Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 4 Issue 3

Heat and mass transfer natural convection in a partially heated Trapezoidal cavity

Mohammad M Gholizadeh,1 Rasoul Nikbakhti2

1Ferdowsi University of Mashhad, Iran
2Shandiz Institute of Higher Education, Iran

Correspondence: Rasoul Nikbakhti, Ferdowsi University of Mashhad, Iran

Received: June 30, 2017 | Published: June 28, 2018

Citation: Gholizadeh MM, Nikbakhti R. Heat and mass transfer natural convection in a partially heated Trapezoidal cavity. Int Rob Auto J. 2018;4(3):236-240. DOI: 10.15406/iratj.2018.04.00128

Download PDF

Abstract

A numerical study is carried out to investigate the effect of different heating sections on the rate of heat and mass transfer of a fluid contained in a trapezoidal cavity with partially thermally active right side wall. The active part of the right side wall has a higher temperature and concentration than the left side one. The length of the thermally active right part is equal to half of the inclined wall. The top and bottom of the cavity as well as the inactive part of the right side wall are considered to be adiabatic and impermeable to heat and mass transfer. The species diffusivity of the fluid is assumed to be constant but the density of fluid is assumed to vary linearly with the temperature and concentration. The coupled differential equations are discredited by the Finite Difference Method. The Successive- Over-Relaxation (SOR) method is used in the solution of the stream function equation. The results are presented graphically in terms of flow patterns, isotherms and are concentrations. The results reveal that the location of heating zones has a significant effect on the flow pattern and the corresponding of heat and mass transfer in the cavity.

Keywords: double diffusive natural convection, trapezoidal cavity, various angles, partially heated, heat and mass transfer

List of symbols

Greek symbols
Subscripts

Introduction

In nature and many industrial applications, there is a diversity of transport processes where simultaneous heat and mass transfer is a common phenomenon. Fluid flows which are formed due to the combination of temperature and concentration gradients are referred to as double-diffusive convection. Double diffusion convection (D.D.C) occurs in a wide range of scientific fields such as oceanography, astrophysics, geology, biology as well as in many engineering applications such as solar ponds, natural gas storage tanks, crystal manufacturing, material processing, food processing and etc. In order to have an overview of this phenomenon see some relevant fundamental works such as Turner et al.1-3 Double diffusive natural convection in enclosures has enormous industrial and geophysical applications, such as petrochemical process, fuel cells, pollutant dispersions in soil and underground water, design of heat exchangers, channel type solar energy collectors, and thermo-protection systems. Therefore, the characteristics of natural convection heat and mass transfer are very important. In recent years, a considerable number of analytical, numerical and experimental studies have been performed in order to analyze such interesting phenomenon in different enclosures. Ostrach et al.,4,5 have reported complete reviews on the subject. Gebhart6 were among the first ones to study D.D.C numerically for the cases of vertical laminar fluid motions along surfaces or in plumes. In this study, special attention was paid to the influence of non-dimensional parameters relevant to double-diffusion, on the heat and mass transport processes; transition to turbulence was mentioned. Bejan7 has reported a fundamental study of scale analysis relative to heat and mass transfer within cavities submitted to horizontal combined and pure temperature and concentration gradients. Pure thermal convection, pure solutal convection, heat transfer driven flows, and mass transfer driven flows were taken into account. Mobedi et al.,8,9 analyzed double diffusive convection in partially heated cavities. Nikbakhti and Rahimi10 studied numerically the flow, heat and mass transfer in a rectangular cavity with partially thermal active walls. They found the rate of heat and mass transfer will be a maximum when heating section located at the bottom and the cooling one on the top. A careful review of the existing literature reveals that D.D.C. have been mainly analysed in rectangular cavities and only a minority of studies have considered non-rectangular cavities and in particular the trapezoidal geometry, which is encountered in several practical applications, such as attic spaces in buildings11, greenhouses12 or sun drying of crops.13 Dong and Ebadian14 were the first did a preliminary investigation on double diffusive convection in trapezoidal cavity. They considered a cavity with 75° inclined side walls and horizontal top and bottom and steady numerical solutions were obtained with lateral thermal and solutal gradients for Pr=7 and Le = 100 (water) with both opposing and assisting buoyancy forces. Boussaid et al.15 studied double diffusive convection in the laminar-flow regime in a trapezoidal enclosure. Papanicolaou & Belessiotis16 analysed double diffusive natural convection in an asymmetric trapezoidal enclosure. The present study investigates double-diffusive natural convection phenomenon in a trapezoidal cavity with partially thermally active right side wall for three different heating locations. That is, for the hot region located at the top, middle and bottom and the left wall is cooling. The main objective of this work is to determine the region where the heat and mass transfer rate is maximum/minimum in the cavity. The results are displayed graphically in terms of the streamlines, isotherms and isconcentration. Teamah & Shehata17 conducted a numerical investigation to analyse double diffusive natural convection within a trapezoidal cavity submitted to the magnetic field. They found that the rate of heat and mass transfer experienced a decrease when the inclination angle increased from 0° to 75°. In addition, heat and mass transfer decreased as Hartman number increased from 0 to 15. Al-Mudhaf et al.,18 carried out an analysis of the influences of Soret and Dufour on the transient double-diffusive natural convection inside trapezoidal enclosures filled with isotropic porous medium with exponential variation of boundary conditions. The results revealed that the local Nusselt number decreased with increasing either D for 𝜏. However, the increase in Sr led to reduce the average Sherwood number and to increase the average Nusselt number. Borhan Dddin et al.,19 studied double diffusive mixed convection flow in a trapezoidal enclosure in the presence of the uniform magnetic field effect applied in negative horizontal direction. They concluded that Heat transfer rate was not significant for lower values of Ri but increases rapidly for higher value of Ri for all values of Le in both cases which shows the dependency of Ri on heat transfer.

Physical model and governing equations

A schematic diagram of the two-dimensional trapezoidal cavity with two walls of length L inclined at an angle s γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3882@ with the x axis and height H is shown in Figure 1. Considering that the enclosure is filled with moist air, with a low concentration of water vapor, it can be taken Pr=0.71, Sc=0.63. The active right side wall of the cavity is partially heated at T h  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiva8aadaWgaaqcfasaa8qacaWGObGaaiiOaaWdaeqaaaaa @3A62@ with a high concentration c h  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4ya8aadaWgaaqaaKqbG8qacaWGObqcfaOaaiiOaaWdaeqa aaaa@3AFF@ and the left one is cooled at   T C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaiiOaiaadsfapaWaaSbaaKqbGeaapeGaam4qaaqcfa4daeqa aaaa@3ACB@ with a low concentration, c l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4ya8aadaWgaaqcfasaa8qacaWGSbaapaqabaaaaa@3951@ where ( T h  > T C ),and ( c h  > c l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaa8aabaWdbiaadsfapaWaaSbaaeaajuaipeGaamiAaKqb akaacckaa8aabeaapeGaeyOpa4Jaamiva8aadaWgaaqcfasaa8qaca WGdbaapaqabaaajuaGpeGaayjkaiaawMcaaiaacYcacaqGHbGaaeOB aiaabsgacaGGGcGaaiikaiaadogapaWaaSbaaKqbGeaapeGaamiAai aacckaa8aabeaajuaGpeGaeyOpa4Jaam4ya8aadaWgaaqcfasaa8qa caWGSbaajuaGpaqabaWdbiaacMcaaaa@4E65@ The length of the thermally active right part of the cavity is equal to half of the length L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaeaacaWGmbaabaGaaGOmaaaaaaa@3898@ are considered. In Case I, the hot region is located at the top wall, in Case II it is located in the middle and in Case III it is located adjacent to the bottom wall. In this study, it is considered that the fluid is incompressible, Newtonian, and viscous. The viscous dissipation is assumed negligible and the gravity acts in the downward direction. The Boussinesq approximation with opposite thermal and solute buoyancy forces is used for the body force terms in the momentum equations. The heat flux driven by concentration gradients (thermal diffusion or Soret effect) and the mass flux driven by temperature gradients (diffusion thermo or Dufour effect) are also neglected. The mixture density is assumed to be uniform over the cavity, exception made to the buoyancy term, in which it is taken as a function of both the temperature as well as concentration levels through the Boussinesq approach; ρ= ρ 0 [ 1 β T ( Τ Τ c )+ β C ( c c l ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyWdiNaeyypa0JaeqyWdi3damaaBaaajuaibaWdbiaaicda aKqba+aabeaapeWaamWaa8aabaWdbiaaigdacqGHsislcqaHYoGypa WaaSbaaKqbGeaapeGaaeivaaWdaeqaaKqba+qadaqadaWdaeaapeGa aeiPdiabgkHiTiaabs6apaWaaSbaaKqbGeaapeGaae4yaaWdaeqaaa qcfa4dbiaawIcacaGLPaaacqGHRaWkcqaHYoGypaWaaSbaaKqbGeaa peGaae4qaaqcfa4daeqaa8qadaqadaWdaeaapeGaae4yaiabgkHiTi aabogapaWaaSbaaKqbGeaapeGaamiBaaWdaeqaaaqcfa4dbiaawIca caGLPaaaaiaawUfacaGLDbaaaaa@565D@ With these descriptions and assumptions of the problem, and representing the position through Cartesian coordinate system in two dimensions, the governing equations could be written in non-dimensional form as the following:

ϖ τ +U ϖ X +V ϖ Y = 2 ϖ X 2 + 2 ϖ Y 2 +G r T ( θ X N C X   ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaa8aabaWdbiabgkGi2kabeA9a2bWdaeaapeGaeyOaIyRa eqiXdqhaaiabgUcaRiaadwfadaWcaaWdaeaapeGaeyOaIyRaeqO1dy hapaqaa8qacqGHciITcaWGybaaaiabgUcaRiaadAfadaWcaaWdaeaa peGaeyOaIyRaeqO1dyhapaqaa8qacqGHciITcaWGzbaaaiabg2da9m aalaaapaqaa8qacqGHciITpaWaaWbaaKqbGeqabaWdbiaaikdaaaqc faOaeqO1dyhapaqaa8qacqGHciITcaWGybWdamaaCaaabeqcfasaa8 qacaaIYaaaaaaajuaGcqGHRaWkdaWcaaWdaeaapeGaeyOaIy7damaa Caaajuaibeqaa8qacaaIYaaaaKqbakabeA9a2bWdaeaapeGaeyOaIy Raamywa8aadaahaaqcfasabeaapeGaaGOmaaaaaaqcfaOaey4kaSIa am4raiaadkhapaWaaSbaaeaapeGaamivaaWdaeqaa8qadaqadaWdae aapeWaaSaaa8aabaWdbiabgkGi2kabeI7aXbWdaeaapeGaeyOaIyRa amiwaaaacqGHsislcaWGobWaaSaaa8aabaWdbiabgkGi2kaadoeaa8 aabaWdbiabgkGi2kaadIfaaaGaaiiOaaGaayjkaiaawMcaaaaa@740F@ (1)

θ τ +U θ X +V θ Y = 1 Ρr [ 2 θ X 2 + 2 θ Y 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaa8aabaWdbiabgkGi2kabeI7aXbWdaeaapeGaeyOaIyRa eqiXdqhaaiabgUcaRiaadwfadaWcaaWdaeaapeGaeyOaIyRaeqiUde hapaqaa8qacqGHciITcaWGybaaaiabgUcaRiaadAfadaWcaaWdaeaa peGaeyOaIyRaeqiUdehapaqaa8qacqGHciITcaWGzbaaaiabg2da9m aalaaapaqaa8qacaaIXaaapaqaa8qacaqGHoGaamOCaaaadaWadaWd aeaapeWaaSaaa8aabaWdbiabgkGi2+aadaahaaqabKqbGeaapeGaaG OmaaaajuaGcqaH4oqCa8aabaWdbiabgkGi2kaadIfapaWaaWbaaeqa juaibaWdbiaaikdaaaaaaKqbakabgUcaRmaalaaapaqaa8qacqGHci ITpaWaaWbaaKqbGeqabaWdbiaaikdaaaqcfaOaeqiUdehapaqaa8qa cqGHciITcaWGzbWdamaaCaaajuaibeqaa8qacaaIYaaaaaaaaKqbak aawUfacaGLDbaaaaa@65C3@ (2)

C τ +U C X +V C Y = 1 Sc [ 2 C X 2 + 2 C Y 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaa8aabaWdbiabgkGi2kaadoeaa8aabaWdbiabgkGi2kab es8a0baacqGHRaWkcaWGvbWaaSaaa8aabaWdbiabgkGi2kaadoeaa8 aabaWdbiabgkGi2kaadIfaaaGaey4kaSIaamOvamaalaaapaqaa8qa cqGHciITcaWGdbaapaqaa8qacqGHciITcaWGzbaaaiabg2da9maala aapaqaa8qacaaIXaaapaqaa8qacaWGtbGaam4yaaaadaWadaWdaeaa peWaaSaaa8aabaWdbiabgkGi2+aadaahaaqabKqbGeaapeGaaGOmaa aajuaGcaWGdbaapaqaa8qacqGHciITcaWGybWdamaaCaaabeqcfasa a8qacaaIYaaaaaaajuaGcqGHRaWkdaWcaaWdaeaapeGaeyOaIy7dam aaCaaajuaibeqaa8qacaaIYaaaaKqbakaadoeaa8aabaWdbiabgkGi 2kaadMfapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaaqcfaOaay5wai aaw2faaaaa@60BF@ (3)

ϖ= 2 Ψ X 2 + 2 Ψ Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeyOeI0IaeqO1dyNaeyypa0ZaaSaaa8aabaWdbiabgkGi2+aa daahaaqabKqbGeaapeGaaGOmaaaajuaGcaqGOoaapaqaa8qacqGHci ITcaWGybWdamaaCaaajuaibeqaa8qacaaIYaaaaaaajuaGcqGHRaWk daWcaaWdaeaapeGaeyOaIy7damaaCaaabeqcfasaa8qacaaIYaaaaK qbakaabI6aa8aabaWdbiabgkGi2kaadMfapaWaaWbaaeqajuaibaWd biaaikdaaaaaaaaa@4C4A@ (4)

The initial and boundary conditions in the dimensionless form are

τ=0:Ψ=0,θ=0,C=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiXdqNaeyypa0JaaGimaiaacQdacaqGOoGaeyypa0JaaGim aiaacYcacqaH4oqCcqGH9aqpcaaIWaGaaiilaiaadoeacqGH9aqpca aIWaGaaiilaaaa@463A@ side walls,0≀Y≀1,

τ>0:  Ψ= Ψ Y =0, θ=1, C=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiXdqNaeyOpa4JaaGimaiaacQdacaGGGcGaaiiOaiaabI6a cqGH9aqpdaWcaaWdaeaapeGaeyOaIyRaaeiQdaWdaeaapeGaeyOaIy RaamywaaaacqGH9aqpcaaIWaGaaiilaiaacckacqaH4oqCcqGH9aqp caaIXaGaaiilaiaacckacaWGdbGaeyypa0JaaGymaiaacYcaaaa@50FA@ on the hot part of the right wall,

Ψ= Ψ Y =0, θ=0, C=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaeiQdiabg2da9maalaaapaqaa8qacqGHciITcaqGOoaapaqa a8qacqGHciITcaWGzbaaaiabg2da9iaaicdacaGGSaGaaiiOaiabeI 7aXjabg2da9iaaicdacaGGSaGaaiiOaiaadoeacqGH9aqpcaaIWaaa aa@49BB@ on the left wall,

Ψ=0, θ X =0,  C X =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaeiQdiabg2da9iaaicdacaGGSaWaaSaaa8aabaWdbiabgkGi 2kabeI7aXbWdaeaapeGaeyOaIyRaamiwaaaacqGH9aqpcaaIWaGaai ilaiaacckadaWcaaWdaeaapeGaeyOaIyRaam4qaaWdaeaapeGaeyOa IyRaamiwaaaacqGH9aqpcaaIWaGaaiilaaaa@4B09@ at inactive parts of the right wall,

Ψ= Ψ Y =0,  θ Y =0,  C Y =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaeiQdiabg2da9maalaaapaqaa8qacqGHciITcaqGOoaapaqa a8qacqGHciITcaWGzbaaaiabg2da9iaaicdacaGGSaGaaiiOamaala aapaqaa8qacqGHciITcqaH4oqCa8aabaWdbiabgkGi2kaadMfaaaGa eyypa0JaaGimaiaacYcacaGGGcWaaSaaa8aabaWdbiabgkGi2kaado eaa8aabaWdbiabgkGi2kaadMfaaaGaeyypa0JaaGimaiaacYcaaaa@525B@, at Y=0 and 1

Where the non-dimensional variables and parameters are

τ= t L 2 /ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiXdqNaeyypa0ZaaSaaaeaacaWG0baabaWaaSGbaeaacaWG mbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacqaH9oGBaaaaaaaa@3F08@, X= x L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiwaiabg2da9maalaaapaqaa8qacaWG4baapaqaa8qacaWG mbaaaaaa@3AFA@, Y= y H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamywaiabg2da9maalaaapaqaa8qacaWG5baapaqaa8qacaWG ibaaaaaa@3AF8@, V= υ ν/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvaiabg2da9maalaaapaqaa8qacqaHfpqDa8aabaWdbiab e27aUjaac+cacaWGmbaaaaaa@3E2D@, ψ= ψ ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiYdKNaeyypa0ZaaSaaa8aabaWdbiabeI8a5bWdaeaapeGa eqyVd4gaaaaa@3DA3@,

ϖ= ω ν/ L 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqO1dyNaeyypa0ZaaSaaa8aabaWdbiabeM8a3bWdaeaapeGa eqyVd4Maai4laiaadYeapaWaaWbaaeqajuaibaWdbiaaikdaaaaaaK qbakaacYcaaaa@419A@, θ= Τ Τ c Τ h Τ c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiUdeNaeyypa0ZaaSaaa8aabaWdbiabfs6aujabgkHiTiab fs6au9aadaWgaaqcfasaa8qacaWGJbaajuaGpaqabaaabaWdbiabfs 6au9aadaWgaaqcfasaa8qacaWGObaajuaGpaqabaWdbiabgkHiTiab fs6au9aadaWgaaqcfasaa8qacaWGJbaapaqabaaaaKqba+qacaGGSa aaaa@4896@, C= c c l c h c l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4qaiabg2da9maalaaapaqaa8qacaWGJbGaeyOeI0Iaam4y a8aadaWgaaqcfasaa8qacaWGSbaajuaGpaqabaaabaWdbiaadogapa WaaSbaaKqbGeaapeGaamiAaaqcfa4daeqaa8qacqGHsislcaWGJbWd amaaBaaajuaibaWdbiaadYgaa8aabeaaaaaaaa@43F4@, , Pr= ν α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiuaiaadkhacqGH9aqpdaWcaaWdaeaapeGaeqyVd4gapaqa a8qacqaHXoqyaaaaaa@3D72@ , Le= α D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamitaiaadwgacqGH9aqpdaWcaaWdaeaapeGaeqySdegapaqa a8qacaWGebaaaaaa@3C72@ , Sc= ν D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4uaiaadogacqGH9aqpdaWcaaWdaeaapeGaeqyVd4gapaqa a8qacaWGebaaaaaa@3C90@

G r c = g β c ΔC L 3 ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4raiaadkhapaWaaSbaaKqbGeaapeGaam4yaaqcfa4daeqa a8qacqGH9aqpdaWcaaWdaeaapeGaam4zaiabek7aI9aadaWgaaqcfa saa8qacaqGJbaapaqabaqcfa4dbiabgs5aejaadoeacaWGmbWdamaa Caaabeqcfasaa8qacaaIZaaaaaqcfa4daeaapeGaeqyVd42damaaCa aajuaibeqaa8qacaaIYaaaaaaaaaa@4840@ , G r T = g β T ΔT L 3 ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4raiaadkhapaWaaSbaaKqbGeaapeGaamivaaqcfa4daeqa a8qacqGH9aqpdaWcaaWdaeaapeGaam4zaiabek7aI9aadaWgaaqcfa saa8qacaqGubaajuaGpaqabaWdbiabgs5aejaadsfacaWGmbWdamaa Caaajuaibeqaa8qacaaIZaaaaaqcfa4daeaapeGaeqyVd42damaaCa aajuaibeqaa8qacaaIYaaaaaaaaaa@4833@ , N= β C ΔC β T ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtaiabg2da9maalaaapaqaa8qacqaHYoGypaWaaSbaaKqb GeaapeGaam4qaaWdaeqaaKqba+qacqGHuoarcaWGdbaapaqaa8qacq aHYoGypaWaaSbaaKqbGeaapeGaamivaaqcfa4daeqaa8qacqGHuoar caWGubaaaaaa@44AA@

Figure 1 Physical configuration.

 

Method of solution

The governing equations along with the boundary conditions are solved numerically, employing finite-difference techniques. The vorticity transport, energy and mass equations are solved using the ADI (Alternating Direction Implicit) method and the stream function equation is solved by SOR (Successive Over Relaxation) method. The over-relaxation parameter is chosen to be 1.8 for stream function solutions. The buoyancy and diffusive terms are discretized by using central differencing while the use of upwind differencing is preferred for convective terms for numerical stability. Starting from arbitrarily specified initial values of variables, the discretized transient equations are then solved by marching in time until an asymptotic steady-state solution is reached. Convergence of iteration for stream function solution is obtained at each time step. The following criterion is employed to check for steady-state solution

i=1 imax j=1 jmax | Φ i,j n+1 Φ i,j n | | Φ | max ×imax×jmax ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaa8aabaWdbmaavadabeqcfaYdaeaapeGaamyAaiabg2da 9iaaigdaa8aabaWdbiaadMgacaWGTbGaamyyaiaadIhaaKqba+aaba WdbiabggHiLdaadaqfWaqabKqbG8aabaWdbiaadQgacqGH9aqpcaaI Xaaapaqaa8qacaWGQbGaamyBaiaadggacaWG4baajuaGpaqaa8qacq GHris5aaWaaqWaa8aabaWdbiabfA6ag9aadaqhaaqcfasaa8qacaWG PbGaaiilaiaadQgaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaKqbak abgkHiTiabfA6ag9aadaqhaaqcfasaa8qacaWGPbGaaiilaiaadQga a8aabaWdbiaad6gaaaaajuaGcaGLhWUaayjcSdaapaqaa8qadaabda WdaeaapeGaeuOPdyeacaGLhWUaayjcSdWdamaaBaaajuaibaWdbiaa d2gacaWGHbGaamiEaaqcfa4daeqaa8qacqGHxdaTcaWGPbGaamyBai aadggacaWG4bGaey41aqRaamOAaiaad2gacaWGHbGaamiEaaaacqGH KjYOcqaH1oqzaaa@73F6@ (5)

Where Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuOPdyeaaa@3875@ stands for either ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiYdKhaaa@38C9@ or θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiUdehaaa@38B1@ n refers to time and i and j refer to space coordinates. The value of ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyTdugaaa@38A2@ ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyTdugaaa@38A2@ is chosen as 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaGymaiaaicdapaWaaWbaaeqajuaibaWdbiabgkHiTiaaiAda aaaaaa@3A8C@ . The time step used in the computations is varied between 0.0001 and 0.000001 depending on Grashof number and the angle γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdCgaaa@38A2@ .The numerical solutions are found for different grid systems from 21×21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca aIXaGaey41aqRaaGOmaiaaigdaaaa@3BE0@ to 101×101 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca aIWaGaaGymaiabgEna0kaaigdacaaIWaGaaGymaaaa@3D52@ for γ= 30 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdCMaeyypa0JaaG4maiaaicdadaahaaqcfasabeaacaaI Waaaaaaa@3C29@ γ= 60 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdCMaeyypa0JaaGOnaiaaicdadaahaaqcfasabeaacaaI Waaaaaaa@3C2C@

as well as for γ= 90 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdCMaeyypa0JaaGyoaiaaicdadaahaaqcfasabeaacaaI Waaaaaaa@3C2F@ and it is observed that a further refinement of grids from 41×41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaisdaca aIXaGaey41aqRaaGinaiaaigdaaaa@3BE4@ , 51×51 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiwdaca aIXaGaey41aqRaaGynaiaaigdaaaa@3BE6@ ,and 61×61 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiAdaca aIXaGaey41aqRaaGOnaiaaigdaaaa@3BE8@ for Îł=〖90〗^°,Îł=〖60〗^°, and Îł=〖30〗^°respectively to 101×101 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca aIWaGaaGymaiabgEna0kaaigdacaaIWaGaaGymaaaa@3D52@ does not have a significant effect on the results in terms of average Nusselt and Sherwood number and the maximum value of the stream function. Consequently, according to this observation, a uniform grid of 61×61 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiAdaca aIXaGaey41aqRaaGOnaiaaigdaaaa@3BE8@ points is used for all of the angles in this work.

Results and discussion

Numerical study is conducted for different heating sections, inclination angles, thermal Grashof numbers, and Buoyancy ratio number. The results are presented in the form of streamlines, isotherms and isoconcentration to show the fluid flow, heat and mass transfer phenomena in steady states. The rate of heat and mass transfer in the enclosure is measured in terms of the average Nusselt number and average Sherwood number.

Effect of heating locations

Figures 2-4 demonstrate the flow pattern, the temperature and concentration distributions for three different mentioned cases by plotting the contours of stream lines, isotherms and iso-concentrations for angle with following characteristics: Pr=0.71, Sc=0.63, GrT=106, N=0.2. Figure 2 shows the flow patterns inside the cavity for three different cases. In the first case, when the heating zone is placed on the top of the right sidewall of the cavity (Figure 2(a)) there exist two inner cells each at the top-right near the heating zone and in the middle near the cold wall and the remaining parts of the cavity are less activated. In Figure 2(b) where the heating section is in the middle, there is a principal cell occupied almost the whole cavity. In the last case, when the heating zone moves to the bottom of the right side wall, there are two inner cells grown in strength. In comparison with the other cases, velocity and circulation rate of this section is a maximum. Figure 3 illustrates the temperature distribution inside the cavity for these cases by plotting the contours of isotherms. Figure 3(a) displays isotherms for top active heated section and convection near the active section is converted to conduction. In contrast to the other cases, in this case the rate of heat transfer contributes to the least. When heating section moves to the bottom part of the side wall a thermal boundary layer forms near the active zone, and convection can be seen from isotherms, Figure 3(c). It is important to note that in this case heat transfer rate is a maximum. The distribution of concentration is shown in Figure 4(a-c). As it can be seen, the isopleths of concentration has similar behaviour as that of temperature and this is mainly because of the similarity of energy and mass transfer equations. It is also significant to mention that due to Prandtl number which is almost equal to Schmidt number (Le=1), the mass and the thermal diffusivity have similar effect on fluid.

Figure 2 Streamlines for all heating locations γ= 30 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdCMaeyypa0JaaG4maiaaicdadaahaaqcfasabeaacaaI Waaaaaaa@3C29@ ,N = 0.2 and G r T = 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4raiaadkhadaWgaaqcfasaaiaadsfaaKqbagqaaiabg2da 9iaaigdacaaIWaWaaWbaaKqbGeqabaGaaGOnaaaaaaa@3DFF@ .

Figure 3 Isotherms for all heating locations, γ= 30 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdCMaeyypa0JaaG4maiaaicdadaahaaqcfasabeaacaaI Waaaaaaa@3C29@ N = 0.2 and Gr= 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4raiaadkhacqGH9aqpcaaIXaGaaGimamaaCaaajuaibeqa aiaaiAdaaaaaaa@3C49@

Figure 4 Isoconcentrations for all heating locations, γ= 30 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdCMaeyypa0JaaG4maiaaicdadaahaaqcfasabeaacaaI Waaaaaaa@3C29@ N = 0.2 and Gr= 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4raiaadkhacqGH9aqpcaaIXaGaaGimamaaCaaajuaibeqa aiaaiAdaaaaaaa@3C49@

Effect on heat and mass transfer

The average Nusselt and Sherwood numbers which quantify the amount of heat and mass transfer in the enclosure are the significant quantities in double diffusive natural convection phenomenon. The average Nusselt and Sherwood numbers have been depicted in Figure 5 & 6, respectively as a function of Grashof number for different active heated zones and angle with following characteristics: Pr=0.71, Sc=0.63, N=0.2. The average Nusselt and Sherwood numbers are increased by increasing the Grashof number which led to the increase in the rate of heat and mass transfer in the cavity. Also, the average Nusselt and Sherwood numbers are increased when the heated zone moves from the top to the bottom of the right side wall in each Grashof number. As a result, the maximum rate of heat and mass transfer in the enclosure is when the active heated section is located on the bottom of the right side wall.

Figure 5 Average Nusselt number vs. Grashof number for different locations.

Figure 6 Average Sherwood number vs. Grashof number for different locations.

Conclusion

A numerical investigation of double diffusive natural convection in a two-dimensional trapezoid enclosure with a partial heated wall has been studied. With moving the heating zone toward the bottom of the cavity the heat and mass transfer rate is found to increase and it is the highest for the bottom thermally active location while the heat and mass transfer rate is poor when the heated section is located at the top of the cavity for N=0.2. In addition, Grashof number has a direct effect on the average Nusselt and Sherwood numbers so that the rate of heat and mass transfer in the cavity is increased by increasing Grash of number.

Acknowledgements

None

Conflict of interest

The author declares there is no conflict of interest.

References

  1. Turner JS. Double diffusive phenomena. Annu Rev Fluid Mech. 1974;6:37–56.
  2. Huppert HE, Sparks RSJ. Double-diffusive convection due to crystallization in magmas. Annu Rev Earth Planet Sci. 1984;12:11–37.
  3. Schmitt RW. Double diffusion in oceanography. Annu Rev Fluid Mech. 1994;26:255–285.
  4. Ostrach S. Fluid mechanics in crystal growth–the 1982 Freeman Scholar Lecture. J Fluids Eng. 1983;105(1):5–20.
  5. Viskanta R, Bergman TL, Incopera FP. Double-diffusive natural convection. In: Kakac S, Aung W, Viskanta R, editors. Natural Convection: Fundamentals and Applications, Hemisphere.Washington, DC, 1985. p. 1075–1099.
  6. Gebhart B, Pera L. The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion. Int J Heat Mass Transfer. 1971;14(12):2025–2050.
  7. Bejan A. Mass and heat transfer by natural convection in a vertical cavity. Int J Heat Fluid Flow. 1985;6(3):149–59.
  8. Mobedi M, Özkol Ü, Sunden B. Visualization of diffusion and convection heat transport in a square cavity with natural convection. Int J Heat Mass Transfer. 2009;53(1-3):99–109.
  9. Nithyadevi N, Yang R. Double diffusive natural convection in a partially heated enclosure with Soret and Dufour effects. Int J Heat and Fluid Flow. 2009;30(5):902–910.
  10. Nikbakhti R, Rahimi AB. Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls. J Taiwan Inst Chem Eng. 2012;43(4):535–541.
  11. Moukalled F, Acharya S. Natural convection in trapezoidal cavities with baffles mounted on the upper inclined surfaces. Numer Heat Transfer. 2000;37(6):545–565.
  12. Boulard T, Kittas C, Roy JC, et al. Convective and ventilation transfers in greenhouses, part 2: determination of the distributed greenhouse climate. Biosyst Eng. 2002;83(2):129–147.
  13. Oosthuizen PH. Free convective flow in an enclosure with a cooled inclined upper surface. Comput Mech. 1994;14(5):420–430.
  14. Dong ZF, Ebadian MA. Investigation of double-diffusive natural convection in a trapezoidal enclosure. J Heat Transfer Trans ASME. 1994;116(2):492–495.
  15. Boussaid M, Djerrada A, Bouhadef M. Thermosolutal transfer within trapezoidal cavity. Num Heat Transfer. 2003;43(4):431–448.
  16. Papanicolaou E, Belessiotis V. Double-diffusive natural convection in an asymmetric trapezoidal enclosure: unsteady behavior in the laminar and the turbulent-flow regime. Int J Heat Mass Transfer. 2005;48(1):191–209.
  17. Teamah MA,Shehata AI. Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities. Alexandria Engineering Journal. 2016;55(2):1037–1046.
  18. Al-Mudhaf F, Rashad A, Ahmed SE, et al. Soret and Dufour effects on unsteady double diffusive natural convection in porous trapezoidal enclosures. International Journal of Mechanical Sciences. 2018;140:172–178.
  19. Uddin MB, Rahman M, Khan M, et al. Hydromagnetic double-diffusive mixed convection in trapezoidal enclosure due to uniform and nonuniform heating at the bottom side: Effect of Lewis number. Alexandria Engineering Journal. 2016;55(2):1165–1176.
Creative Commons Attribution License

©2018 Gholizadeh, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.