanks to their simpler structure, less complex kinematics and dynamics and lower manufacturing cost.3 Pick-and-place which accounts for a great portion of industrial robotic applications require three translational and one rotational motion (3T1R), called Schönflies or SCARA1 motion. 4-DOF parallel robots utilizing parallelograms in their limbs are a good choice for this application as their light-weight; low-inertia structure is compatible with its requirements.

Two eminent high-speed and high acceleration Schönflies parallel robot in the market are Delta robot and Adept Quattro. The former4 consists of three identical R-(SS)2 limbs, generating translational motion of the end-effector in three spatial directions, and a forth telescopic limb, providing the rotational motion about the vertical axis. Evolved from H4,5 I4,6 and Par47 designs, Adept Quattro8 employs four identical R-(SS)2 limbs with an articulated traveling plate to generate the rotation about the vertical axis by an angular amplification device. Recently developed X4,9 uses a single platform structure and can produce ±90° rotation. Four identical arms are connected to the end-effector via four revolute joints whose rotation axes are parallel to a common vertical axis, forming R-(SS)2-R arms. These robots are able to generate rotational motion about the vertical axis. In this paper, a schönflies-motion parallel robot, which is a modification on Veloce redundantly actuated pure 3-DOF translational parallel robot10 is studied. This manipulator is able to produce rotational motion around a horizontal axis and can be an option to fill the existing gap in the industry for such a robot.

Aside from all positive points of parallel robots, their design, analysis, and manufacturing are complicated due to the presence of constraints imposed by their closed kinematic chains. For this reason, their kinematic and dynamic analysis has been the subject of numerous research works. Song,11 Li,12 and Mazare13 focused on kinematic analysis of parallel robots. For dynamic modeling of these robots, various approaches have been applied including Newton-Euler method,14,15,16 Euler-Lagrange formulation,17,18 principle of virtual work,19,20,21 Kane method,22,23 Gibbs-Appel formulation, and Hamilton method.24

Mazare, et al25 derived the dynamic model of a 3-DOF parallel robot by Euler-Lagrange formulation and principle of virtual work and investigated the computation time for solving the inverse dynamic problems. They qualitatively validated the results by means of work-energy and impulse-momentum methods.  Li and Xu26 investigated the dynamics of a 3-PRS parallel mechanism using these two approaches. By introducing a simplifying hypothesis, a simplified dynamic model was set up based on principle of virtual work, and it was demonstrated that simplified dynamic model is reasonable under such kind of assumptions. Brinker, et al27 compared the complete and simplified dynamic models of delta robot in terms of computation times and accuracy. Three approaches were applied to derive dynamic formulations, including Newton-Euler method, principle of virtual work, and Euler-Lagrange formulation. In spite of the fact that capability and efficiency of high-speed pick-and-place parallel robots is directly related to their dynamic characteristics and controller, a proper trajectory planning also plays a crucial role in smooth torques, low energy consumption, low residual vibrations and short cycle times.28,29

Gallant, et al30 showed that payload capacity of a robot is affected by the trajectory it follows. Khoukhi, et al31 solved the trajectory planning problem of a robot using a variational calculus framework. They Considered robot kinematic and dynamic models, while optimizing execution time and required, avoiding singularities and satisfying several constraints related to the robot, task and workspace. Gasparetto, et al32 suggested a new approach to optimize the trajectory of robot manipulators for minimum integral of the squared jerk and execution time. To compose the overall trajectory, quantic B-spline curves were utilized which produces continuous position, velocity, and acceleration profiles. Similarly, making use of quantic B-spline curves and exploiting the symmetric properties of the path, Li, et al33 proposed a new approach for optimal smooth trajectory planning of high-speed pick-and-place parallel robots and compared the resulting input torques and residual vibrations of the manipulator with the trajectories obtained from Lamé curves and piecewise polynomials.

The rest of the paper is organized as follows. In section 2 the parallel manipulator is presented. Section 3 deals with the kinematic problem, while in section 4 the dynamic models of the robot are derived based on Euler-Lagrange formulation and principle of virtual work. Section 5 describes trajectory the generated for pick-and-place application, employing quintic B-splines. Section 6 is devoted to designing a PD controller. Section 7 presents the simulation results for both dynamic models and compares them to ADAMS output to validate the models and present the superior performance of the chosen trajectory. Conclusions are derided in section 8.

1Selective Compliance Assembly Robot Arm

Manipulator description

The mechanism under review is a modification on redundantly actuated Veloce manipulator, comprising of four identical R-(SS)2 arms, connecting the base to the end-effector. By shifting the connection of the two opposite arms to the end-effector along opposite directions and adding two revolute joints as shown in Figure 1,‎ the mechanism will be able to generate Schönflies motion, with its rotation around horizontal axis.34

Figure 1 CAD model of Schönflies motion robot.

Kinematics

The structure of one arm of the manipulator is illustrated in Figure 2. The base frame , is attached to the geometric center of the fixed platform defined by revolute joints ( ), with its direction pointing toward  and its  direction normal to the plane of the fixed platform. Similarly, the moving frame , is set at the geometric center of the moving platform, with its  direction crossing point and its direction perpendicular to the plane formed by , representing the attaching points of the arms to the end effector. is the rotation axis of the end effector and it always remains parallel to Y.

Figure 2 Coordinate frames and variables of the arm.

Position kinematics

The loop-closure equation for the ith arm is written as

r P + ε i l 4 w ̂ i = r Ai + l 2 u ̂ i + l 3 v ̂ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOCa8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacqGHRaWkcqaH 1oqzpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaamiBa8aadaWgaa WcbaWdbiaaisdaa8aabeaakmaaxacabaacbmWdbiaa=DhaaSWdaeqa baWdbiablkWaKaaak8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacq GH9aqpcaWHYbWdamaaBaaaleaapeGaamyqaiaadMgaa8aabeaak8qa cqGHRaWkcaWGSbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaCbiae aapeGaa8xDaaWcpaqabeaapeGaeSOadqcaaOWdamaaBaaaleaapeGa amyAaaWdaeqaaOWdbiabgUcaRiaadYgapaWaaSbaaSqaa8qacaaIZa aapaqabaGcdaWfGaqaa8qacaWF2baal8aabeqaa8qacqWIcmajaaGc paWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@5432@    (1)

ε i ={ sec β i i=1, 4 sec β i i=2, 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maa ceaapaqaauaabaqaciaaaeaapeGaci4CaiaacwgacaGGJbGaeqOSdi 2damaaBaaaleaapeGaamyAaaWdaeqaaaGcbaWdbiaadMgacqGH9aqp caaIXaGaaiilaiaabckacaaI0aaapaqaa8qacqGHsislciGGZbGaai yzaiaacogacqaHYoGypaWaaSbaaSqaa8qacaWGPbaapaqabaaakeaa peGaamyAaiabg2da9iaaikdacaGGSaGaaeiOaiaaiodaaaaacaGL7b aaaaa@53AA@    (2)

Rearranging this equation and squaring both sides results in

( r P + ε i l 4 w ̂ i r Ai ) 2 + l 2 2 2 l 2 ( r P + ε i l 4 w ̂ i r Ai ). u ̂ i = l 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaahkhapaWaaSbaaSqaa8qacaWGqbaapaqabaGc peGaey4kaSIaeqyTdu2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbi aadYgapaWaaSbaaSqaa8qacaaI0aaapaqabaGcdaWfGaqaaGqad8qa caWF3baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaeyOeI0IaaCOCa8aadaWgaaWcbaWdbiaadgeacaWG Pbaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaik daaaGccqGHRaWkcaWGSbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGa aGOmaaaakiabgkHiTiaaikdacaWGSbWdamaaBaaaleaapeGaaGOmaa WdaeqaaOWdbmaabmaapaqaa8qacaWHYbWdamaaBaaaleaapeGaamiu aaWdaeqaaOWdbiabgUcaRiabew7aL9aadaWgaaWcbaWdbiaadMgaa8 aabeaak8qacaWGSbWdamaaBaaaleaapeGaaGinaaWdaeqaaOWaaCbi aeaapeGaa83DaaWcpaqabeaapeGaeSOadqcaaOWdamaaBaaaleaape GaamyAaaWdaeqaaOWdbiabgkHiTiaahkhapaWaaSbaaSqaa8qacaWG bbGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiaac6capaWaaCbiae aapeGaa8xDaaWcpaqabeaapeGaeSOadqcaaOWdamaaBaaaleaapeGa amyAaaWdaeqaaOWdbiabg2da9iaadYgapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaaaa@6B27@   (3)

which yields the constraint equations of the manipulator as

f( X,Θ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8Nzamaabmaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfeWdbiab+Dr8yjaacYcaiiGacqqFyoquaiaawIcaca GLPaaacqGH9aqpcaaIWaaaaa@4924@    (4)

where X= [ r P T ψ ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFxepw cqGH9aqpdaWadaWdaeaafaqabeqacaaabaacbmWdbiaa+jhapaWaa0 baaSqaa8qacaWGqbaapaqaa8qacaWGubaaaaGcpaqaa8qacqaHipqE aaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaadsfaaaaaaa@4BF6@  is the end effector pose, and Θ= [ θ 1 θ 2 θ 3 θ 4 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8hMdeLaeyypa0ZaamWaa8aabaqbaeqabeabaaaabaWdbiab eI7aX9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacqaH4oqCpa WaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaeqiUde3damaaBaaa leaapeGaaG4maaWdaeqaaaGcbaWdbiabeI7aX9aadaWgaaWcbaWdbi aaisdaa8aabeaaaaaak8qacaGLBbGaayzxaaWdamaaCaaaleqabaWd biaadsfaaaaaaa@4893@  is the active joint variables.

u ̂ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaacbm aeaaaaaaaaa8qacaWF1baal8aabeqaa8qacqWIcmajaaGcpaWaaSba aSqaa8qacaWGPbaapaqabaaaaa@3AA5@  is the only vector dependent on θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH4oqCpaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@3915@  and is defined by

u ̂ i = [ c α i c θ i s α i c θ i s θ i ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaacbm aeaaaaaaaaa8qacaWF1baal8aabeqaa8qacqWIcmajaaGcpaWaaSba aSqaa8qacaWGPbaapaqabaGcpeGaeyypa0ZaamWaa8aabaqbaeqabe Waaaqaa8qacaWGJbGaeqySde2damaaBaaaleaapeGaamyAaaWdaeqa aOWdbiaadogacqaH4oqCpaWaaSbaaSqaa8qacaWGPbaapaqabaaake aapeGaam4Caiabeg7aH9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qa caWGJbGaeqiUde3damaaBaaaleaapeGaamyAaaWdaeqaaaGcbaWdbi abgkHiTiaadohacqaH4oqCpaWaaSbaaSqaa8qacaWGPbaapaqabaaa aaGcpeGaay5waiaaw2faa8aadaahaaWcbeqaa8qacaWGubaaaaaa@53E9@     (5)

Introducing (5) to equations (3) yields

( C i3 C i2 ) k i 2 +2 C i1 k i +( C i3 + C i2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGPbGaaG4maaWd aeqaaOWdbiabgkHiTiaadoeapaWaaSbaaSqaa8qacaWGPbGaaGOmaa WdaeqaaaGcpeGaayjkaiaawMcaaiaadUgapaWaa0baaSqaa8qacaWG Pbaapaqaa8qacaaIYaaaaOGaey4kaSIaaGOmaiaadoeapaWaaSbaaS qaa8qacaWGPbGaaGymaaWdaeqaaOWdbiaadUgapaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiaadoeapaWaaS baaSqaa8qacaWGPbGaaG4maaWdaeqaaOWdbiabgUcaRiaadoeapaWa aSbaaSqaa8qacaWGPbGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaai abg2da9iaaicdaaaa@546E@     (6)

k i =tan θ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpciGG 0bGaaiyyaiaac6gadaWcaaWdaeaapeGaeqiUde3damaaBaaaleaape GaamyAaaWdaeqaaaGcbaWdbiaaikdaaaaaaa@415B@

C i1 =2 l 2 ( r P + ε i l 4 w ̂ i r Ai ). ξ ̂ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabeaaae aaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qacaWGPbGaaGymaaWd aeqaaOWdbiabg2da9iaaikdacaWGSbWdamaaBaaaleaapeGaaGOmaa WdaeqaaOWdbmaabmaapaqaa8qacaWHYbWdamaaBaaaleaapeGaamiu aaWdaeqaaOWdbiabgUcaRiabew7aL9aadaWgaaWcbaWdbiaadMgaa8 aabeaak8qacaWGSbWdamaaBaaaleaapeGaaGinaaWdaeqaaOWaaCbi aeaaieWapeGaa83DaaWcpaqabeaapeGaeSOadqcaaOWdamaaBaaale aapeGaamyAaaWdaeqaaOWdbiabgkHiTiaahkhapaWaaSbaaSqaa8qa caWGbbGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiaac6capaWaaC biaeaapeGaeqOVdGhal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIZaaapaqabaaaaaaa@5474@

C i2 =2 l 2 ( r P + ε i l 4 w ̂ i r Ai ).{ ξ ̂ 1 c  α i + ξ ̂ 2 s  α i } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabeaaae aaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qacaWGPbGaaGOmaaWd aeqaaOWdbiabg2da9iabgkHiTiaaikdacaWGSbWdamaaBaaaleaape GaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaWHYbWdamaaBaaaleaa peGaamiuaaWdaeqaaOWdbiabgUcaRiabew7aL9aadaWgaaWcbaWdbi aadMgaa8aabeaak8qacaWGSbWdamaaBaaaleaapeGaaGinaaWdaeqa aOWaaCbiaeaaieWapeGaa83DaaWcpaqabeaapeGaeSOadqcaaOWdam aaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiaahkhapaWaaSba aSqaa8qacaWGbbGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiaac6 cadaGadaWdaeaadaWfGaqaa8qacqaH+oaEaSWdaeqabaWdbiablkWa Kaaak8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGJbGaaeiOai abeg7aH9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHRaWkpaWa aCbiaeaapeGaeqOVdGhal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaam4CaiaabckacqaHXoqypaWaaSba aSqaa8qacaWGPbaapaqabaaak8qacaGL7bGaayzFaaaaaaaa@66F4@

C i3 = ( r P + ε i l 4 w ̂ i r Ai ) 2 + l 2 2 l 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadMgacaaIZaaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiaahkhapaWaaSbaaSqaa8qacaWGqbaapaqaba GcpeGaey4kaSIaeqyTdu2damaaBaaaleaapeGaamyAaaWdaeqaaOWd biaadYgapaWaaSbaaSqaa8qacaaI0aaapaqabaGcdaWfGaqaaGqad8 qacaWF3baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qacaWG PbaapaqabaGcpeGaeyOeI0IaaCOCa8aadaWgaaWcbaWdbiaadgeaca WGPbaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa ikdaaaGccqGHRaWkcaWGSbWdamaaDaaaleaapeGaaGOmaaWdaeaape GaaGOmaaaakiabgkHiTiaadYgapaWaa0baaSqaa8qacaaIZaaapaqa a8qacaaIYaaaaaaa@554C@

ξ ̂ 1 = [ 1 0 0 ] T ,  ξ ̂ 2 = [ 0 1 0 ] T , ξ ̂ 3 = [ 0 0 1 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabmaaae aadaWfGaqaaabaaaaaaaaapeGaeqOVdGhal8aabeqaa8qacqWIcmaj aaGcpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0ZaamWaa8 aabaqbaeqabeWaaaqaa8qacaaIXaaapaqaa8qacaaIWaaapaqaa8qa caaIWaaaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacaWGubaaaO Gaaiilaiaabckaa8aabaWaaCbiaeaapeGaeqOVdGhal8aabeqaa8qa cqWIcmajaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0 ZaamWaa8aabaqbaeqabeWaaaqaa8qacaaIWaaapaqaa8qacaaIXaaa paqaa8qacaaIWaaaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qaca WGubaaaOGaaiilaaWdaeaadaWfGaqaa8qacqaH+oaEaSWdaeqabaWd biablkWaKaaak8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9a qpdaWadaWdaeaafaqabeqadaaabaWdbiaaicdaa8aabaWdbiaaicda a8aabaWdbiaaigdaaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbi aadsfaaaaaaaaa@5A98@    (7)

The solution to the second-degree equation (6) is the inverse kinematic equation of the robot, written as

θ i =2arctan( C i1 ± C i1 2 ( C i3 2 C i2 2 ) C i3 C i2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iaa ikdacaqGHbGaaeOCaiaabogacaqG0bGaaeyyaiaab6gadaqadaWdae aapeWaaSaaa8aabaWdbiabgkHiTiaadoeapaWaaSbaaSqaa8qacaWG PbGaaGymaaWdaeqaaOWdbiabgglaXoaakaaapaqaa8qacaWGdbWdam aaDaaaleaapeGaamyAaiaaigdaa8aabaWdbiaaikdaaaGccqGHsisl daqadaWdaeaapeGaam4qa8aadaqhaaWcbaWdbiaadMgacaaIZaaapa qaa8qacaaIYaaaaOGaeyOeI0Iaam4qa8aadaqhaaWcbaWdbiaadMga caaIYaaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaaaaleqaaaGcpa qaa8qacaWGdbWdamaaBaaaleaapeGaamyAaiaaiodaa8aabeaak8qa cqGHsislcaWGdbWdamaaBaaaleaapeGaamyAaiaaikdaa8aabeaaaa aak8qacaGLOaGaayzkaaaaaa@5EB3@    (8)

Velocity analysis

The key element of velocity analysis is Jacobian matrix, which is a mapping between the joint velocities to the velocity of the end-effector. To derive this matrix, eq.(1) is differentiated with respect to time.

r ˙ P = l 2 ( ω Ui × u ̂ i )+ l 3 ( ω Li × v ̂ i ) ψ ˙ × r PCi O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabCOCa8aagaGaamaaBaaaleaapeGaamiuaaWdaeqaaOWdbiabg2da 9iaadYgapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8aaba WdbiabeM8a39aadaWgaaWcbaWdbiaadwfacaWGPbaapaqabaGcpeGa ey41aq7damaaxacabaacbmWdbiaa=vhaaSWdaeqabaWdbiablkWaKa aak8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaa cqGHRaWkcaWGSbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbmaabm aapaqaa8qacqaHjpWDpaWaaSbaaSqaa8qacaWGmbGaamyAaaWdaeqa aOWdbiabgEna0+aadaWfGaqaa8qacaWF2baal8aabeqaa8qacqWIcm ajaaGcpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzk aaGaeyOeI0IafqiYdK3dayaacaWdbiabgEna0kaahkhapaWaa0baaS qaa8qacaWGqbGaam4qaiaadMgaa8aabaWdbiaad+eaaaaaaa@6040@   (9)

where ω Ui MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaamyvaiaadMgaa8aabeaaaaa@3B1E@  and ω Li MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaamitaiaadMgaa8aabeaaaaa@3B15@  are the angular velocity of the upper and lower links of the ith arm, respectively. Taking the dot product of both sides of eq.(9) with  and considering ω Ui = θ ˙ i n ̂ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaSBbeaaaaaa aaa8qacqaHjpWDpaWaaSbaaSqaa8qacaWGvbGaamyAaaWdaeqaaOWd biabg2da9iqbeI7aX9aagaGaamaaBaaaleaapeGaamyAaaWdaeqaaO WaaCbiaeaaieWapeGaa8NBaaWcpaqabeaapeGaeSOadqcaaOWdamaa BaaaleaapeGaamyAaaWdaeqaaaaa@43D3@ , we obtain

r ˙ P . v ̂ i = l 2 θ ˙ i ( n ̂ i  × u ̂ i ). v ̂ i ψ ˙ ( ξ ̂ 2 × r PCi O ). v ̂ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabCOCa8aagaGaamaaBaaaleaapeGaamiuaaWdaeqaaOWdbiaac6ca paWaaCbiaeaaieWapeGaa8NDaaWcpaqabeaapeGaeSOadqcaaOWdam aaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iaadYgapaWaaSba aSqaa8qacaaIYaaapaqabaGcpeGafqiUde3dayaacaWaaSbaaSqaa8 qacaWGPbaapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaa8NBaaWc paqabeaapeGaeSOadqcaaOWdamaaBaaaleaapeGaamyAaaWdaeqaaO WdbiaabckacqGHxdaTpaWaaCbiaeaapeGaa8xDaaWcpaqabeaapeGa eSOadqcaaOWdamaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkai aawMcaaiaac6capaWaaCbiaeaapeGaa8NDaaWcpaqabeaapeGaeSOa dqcaaOWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiqbeI 8a59aagaGaa8qadaqadaWdaeaadaWfGaqaa8qacqaH+oaEaSWdaeqa baWdbiablkWaKaaak8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacq GHxdaTcaWHYbWdamaaDaaaleaapeGaamiuaiaadoeacaWGPbaapaqa a8qacaWGpbaaaaGccaGLOaGaayzkaaGaaiOla8aadaWfGaqaa8qaca WF2baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qacaWGPbaa paqabaaaaa@684A@    (10)

This gives the mapping between the velocity of the ith active joint and the end effector, which can be written in matrix form.

θ ˙ i = J i X ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqiUde3dayaacaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyyp a0dcbmGaa8Nsa8aadaWgaaWcbaWdbiaadMgaa8aabeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbOWdbiqb+Dr8y9aagaGa aaaa@4916@    (11)

x . = [ r . p T   ψ . ] T  , j i =[ j vi   j ψ ] j vi = v ^ i T l 2 ( n ^ i  x  u ^ i ). v ^ i  , j ψ = ε i l 4 ( ξ ^ 2  x  w ^ i ). v ^ i l 2 ( n ^ i  x  u ^ i ). v ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaCbiae aacaWG4baaleqabaGaaiOlaaaakiabg2da9iaacUfadaWfGaqaaiaa dkhaaSqabeaacaGGUaaaaOWaa0baaSqaaiaadchaaeaacaWGubaaaO aeaaaaaaaaa8qacaGGGcWaaCbiaeaacqaHipqEaSqabeaacaGGUaaa aOGaaiyxamaaCaaaleqabaGaamivaaaakiaacckacaGGSaGaamOAam aaBaaaleaacaWGPbaabeaakiabg2da9iaacUfacaWGQbWaaSbaaSqa aiaadAhacaWGPbaabeaakiaacckacaWGQbWaaSbaaSqaaiabeI8a5b qabaGccaGGDbaabaGaaiOAamaaBaaaleaacaWG2bGaamyAaaqabaGc cqGH9aqpdaWcaaqaaiqadAhagaqcamaaDaaaleaacaWGPbaabaGaam ivaaaaaOqaaiaadYgadaWgaaWcbaGaaGOmaaqabaGccaGGOaGabmOB ayaajaWaaSbaaSqaaiaadMgaaeqaaOGaaiiOaiaadIhacaGGGcGabm yDayaajaWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiaac6caceWG2bGb aKaadaWgaaWcbaGaamyAaaqabaaaaOGaaiiOaiaacYcacaWGQbWaaS baaSqaaiabeI8a5bqabaGccqGH9aqpdaWcaaqaaiabew7aLnaaBaaa leaacaWGPbaabeaakiaadYgadaWgaaWcbaGaaGinaaqabaGccaGGOa GafqOVdGNbaKaadaWgaaWcbaGaaGOmaaqabaGccaGGGcGaamiEaiaa cckaceWG3bGbaKaadaWgaaWcbaGaamyAaaqabaGccaGGPaGaaiOlai qadAhagaqcamaaBaaaleaacaWGPbaabeaaaOqaaiaadYgadaWgaaWc baGaaGOmaaqabaGccaGGOaGabmOBayaajaWaaSbaaSqaaiaadMgaae qaaOGaaiiOaiaadIhacaGGGcGabmyDayaajaWaaSbaaSqaaiaadMga aeqaaOGaaiykaiaac6caceWG2bGbaKaadaWgaaWcbaGaamyAaaqaba aaaaaaaa@8C68@    (12)

Obviously, the velocity equation for the whole manipulator will be

Θ ˙ =J X ˙ , J= [ J 1 T J 2 T J 3 T J 4 T ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabmaaae aaieWaqaaaaaaaaaWdbiqa=H5apaGbaiaapeGaeyypa0Jaa8Nsamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGaf43fXJ1day aacaaabaWdbiaacYcaa8aabaWdbiaa=PeacqGH9aqpdaWadaWdaeaa faqabeqaeaaaaeaapeGaa8Nsa8aadaqhaaWcbaWdbiaaigdaa8aaba Wdbiaadsfaaaaak8aabaWdbiaa=PeapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaWGubaaaaGcpaqaa8qacaWFkbWdamaaDaaaleaapeGaaG 4maaWdaeaapeGaamivaaaaaOWdaeaapeGaa8Nsa8aadaqhaaWcbaWd biaaisdaa8aabaWdbiaadsfaaaaaaaGccaGLBbGaayzxaaWdamaaCa aaleqabaWdbiaadsfaaaaaaaaa@5790@     (13)

where Θ ˙ = [ θ ˙ 1 θ ˙ 2 θ ˙ 3 θ ˙ 4 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGab8hMd8aagaGaa8qacqGH9aqpdaWadaWdaeaafaqabeqaeaaa aeaapeGafqiUde3dayaacaWaaSbaaSqaa8qacaaIXaaapaqabaaake aapeGafqiUde3dayaacaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaa peGafqiUde3dayaacaWaaSbaaSqaa8qacaaIZaaapaqabaaakeaape GafqiUde3dayaacaWaaSbaaSqaa8qacaaI0aaapaqabaaaaaGcpeGa ay5waiaaw2faa8aadaahaaWcbeqaa8qacaWGubaaaaaa@488A@  represents the vector of active joints angular velocity.

Now assuming that the center of mass of the upper link is located in the middle of A l B l ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam yqamaaBaaaleaacaWGSbaabeaakiaadkeadaWgaaWcbaGaamiBaaqa baaaaaaa@3AF1@   , the linear velocity of the point D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3940@  can be determined from

v Di = J Di X ˙ , J Di = l 2 2 ( n ̂ i  × u ̂ i ) J i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabmaaae aaqaaaaaaaaaWdbiaahAhapaWaaSbaaSqaa8qacaWGebGaamyAaaWd aeqaaOWdbiabg2da9Gqadiaa=PeapaWaaSbaaSqaa8qacaWGebGaam yAaaWdaeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac feGcpeGaf43fXJ1dayaacaaabaWdbiaacYcaa8aabaWdbiaa=Peapa WaaSbaaSqaa8qacaWGebGaamyAaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaWGSbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbi aaikdaaaWaaeWaa8aabaWaaCbiaeaapeGaa8NBaaWcpaqabeaapeGa eSOadqcaaOWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaabckacq GHxdaTpaWaaCbiaeaapeGaa8xDaaWcpaqabeaapeGaeSOadqcaaOWd amaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiaa=P eapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaaaa@5FF3@    (14)

Workspace analysis

Reachable workspace refers to areas of space that the end-effector central point can access regardless of orientation. The constraints for determining the robot workspace embody the connection between the arms, the performance range of the joints, the length of the links, and the internal correlations. In this research, numerical method is used to extract the workspace of the studied robot and the following constraints are applied to the joints.

π/2ψπ/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaeqiWdaNaai4laiaaikdacqGHKjYOcqaHipqEcqGHKjYO cqaHapaCcaGGVaGaaGOmaaaa@43AC@
π/3  θ i π/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaeqiWdaNaai4laiaaiodacaqGGcGaeyizImQaeqiUde3d amaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgsMiJkabec8aWjaac+ cacaaIYaaaaa@461A@
π/3 σ i π/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaeqiWdaNaai4laiaaiodacqGHKjYOcqaHdpWCpaWaaSba aSqaa8qacaWGPbaapaqabaGcpeGaeyizImQaeqiWdaNaai4laiaaio daaaa@4505@
π/6 γ i 5π/6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaai4laiaaiAdacqGHKjYOcqaHZoWzpaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaeyizImQaaGynaiabec8aWjaac+cacaaI2a aaaa@44C1@    (15)

Where γ i =π( ϕ i θ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iab ec8aWjabgkHiTmaabmaapaqaa8qacqaHvpGzpaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyOeI0IaeqiUde3damaaBaaaleaapeGaamyA aaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@46BF@  is the angle of upper and lower links in each chain. Figure 3– depicts the workspace of the robot in three distinct rotations.

Figure 3 Constant orientation workspace.

Dynamics

For dynamic modeling of the manipulator, both the principle of virtual work and Euler-Lagrange formulation are used. As the rotational inertia of the lower links is negligible, in both approaches, they are considered as point masses on their both extreme ends.

Virtual work principle

Force system of the ith arm can be written as

F ai = F aIi + F aGi + F aCi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFXeIr paWaaSbaaSqaa8qacaWGHbGaamyAaaWdaeqaaOWdbiabg2da9Gqadi aa+zeapaWaaSbaaSqaa8qacaWGHbGaamysaiaadMgaa8aabeaak8qa cqGHRaWkcaGFgbWdamaaBaaaleaapeGaamyyaiaadEeacaWGPbaapa qabaGcpeGaey4kaSIaa4Nra8aadaWgaaWcbaWdbiaadggacaWGdbGa amyAaaWdaeqaaaaa@5267@      (16)

=[ ( m U + m L ) J Di ( I Ui O + 1 2 m L l 2 2 ) n ̂ i J i ] X ¨ +[ ( m U + 1 2 m L )g 0 ]+[ ( m U + m L ) a Di ' I Ui O n ̂ i θ ¨ i ' ω Ui ×( I Ui O ω Ui ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9abaaa aaaaaapeWaamWaa8aabaqbaeqabiqaaaqaa8qacqGHsisldaqadaWd aeaapeGaamyBa8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacqGHRa WkcaWGTbWdamaaBaaaleaapeGaamitaaWdaeqaaaGcpeGaayjkaiaa wMcaaGqadiaa=PeapaWaaSbaaSqaa8qacaWGebGaamyAaaWdaeqaaa Gcbaqbaeqabeqaaaqaa8qacqGHsisldaqadaWdaeaapeGaaCysa8aa daqhaaWcbaWdbiaadwfacaWGPbaapaqaa8qacaWGpbaaaOGaey4kaS YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBa8aadaWg aaWcbaWdbiaadYeaa8aabeaak8qacaWGSbWdamaaDaaaleaapeGaaG OmaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aadaWfGaqaa8qa caWFUbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaa8Nsa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaaa aaGcpeGaay5waiaaw2faamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfeGaf43fXJ1dayaadaWdbiabgUcaRmaadmaapaqaauaa beqaceaaaeaapeWaaeWaa8aabaWdbiaad2gapaWaaSbaaSqaa8qaca WGvbaapaqabaGcpeGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWd biaaikdaaaGaamyBa8aadaWgaaWcbaWdbiaadYeaa8aabeaaaOWdbi aawIcacaGLPaaacaWHNbaapaqaauaabeqabeaaaeaapeGaaGimaaaa aaaacaGLBbGaayzxaaGaey4kaSYaamWaa8aabaqbaeqabiqaaaqaa8 qacqGHsisldaqadaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadwfa a8aabeaak8qacqGHRaWkcaWGTbWdamaaBaaaleaapeGaamitaaWdae qaaaGcpeGaayjkaiaawMcaaiaa=fgapaWaa0baaSqaa8qacaWGebGa amyAaaWdaeaapeGaae4jaaaaaOWdaeaafaqabeqabaaabaWdbiabgk HiTiaahMeapaWaa0baaSqaa8qacaWGvbGaamyAaaWdaeaapeGaam4t aaaak8aadaWfGaqaa8qacaWFUbaal8aabeqaa8qacqWIcmajaaGcpa WaaSbaaSqaa8qacaWGPbaapaqabaGcpeGafqiUde3dayaadaWaa0ba aSqaa8qacaWGPbaapaqaa8qacaqGNaaaaOGaeyOeI0IaeqyYdC3dam aaBaaaleaapeGaamyvaiaadMgaa8aabeaak8qacqGHxdaTdaqadaWd aeaapeGaaCysa8aadaqhaaWcbaWdbiaadwfacaWGPbaapaqaa8qaca WGpbaaaOGaeqyYdC3damaaBaaaleaapeGaamyvaiaadMgaa8aabeaa aOWdbiaawIcacaGLPaaaaaaaaaGaay5waiaaw2faaaaa@9E26@      (17)

In which is the gravity vector, I Ui O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCysa8aadaqhaaWcbaWdbiaadwfacaWGPbaapaqaa8qacaWGpbaa aaaa@3B08@  is the moment of inertia of the ith upper link about its center of mass with respect to base coordinate frame, . Force system of the end-effector is deduced as

F p = F pI + F pG + F pE + F pC =[ m e a p I P O ψ ¨ . ξ 2 ]+[ m e g 0 ]+[ F T. ξ 2 ]+[ 0 ( ψ ˙ ×( I P O ψ ˙ ) ). ξ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFXeIr paWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyypa0Jae8xmHy0dam aaBaaaleaapeGaamiCaiaadMeaa8aabeaak8qacqGHRaWkcqWFXeIr paWaaSbaaSqaa8qacaWGWbGaam4raaWdaeqaaOWdbiabgUcaRiab=f tig9aadaWgaaWcbaWdbiaadchacaWGfbaapaqabaGcpeGaey4kaSIa e8xmHy0damaaBaaaleaapeGaamiCaiaadoeaa8aabeaak8qacqGH9a qpdaWadaWdaeaafaqabeGabaaabaWdbiabgkHiTiaad2gapaWaaSba aSqaa8qacaWGLbaapaqabaacbmGcpeGaa4xya8aadaWgaaWcbaWdbi aadchaa8aabeaaaOqaa8qacqGHsislcaWHjbWdamaaDaaaleaapeGa amiuaaWdaeaapeGaam4taaaakiqbeI8a59aagaWaa8qacaGGUaGaeq OVdG3damaaBaaaleaapeGaaGOmaaWdaeqaaaaaaOWdbiaawUfacaGL DbaacqGHRaWkdaWadaWdaeaafaqabeGabaaabaWdbiaad2gapaWaaS baaSqaa8qacaWGLbaapaqabaGcpeGaae4zaaWdaeaapeGaaGimaaaa aiaawUfacaGLDbaacqGHRaWkdaWadaWdaeaafaqabeGabaaabaWdbi aa+zeaa8aabaWdbiaa+rfacaGGUaGaeqOVdG3damaaBaaaleaapeGa aGOmaaWdaeqaaaaaaOWdbiaawUfacaGLDbaacqGHRaWkdaWadaWdae aafaqabeGabaaabaWdbiaaicdaa8aabaWdbmaabmaapaqaauaabeqa beaaaeaapeGaeyOeI0IafqiYdK3dayaacaWdbiabgEna0oaabmaapa qaa8qacaWHjbWdamaaDaaaleaapeGaamiuaaWdaeaapeGaam4taaaa kiqbeI8a59aagaGaaaWdbiaawIcacaGLPaaaaaaacaGLOaGaayzkaa GaaiOlaiabe67a49aadaWgaaWcbaWdbiaaikdaa8aabeaaaaaak8qa caGLBbGaayzxaaaaaa@8A8A@       (18)

Where I P O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHjbWdamaaDaaaleaapeGaamiuaaWdaeaapeGaam4taaaaaaa@38FD@  is the moment of inertia of the end-effector and F pE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuqaqaaaaaaaaaWdbiab=fti g9aadaWgaaWcbaWdbiaadchacaWGfbaapaqabaaaaa@42D8@  is the external wrench applied to it.

Extending the principle of the virtual work from the static to the dynamic case with the D’Alembert’s principle, we can get

i=1 4 δ t ai T F Ui  +δ Θ T τ+δ X T F p =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaaI 0aaan8aabaWdbiabggHiLdaakiabes7aKHqadiaa=rhapaWaa0baaS qaa8qacaWGHbGaamyAaaWdaeaapeGaamivaaaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbbOGae4xmHy0damaaBaaaleaape GaamyvaiaadMgaa8aabeaak8qacaqGGcGaey4kaSIaeqiTdqgcciGa e0hMde1damaaCaaaleqabaWdbiaadsfaaaGccaWFepGaey4kaSIaeq iTdqMae43fXJ1damaaCaaaleqabaWdbiaadsfaaaGccqGFXeIrpaWa aSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyypa0JaaGimaaaa@6173@       (19)

where τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqhaaa@38F4@  is the torque applied by the actuators, and  δ t ai MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgcbmGaa8hDa8aadaWgaaWcbaWdbiaadggacaWGPbaapaqa baaaaa@3C03@  is the virtual displacement of the ith arm.

Referring to the kinematic analysis, the virtual displacements can be obtained as

δ t ai =[ δ r D i δ θ i ]=[ J Di n i J i ]δX= J ai δX MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgcbmGaa8hDa8aadaWgaaWcbaWdbiaadggacaWGPbaapaqa baGcpeGaeyypa0ZaamWaa8aabaqbaeqabiqaaaqaa8qacqaH0oazca qGYbWdamaaBaaaleaapeGaamiraaWdaeqaaOWaaSbaaSqaa8qacaWG PbaapaqabaaakeaapeGaeqiTdqMaa8hUd8aadaWgaaWcbaWdbiaadM gaa8aabeaaaaaak8qacaGLBbGaayzxaaGaeyypa0ZaamWaa8aabaqb aeqabiqaaaqaa8qacaWFkbWdamaaBaaaleaapeGaamiraiaadMgaa8 aabeaaaOqaa8qacaWFUbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWd biaa=PeapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaaGcpeGaay5wai aaw2faaiabes7aKnrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfeGae43fXJLaeyypa0Jaa8Nsa8aadaWgaaWcbaWdbiaadggaca WGPbaapaqabaGcpeGaeqiTdqMae43fXJfaaa@67EC@      (20)

δΘ=JδX MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgcbmGaa8hMdiabg2da9iaa=PeacqaH0oaztuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbiab+Dr8ybaa@48E1@      (21)

Substituting the deduced forces and virtual displacements into eq.(21) yields the inverse dynamics of the manipulator.

τ=M X ¨ +V+G+F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0Zefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuqacqWFZestcuWFxepwpaGbamaapeGaey4kaSIae8xfXBLaey 4kaSIae8NbXFKaey4kaSIae8xmHyeaaa@4E20@      (22)

M= J T [ m e I 3×3 0 0 I P yy P ]+ J T i=1 4 J Ui T [ ( m U + m L ) J Di ( I Ui O + 1 2 m L l 2 2 ) n ̂ i J i ]  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFZest cqGH9aqpieWacaGFkbWdamaaCaaaleqabaWdbiabgkHiTiaadsfaaa GcdaWadaWdaeaafaqabeGacaaabaWdbiaad2gapaWaaSbaaSqaa8qa caWGLbaapaqabaGcpeGaa4xsa8aadaWgaaWcbaWdbiaaiodacqGHxd aTcaaIZaaapaqabaaakeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaa peGaamysa8aadaqhaaWcbaWdbiaadcfapaWaaSbaaWqaa8qacaWG5b GaamyEaaWdaeqaaaWcbaWdbiaadcfaaaaaaaGccaGLBbGaayzxaaGa ey4kaSIaa4Nsa8aadaahaaWcbeqaa8qacqGHsislcaWGubaaaOWaay bCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaaI0aaa n8aabaWdbiabggHiLdaakiaa+PeapaWaa0baaSqaa8qacaWGvbGaam yAaaWdaeaapeGaamivaaaakmaadmaapaqaauaabeqaceaaaeaapeWa aeWaa8aabaWdbiaad2gapaWaaSbaaSqaa8qacaWGvbaapaqabaGcpe Gaey4kaSIaamyBa8aadaWgaaWcbaWdbiaadYeaa8aabeaaaOWdbiaa wIcacaGLPaaacaGFkbWdamaaBaaaleaapeGaamiraiaadMgaa8aabe aaaOqaauaabeqabeaaaeaapeWaaeWaa8aabaWdbiaahMeapaWaa0ba aSqaa8qacaWGvbGaamyAaaWdaeaapeGaam4taaaakiabgUcaRmaala aapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiaad2gapaWaaSbaaSqa a8qacaWGmbaapaqabaGcpeGaamiBa8aadaqhaaWcbaWdbiaaikdaa8 aabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaCbiaeaapeGaa4NB aaWcpaqabeaapeGaeSOadqcaaOWdamaaBaaaleaapeGaamyAaaWdae qaaOWdbiaa+PeapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaaaaaOWd biaawUfacaGLDbaacaqGGcaaaa@841F@      (23)

V= J T { F pC + i=1 4 J ai T F aCi   } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFveVv cqGH9aqpcqGHsislieWacaGFkbWdamaaCaaaleqabaWdbiabgkHiTi aadsfaaaGcdaGadaWdaeaapeGae8xmHy0damaaBaaaleaapeGaamiC aiaadoeaa8aabeaak8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyAai abg2da9iaaigdaa8aabaWdbiaaisdaa0WdaeaapeGaeyyeIuoaaOGa a4Nsa8aadaqhaaWcbaWdbiaadggacaWGPbaapaqaa8qacaWGubaaaO Gae8xmHy0damaaBaaaleaapeGaamyyaiaadoeacaWGPbaapaqabaGc peGaaeiOaaGaay5Eaiaaw2haaaaa@5D5A@     (24)

G= J T { F pG + i=1 4 J ai T F aGi   } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFge=r cqGH9aqpcqGHsislieWacaGFkbWdamaaCaaaleqabaWdbiabgkHiTi aadsfaaaGcdaGadaWdaeaapeGae8xmHy0damaaBaaaleaapeGaamiC aiaadEeaa8aabeaak8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyAai abg2da9iaaigdaa8aabaWdbiaaisdaa0WdaeaapeGaeyyeIuoaaOGa a4Nsa8aadaqhaaWcbaWdbiaadggacaWGPbaapaqaa8qacaWGubaaaO Gae8xmHy0damaaBaaaleaapeGaamyyaiaadEeacaWGPbaapaqabaGc peGaaeiOaaGaay5Eaiaaw2haaaaa@5D44@      (25)

F= J T F pE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFXeIr cqGH9aqpcqGHsislieWacaGFkbWdamaaCaaaleqabaWdbiabgkHiTi aadsfaaaGccqWFXeIrpaWaaSbaaSqaa8qacaWGWbGaamyraaWdaeqa aaaa@49F2@      (26)

Euler-lagrange formulation

For modeling a dynamic system using Euler-Lagrange formulation, the first step is determining the Lagrangian, which is defined as the difference between kinetic energy and potential energy of the system. In this section, we neglect the inertia of the lower links and consider them as point masses on their both extreme ends. So, the variables will be active joints variables Θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hMdaaa@3857@  and end effector pose X.

L( Θ, Θ ˙ ,X, X ˙ )=T( Θ, Θ ˙ ,X, X ˙ )U( Θ,X ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect daqadaWdaeaaieWapeGaa4hMdiaacYcaceGFyoWdayaacaWdbiaacY caiuqacqqFxepwcaGGSaGaf03fXJ1dayaacaaapeGaayjkaiaawMca aiabg2da9iaadsfadaqadaWdaeaapeGaa4hMdiaacYcaceGFyoWday aacaWdbiaacYcacqqFxepwcaGGSaGaf03fXJ1dayaacaaapeGaayjk aiaawMcaaiabgkHiTiaadwfadaqadaWdaeaapeGaa4hMdiaacYcacq qFxepwaiaawIcacaGLPaaaaaa@5EDB@     (27)

Potential energy is caused by conservative forces acting on the system. Here, the only conservative force is gravity. So, the potential energy of the arms is written as

U a ( Θ )= g T   i=1 4 ( m U r Di + 1 2 m L r Bi )= 1 2 g T { l 1 ( 2 m U + m L )  i=1 4 e i + l 2 ( m U + m L ) i=1 4 u i } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadggaa8aabeaak8qadaqadaWdaeaa peGaaCiMdaGaayjkaiaawMcaaiabg2da9iabgkHiTiaahEgapaWaaW baaSqabeaapeGaamivaaaakiaabckadaGfWbqabSWdaeaapeGaamyA aiabg2da9iaaigdaa8aabaWdbiaaisdaa0WdaeaapeGaeyyeIuoaaO WaaeWaa8aabaWdbiaad2gapaWaaSbaaSqaa8qacaWGvbaapaqabaGc peGaaCOCa8aadaWgaaWcbaWdbiaadseacaWGPbaapaqabaGcpeGaey 4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBa8aa daWgaaWcbaWdbiaadYeaa8aabeaak8qacaWHYbWdamaaBaaaleaape GaamOqaiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcqGH sisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacaWHNbWdam aaCaaaleqabaWdbiaadsfaaaGcdaGadaWdaeaapeGaamiBa8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaaGOmaiaad2 gapaWaaSbaaSqaa8qacaWGvbaapaqabaGcpeGaey4kaSIaamyBa8aa daWgaaWcbaWdbiaadYeaa8aabeaaaOWdbiaawIcacaGLPaaacaqGGc WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaaI 0aaan8aabaWdbiabggHiLdaaieWakiaa=vgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaey4kaSIaamiBa8aadaWgaaWcbaWdbiaaikda a8aabeaak8qadaqadaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadw faa8aabeaak8qacqGHRaWkcaWGTbWdamaaBaaaleaapeGaamitaaWd aeqaaaGcpeGaayjkaiaawMcaamaawahabeWcpaqaa8qacaWGPbGaey ypa0JaaGymaaWdaeaapeGaaGinaaqdpaqaa8qacqGHris5aaGccaWF 1bWdamaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaay5Eaiaaw2haaa aa@84A5@     (28)

And the potential energy of the end-effector is obtained from

U P =( m e +2 m L ) [ g T 0 ] T X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacqGH9aqpcqGH sisldaqadaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabe aak8qacqGHRaWkcaaIYaGaamyBa8aadaWgaaWcbaWdbiaadYeaa8aa beaaaOWdbiaawIcacaGLPaaadaWadaWdaeaafaqabeqacaaabaWdbi aahEgapaWaaWbaaSqabeaapeGaamivaaaaaOWdaeaapeGaaGimaaaa aiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaamivaaaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbOGae83fXJfaaa@54C7@     (29)

The potential energy of the manipulator is deduced from adding the potential energy of its subsystems.

U( Θ,X )= U a ( Θ )+ U P ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyvamaabmaapaqaaGqad8qacaWFyoGaaiilamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfeGae43fXJfacaGLOaGaayzkaa Gaeyypa0Jaamyva8aadaWgaaWcbaWdbiaadggaa8aabeaak8qadaqa daWdaeaapeGaa8hMdaGaayjkaiaawMcaaiabgUcaRiaadwfapaWaaS baaSqaa8qacaWGqbaapaqabaGcpeWaaeWaa8aabaWdbiab+Dr8ybGa ayjkaiaawMcaaaaa@5387@     (30)

The kinetic energy of the arms is a function of active joints variable, and is determined by

T a ( Θ ˙ )= 1 12 l 2 2 ( 2 m U +3 m L ) Θ ˙ T Θ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadggaa8aabeaak8qadaqadaWdaeaa ieWapeGab8hMd8aagaGaaaWdbiaawIcacaGLPaaacqGH9aqpdaWcaa WdaeaapeGaaGymaaWdaeaapeGaaGymaiaaikdaaaGaamiBa8aadaqh aaWcbaWdbiaaikdaa8aabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaG Omaiaad2gapaWaaSbaaSqaa8qacaWGvbaapaqabaGcpeGaey4kaSIa aG4maiaad2gapaWaaSbaaSqaa8qacaWGmbaapaqabaaak8qacaGLOa GaayzkaaGab8hMd8aagaGaamaaCaaaleqabaWdbiaadsfaaaGcceWF yoWdayaacaaaaa@4EC0@       (31)

The kinetic energy of the end effector is obtained from

T P = 1 2 X ˙ T M P X ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqbbiqb=Dr8y9aagaGaamaaCaaaleqa baWdbiaadsfaaaacbmGccaGFnbWdamaaBaaaleaapeGaamiuaaWdae qaaOWdbiqb=Dr8y9aagaGaaaaa@4CE3@       (32)

Where

M P =diag[ ( m e +2 m L ) I 3×3 I P yy P +2 m L l 4 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xta8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacqGH9aqp caqGKbGaaeyAaiaabggacaqGNbWaamWaa8aabaqbaeqabeGaaaqaa8 qadaqadaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaa k8qacqGHRaWkcaaIYaGaamyBa8aadaWgaaWcbaWdbiaadYeaa8aabe aaaOWdbiaawIcacaGLPaaacaWFjbWdamaaBaaaleaapeGaaG4maiab gEna0kaaiodaa8aabeaaaOqaa8qacaWGjbWdamaaDaaaleaapeGaam iua8aadaWgaaadbaWdbiaadMhacaWG5baapaqabaaaleaapeGaamiu aaaakiabgUcaRiaaikdacaWGTbWdamaaBaaaleaapeGaamitaaWdae qaaOWdbiaadYgapaWaa0baaSqaa8qacaaI0aaapaqaa8qacaaIYaaa aaaaaOGaay5waiaaw2faaaaa@58A8@      (33)

The kinetic energy of the manipulator is obtained from adding the kinetic energy of the arms and the end-effector.

T( Θ ˙ , X ˙ )= T a ( Θ ˙ )+ T P ( X ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivamaabmaapaqaa8qaceWHyoWdayaacaWdbiaacYcatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbbiqb=Dr8y9aagaGaaa WdbiaawIcacaGLPaaacqGH9aqpcaWGubWdamaaBaaaleaapeGaamyy aaWdaeqaaOWdbmaabmaapaqaaGqad8qaceGFyoWdayaacaaapeGaay jkaiaawMcaaiabgUcaRiaadsfapaWaaSbaaSqaa8qacaWGqbaapaqa baGcpeWaaeWaa8aabaWdbiqb=Dr8y9aagaGaaaWdbiaawIcacaGLPa aaaaa@542D@      (34)

As is obvious, the Lagrangian can be written as the contribution of the two subsystems, each one depending on its own variables, though connected together via constraint equations. This helps us with deriving two sets of dynamic equations using 1st type of Lagrange formulation.

The dynamic model of the arms is calculated from

d dt ( L a Θ ˙ ) L a Θ =τ+ ( f Θ ) T λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabeaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbaapaqaa8qacaWGKbGa amiDaaaadaqadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2orr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeHW0damaaBaaa leaapeGaamyyaaWdaeqaaaGcbaWdbiabgkGi2Iqadiqa+H5apaGbai aaaaaapeGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qacqGHciIT cqWFsectpaWaaSbaaSqaa8qacaWGHbaapaqabaaakeaapeGaeyOaIy Raa4hMdaaacqGH9aqpcqaHepaDcqGHRaWkdaqadaWdaeaapeWaaSaa a8aabaWdbiabgkGi2kaa+zgaa8aabaWdbiabgkGi2kaa+H5aaaaaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaadsfaaaGccqaH7oaBaaaa aa@60E1@     (35)

where, λ 4×1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGinaiabgEna0kaaigdaa8aabeaa aaa@3CCD@  is the vector of Lagrange multipliers, and f represents the constraint equations of the manipulator. This yields the following equations

M a Θ ¨ + G a =τ+ ( f Θ ) T λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xta8aadaWgaaWcbaWdbiaadggaa8aabeaaiiGak8qacuGF yoqupaGbamaapeGaey4kaSIaa83ra8aadaWgaaWcbaWdbiaadggaa8 aabeaak8qacqGH9aqpcqaHepaDcqGHRaWkdaqadaWdaeaapeWaaSaa a8aabaWdbiabgkGi2kaa=zgaa8aabaWdbiabgkGi2kaa=H5aaaaaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaadsfaaaGccqaH7oaBaaa@4B61@     (36)

M a = 1 6 l 2 2 ( 2 m U +3 m L ) I 4×4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xta8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGH9aqp daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOnaaaacaWGSbWdamaaDa aaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakmaabmaapaqaa8qacaaI YaGaamyBa8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacqGHRaWkca aIZaGaamyBa8aadaWgaaWcbaWdbiaadYeaa8aabeaaaOWdbiaawIca caGLPaaacaWFjbWdamaaBaaaleaapeGaaGinaiabgEna0kaaisdaa8 aabeaaaaa@4C41@      (37)

G a = 1 2 l 2 ( m U + m L )cosΘ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83ra8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGH9aqp cqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacaWGSb WdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaWG TbWdamaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabgUcaRiaad2gapa WaaSbaaSqaa8qacaWGmbaapaqabaaak8qacaGLOaGaayzkaaGaae4z aiaabckaciGGJbGaai4BaiaacohacaWHyoaaaa@4C3B@      (38)

Similarly, the dynamic model of the end-effector is calculated by

d dt ( L P X ˙ ) L P X = F PE + ( f X ) T λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgaa8aabaWdbiaadsgacaWG0baaamaabmaa paqaa8qadaWcaaWdaeaapeGaeyOaIy7efv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiuaacqWFsectpaWaaSbaaSqaa8qacaWGqbaa paqabaaakeaapeGaeyOaIylcfeGaf43fXJ1dayaacaaaaaWdbiaawI cacaGLPaaacqGHsisldaWcaaWdaeaapeGaeyOaIyRae8NeHW0damaa BaaaleaapeGaamiuaaWdaeqaaaGcbaWdbiabgkGi2kab+Dr8ybaacq GH9aqpcqGFXeIrpaWaaSbaaSqaa8qacaWGqbGaamyraaWdaeqaaOWd biabgUcaRmaabmaapaqaa8qadaWcaaWdaeaapeGaeyOaIylcbmGaa0 NzaaWdaeaapeGaeyOaIyRae43fXJfaaaGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaWGubaaaOGaeq4UdWgaaa@6486@      (39)

This results in the following dynamic equations.

M P X ¨ + G P = F PE + ( f X ) T λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabeaaae aaieWaqaaaaaaaaaWdbiaa=1eapaWaaSbaaSqaa8qacaWGqbaapaqa baWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuqak8qacu GFxepwpaGbamaapeGaey4kaSIaa83ra8aadaWgaaWcbaWdbiaadcfa a8aabeaak8qacqGH9aqpcqGFXeIrpaWaaSbaaSqaa8qacaWGqbGaam yraaWdaeqaaOWdbiabgUcaRmaabmaapaqaa8qadaWcaaWdaeaapeGa eyOaIyRaa8NzaaWdaeaapeGaeyOaIyRae43fXJfaaaGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaWGubaaaOGaa83Udaaaaaa@56FA@      (40)

G P =( m e +2 m L )[ g 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83ra8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacqGH9aqp cqGHsisldaqadaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadwgaa8 aabeaak8qacqGHRaWkcaaIYaGaamyBa8aadaWgaaWcbaWdbiaadYea a8aabeaaaOWdbiaawIcacaGLPaaadaWadaWdaeaafaqabeGabaaaba WdbiaahEgaa8aabaWdbiaaicdaaaaacaGLBbGaayzxaaaaaa@46F3@      (41)

In order to calculate the dynamic model of the whole manipulator, these two models need to be combined by cancelling the Lagrange multipliers. To do so, eq.(35)  is solved for  and the result is introduced to eq.(39).

τ= M a Θ ¨ + G a ( f Θ ) T ( f X ) T ( M P X ¨ + G P F PE ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabeaaae aaqaaaaaaaaaWdbiabes8a0jabg2da9Gqadiaa=1eapaWaaSbaaSqa a8qacaWGHbaapaqabaacciGcpeGaf4hMde1dayaadaWdbiabgUcaRi aa=DeapaWaaSbaaSqaa8qacaWGHbaapaqabaaaaOWdbiabgkHiTmaa bmaapaqaa8qadaWcaaWdaeaapeGaeyOaIyRaa8NzaaWdaeaapeGaey OaIyRae4hMdefaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWG ubaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qacqGHciITcaWFMbaapa qaa8qacqGHciITtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbbiab9Dr8ybaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaey OeI0Iaamivaaaakmaabmaapaqaa8qacaWFnbWdamaaBaaaleaapeGa amiuaaWdaeqaaOWdbiqb9Dr8y9aagaWaa8qacqGHRaWkcaWFhbWdam aaBaaaleaapeGaamiuaaWdaeqaaOWdbiabgkHiTiab9ftig9aadaWg aaWcbaWdbiaadcfacaWGfbaapaqabaaak8qacaGLOaGaayzkaaaaaa@6A23@      (42)

Differentiating eq.(3) with respect to time, we obtain

f Θ Θ ˙ + f X X ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2Iqadiaa=zgaa8aabaWdbiabgkGi2kaa =H5aaaGab8hMd8aagaGaa8qacqGHRaWkdaWcaaWdaeaapeGaeyOaIy Raa8NzaaWdaeaapeGaeyOaIy7efv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuqacqGFxepwaaGaf43fXJ1dayaacaWdbiabg2da9i aaicdaaaa@51BA@      (43)

Solving this equation for  results in

X ˙ = ( f X ) 1 f Θ Θ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacuWFxepw paGbaiaapeGaeyypa0JaeyOeI0YaaeWaa8aabaWdbmaalaaapaqaa8 qacqGHciITieWacaGFMbaapaqaa8qacqGHciITcqWFxepwaaaacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcdaWcaa WdaeaapeGaeyOaIyRaa4NzaaWdaeaapeGaeyOaIyRaa4hMdaaaceGF yoWdayaacaaaaa@549F@      (44)

Comparing eq.(13) and eq.(43), we can infer that

( f Θ ) T ( f X ) T = J T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaeWaa8aabaWdbmaalaaapaqaa8qacqGHciITieWacaWF Mbaapaqaa8qacqGHciITcaWFyoaaaaGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacaWGubaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qacqGH ciITcaWFMbaapaqaa8qacqGHciITtuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGqbbiab+Dr8ybaaaiaawIcacaGLPaaapaWaaWba aSqabeaapeGaeyOeI0Iaamivaaaakiabg2da9iaa=PeapaWaaWbaaS qabeaapeGaeyOeI0Iaamivaaaaaaa@5733@     (45)

Substituting eq.(44) into (41) gives the dynamic model of the manipulator in workspace.

τ=M X ¨ +C+G+F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabeaaae aaqaaaaaaaaaWdbiabes8a0jabg2da9mrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfeGae83mH0Kaf83fXJ1dayaadaWdbiabgU caRiab=jq8djabgUcaRiab=zq8hjabgUcaRiab=ftigbaaaaa@4E05@      (46)

M= M a J+ J T M P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFZest cqGH9aqpieWacaGFnbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbi aa+PeacqGHRaWkcaGFkbWdamaaCaaaleqabaWdbiabgkHiTiaadsfa aaGccaGFnbWdamaaBaaaleaapeGaamiuaaWdaeqaaaaa@4BA7@      (47)

C= M a θ ¨ ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFce=q cqGH9aqpieWacaGFnbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbi qa+H7apaGbamaadaahaaWcbeqaa8qacaqGNaaaaaaa@47E9@      (48)

G= G a + J T G P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFge=r cqGH9aqpieWacaGFhbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbi abgUcaRiaa+PeapaWaaWbaaSqabeaapeGaeyOeI0Iaamivaaaakiaa +DeapaWaaSbaaSqaa8qacaWGqbaapaqabaaaaa@4B6E@      (49)

F= J T F PE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFXeIr cqGH9aqpcqGHsislieWacaGFkbWdamaaCaaaleqabaWdbiabgkHiTi aadsfaaaGccqWFXeIrpaWaaSbaaSqaa8qacaWGqbGaamyraaWdaeqa aaaa@49D2@      (50)

Trajectory planning

PnP operations are usually performed in an environment free of obstacles, as a result just initial and end points of the path are important. However to have more control on departure and arrival, we define some via points as shown in Figure 4. Here, -axis is parallel to Z-axis of the F O :OXYZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=va8 g9aadaWgaaWcbaWdbiaad+eaa8aabeaak8qacaGG6aGaam4taiabgk HiTiaadIfacaWGzbGaamOwaaaa@4A11@  coordinate frame; and V-axis is located in XY MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgkHiTiaadMfaaaa@39D7@  plane.

Figure 4 PnP path defined in a local frame.

Any point on the path in defined in the local coordinate can be transformed to the base coordinate frame as follows.

[ x y z ]=[ cosγ sinγ 0 sinγ cosγ 0 0 0 1 ][ u 0 v ]+[ x 1 y 1 z 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabmqaaaqaa8qacaWG4baapaqaa8qacaWG5baa paqaa8qacaWG6baaaaGaay5waiaaw2faaiabg2da9maadmaapaqaau aabeqadmaaaeaapeGaci4yaiaac+gacaGGZbGaeq4SdCgapaqaa8qa cqGHsislciGGZbGaaiyAaiaac6gacqaHZoWza8aabaWdbiaaicdaa8 aabaWdbiGacohacaGGPbGaaiOBaiabeo7aNbWdaeaapeGaci4yaiaa c+gacaGGZbGaeq4SdCgapaqaa8qacaaIWaaapaqaa8qacaaIWaaapa qaa8qacaaIWaaapaqaa8qacaaIXaaaaaGaay5waiaaw2faamaadmaa paqaauaabeqadeaaaeaapeGaamyDaaWdaeaapeGaaGimaaWdaeaape GaamODaaaaaiaawUfacaGLDbaacqGHRaWkdaWadaWdaeaafaqabeWa baaabaWdbiaadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaape GaamyEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWG6bWd amaaBaaaleaapeGaaGymaaWdaeqaaaaaaOWdbiaawUfacaGLDbaaaa a@65C5@    (51)

Where, γ=arctan y f y 1 x f x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0JaciyyaiaackhacaGGJbGaaiiDaiaacggacaGG UbWaaSaaa8aabaWdbiaadMhapaWaaSbaaSqaa8qacaWGMbaapaqaba GcpeGaeyOeI0IaamyEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqa a8qacaWG4bWdamaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabgkHiTi aadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaaaa@4A70@  is the rotation angle of local frame with respect to the fixed frame. Parameters defining the path are

λ= w h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaSaaa8aabaWdbiaadEhaa8aabaWdbiaadIga aaaaaa@3C20@      (52)

w= ( x f x 1 ) 2 + ( y f y 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Daiabg2da9maakaaapaqaa8qadaqadaWdaeaapeGaamiEa8aa daWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHsislcaWG4bWdamaaBa aaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaIYaaaaOGaey4kaSYaaeWaa8aabaWdbiaadMhapaWaaS baaSqaa8qacaWGMbaapaqabaGcpeGaeyOeI0IaamyEa8aadaWgaaWc baWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabe aapeGaaGOmaaaaaeqaaaaa@4A96@      (53)

h= z f+1 2 z 1( f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiabg2da9iaadQhapaWaaSbaaSqaa8qadaWcaaWdaeaapeGa amOzaiabgUcaRiaaigdaa8aabaWdbiaaikdaaaaapaqabaGcpeGaey OeI0IaamOEa8aadaWgaaWcbaWdbiaaigdadaqadaWdaeaapeGaamOz aaGaayjkaiaawMcaaaWdaeqaaaaa@43BB@       (54)

A B-spline of degree pnbsp;and order k=p+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaadchacqGHRaWkcaaIXaaaaa@3BB7@  is a linear combination of polynomials N i,p ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadMgacaGGSaGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaaaaa@3E76@ of degree p, called base or blending functions, weighted by control points , Q i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@394D@ τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqhaaa@38F4@ .  represents a normalized independent parameter here taken as the time. Then, the normalized motion profile s( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Camaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaaaaa@3B94@  is then formed as

s( τ )=  i=1 n Q i . N i,p ( τ )    ,  0τ1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Camaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH9aqp caqGGcWaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8 qacaWGUbaan8aabaWdbiabggHiLdaakiaadgfapaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaaiOlaiaad6eapaWaaSbaaSqaa8qacaWGPb Gaaiilaiaadchaa8aabeaak8qadaqadaWdaeaapeGaeqiXdqhacaGL OaGaayzkaaGaaeiOaiaabckacaqGGcGaaeiOaiaacYcacaqGGcGaae iOaiaaicdacqGHKjYOcqaHepaDcqGHKjYOcaaIXaaaaa@5C67@     (55)

The base function is defined recursively by means of the De Boor formula.35

{ N i,0 ( τ )={ 1, τ i τ< τ i+1 0, elsewhere N i,p ( τ )= τ τ i τ i+p τ i N i,p1 ( τ )                       + τ i+p+1 τ τ i+p+1 τ i+1 N i+1,p1 ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaiqaaqaabeqaaiaad6eapaWaaSbaaSqaa8qacaWGPbGaaiilaiaa icdaa8aabeaak8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaa Gaeyypa0Zaaiqaa8aabaqbaeqabiGaaaqaa8qacaaIXaGaaiilaaWd aeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgs MiJkabes8a0jabgYda8iabes8a09aadaWgaaWcbaWdbiaadMgacqGH RaWkcaaIXaaapaqabaaakeaapeGaaGimaiaacYcaa8aabaWdbiaabw gacaqGSbGaae4CaiaabwgacaqG3bGaaeiAaiaabwgacaqGYbGaaeyz aaaaaiaawUhaaaqaaiaad6eapaWaaSbaaSqaa8qacaWGPbGaaiilai aadchaa8aabeaak8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaGaeyypa0ZaaSaaa8aabaWdbiabes8a0jabgkHiTiabes8a09aada WgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qacqaHepaDpaWaaSbaaSqa a8qacaWGPbGaey4kaSIaamiCaaWdaeqaaOWdbiabgkHiTiabes8a09 aadaWgaaWcbaWdbiaadMgaa8aabeaaaaGcpeGaamOta8aadaWgaaWc baWdbiaadMgacaGGSaGaamiCaiabgkHiTiaaigdaa8aabeaak8qada qadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaabaGaaeiOaiaabcka caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiOaiabgUcaRmaalaaapaqaa8qacqaHep aDpaWaaSbaaSqaa8qacaWGPbGaey4kaSIaamiCaiabgUcaRiaaigda a8aabeaak8qacqGHsislcqaHepaDa8aabaWdbiabes8a09aadaWgaa WcbaWdbiaadMgacqGHRaWkcaWGWbGaey4kaSIaaGymaaWdaeqaaOWd biabgkHiTiabes8a09aadaWgaaWcbaWdbiaadMgacqGHRaWkcaaIXa aapaqabaaaaOWdbiaad6eapaWaaSbaaSqaa8qacaWGPbGaey4kaSIa aGymaiaacYcacaWGWbGaeyOeI0IaaGymaaWdaeqaaOWdbmaabmaapa qaa8qacqaHepaDaiaawIcacaGLPaaaaaGaay5Eaaaaaa@AAB3@     (56)

τ i  ( i=1,2,,m=n+p+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacckadaqa daWdaeaapeGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacq GHMacVcaGGSaGaamyBaiabg2da9iaad6gacqGHRaWkcaWGWbGaey4k aSIaaGymaaGaayjkaiaawMcaaaaa@4A8A@  is a sequence of nodes on which s( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Camaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaaaaa@3B94@  is built by interpolation. The rth derivative of B-spline is calculated from

d r s d τ r =  i=1 nr Q i,r . N i,pr ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaapeGaamOCaaaakiaa dohaa8aabaWdbiaadsgacqaHepaDpaWaaWbaaSqabeaapeGaamOCaa aaaaGccqGH9aqpcaqGGcWaaybCaeqal8aabaWdbiaadMgacqGH9aqp caaIXaaapaqaa8qacaWGUbGaeyOeI0IaamOCaaqdpaqaa8qacqGHri s5aaGccaWGrbWdamaaBaaaleaapeGaamyAaiaacYcacaWGYbaapaqa baGcpeGaaiOlaiaad6eapaWaaSbaaSqaa8qacaWGPbGaaiilaiaadc hacqGHsislcaWGYbaapaqabaGcpeWaaeWaa8aabaWdbiabes8a0bGa ayjkaiaawMcaaaaa@56C2@      (57)

Where Q i,r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaamyAaiaacYcacaWGYbaapaqabaaa aa@39DC@  represents the control points of the rth derivative of  s( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaaaa@3A7C@  and can be deduced recursively by

Q i,r ={ Q i , r=0 pr+1 τ i+p+1 τ i+r ( Q i+1,r1 Q i,r1 ) , 0<rp MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadMgacaGGSaGaamOCaaWdaeqaaOWd biabg2da9maaceaapaqaauaabaqaciaaaeaapeGaamyua8aadaWgaa WcbaWdbiaadMgaa8aabeaaaOqaa8qacaGGSaGaaiiOaiaadkhacqGH 9aqpcaaIWaaapaqaa8qadaWcaaWdaeaapeGaamiCaiabgkHiTiaadk hacqGHRaWkcaaIXaaapaqaa8qacqaHepaDpaWaaSbaaSqaa8qacaWG PbGaey4kaSIaamiCaiabgUcaRiaaigdaa8aabeaak8qacqGHsislcq aHepaDpaWaaSbaaSqaa8qacaWGPbGaey4kaSIaamOCaaWdaeqaaaaa k8qadaqadaWdaeaapeGaamyua8aadaWgaaWcbaWdbiaadMgacqGHRa WkcaaIXaGaaiilaiaadkhacqGHsislcaaIXaaapaqabaGcpeGaeyOe I0Iaamyua8aadaWgaaWcbaWdbiaadMgacaGGSaGaamOCaiabgkHiTi aaigdaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiaacYcacaqG GcGaaGimaiabgYda8iaadkhacqGHKjYOcaWGWbaaaaGaay5Eaaaaaa@6C1B@     (58)

In order for the control points to coincide with the initial and final via-points, the nodes at both ends of the trajectory must be repeated p+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabgUcaRiaaigdaaaa@39C1@  times. Moreover, to obtain trajectories with no jerk at both ends, two virtual points is introduced at the second and second-last position of the node sequence. With these considerations, the number of nodes and the number of control points will be m=2( p+1 )+f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiabg2da9iaaikdadaqadaWdaeaapeGaamiCaiabgUcaRiaa igdaaiaawIcacaGLPaaacqGHRaWkcaWGMbaaaa@3FEA@  and n=p+f+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaadchacqGHRaWkcaWGMbGaey4kaSIaaGymaaaa @3D87@  respectively.

A B-spline of degree p has C p1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaahaaWcbeqaa8qacaWGWbGaeyOeI0IaaGymaaaaaaa@3AE0@ -continuity, so for the trajectory to be smooth in terms of jerk, it is necessary to choose p=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da9iaaiwdaaaa@39E9@ . Therefore, n=f+6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaadAgacqGHRaWkcaaI2aaaaa@3BB5@  and m=12+f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiabg2da9iaaigdacaaIYaGaey4kaSIaamOzaaaa@3C6B@ . In order to guarantee that the trajectory passes through the via-points, the following equations must be satisfied.

{ s( 0 )= s 1 = Q 1 s( τ p+j+1 )= s j    j=2, 3, , f1           = i=1 n N i,p ( τ p+j+1 ). Q i     s( 1 )= s f = Q n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaiqaa8aabaqbaeaabqGaaaaabaWdbiaadohadaqadaWdaeaapeGa aGimaaGaayjkaiaawMcaaiabg2da9iaadohapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0Jaamyua8aadaWgaaWcbaWdbiaaigda a8aabeaaaOqaaaqaa8qacaWGZbWaaeWaa8aabaWdbiabes8a09aada WgaaWcbaWdbiaadchacqGHRaWkcaWGQbGaey4kaSIaaGymaaWdaeqa aaGcpeGaayjkaiaawMcaaiabg2da9iaadohapaWaaSbaaSqaa8qaca WGQbaapaqabaaakeaapeGaaeiOaiaabckacaqGGcGaamOAaiabg2da 9iaaikdacaGGSaGaaeiOaiaaiodacaGGSaGaaeiOaiabgAci8kaacY cacaqGGcGaamOzaiabgkHiTiaaigdaa8aabaWdbiaabckacaqGGcGa aeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacq GH9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWd biaad6gaa0WdaeaapeGaeyyeIuoaaOGaamOta8aadaWgaaWcbaWdbi aadMgacaGGSaGaamiCaaWdaeqaaOWdbmaabmaapaqaa8qacqaHepaD paWaaSbaaSqaa8qacaWGWbGaey4kaSIaamOAaiabgUcaRiaaigdaa8 aabeaaaOWdbiaawIcacaGLPaaacaGGUaGaamyua8aadaWgaaWcbaWd biaadMgaa8aabeaaaOqaa8qacaqGGcGaaeiOaiaabckaa8aabaWdbi aadohadaqadaWdaeaapeGaaGymaaGaayjkaiaawMcaaiabg2da9iaa dohapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyypa0Jaamyua8 aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaaaaaa8qacaGL7baaaaa@8E7E@      (59)

Imposing boundary conditions for velocity, acceleration and jerk at both ends of the trajectory results in six constraint equations as

{ Q 1,r = d r s d τ r | τ=0 , r=1, 2, 3 = i=1 r+1 C i,r . Q i =0 Q nr,r = d r s d τ r | τ=1     , r=1, 2, 3 = i=nr n C i,r . Q i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiqaaqaabeqaaiaadgfapaWaaSbaaSqaa8qacaaIXaGaaiilaiaa dkhaa8aabeaak8qacqGH9aqpdaabcaWdaeaapeWaaSaaa8aabaWdbi aadsgapaWaaWbaaSqabeaapeGaamOCaaaakiaadohaa8aabaWdbiaa dsgacqaHepaDpaWaaWbaaSqabeaapeGaamOCaaaaaaaakiaawIa7a8 aadaWgaaWcbaWdbiabes8a0jabg2da9iaaicdaa8aabeaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaaiila8qacaGGGcGaamOCaiabg2da 9iaaigdacaGGSaGaaeiOaiaaikdacaGGSaGaaeiOaiaaiodaaeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabg2da9maawahabeWcpaqaa8qacaWGPbGaey ypa0JaaGymaaWdaeaapeGaamOCaiabgUcaRiaaigdaa0WdaeaapeGa eyyeIuoaaOGaam4qa8aadaWgaaWcbaWdbiaadMgacaGGSaGaamOCaa WdaeqaaOWdbiaac6cacaWGrbWdamaaBaaaleaapeGaamyAaaWdaeqa aOWdbiabg2da9iaaicdaaeaacaWGrbWdamaaBaaaleaapeGaamOBai abgkHiTiaadkhacaGGSaGaamOCaaWdaeqaaOWdbiabg2da9maaeiaa paqaa8qadaWcaaWdaeaapeGaamiza8aadaahaaWcbeqaa8qacaWGYb aaaOGaam4CaaWdaeaapeGaamizaiabes8a09aadaahaaWcbeqaa8qa caWGYbaaaaaaaOGaayjcSdWdamaaBaaaleaapeGaeqiXdqNaeyypa0 JaaGymaaWdaeqaaOWdbiaabckacaqGGcGaaeiOaiaabckacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caGGSaGaaiiOaiaa dkhacqGH9aqpcaaIXaGaaiilaiaabckacaaIYaGaaiilaiaabckaca aIZaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabg2da9maawahabeWcpaqaa8qacaWGPbGaeyypa0JaamOB aiabgkHiTiaadkhaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaO Gaam4qa8aadaWgaaWcbaWdbiaadMgacaGGSaGaamOCaaWdaeqaaOWd biaac6cacaWGrbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2 da9iaaicdaaaGaay5Eaaaaaa@06F1@     (60)

C i,r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadMgacaGGSaGaamOCaaWdaeqaaaaa @3AE6@  can be deduced from (59) and (60) recursively. To calculate the control points of the desired trajectory, equations (61) and (62) are written in matrix form, yielding

Q= A 1 b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xuaiabg2da9iaa=feapaWaaWbaaSqabeaapeGaeyOeI0Ia aGymaaaakiaa=jgaaaa@3CB6@     (61)

Where

Q= [ Q 1 Q 2 Q n ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xuaiabg2da9maadmaapaqaauaabeqabqaaaaqaa8qacaWG rbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaadgfapaWaaS baaSqaa8qacaaIYaaapaqabaaakeaapeGaeyOjGWlapaqaa8qacaWG rbWdamaaBaaaleaapeGaamOBaaWdaeqaaaaaaOWdbiaawUfacaGLDb aapaWaaWbaaSqabeaapeGaamivaaaaaaa@444F@     (62)

A=[ A 1 A 2 ],  b=[ b 1 b 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabiaaae aaieWaqaaaaaaaaaWdbiaa=feacqGH9aqpdaWadaWdaeaafaqabeGa baaabaWdbiaa=feapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaape Gaa8xqa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaaak8qacaGLBbGa ayzxaaGaaiilaaWdaeaapeGaaeiOaiaa=jgacqGH9aqpdaWadaWdae aafaqabeGabaaabaWdbiaa=jgapaWaaSbaaSqaa8qacaaIXaaapaqa baaakeaapeGaa8Nya8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaaak8 qacaGLBbGaayzxaaaaaaaa@492F@     (63)

b 1 = [ s 1 s 2 s f ] T    b 2 = [ 0 0 0 0 0 0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aaieWaqaaaaaaaaaWdbiaa=jgapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0ZaamWaa8aabaqbaeqabeabaaaabaWdbiaadohapa WaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaam4Ca8aadaWgaaWc baWdbiaaikdaa8aabeaaaOqaa8qacqGHMacVa8aabaWdbiaadohapa WaaSbaaSqaa8qacaWGMbaapaqabaaaaaGcpeGaay5waiaaw2faa8aa daahaaWcbeqaa8qacaWGubaaaOGaaeiOaiaabckaa8aabaWdbiaa=j gapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0ZaamWaa8aa baqbaeqabeGbaaaabaWdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbi aaicdaa8aabaWdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiaaicda aaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaadsfaaaaaaaaa@53C3@     (64)

A 1 = [ 1 0 ... 0 N 1,p ( τ p+3 ) N 2,p ( τ p+3 ) ... N n,p ( τ p+3 ) N 1,p ( τ p+4 ) N 2,p ( τ p+4 ) ... N n,p ( τ p+4 ) N 1,p ( τ p+f ) N 2,p ( τ p+f ) ... N n,p ( τ p+f ) 0 0 ... 1 ] fxn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWadaqaauaabeqagqaaaaaabaGa aGymaaqaaiaaicdaaeaacaGGUaGaaiOlaiaac6caaeaacaaIWaaaba aeaaaaaaaaa8qacaWGobWdamaaBaaaleaapeGaaGymaiaacYcacaWG WbaapaqabaGcpeWaaeWaa8aabaWdbiabes8a09aadaWgaaWcbaWdbi aadchacqGHRaWkcaaIZaaapaqabaaak8qacaGLOaGaayzkaaaapaqa a8qacaWGobWdamaaBaaaleaapeGaaGOmaiaacYcacaWGWbaapaqaba GcpeWaaeWaa8aabaWdbiabes8a09aadaWgaaWcbaWdbiaadchacqGH RaWkcaaIZaaapaqabaaak8qacaGLOaGaayzkaaaapaqaaiaac6caca GGUaGaaiOlaaqaa8qacaWGobWdamaaBaaaleaapeGaamOBaiaacYca caWGWbaapaqabaGcpeWaaeWaa8aabaWdbiabes8a09aadaWgaaWcba WdbiaadchacqGHRaWkcaaIZaaapaqabaaak8qacaGLOaGaayzkaaaa paqaa8qacaWGobWdamaaBaaaleaapeGaaGymaiaacYcacaWGWbaapa qabaGcpeWaaeWaa8aabaWdbiabes8a09aadaWgaaWcbaWdbiaadcha cqGHRaWkcaaI0aaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qaca WGobWdamaaBaaaleaapeGaaGOmaiaacYcacaWGWbaapaqabaGcpeWa aeWaa8aabaWdbiabes8a09aadaWgaaWcbaWdbiaadchacqGHRaWkca aI0aaapaqabaaak8qacaGLOaGaayzkaaaapaqaaiaac6cacaGGUaGa aiOlaaqaa8qacaWGobWdamaaBaaaleaapeGaamOBaiaacYcacaWGWb aapaqabaGcpeWaaeWaa8aabaWdbiabes8a09aadaWgaaWcbaWdbiaa dchacqGHRaWkcaaI0aaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8 qacqWIUlsta8aabaWdbiabl6UinbWdaeaapeGaeSO7I0eapaqaa8qa cqWIUlsta8aabaWdbiaad6eapaWaaSbaaSqaa8qacaaIXaGaaiilai aadchaa8aabeaak8qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaa peGaamiCaiabgUcaRiaadAgaa8aabeaaaOWdbiaawIcacaGLPaaaa8 aabaWdbiaad6eapaWaaSbaaSqaa8qacaaIYaGaaiilaiaadchaa8aa beaak8qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamiCai abgUcaRiaadAgaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaGaaiOl aiaac6cacaGGUaaabaWdbiaad6eapaWaaSbaaSqaa8qacaWGUbGaai ilaiaadchaa8aabeaak8qadaqadaWdaeaapeGaeqiXdq3damaaBaaa leaapeGaamiCaiabgUcaRiaadAgaa8aabeaaaOWdbiaawIcacaGLPa aaa8aabaGaaGimaaqaaiaaicdaaeaacaGGUaGaaiOlaiaac6caaeaa caaIXaaaaaGaay5waiaaw2faamaaBaaaleaacaWGMbGaamiEaiaad6 gaaeqaaaaa@B349@     (65)

A 2 = [ C 1,1 C 2,1 0 0 C 1,2 C 2,2 C 3,2 0 C 1,3 C 2,3 C 3,3 C 4,3 0 0 0 0 C n1,1 C n,1 0 C n2,2 C n1,2 C n,2 C n3,3 C n2,3 C n1,3 C n,3 ] 6xn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWadaabaeqabaqbaeqabmabaaaa baaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaaGymaiaacYcaca aIXaaapaqabaaakeaapeGaam4qa8aadaWgaaWcbaWdbiaaikdacaGG SaGaaGymaaWdaeqaaaGcbaWdbiaaicdaa8aabaWdbiaaicdaa8aaba WdbiaadoeapaWaaSbaaSqaa8qacaaIXaGaaiilaiaaikdaa8aabeaa aOqaa8qacaWGdbWdamaaBaaaleaapeGaaGOmaiaacYcacaaIYaaapa qabaaakeaapeGaam4qa8aadaWgaaWcbaWdbiaaiodacaGGSaGaaGOm aaWdaeqaaaGcbaWdbiaaicdaa8aabaWdbiaadoeapaWaaSbaaSqaa8 qacaaIXaGaaiilaiaaiodaa8aabeaaaOqaa8qacaWGdbWdamaaBaaa leaapeGaaGOmaiaacYcacaaIZaaapaqabaaakeaapeGaam4qa8aada WgaaWcbaWdbiaaiodacaGGSaGaaG4maaWdaeqaaaGcbaWdbiaadoea paWaaSbaaSqaa8qacaaI0aGaaiilaiaaiodaa8aabeaaaaGcfaqabe WabaaabaWdbiabgAci8cWdaeaapeGaeyOjGWlapaqaa8qacqGHMacV aaWdaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaV=qacaaIWaaabaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8+dauaabeqadeaaaeaapeGaeyOjGWla paqaa8qacqGHMacVa8aabaWdbiabgAci8caapaqbaeqabmabaaaaba Wdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiaadoeapaWaaSbaaSqa a8qacaWGUbGaeyOeI0IaaGymaiaacYcacaaIXaaapaqabaaakeaape Gaam4qa8aadaWgaaWcbaWdbiaad6gacaGGSaGaaGymaaWdaeqaaaGc baWdbiaaicdaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGUbGaey OeI0IaaGOmaiaacYcacaaIYaaapaqabaaakeaapeGaam4qa8aadaWg aaWcbaWdbiaad6gacqGHsislcaaIXaGaaiilaiaaikdaa8aabeaaaO qaa8qacaWGdbWdamaaBaaaleaapeGaamOBaiaacYcacaaIYaaapaqa baaakeaapeGaam4qa8aadaWgaaWcbaWdbiaad6gacqGHsislcaaIZa Gaaiilaiaaiodaa8aabeaaaOqaa8qacaWGdbWdamaaBaaaleaapeGa amOBaiabgkHiTiaaikdacaGGSaGaaG4maaWdaeqaaaGcbaWdbiaado eapaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaiaacYcacaaIZaaa paqabaaakeaapeGaam4qa8aadaWgaaWcbaWdbiaad6gacaGGSaGaaG 4maaWdaeqaaaaaaaGccaGLBbGaayzxaaWaaSbaaSqaaiaaiAdacaWG 4bGaamOBaaqabaaaaa@21FF@     (66)

For this problem, we choose f=7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iaaiEdaaaa@39E1@  via-points as follows

P 1 ( 0,0 ) P v1 P 2 ( η 1 w,0 ) P 3 ( η 2 w, η 3 h ) P 4 ( 1 2 ,h ) P 5 ( ( 1 η 2 )w, η 3 h ) P 6 ( ( 1 η 1 )w,0 ) P v2 P 7 ( w,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaa peGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyOKH4Qaamiua8 aadaWgaaWcbaWdbiaadAhacaaIXaaapaqabaGcpeGaeyOKH4Qaamiu a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaeq 4TdG2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadEhacaGGSaGa aGimaaGaayjkaiaawMcaaiabgkziUkaadcfapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeWaaeWaa8aabaWdbiabeE7aO9aadaWgaaWcbaWd biaaikdaa8aabeaak8qacaWG3bGaaiilaiabeE7aO9aadaWgaaWcba Wdbiaaiodaa8aabeaak8qacaWGObaacaGLOaGaayzkaaGaeyOKH4Qa amiua8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qadaqadaWdaeaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaaiilaiaadIga aiaawIcacaGLPaaacqGHsgIRcaWGqbWdamaaBaaaleaapeGaaGynaa WdaeqaaOWdbmaabmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHi TiabeE7aO9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcaca GLPaaacaWG3bGaaiilaiabeE7aO9aadaWgaaWcbaWdbiaaiodaa8aa beaak8qacaWGObaacaGLOaGaayzkaaGaeyOKH4Qaamiua8aadaWgaa WcbaWdbiaaiAdaa8aabeaak8qadaqadaWdaeaapeWaaeWaa8aabaWd biaaigdacqGHsislcqaH3oaApaWaaSbaaSqaa8qacaaIXaaapaqaba aak8qacaGLOaGaayzkaaGaam4DaiaacYcacaaIWaaacaGLOaGaayzk aaGaeyOKH4Qaamiua8aadaWgaaWcbaWdbiaadAhacaaIYaaapaqaba GcpeGaeyOKH4Qaamiua8aadaWgaaWcbaWdbiaaiEdaa8aabeaak8qa daqadaWdaeaapeGaam4DaiaacYcacaaIWaaacaGLOaGaayzkaaaaaa@9011@     (67) where 0< η 1 <1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iabeE7aO9aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGH8aapcaaIXaGaai4laiaaikdaaaa@3EF6@  and 0< η 2 <1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iabeE7aO9aadaWgaaWcbaWdbiaaikdaa8aabeaa k8qacqGH8aapcaaIXaGaai4laiaaikdaaaa@3EF7@   are the ratio of the u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3829@  coordinate of p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@393A@  and p 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaiodaa8aabeaaaaa@393B@  to the corresponding coordinate of the final point, respectively, and obviously, η 1 < η 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdG2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iab eE7aO9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3DD0@ . Moreover, 0< η 3 <1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iabeE7aO9aadaWgaaWcbaWdbiaaiodaa8aabeaa k8qacqGH8aapcaaIXaaaaa@3D89@  is the ratio of the v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@382A@  coordinate of p 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaiodaa8aabeaaaaa@393B@  to the corresponding coordinate of the mid-point. Therefore, the sequence of nodes will be

{ 0, 0, , 0 6 ,  τ 7 , τ 8 ,  τ 9 ,  τ 10 ,  τ 11 ,  τ 12 5 ,  τ 13 , 1, 1, , 1 6 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWaaCbeaeaadaWfqaqaa8qacaaIWaGaaiilaiaabcka caaIWaGaaiilaiaabckacqGHMacVcaGGSaGaaeiOaiaaicdaaSWdae aapeGaeSy==7gapaqabaaabaWdbiaaiAdaa8aabeaak8qacaGGSaGa aeiOaiabes8a09aadaWgaaWcbaWdbiaaiEdaa8aabeaak8qacaGGSa WdamaaxababaWaaCbeaeaapeGaeqiXdq3damaaBaaaleaapeGaaGio aaWdaeqaaOWdbiaacYcacaqGGcGaeqiXdq3damaaBaaaleaapeGaaG yoaaWdaeqaaOWdbiaacYcacaqGGcGaeqiXdq3damaaBaaaleaapeGa aGymaiaaicdaa8aabeaak8qacaGGSaGaaeiOaiabes8a09aadaWgaa WcbaWdbiaaigdacaaIXaaapaqabaGcpeGaaiilaiaabckacqaHepaD paWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaaqaa8qacqWI9=VBa8 aabeaaaeaapeGaaGynaaWdaeqaaOWdbiaacYcacaqGGcGaeqiXdq3d amaaBaaaleaapeGaaGymaiaaiodaa8aabeaak8qacaGGSaWdamaaxa babaWaaCbeaeaapeGaaGymaiaacYcacaqGGcGaaGymaiaacYcacaqG GcGaeyOjGWRaaiilaiaabckacaaIXaaal8aabaWdbiabl2==UbWdae qaaaqaa8qacaaI2aaapaqabaaak8qacaGL7bGaayzFaaaaaa@7D91@      (67)

Three-time ratio are defined as

k 1 = τ 8 / τ 10 ,       k 2 = τ 7 / τ 8 ,       k 3 = τ 9 / τ 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcqaH epaDpaWaaSbaaSqaa8qacaaI4aaapaqabaGcpeGaai4laiabes8a09 aadaWgaaWcbaWdbiaaigdacaaIWaaapaqabaGcpeGaaiilaiaabcka caqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaadUgapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaeqiXdq3damaaBaaaleaapeGa aG4naaWdaeqaaOWdbiaac+cacqaHepaDpaWaaSbaaSqaa8qacaaI4a aapaqabaGcpeGaaiilaiaabckacaqGGcGaaeiOaiaabckacaqGGcGa aeiOaiaadUgapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyypa0 JaeqiXdq3damaaBaaaleaapeGaaGyoaaWdaeqaaOWdbiaac+cacqaH epaDpaWaaSbaaSqaa8qacaaIXaGaaGimaaWdaeqaaaaa@64EC@       (68)

where 0< k 1 <1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadUgapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyipaWJaaGymaaaa@3CCB@  is the ratio between the time the end-effector spends to move from p1 to p2 and the time from p1 to p4. 0< k 2 <1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadUgapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaeyipaWJaaGymaaaa@3CCC@  represents the ratio between the time the end-effector spends to move from p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3939@  to p v1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadAhacaaIXaaapaqabaaaaa@3A34@  and the time from p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3939@  to 0< k 3 <1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadUgapaWaaSbaaSqaa8qacaaIZaaapaqabaGc peGaeyipaWJaaGymaaaa@3CCD@   p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@393A@ .  denotes the ratio between the time the end-effector spends to move from p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3939@  to p 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaiodaa8aabeaaaaa@393B@  and the time from p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3939@  to p 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaisdaa8aabeaaaaa@393C@ . To maintain the correct order of the nodes, the condition k 1 < k 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH8aapcaWG RbWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa@3C59@  must be met. The symmetry of the path allows expressing the nodes in terms of k 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3934@ , k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@381D@  and k 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa@381E@ .

τ 1 τ 6 =0,  τ 7 = k 1 k 2 2 , τ 8 = k 1 2 ,     τ 9 = k 3 2  , τ 10 = 1 2 ,  τ 11 =1 k 3 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabmaaae aaqaaaaaaaaaWdbiabes8a09aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGHMacVcqaHepaDpaWaaSbaaSqaa8qacaaI2aaapaqabaGcpe Gaeyypa0JaaGimaiaacYcacaqGGcaapaqaa8qacqaHepaDpaWaaSba aSqaa8qacaaI3aaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaadU gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaam4Aa8aadaWgaaWc baWdbiaaikdaa8aabeaaaOqaa8qacaaIYaaaaiaacYcaa8aabaWdbi abes8a09aadaWgaaWcbaWdbiaaiIdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8 qacaaIYaaaaiaacYcaaaGaaeiOaiaabckacaqGGcWdauaabeqabmaa aeaapeGaeqiXdq3damaaBaaaleaapeGaaGyoaaWdaeqaaOWdbiabg2 da9maalaaapaqaa8qacaqGRbWdamaaBaaaleaapeGaaG4maaWdaeqa aaGcbaWdbiaaikdaaaGaaiiOaiaacYcaa8aabaWdbiabes8a09aada WgaaWcbaWdbiaaigdacaaIWaaapaqabaGcpeGaeyypa0ZaaSaaa8aa baWdbiaaigdaa8aabaWdbiaaikdaaaGaaiilaiaabckaa8aabaWdbi abes8a09aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaeyyp a0JaaGymaiabgkHiTmaalaaapaqaa8qacaqGRbWdamaaBaaaleaape GaaG4maaWdaeqaaaGcbaWdbiaaikdaaaGaaiilaaaaaaa@7337@      (69)

Now, position vector of any point on the path can be deduced from

r( t )= [ u( t ) v( t ) ] T = w T 0 [ s u ( t ) λ 1 s v ( t ) ] T ,    τ=t/T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NCamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyyp a0ZaamWaa8aabaqbaeqabeGaaaqaa8qacaWG1bWaaeWaa8aabaWdbi aadshaaiaawIcacaGLPaaaa8aabaWdbiaadAhadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaapaWaaWbaaSqabe aapeGaamivaaaakiabg2da9maalaaapaqaa8qacaWG3baapaqaa8qa caWGubWdamaaCaaaleqabaWdbiaaicdaaaaaaOWaamWaa8aabaqbae qabeGaaaqaa8qacaWGZbWdamaaBaaaleaapeGaamyDaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacqaH7o aBpaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaadohapaWaaSba aSqaa8qacaWG2baapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaaaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaadsfa aaGccaGGSaGaaeiOaiaabckacaqGGcGaaeiOaiabes8a0jabg2da9i aadshacaGGVaGaamivaaaa@666A@     (70)

Where subscripts ‘ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3829@ ’ and ‘ v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@382A@ ’ stands for motion profile along the horizontal and vertical axis in local frame. T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@  is the time taken by the end-effector to move from the initial to the final point. Considering A u = A v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadwhaa8aabeaak8qacqGH9aqpcaWG bbWdamaaBaaaleaapeGaamODaaWdaeqaaaaa@3C84@  and b u,2 = b v,2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaadwhacaGGSaGaaGOmaaWdaeqaaOWd biabg2da9iaadkgapaWaaSbaaSqaa8qacaWG2bGaaiilaiaaikdaa8 aabeaak8qacaGGGcaaaa@40DC@ , while     

b u,1 = [ 0 η 1 η 2 1/2 1 η 2 1 η 1 1 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8Nya8aadaWgaaWcbaWdbiaadwhacaGGSaGaaGymaaWdaeqa aOWdbiabg2da9maadmaapaqaauaabeqabCaaaaqaa8qacaaIWaaapa qaa8qacqaH3oaApaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGa eq4TdG2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaaigdaca GGVaGaaGOmaaWdaeaapeGaaGymaiabgkHiTiabeE7aO9aadaWgaaWc baWdbiaaikdaa8aabeaaaOqaa8qacaaIXaGaeyOeI0Iaeq4TdG2dam aaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaaigdaaaaacaGLBbGa ayzxaaWdamaaCaaaleqabaWdbiaadsfaaaaaaa@51E5@
b v,1 = [ 0 0 η 3 1 η 3 0 0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8Nya8aadaWgaaWcbaWdbiaadAhacaGGSaGaaGymaaWdaeqa aOWdbiabg2da9maadmaapaqaauaabeqabCaaaaqaa8qacaaIWaaapa qaa8qacaaIWaaapaqaa8qacqaH3oaApaWaaSbaaSqaa8qacaaIZaaa paqabaaakeaapeGaaGymaaWdaeaapeGaeq4TdG2damaaBaaaleaape GaaG4maaWdaeqaaaGcbaWdbiaaicdaa8aabaWdbiaaicdaaaaacaGL BbGaayzxaaWdamaaCaaaleqabaWdbiaadsfaaaaaaa@4924@      (71)

We can determine the control points from eq.(63).

Dimensionless position, velocity, acceleration and jerk of any point on the path can be determined by normalizing the position and its derivatives by w/ T r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Daiaac+cacaWGubWdamaaCaaaleqabaWdbiaadkhaaaaaaa@3AFA@ .

s( τ )= [ s u ( τ ) λ 1 s v ( t ) ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83Camaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH 9aqpdaWadaWdaeaafaqabeqacaaabaWdbiaadohapaWaaSbaaSqaa8 qacaWG1baapaqabaGcpeWaaeWaa8aabaWdbiabes8a0bGaayjkaiaa wMcaaaWdaeaapeGaeq4UdW2damaaCaaaleqabaWdbiabgkHiTiaaig daaaGccaWGZbWdamaaBaaaleaapeGaamODaaWdaeqaaOWdbmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaaaaaGaay5waiaaw2faa8aada ahaaWcbeqaa8qacaWGubaaaaaa@4E91@
v( τ )= [ d s u dτ λ 1 d s v dτ ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NDamaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH 9aqpdaWadaWdaeaafaqabeqacaaabaWdbmaalaaapaqaa8qacaWGKb Gaam4Ca8aadaWgaaWcbaWdbiaadwhaa8aabeaaaOqaa8qacaWGKbGa eqiXdqhaaaWdaeaapeGaeq4UdW2damaaCaaaleqabaWdbiabgkHiTi aaigdaaaGcdaWcaaWdaeaapeGaamizaiaadohapaWaaSbaaSqaa8qa caWG2baapaqabaaakeaapeGaamizaiabes8a0baaaaaacaGLBbGaay zxaaWdamaaCaaaleqabaWdbiaadsfaaaaaaa@5012@
a( τ )= [ d 2 s u d τ 2 λ 1 d 2 s v d τ 2 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xyamaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH 9aqpdaWadaWdaeaafaqabeqacaaabaWdbmaalaaapaqaa8qacaWGKb WdamaaCaaaleqabaWdbiaaikdaaaGccaWGZbWdamaaBaaaleaapeGa amyDaaWdaeqaaaGcbaWdbiaadsgacqaHepaDpaWaaWbaaSqabeaape GaaGOmaaaaaaaak8aabaWdbiabeU7aS9aadaahaaWcbeqaa8qacqGH sislcaaIXaaaaOWaaSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaape GaaGOmaaaakiaadohapaWaaSbaaSqaa8qacaWG2baapaqabaaakeaa peGaamizaiabes8a09aadaahaaWcbeqaa8qacaaIYaaaaaaaaaaaki aawUfacaGLDbaapaWaaWbaaSqabeaapeGaamivaaaaaaa@5445@     (72)

j( τ )= [ d 3 s u d τ 3 λ 1 d 3 s v d τ 3 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NAamaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH 9aqpdaWadaWdaeaafaqabeqacaaabaWdbmaalaaapaqaa8qacaWGKb WdamaaCaaaleqabaWdbiaaiodaaaGccaWGZbWdamaaBaaaleaapeGa amyDaaWdaeqaaaGcbaWdbiaadsgacqaHepaDpaWaaWbaaSqabeaape GaaG4maaaaaaaak8aabaWdbiabeU7aS9aadaahaaWcbeqaa8qacqGH sislcaaIXaaaaOWaaSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaape GaaG4maaaakiaadohapaWaaSbaaSqaa8qacaWG2baapaqabaaakeaa peGaamizaiabes8a09aadaahaaWcbeqaa8qacaaIZaaaaaaaaaaaki aawUfacaGLDbaapaWaaWbaaSqabeaapeGaamivaaaaaaa@5452@

Cycle time, T, is limited by the speed and torque constraint of the motors. According to Li, et al33 it can be proved that the cycle time must be subject to

Tmax( v max w [ v ] a max w [ a ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivaiabgwMiZkGac2gacaGGHbGaaiiEamaabmaapaqaauaabeqa biaaaeaapeWaaSaaa8aabaWdbiaadAhapaWaaSbaaSqaa8qacaqGTb GaaeyyaiaabIhaa8aabeaak8qacaWG3baapaqaa8qadaWadaWdaeaa peGaamODaaGaay5waiaaw2faaaaaa8aabaWdbmaakaaapaqaa8qada WcaaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaab2gacaqGHbGaaeiE aaWdaeqaaOWdbiaadEhaa8aabaWdbmaadmaapaqaa8qacaWGHbaaca GLBbGaayzxaaaaaaWcbeaaaaaakiaawIcacaGLPaaaaaa@4FB8@       (73)

Trajectory optimization problem

As the peak values and smoothness of the time histories of the active joint torques are directly related to those of acceleration and jerk of the end-effector at non-singular configurations, we can optimize the trajectory in the Cartesian space using appropriate performance indices based on acceleration and jerk of the end-effector.36 Li, et al33 proposed a pair of performance indices for evaluating acceleration and jerk of the end effector over the entire normalized path within the normalized time duration as

a max ( k 1 , k 2 , k 3 )= max 0τ1 a( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeqaaOWd bmaabmaapaqaa8qacaWGRbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiaacYcacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa cYcacaWGRbWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkai aawMcaaiabg2da98aadaWfqaqaa8qaciGGTbGaaiyyaiaacIhaaSWd aeaapeGaaGimaiabgsMiJkabes8a0jabgsMiJkaaigdaa8aabeaaie Wak8qacaWFHbWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaaaa @5439@
a rms ( k 1 , k 2 , k 3 )= 0 1 a ( τ ) 2 dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaabkhacaqGTbGaae4CaaWdaeqaaOWd bmaabmaapaqaa8qacaWGRbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiaacYcacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa cYcacaWGRbWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkai aawMcaaiabg2da9maakaaapaqaa8qadaGfWbqabSWdaeaapeGaaGim aaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaacbmGccaWFHbWaae Waa8aabaWdbiabes8a0bGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaIYaaaaOGaamizaiabes8a0bWcbeaaaaa@5274@
j max ( k 1 , k 2 , k 3 )= max 0τ1 j( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAa8aadaWgaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeqaaOWd bmaabmaapaqaa8qacaWGRbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiaacYcacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa cYcacaWGRbWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkai aawMcaaiabg2da98aadaWfqaqaa8qaciGGTbGaaiyyaiaacIhaaSWd aeaapeGaaGimaiabgsMiJkabes8a0jabgsMiJkaaigdaa8aabeaaie Wak8qacaWFQbWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaaaa @544B@      (74)

j rms ( k 1 , k 2 , k 3 )= 0 1 j ( τ ) 2 dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAa8aadaWgaaWcbaWdbiaabkhacaqGTbGaae4CaaWdaeqaaOWd bmaabmaapaqaa8qacaWGRbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiaacYcacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa cYcacaWGRbWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkai aawMcaaiabg2da9maakaaapaqaa8qadaGfWbqabSWdaeaapeGaaGim aaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaacbmGccaWFQbWaae Waa8aabaWdbiabes8a0bGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaIYaaaaOGaamizaiabes8a0bWcbeaaaaa@5286@

The multi-objective optimization problem for the smooth trajectory is formulated as:

Minimize     f 1 ( x )= a max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaa peGaaCiEaaGaayjkaiaawMcaaiabg2da9iaadggapaWaaSbaaSqaa8 qacaqGTbGaaeyyaiaabIhaa8aabeaaaaa@4107@   ;

Minimize     f 2 ( x )= a rms MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaa peGaaCiEaaGaayjkaiaawMcaaiabg2da9iaadggapaWaaSbaaSqaa8 qacaqGYbGaaeyBaiaabohaa8aabeaaaaa@4114@   

Minimize     f 3 ( x )= j max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qadaqadaWdaeaa peGaaCiEaaGaayjkaiaawMcaaiabg2da9iaadQgapaWaaSbaaSqaa8 qacaqGTbGaaeyyaiaabIhaa8aabeaaaaa@4112@   

Minimize     f 4 ( x )= a rms MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qadaqadaWdaeaa peGaaCiEaaGaayjkaiaawMcaaiabg2da9iaadggapaWaaSbaaSqaa8 qacaqGYbGaaeyBaiaabohaa8aabeaaaaa@4116@   

Over     x=[ k 1 k 2 k 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiEaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaam4Aa8aa daWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWGRbWdamaaBaaale aapeGaaGOmaaWdaeqaaaGcbaWdbiaadUgapaWaaSbaaSqaa8qacaaI ZaaapaqabaaaaaGcpeGaay5waiaaw2faaaaa@41B6@   (75)

Subject to      g 1 : 0< k 1 < k 3 g 2 :  0< k 2 <1 g 3 :  0< k 3 <1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqadeaaae aaqaaaaaaaaaWdbiaadEgapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaaiOoaiaacckacaaIWaGaeyipaWJaam4Aa8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacqGH8aapcaWGRbWdamaaBaaaleaapeGaaG4m aaWdaeqaaaGcbaWdbiaadEgapaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaaiOoaiaacckacaGGGcGaaGimaiabgYda8iaadUgapaWaaSba aSqaa8qacaaIYaaapaqabaGcpeGaeyipaWJaaGymaaWdaeaapeGaam 4za8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaGG6aGaaiiOaiaa cckacaaIWaGaeyipaWJaam4Aa8aadaWgaaWcbaWdbiaaiodaa8aabe aak8qacqGH8aapcaaIXaaaaaaa@57DC@

 Finally, the PnP trajectory in the workspace of the robot is depicted in Figure 5.

Figure 5 Robot reference PnP path.

Simulation results

To ensure the accuracy of the extracted kinematic and dynamic equations, the robot mechanism is simulated in the ADMS software, and its output is compared to the results obtained from the extracted equations. Reference trajectory components in task space are determined and illustrated in Figure 6. To verify the validity of the inverse dynamics model, the acceleration corresponding to the reference trajectory is applied to the mathematical model, and the torque of the actuators as the output of the dynamic model is compared with the ADAMS slightly different. simulation output. The results presented in Figure 7 demonstrate similar behavior, although the torque size is

Figure 6 Robot reference PnP path.

Figure 7 Active joints torques.

The slight difference between the two distinct simulations arises from the assumptions that are included in system modeling. The first assumption was to place the center of gravity of the upper links in the center of the line along the center of their hinges on both ends. However, in the ADAMS model, the center of gravity deviates slightly from this point. The second hypothesis is ignoring the inertia of the lower links of the arms, which their effects are modeled as two identical lumped masses at the two ends of the links.

To solve the inverse kinematics of the robot, the input (reference trajectory) is applied to the end-effector and the angles of the active joints are calculated. Figure 8 shows the strict conformity of the results of the inverse kinematics analytically to the results of the mechanism simulated in the ADAMS.

Figure 8 Joint space components by solving inverse kinematics.

In addition, in order to solve the forward kinematic problem, the angles of the active joints obtained from the inverse kinematic problem, are applied as inputs to the active joints. The results shown in Figure 9 which reveal a good agreement between the analytical method and the ADAMS model.

Figure 9 Task space components by solving forward kinematics.

Conclusion

The purpose of this paper was to evaluate the kinematic and dynamic performance of a four-degree-of-freedom robot generating Schönflies motion. Three translational and one rotational degrees of freedom makes this robot a good option for pick-and-place applications where high speed and acceleration are required. The studies began with extracting the kinematic equations of the robot based on the geometric method, followed by velocity analysis. Using extracted kinematic equations as well as joint constraints, the robot workspace was numerically determined. In the next step, the governing dynamics equations of this mechanism were extracted using Euler-Lagrange method for constrained systems, since the robot under study is a parallel equations, the robot was modeled in ADAMS mechanism whose main characteristic is being constrained. In order to validate the kinematic and dynamic software, and the results of numerical solution of the aforementioned equations, were compared with the ADAMS output.

Funding

None.

Acknowledgments

None.

Conflicts of interest

The authors declare that there was no conflict of interest.

References

  1. Yang G, Chen IM, Lin W, et al. Singularity analysis of three–legged parallel robots based on passive–joint velocities. IEEE Transactions on Robotics and Automation. 2001;17(4):413–422.
  2. Y Wang. An Incremental Method for Forward Kinematics of Parallel Manipulators. Proceedings of IEEE International Conference on Robotics, Automation and Mechatronics; 2006 Jun 1-3; Thailand. Bangkok: IEEE; 2006.
  3. Dai JS, Lipkin H, Huang Z. Mobility of overconstrained parallel mechanisms. ASME Journal of Mechanical Design. 2006;128(1):220–229.
  4. R. Clavel. Une nouvelle structure de manipulateur parallèle pour la robotique légère. APII. 1989;23(6):501–519.
  5. Pierrot F, Marquet F, Company O, et al. H4 parallel robot: modeling, design and preliminary experiments. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation; 2001 May 21–26; South Korea: IEEE; 2001.
  6. Krut S, Benoit M, Ota H, et al. I4: A new parallel mechanism for Scara motions. 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422); 2003 Sept 14-19; Taipei. Taiwan: IEEE; 2003.
  7. Nabat V, Rodriguez O, Company O, et al. Par4: very high speed parallel robot for pick–and–place. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005 Aug 2–6; Edmonton. Canada: IEEE; 2005.
  8. Pierrot F, Nabat V, Company O, et al. Optimal Design of a 4–DOF Parallel Manipulator: From Academia to Industry. IEEE Transactions on Robotics. 2009;25(2):213–224.
  9. Xie F, Liu X. Design and Development of a High–Speed and High–Rotation Robot With Four Identical Arms and a Single Platform. Journal of Mechanisms and Robotics. 2015;7(4):041015.
  10. http://pentarobotics.com/products/#brochure.
  11. Song Y, Gao H Sun T, et al. Kinematic analysis and optimal design of a novel 1T3R parallel manipulator with an articulated travelling plate. Robotics and Computer–Integrated Manufacturing. 2014;30(5):508–516.
  12. A Novel Three–Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis. ASME Journal Mechanisms Robotics. 2017;9(5):051003.
  13. Mazare M, Taghizadeh M, Najafi M. Kinematic analysis and design of a 3–DOF translational parallel robot. International Journal of Automation and Computing. 2017;14(4):432–441.
  14. Khalil W, Ibrahim O. General Solution for the Dynamic Modeling of Parallel Robots. Journal of Intelligent and Robotic Systems. 2007;49(1):19–37.
  15. Shao ZF, Tang X, Wang L. Dynamics verification experiment of the Stewart parallel manipulator. International Journal of Advanced Robotic Systems. 2015;12(144):1–10.
  16. Wang Z, Zhang N, Chai X, et al. Kinematic/dynamic analysis and optimization of a 2–URR–RRU parallel manipulator. Nonlinear Dynamics. 2017;88(1):503–519.
  17. Abdellatif H, Heimann B. Computational efficient inverse dynamics of 6–DOF fully parallel manipulators by using the Lagrangian formalism. Mechanism and Machine Theory. 2009;44(1):192–207.
  18. Tsai MS, Yuan WH. Dynamic Modeling and Decentralized Control of a 3 PRS Parallel Mechanism Based on Constrained Robotic Analysis. Journal of Intelligent & Robotic Systems. 2011;63(3–4):525–545.
  19. Zhao Y, Gao F. Inverse dynamics of the 6–dof out–parallel manipulator by means of the principle of virtual work. Robotica. 2009;27(2):259–268.
  20. Li Y, Xu Q. Dynamic modeling and robust control of a 3–PRC translational parallel kinematic machine. Robotics and Computer–Integrated Manufacturing. 2009;25(3):630–640.
  21. Zhao Y, Zhang Z, Cheng G. Inverse rigid–body dynamic analysis for a 3UPS–PRU parallel robot. Advances in Mechanical Engineering. 2017;9(2):1–14.
  22. Yang C, Huang Q, Jiang H,et al. PD control with gravity compensation for hydraulic 6–DOF parallel manipulator. Mechanism and Machine Theory. 2010;45(4):666–677.
  23. Yang C, Huang Q, Han J, et al. Decoupling control for spatial six–degree–of–freedom electro–hydraulic parallel robot. Robotics and Computer–Integrated Manufacturing. 2012;28(1):14–23.
  24. Miller K. Optimal Design and Modeling of Spatial Parallel Manipulators. Journal of Robotics Research. 2004;23(2):127–140.
  25. Mazare M, Taghizadeh, Najafi MR. Inverse Dynamics of a 3–P[2(US)] Translational Parallel Robot. Robotica. 2018;1–21.
  26. Li Y, Xu Q. Kinematics and inverse dynamics analysis for a general 3–PRS spatial parallel mechanism. Robotica. 2005;23(2):219–229.
  27. Jadran L, Jean PM. Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics. 2016:119–128.
  28. Pellicciari M, Berselli G, Leali F, et al. A method for reducing the energy consumption of pick–and–place industrial robots. Mechatronics. 2013;23(3):326–334.
  29. Li H, Le MD, Gong ZM, et al. Motion profile design to reduce residual vibration of high–speed positioning stages. IEEE/ASME Transactions on Mechatronics. 2009;4(2):264–269.
  30. Gallant A, Gosselin C. Extending the capabilities of robotic manipulators using trajectory optimization. Mechanism and Machine Theory. 2018;121:502–514.
  31. Khoukhi A, Baron L, Balazinski M. Constrained multi–objective trajectory planning of parallel kinematic machines. Robotics and Computer–Integrated Manufacturing. 2009;25:756–769.
  32. Gasparetto A, Zanotto V. A new method for smooth trajectory planning of robot manipulators. Mechanism and Machine Theory. 2007;42:455–471.
  33. Li Y, Huang T, Chetwynd DG. An approach for smooth trajectory planning of high–speed pick–and–place parallel robots using quintic B–splines. Mechanism and Machine Theory. 2018;126:479–490.
  34. Wu G. Kinematic analysis and optimal design of a wall–mounted four–limb parallel Schönflies–motion robot for pick–and–place operations. Journal of Intelligent & Robotic Systems. 2017;85:663–677.
  35. Piegl W, Tiller W. The NURBS Book. Springer–Verlag: New York; 1997.
  36. Barre PJ, Bearee R, Borne P, et al. Influence of a Jerk Controlled Movement Law on the Vibratory Behaviour of High–Dynamics Systems. Journal of Intelligent and Robotic Systems. 2005;42(3):275–293.
Creative Commons Attribution License

©2020 Ghanbari, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.