Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 2 Issue 4

Fault–tolerant attitude control for flexible spacecraft with input saturation

Haihui Long, Jiankang Zhao

School of Electronic Information and Electrical Engineering, Shang Hai Jiao Tong University, China

Correspondence: Jiankang Zhao, School of Electronic Information and Electrical Engineering, Shang Hai Jiao Tong University, China, Tel +8618801969342

Received: April 24, 2017 | Published: June 12, 2017

Citation: Long H, Zhao J. Fault–tolerant attitude control for flexible spacecraft with input saturation. Int Rob Auto J. 2017;2(4):122-132. DOI: 10.15406/iratj.2017.02.00026

Download PDF

Abstract

Fault-tolerant constrained attitude controllers are proposed for flexible spacecraft in the presence of input saturation and actuator fault, as well as model uncertainty and external disturbance. Two input saturations, that is amplitude saturation and, amplitude and rate saturation are considered and simple and effective compensators are designed to deal with the effect of input saturation. Two parameter update laws are designed to endure stuck fault, partial and complete loss of effectiveness fault. The stability of the resulting closed-loop systems by the proposed controllers is guaranteed by Lyapunov-based approach. The effectiveness of the proposed algorithms is assessed through numerical simulations.

Keywords: Fault-tolerant; Attitude control; Flexible spacecraft; Input saturation

Introduction

In the past several decades, the attitude control problem of spacecraft has attracted a great deal of attention due to its important applications.1-3 As actuation devices generate toques with only limited amplitude and/or rate,4-6 input saturation may frequently occur during the entire attitude maneuvers of a spacecraft. As discussed in7,8 input saturation can severely degrade closed-loop system performance or even in some cases cause system instability if they are not carefully tackled in attitude control process. Because of this, many researchers have focused on input saturation in attitude controller design of spacecraft.9-13 In,12 neural network was used to estimate the unknown input saturation and then the effect of input saturation was compensated by inserting the saturation compensator into the feed-forward loop of the system. In,13 an auxiliary variable was employed to compensate the effect of input saturation in attitude controller design. However, the tracking error would be modified to get a stable control system with this auxiliary variable. In addition, during the spacecraft mission, actuators may undergo faults due to aging or accidents, such as partial loss of effectiveness, stuck and outage. These faults may cause system instability or even end up with catastrophic events if they are not well handled. Therefore, designing a controller that is robust to these actuator faults is one of the significant issues that need to be considered by researchers. Fault-tolerant control (FTC)14,15 is considered as one of the most effective approaches for maintaining stability and expected performance of system during the actuator faults occurrence. More and more literatures have focused on fault-tolerant attitude control for a spacecraft; see.16-22 In,21 the authors proposed fault-tolerant attitude control of spacecraft to accommodate the partial loss of effectiveness faults in actuators with a prior knowledge of the lower bound of the effectiveness factor. In,22 the knowledge of the bound of the partial effectiveness factor was not need by employing an update law to estimate the lower bound online. However, these mentioned literatures above less considered another important fault scenario of actuators, i.e., stuck fault. As far as we know, in attitude control design, there are few literatures that take stuck fault into account explicitly expect for.23 But in 23 input saturation were not considered, which might be sometimes conservative in practical applications.

Model uncertainty and external disturbance are another two large challenges that need to be considered in the attitude controller design of a spacecraft. Inverse optimal method is an attractive control approach for system with model uncertainty and external disturbance as it has the properties of robust to uncertainty and disturbance, and can achieve H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiabg6HiLcqabaaaaa@3906@ optimality without the need to solve the Hamilton-Jacobi-Isaacs partial differential (HJIPD) equation directly. Several researchers studied this approach to solve the attitude control problem of spacecraft.24-26 However, these literatures above more or less ignored the constraints on control input and the scenario of actuator faults. In addition, the vibration effect of the flexible appendages induced by the orbiting attitude slewing operation was also not handled explicitly. Therefore when input saturation and actuator faults occur simultaneously, stability will no long be guaranteed by using these existing inverse optimal methods. Furthermore, the stability of system becomes worse when serious vibration effect of the flexible appendages happens, because it tends to be aggressive while seeking the expected control performance. To overcome the shortcomings of the preceding research for spacecraft attitude control systems, novel constrained fault-tolerant attitude control strategies are proposed in this work for flexible spacecraft in the presence of actuator faults, input saturation, uncertainty inertia matrix and external disturbance. The main contributions of this paper are shown as follows:

  1. Unlike existing compensator in,13 in our work, a simple and effective compensator is introduced and embedded to the feedback controllers to eliminate the effect of input saturation.
  2. To handle the stuck faults and loss of effectiveness (including partial and complete loss of effectiveness) in actuator for a spacecraft, a new Lemma is first proposed and rigorous proof is presented. Two robust constrained fault-tolerant controllers, accounting for actuator amplitude constraint and, actuator amplitude and rate constraints, respectively, are proposed by introducing two parameter update laws to estimate the unknown parameters caused by actuator faults.
  3. In comparison with the existing literatures in,24-26 we extend the inverse optimal method to flexible spacecraft with input saturation and actuator faults.

The remainder of the paper is organized as follows: Section 2 presents the mathematical model of flexible spacecraft and control problem. Robust constrained fault-tolerant attitude controllers are derived in Section 3. Numerical simulation results of a flexible spacecraft with the derived controllers are given in Section 4, and Section 5 comprises conclusions and possibilities of future work.

Model description and problem formulation

This section briefly introduces the attitude kinematics and dynamic models of a flexible spacecraft. The model of the actuator faults is also established. The attitude kinematic equation of spacecraft can be expressed by unit quaternion as

Q ˙  = [ q ˙ 0 q ˙ ] =  1 2  [ q T q x + q 0 I ] ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgfaga GaaabaaaaaaaaapeGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWadaqa auaabeqaceaaaeaaceWGXbGbaiaadaWgaaqcfasaaiaaicdaaeqaaa qcfayaaiqadghagaGaaaaaaiaawUfacaGLDbaapeGaaiiOa8aacqGH 9aqppeGaaiiOa8aadaWcaaqaaiaaigdaaeaacaaIYaaaa8qacaGGGc WdamaadmaabaqbaeqabiqaaaqaaiabgkHiTiaadghadaahaaqcfasa beaacaWGubaaaaqcfayaaiaadghadaahaaqabKqbGeaacaWG4baaaK qbakabgUcaRiaadghadaWgaaqcfasaaiaaicdaaKqbagqaaiaadMea aaaacaGLBbGaayzxaaWdbiaacckapaGaeqyYdChaaa@5695@  (1)

Where    ω R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyYdCNaeyicI4SaamOuamaaCaaabeqcfasaaiaaiodaaaaa aa@3BCE@ is the angular velocity of the spacecraft with respect to an inertial frame and expressed in body frame, Q is the unit quaternion with the unit norm constraint Q, Q  =  q 0 2 + q T q = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaauWaaeaacaWGrbaacaGLjWUaayPcSdGaaiiOaiabg2da9iaa cckacaWGXbWaa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcqGHRa WkcaWGXbWaaWbaaKqbGeqabaGaamivaaaajuaGcaWGXbGaaiiOaiab g2da9iaacckacaaIXaaaaa@49BC@ given by

Q = [ q 0 q ] = [ cos( θ/2 ) esin( θ/2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyuaiaacckacqGH9aqpcaGGGcWaamWaaeaafaqabeGabaaa baGaamyCamaaBaaajuaibaGaaGimaaqabaaajuaGbaGaamyCaaaaai aawUfacaGLDbaacaGGGcGaeyypa0JaaiiOamaadmaabaqbaeqabiqa aaqaaiGacogacaGGVbGaai4CamaabmaabaGaeqiUdeNaai4laiaaik daaiaawIcacaGLPaaaaeaacaWGLbGaci4CaiaacMgacaGGUbWaaeWa aeaacqaH4oqCcaGGVaGaaGOmaaGaayjkaiaawMcaaaaaaiaawUfaca GLDbaaaaa@557D@            (2)

q= [ q 1 , q 2 q 3 ] T R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCaiabg2da9maadmaabaGaamyCamaaBaaajuaibaGaaGym aaqabaqcfaOaaiilaiaadghadaWgaaqcfasaaiaaikdaaeqaaKqbak aadghadaWgaaqcfasaaiaaiodaaKqbagqaaaGaay5waiaaw2faamaa CaaabeqcfasaaiaadsfaaaqcfaOaeyicI4SaamOuamaaCaaabeqcfa saaiaaiodaaaaaaa@4803@ and q 0 R 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCamaaBaaajuaibaGaaGimaaqabaqcfaOaeyicI4SaamOu amaaCaaabeqcfasaaiaaigdaaaaaaa@3C8C@  are the vector part and the scalar part of the unit quaternion Q, respectively, e R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyzaiabgIGiolaadkfadaahaaqabKqbGeaacaaIZaaaaaaa @3AEB@ 3 and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiUdehaaa@384F@ denote the Euler axis and Euler angle, respectively, I is the identity matrix with appropriate dimension, and the superscript X is an operator which is denoted by                                                                                                      

a x = [ 0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggada ahaaqabKqbGeaacaWG4baaaKqbakabg2da9abaaaaaaaaapeGaaiiO a8aadaWadaqaauaabeqadmaaaeaacaaIWaaabaGaeyOeI0Iaamyyam aaBaaajuaibaGaaG4maaqcfayabaaabaGaamyyamaaBaaajuaibaGa aGOmaaqabaaajuaGbaGaamyyamaaBaaajuaibaGaaG4maaqabaaaju aGbaGaaGimaaqaaiabgkHiTiaadggadaWgaaqcfasaaiaaigdaaeqa aaqcfayaaiabgkHiTiaadggadaWgaaqcfasaaiaaikdaaKqbagqaaa qaaiaadggadaWgaaqcfasaaiaaigdaaKqbagqaaaqaaiaaicdaaaaa caGLBbGaayzxaaaaaa@518B@           (3)

a is a three dimensional vector with elements a1 , a2 and a3 . Obviously, a x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggada ahaaqabKqbGeaacaWG4baaaaaa@38AC@ is a skew-symmetric matrix.

The dynamic equations of a flexible spacecraft can be written as12

J s ω ˙  +  σ T η ¨  =  ω x ( J s ω+ σ T η ˙ )+u+ d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaadohaaKqbagqaaiqbeM8a3zaacaaeaaaaaaaaa8qa caGGGcWdaiabgUcaR8qacaGGGcWdaiabeo8aZnaaCaaajuaibeqaai aadsfaaaqcfaOafq4TdGMbamaapeGaaiiOa8aacqGH9aqppeGaaiiO a8aacqGHsislcqaHjpWDdaahaaqabKqbGeaacaWG4baaaKqbaoaabm aabaGaamOsamaaBaaabaGaam4CaaqabaGaeqyYdCNaey4kaSIaeq4W dm3aaWbaaeqajuaibaGaamivaaaajuaGcuaH3oaAgaGaaaGaayjkai aawMcaaiabgUcaRiaadwhacqGHRaWkcaWGKbWaaSbaaKqbGeaacaWG ZbaajuaGbeaaaaa@5C87@  (4)

η ¨ =D η ˙ Eησ ω ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeE7aOz aadaGaeyypa0JaeyOeI0IaamiraiqbeE7aOzaacaGaeyOeI0Iaamyr aiabeE7aOjabgkHiTiabeo8aZjqbeM8a3zaacaaaaa@4489@  (5)

where     Js J s R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaadohaaeqaaKqbakabgIGiolaadkfadaahaaqabKqb GeaacaaIZaGaey41aqRaaG4maaaaaaa@3F59@ represents the inertia matrix of the whole spacecraft,          η R N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOj abgIGiolaadkfadaahaaqabKqbGeaacaWGobaaaaaa@3BA3@ denotes the model coordinate vector with is the model number, σ R N×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZj abgIGiolaadkfadaahaaqabKqbGeaacaWGobGaey41aqRaaG4maaaa aaa@3E8E@ denotes the coupling matrix between the elastic and rigid structure, u R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGsbWaaWbaaeqajuaibaGaaG4maaaaaaa@3ADB@ N is the actual control torque,                d s R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgada WgaaqcfasaaiaadohaaeqaaKqbakabgIGiolaadkfadaahaaqabKqb GeaacaaIZaaaaaaa@3C9F@ is disturbance torques, D = diag { 2 ξ i ϑ i 1 2 , i= 1,2,....,N } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaqa aaaaaaaaWdbiaacckapaGaeyypa0ZdbiaacckapaGaamizaiaadMga caWGHbGaam4za8qacaGGGcWdamaacmaabaGaaGOmaiabe67a4naaBa aajuaibaGaamyAaaqabaqcfaOaeqy0dO0aa0baaKqbafaacaWGPbaa baqcfa4aaSaaaKqbafaacaaIXaaabaGaaGOmaaaaaaqcfaOaaiila8 qacaGGGcWdaiaadMgacqGH9aqppeGaaiiOa8aacaaIXaGaaiilaiaa ikdacaGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaacYcacaWGobaaca GL7bGaayzFaaaaaa@5888@ and E = diag { ϑ i , i= 1,2,....,N } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweaqa aaaaaaaaWdbiaacckapaGaeyypa0ZdbiaacckapaGaamizaiaadMga caWGHbGaam4za8qacaGGGcWdamaacmaabaGaeqy0dO0aaSbaaKqbGe aacaWGPbaajuaGbeaacaGGSaWdbiaacckapaGaamyAaiabg2da98qa caGGGcWdaiaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6 cacaGGUaGaaiilaiaad6eaaiaawUhacaGL9baaaaa@51BB@ are the damping and stiffness matrices, respectively, ξ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe67a4n aaBaaajuaibaGaamyAaaqabaaaaa@3979@ is the corresponding damping ratio, and ϑ i 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg9akn aaDaaajuaibaGaamyAaaqaaKqbaoaalaaajuaibaGaaGymaaqaaiaa ikdaaaaaaaaa@3BA2@ is the natural frequency. When considering actuator faults, the actual control torque    u can be modeled as                                                                                                                                                                                                                                                                          

u( t ) =  ( u kh ( t )+( I ) F( t ) u c ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada qadaqaaiaadshaaiaawIcacaGLPaaaqaaaaaaaaaWdbiaacckapaGa eyypa0ZdbiaacckapaWaaabqaeaadaqadaqaaiabgEIizlaadwhada WgaaqcfasaaiaadUgacaWGObaajuaGbeaadaqadaqaaiaadshaaiaa wIcacaGLPaaacqGHRaWkdaqadaqaaiaadMeacqGHsislcqGHNis2ai aawIcacaGLPaaapeGaaiiOa8aacaWGgbWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaamyDamaaBaaajuaibaGaam4yaaqcfayabaWaaeWaae aacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaabeqabiabggHi Ldaaaa@589F@                                      (6)

Where   R 3×L , L  3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabggHiLd baaaaaaaaapeGaaiiOa8aacqGHiiIZcaWGsbWaaWbaaeqajuaibaGa aG4maiabgEna0kaadYeaaaqcfaOaaiila8qacaGGGcWdaiaadYeape GaaiiOa8aacqGHLjYSpeGaaiiOa8aacaaIZaaaaa@481B@ is the actuators distribution matrix, = diag( 1 ,..., L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizl abg2da9abaaaaaaaaapeGaaiiOa8aacaWGKbGaamyAaiaadggacaWG NbWaaeWaaeaacqGHNis2daWgaaqcfasaaiaaigdaaeqaaKqbakaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaey4jIK9aaSbaaKqbGeaacaWG mbaajuaGbeaaaiaawIcacaGLPaaaaaa@49CA@  with { 0,1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizl abgIGiopaacmaabaGaaGimaiaacYcacaaIXaaacaGL7bGaayzFaaaa aa@3E01@  being the fault switch factor, u kh ( t ) =  [ u kh1 ( t ), u kh2 ( t ),...., u L ( t ) ] T R L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadUgacaWGObaabeaajuaGdaqadaqaaiaadshaaiaa wIcacaGLPaaaqaaaaaaaaaWdbiaacckapaGaeyypa0Zdbiaacckapa WaamWaaeaacaWG1bWaaSbaaKqbGeaacaWGRbGaamiAaiaaigdaaKqb agqaamaabmaabaGaamiDaaGaayjkaiaawMcaaiaacYcacaWG1bWaaS baaKqbGeaacaWGRbGaamiAaiaaikdaaeqaaKqbaoaabmaabaGaamiD aaGaayjkaiaawMcaaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaai ilaiaadwhadaWgaaqaaKqbGiaadYeaaKqbagqaamaabmaabaGaamiD aaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaabeqcfasaaiaads faaaqcfaOaeyicI4SaamOuamaaCaaabeqcfasaaiaadYeaaaaaaa@5F55@  is the struck fault of actuators, u c = [ u c1 , u c2 , u cl ] T R L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyDamaaBaaajuaibaGaam4yaaqabaqcfaOaeyypa0ZaamWa aeaacaWG1bWaaSbaaKqbGeaacaWGJbGaaGymaaqcfayabaGaaiilai aadwhadaWgaaqcfasaaiaadogacaaIYaaabeaajuaGcaGGSaGaamyD amaaBaaajuaibaGaam4yaiaadYgaaKqbagqaaaGaay5waiaaw2faam aaCaaabeqcfasaaiaadsfaaaqcfaOaeyicI4SaamOuamaaCaaajuai beqaaiaadYeaaaaaaa@4D88@  denotes the input torque of actuators, F( t ) = diag( F 1 ( t ) F 2 ( t ),..., F L ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOramaabmaabaGaamiDaaGaayjkaiaawMcaaiaacckacqGH 9aqpcaGGGcGaamizaiaadMgacaWGHbGaam4zamaabmaabaGaamOram aaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaGaamOramaaBaaajuaibaGaaGOmaaqabaqcfa4aaeWaaeaaca WG0baacaGLOaGaayzkaaGaaiilaiaac6cacaGGUaGaaiOlaiaacYca caWGgbWaaSbaaKqbGeaacaWGmbaabeaajuaGdaqadaqaaiaadshaai aawIcacaGLPaaaaiaawIcacaGLPaaaaaa@54A2@  represents effectiveness matrix of actuators. F (t) can be modeled as19

F i  =  A F i + B F i 2 ( cos( ϑ F i )1 ),  A F i  [ 0,1 ],  B F i  [ 0,1 ],  i=1,2,....,L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOramaaBaaajuaibaGaamyAaaqabaqcfaOaaiiOaiabg2da 9iaacckacaWGbbWaaSbaaKqbGeaacaWGgbqcfa4aaSbaaKqbGeaaca WGPbaabeaaaeqaaKqbakabgUcaRmaalaaabaGaamOqamaaBaaajuai baGaamOraKqbaoaaBaaajuaibaGaamyAaaqabaaajuaGbeaaaeaaca aIYaaaamaabmaabaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaHrpGs daWgaaqcfasaaiaadAeajuaGdaWgaaqcfasaaiaadMgaaeqaaaqcfa yabaaacaGLOaGaayzkaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaa cYcacaGGGcGaamyqamaaBaaajuaibaGaamOraKqbaoaaBaaajuaiba GaamyAaaqabaaajuaGbeaacqGHiiIZcaGGGcWaamWaaeaacaaIWaGa aiilaiaaigdaaiaawUfacaGLDbaacaGGSaGaaiiOaiaadkeadaWgaa qcfasaaiaadAeajuaGdaWgaaqcfasaaiaadMgaaeqaaaqabaqcfaOa eyicI4SaaiiOamaadmaabaGaaGimaiaacYcacaaIXaaacaGLBbGaay zxaaGaaiilaiaacckacaGGGcGaamyAaiabg2da9iaaigdacaGGSaGa aGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiilaiaacYeaaa a@78EA@

Where A F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyqamaaBaaajuaibaGaamOraKqbaoaaBaaajuaibaGaamyA aaqabaaabeaaaaa@3A44@ denotes the magnitude of the actuator effectiveness and, B F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOqamaaBaaajuaibaGaamOraKqbaoaaBaaajuaibaGaamyA aaqabaaabeaaaaa@3A45@ and ω F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyYdC3aaSbaaKqbGeaacaWGgbqcfa4aaSbaaKqbGeaacaWG Pbaabeaaaeqaaaaa@3B4B@ are the amplitude and frequency of the high-frequency component, respectively, with A F i   B F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyqamaaBaaajuaibaGaamOraKqbaoaaBaaajuaibaGaamyA aaqabaaajuaGbeaacqGHLjYScaGGGcGaamOqamaaBaaajuaibaGaam OraKqbaoaaBaaajuaibaGaamyAaaqabaaabeaaaaa@4168@ . Therefore, we have F i   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOramaaBaaajuaibaGaamyAaaqabaqcfaOaaiiOaiabgwMi ZkaacckacaaIWaaaaa@3DF7@ , i=1,2,…,L.

Remark 1: Note that u khi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyDamaaBaaajuaibaGaam4AaiaadIgacaWGPbaajuaGbeaa aaa@3B3B@  and F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOramaaBaaajuaibaGaamyAaaqabaaaaa@38A1@ , i=1,…, L , can be constant or time-varying. From (6) we can conclude that, for the i th actuator, in the case of i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizp aaBaaajuaibaGaamyAaaqcfayabaGaeyypa0JaaGymaaaa@3BB3@ and u khi 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyDamaaBaaajuaibaGaam4AaiaadIgacaWGPbaabeaajuaG cqGHGjsUcaaIWaaaaa@3DBC@ , the actuator occurs stuck fault; In the case of i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizp aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaaGimaaaa@3BB2@ and 0< F i <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaicdacq GH8aapcaWGgbWaaSbaaKqbGeaacaWGPbaabeaajuaGcqGH8aapcaaI Xaaaaa@3C8C@ , the actuator experiences partial loss of actuator effectiveness; In the case of i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizp aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaaGimaaaa@3BB2@ , F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqcfasaaiaadMgaaeqaaaaa@3881@ =0 or i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizp aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaaGymaaaa@3BB3@  , u khi =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyDamaaBaaajuaibaGaam4AaiaadIgacaWGPbaajuaGbeaa cqGH9aqpcaaIWaaaaa@3CFB@ , the actuator undergoes outage; In the case of i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizp aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaaGimaaaa@3BB2@  , F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqcfasaaiaadMgaaeqaaaaa@3881@ =1, the actuator is fault-free . If all the actuators are fault-free in the whole attitude control process, the dynamic system (4) become the nominal system where u= u c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcqGHris5caWG1bWaaSbaaKqbGeaacaWGJbaajuaGbeaaaaa@3CDC@ . In the following controller designs, the fault system and nominal system are considered, respectively.

In practice, due to fuel consumption, out-gassing during operation, onboard payload motion and rotation Of flexible appendages and so on, the inertial matrix Js of the whole spacecraft structure is time varying and uncertain. We divide it into two parts, that J s =J+ΔJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaadohaaKqbagqaaiabg2da9iaadQeacqGHRaWkcqGH uoarcaWGkbaaaa@3E0A@ , where J and ΔJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadQeaaaa@38AF@ represent the nominal value component and the parameter perturbation component of the inertial matrix J s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaadohaaKqbagqaaaaa@391D@  , respectively. As ΔJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadQeaaaa@38AF@ is time-varying and unknown, the terms ΔJ ω ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadQeacuaHjpWDgaGaaaaa@3A85@ and ω×ΔJω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3j abgEna0kabgs5aejaadQeacqaHjpWDaaa@3E60@  are also time-varying and unknown. Therefore we can treat them as the disturbance to be tackled in the controller design. When considering ΔJ ω ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadQeacuaHjpWDgaGaaaaa@3A85@ , ω×ΔJω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3j abgEna0kabgs5aejaadQeacqaHjpWDaaa@3E60@ and d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgada Wgaaqcfasaaiaadohaaeqaaaaa@38A9@  as the total disturbance d ,(4) can be rewritten as

J ω ˙ + σ T η ¨ =ω×( Jω+ σ T η ˙ )+u+d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacu aHjpWDgaGaaiabgUcaRiabeo8aZnaaCaaabeqcfasaaiaadsfaaaqc faOafq4TdGMbamaacqGH9aqpcqGHsislcqaHjpWDcqGHxdaTdaqada qaaiaadQeacqaHjpWDcqGHRaWkcqaHdpWCdaahaaqabKqbGeaacaWG ubaaaKqbakqbeE7aOzaacaaacaGLOaGaayzkaaGaey4kaSIaamyDai abgUcaRiaadsgaaaa@52E4@  (7)

Where d( t )=ΔJ ω ˙ ω×ΔJω+ d s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgada qadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpcqGHuoarcaWGkbGa fqyYdCNbaiaacqGHsislcqaHjpWDcqGHxdaTcqGHuoarcaWGkbGaeq yYdCNaey4kaSIaamizamaaBaaajuaibaGaam4Caaqabaqcfa4aaeWa aeaacaWG0baacaGLOaGaayzkaaaaaa@4DEC@ .

The following assumptions are taken throughout this paper.

Assumption 1: Both J and J σ T σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq GHsislcqaHdpWCdaahaaqabKqbGeaacaWGubaaaKqbakabeo8aZbaa @3D72@ are known positive definite symmetric and bounded constant matrices.

Assumption 2: The actuators distribution matrix MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabggHiLd aa@381D@ , fault switch matrix MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizd aa@3827@ and actuator effectiveness matrix F satisfy rank( )=rank( ( I )F )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaca WGHbGaamOBaiaadUgadaqadaqaaiabggHiLdGaayjkaiaawMcaaiab g2da9iaadkhacaWGHbGaamOBaiaadUgadaqadaqaaiabggHiLpaabm aabaGaamysaiabgkHiTiabgEIizdGaayjkaiaawMcaaiaadAeaaiaa wIcacaGLPaaacqGH9aqpcaaIZaaaaa@4CD9@ .

Assumption 3: The stuck faults u khi ,i=1,...,L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadUgacaWGObGaamyAaaqabaGaaiilaiaadMgacqGH 9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGmbaaaa@4233@ are bounded, i.e., | u khi | u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamyDamaaBaaajuaibaGaam4AaiaadIgacaWGPbaabeaaaKqbakaa wEa7caGLiWoacqGHKjYOceWG1bGbaebadaWgaaqcfasaaiaadUgaca WGObaajuaGbeaaaaa@43BE@ .

Assumption 4: The total disturbance d is bounded with a bound constant ε ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbew7aLz aaraaaaa@3838@ , i.e., 0 t d( s ) 2 ds< ε ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedaba WaauWaaeaacaWGKbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaacaGL jWUaayPcSdaajuaibaGaaGimaaqaaiaadshaaKqbakabgUIiYdWaaW baaKqbGeqabaGaaGOmaaaajuaGcaWGKbGaam4CaiabgYda8iqbew7a Lzaaraaaaa@47C8@ for t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgcGiIi aadshacqGHLjYScaaIWaaaaa@3AC2@ , where MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaeyOiGClacaGLjWUaayPcSdaaaa@3B25@ denotes the norm of vector or matrix.

Assumption 5: The control input torque of actuators u c ( t )= [ u c1 ( t ), u c2 ( t ), u c3 ( t ) ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqaaiaadogaaeqaamaabmaabaGaamiDaaGaayjkaiaawMcaaiab g2da9maadmaabaGaamyDamaaBaaabaqcfaIaam4yaiaaigdaaKqbag qaamaabmaabaGaamiDaaGaayjkaiaawMcaaiaacYcacaWG1bWaaSba aeaajuaicaWGJbGaaGOmaaqcfayabaWaaeWaaeaacaWG0baacaGLOa GaayzkaaGaaiilaiaadwhadaWgaaqcfasaaiaadogacaaIZaaajuaG beaadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaada ahaaqabKqbGeaacaWGubaaaaaa@5276@  satisfies

u c Γ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaeyyeIuUaamyDamaaBaaajuaibaGaam4yaaqcfayabaaacaGLjWUa ayPcSdGaeyizImQaeu4KdC0aaSbaaKqbGeaaciGGTbGaaiyyaiaacI haaeqaaaaa@4443@ (8)

Where Γ max >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahn aaBaaajuaibaGaciyBaiaacggacaGG4baabeaajuaGcqGH+aGpcaaI Waaaaa@3D54@ max is a known constant.

Remark 2: Assumption 2 is used to guarantee that the remaining actuators can still achieve the designed control aims even though some actuators undergo outage or stuck. From Assumption 2 and the fact min{ rank( ),rank( ( I )F ) }rank( ( I )F )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGac2gaca GGPbGaaiOBamaacmaabaGaamOCaiaadggacaWGUbGaam4Aamaabmaa baGaeyyeIuoacaGLOaGaayzkaaGaaiilaiaadkhacaWGHbGaamOBai aadUgadaqadaqaamaabmaabaGaamysaiabgkHiTiabgEIizdGaayjk aiaawMcaaiaadAeaaiaawIcacaGLPaaaaiaawUhacaGL9baacqGHLj YScaWGYbGaamyyaiaad6gacaWGRbWaaeWaaeaacqGHris5daqadaqa aiaadMeacqGHsislcqGHNis2aiaawIcacaGLPaaacaWGgbaacaGLOa GaayzkaaGaeyypa0JaaG4maaaa@5E52@ , we have rank( ( I )F )3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaca WGHbGaamOBaiaadUgadaqadaqaamaabmaabaGaamysaiabgkHiTiab gEIizdGaayjkaiaawMcaaiaadAeaaiaawIcacaGLPaaacqGHLjYSca aIZaaaaa@4402@ . From Assumption 5, we have c u  =  u c    Γ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamyDaaGaayzcSlaawQa7aabaaaaaaaaapeGaaiiOa8aacqGH9aqp peGaaiiOa8aadaqbdaqaaiabggHiLlaadwhadaWgaaqcfasaaiaado gaaeqaaaqcfaOaayzcSlaawQa7a8qacaGGGcWdaiabgsMiJ+qacaGG GcWdaiabfo5ahnaaBaaajuaibaGaciyBaiaacggacaGG4baabeaaaa a@4E86@ when all actuators are fault-free. The rest-to-rest maneuver of the spacecraft is considered in this work. The control aim is to design a controller c u for the system in (1), (4)-(6) such that for all initial conditions the desired rotations are achieved in the presence of model uncertainty, external disturbances, inputs saturation or ever actuator faults under Assumptions 1-5, that is lim t q( t )=0, lim t ω( t )=0, lim t η( t )=0, lim t η ˙ ( t )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa GaciiBaiaacMgacaGGTbaabaGaamiDaiabgkziUkabg6HiLcqabaGa amyCamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaicdaca GGSaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaeaacaWG0bGaeyOKH4Qa eyOhIukabeaacqaHjpWDdaqadaqaaiaadshaaiaawIcacaGLPaaacq GH9aqpcaaIWaGaaiilamaaxababaGaciiBaiaacMgacaGGTbaabaGa amiDaiabgkziUkabg6HiLcqabaGaeq4TdG2aaeWaaeaacaWG0baaca GLOaGaayzkaaGaeyypa0JaaGimaiaacYcadaWfqaqaaiGacYgacaGG PbGaaiyBaaqaaiaadshacqGHsgIRcqGHEisPaeqaaiqbeE7aOzaaca WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@6D09@

Robust Attitude Control for Flexible Spacecraft

Mathematical preliminaries

This section includes some important mathematical preliminaries required for the rest of the paper. Consider the nonlinear dynamic system

x ˙ =f( x )+ g 1 ( x )d+ g 2 ( x )u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga Gaaiabg2da9iaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH RaWkcaWGNbWaaSbaaKqbGeaajuaGdaWgaaqcfasaaiaaigdaaeqaaa qabaqcfa4aaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiabgUca RiaadEgadaWgaaqcfasaaKqbaoaaBaaajuaibaGaaGOmaaqabaaabe aajuaGdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWG1baaaa@4B6C@  (9)

Where x R n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GHiiIZcaWGsbWaaWbaaeqajuaibaGaamOBaaaaaaa@3B14@ is the state, u R p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGsbWaaWbaaKqbGeqabaGaamiCaaaaaaa@3B13@ is the input, d R s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgacq GHiiIZcaWGsbWaaWbaaKqbGeqabaGaam4Caaaaaaa@3B05@ is the disturbance, and g 2 : R n R n×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEgada WgaaqcfasaaiaaikdaaKqbagqaaiaacQdacaWGsbWaaWbaaeqajuai baGaamOBaaaajuaGcqGHsgIRcaWGsbWaaWbaaeqajuaibaGaamOBai abgEna0kaadchaaaaaaa@4377@ are smooth vector- or matrix-valued function, respectively. System (9) is said to be input-to-state stable (ISS)27,28 from d to x if the following property is satisfied:

| x( t ) |α( | x( 0 ) |,t )+ρ( sup 0τt | d( τ )| ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamiEamaabmaabaGaamiDaaGaayjkaiaawMcaaaGaay5bSlaawIa7 aiabgsMiJkabeg7aHnaabmaabaWaaqWaaeaacaWG4bWaaeWaaeaaca aIWaaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaaiilaiaadshaaiaa wIcacaGLPaaacqGHRaWkcqaHbpGCdaqadaqaamaaeiaabaWaaCbeae aaciGGZbGaaiyDaiaacchaaeaacaaIWaGaeyizImQaeqiXdqNaeyiz ImQaamiDaaqabaaacaGLiWoadaabcaqaaiaadsgadaqadaqaaiabes 8a0bGaayjkaiaawMcaaaGaayjcSdaacaGLOaGaayzkaaaaaa@5F86@

Where α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHb aa@3818@  is a class κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRb aa@382B@ L functions and ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYb aa@3839@ is a class κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRb aa@382B@ function.

Definition 1:27,28 A smooth function positive definite and radically unbounded V( x ): R n × R R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada qadaqaaiaadIhaaiaawIcacaGLPaaacaGG6aGaamOuamaaCaaabeqc fasaaiaad6gaaaqcfaOaey41aqRaamOuamaaBaaajuaibaGaeyyPI4 fajuaGbeaacqGHsgIRcaWGsbWaaSbaaKqbGeaacqGHLkIxaKqbagqa aaaa@480E@ is called an input-to-state stabilizable control Lyapunov function (ISS-CLF) for (9) if there exists some class κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaeyOhIukajuaGbeaaaaa@3A79@ function ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYb aa@3839@ such that the following implication holds for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgcMi5c aa@3840@ 0 and all d

| x |ρ( | d | ) inf u V ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamiEaaGaay5bSlaawIa7aiabgwMiZkabeg8aYnaabmaabaWaaqWa aeaacaWGKbaacaGLhWUaayjcSdaacaGLOaGaayzkaaGaeyO0H49aaC beaeaaciGGPbGaaiOBaiaacAgaaeaacaWG1baabeaaceWGwbGbaiaa cqGHKjYOcaaIWaaaaa@4D55@  (10)

Definition 2:27 For system (9), let V is an ISS-CLF with the control law u= 1 2 ξ ( x )=F ( x ) 1 ( L g2 V ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaabeqa aiabgkci3caadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcq GHsislcaWGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaWaaWbaaeqa baGaeyOeI0IaaGymaaaadaqadaqaaiaadYeadaWgaaqcfasaaiaadE gacaaIYaaajuaGbeaacaWGwbaacaGLOaGaayzkaaWaaWbaaKqbGeqa baGaamivaaaaaaa@4DE1@  , where F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada qadaqaaiaadIhaaiaawIcacaGLPaaaaaa@39CA@ is positive definite symmetric matrix and L g2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada WgaaqcfasaaiaadEgacaaIYaaajuaGbeaaaaa@39CF@ V is Lie derivative defined as L g2 V=( V( x )/x )g2( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada WgaaqcfasaaiaadEgacaaIYaaajuaGbeaacaWGwbGaeyypa0ZaaeWa aeaacqGHciITcaWGwbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaai 4laiabgkGi2kaadIhaaiaawIcacaGLPaaacaWGNbGaaGOmamaabmaa baGaamiEaaGaayjkaiaawMcaaaaa@4944@ , then the stabilizing control law

u= ξ ( x )=2F ( x ) 1 ( L g2 V ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcqaH+oaEdaahaaqabeaacqGHIaYTaaWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaeyypa0JaeyOeI0IaaGOmaiaadAeadaqadaqaai aadIhaaiaawIcacaGLPaaadaahaaqabeaacqGHsislcaaIXaaaamaa bmaabaGaamitamaaBaaajuaibaGaam4zaiaaikdaaeqaaKqbakaadA faaiaawIcacaGLPaaadaahaaqcfasabeaacaWGubaaaaaa@4D16@  (11)

Is H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiabg6HiLcqabaaaaa@3906@ inverse optimal with respect to the cost functional

J( u )= sup dD { lim t [ 4V( x( t ),t )+ 0 t ( l( x,t )+ u T F( x )u γ 2 d 2 )dκ ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada qadaqaaiaadwhaaiaawIcacaGLPaaacqGH9aqpdaWfqaqaaiGacoha caGG1bGaaiiCaaqaaiaadsgacqGHiiIZcaWGebaabeaadaGadaqaam aaxababaGaciiBaiaacMgacaGGTbaabaGaamiDaiabgkziUkabg6Hi LcqabaWaamWaaeaacaaI0aGaamOvamaabmaabaGaamiEamaabmaaba GaamiDaaGaayjkaiaawMcaaiaacYcacaWG0baacaGLOaGaayzkaaGa ey4kaSYaa8qCaeaadaqadaqaaiaadYgadaqadaqaaiaadIhacaGGSa GaamiDaaGaayjkaiaawMcaaiabgUcaRiaadwhadaahaaqabKqbGeaa caWGubaaaKqbakaadAeadaqadaqaaiaadIhaaiaawIcacaGLPaaaca WG1bGaeyOeI0Iaeq4SdC2aaWbaaKqbGeqabaGaaGOmaaaajuaGdaqb daqaaiaadsgaaiaawMa7caGLkWoadaahaaqabKqbGeaacaaIYaaaaa qcfaOaayjkaiaawMcaaiaadsgacqaH6oWAaeaacaaIWaaabaGaamiD aaGaey4kIipaaiaawUfacaGLDbaaaiaawUhacaGL9baaaaa@74BD@

Where l( x ) = 4 L f V  4 γ 2 L g 1 V ( L g 1 V ) T + 4 L g2 V F 1 ( L g2 V ) T > 0,x 0, D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgada qadaqaaiaadIhaaiaawIcacaGLPaaaqaaaaaaaaaWdbiaacckapaGa eyypa0ZdbiaacckapaGaeyOeI0IaaGinaiaadYeadaWgaaqcfasaai aadAgaaKqbagqaaiaadAfacqGHsislpeGaaiiOa8aadaWcaaqaaiaa isdaaeaacqaHZoWzdaahaaqcfasabeaacaaIYaaaaaaajuaGcaWGmb WaaSbaaeaacaWGNbWaaSbaaKqbGeaacaaIXaaabeaaaKqbagqaaiaa dAfadaqadaqaaiaadYeadaWgaaqaaiaadEgadaWgaaqcfasaaiaaig daaeqaaaqcfayabaGaamOvaaGaayjkaiaawMcaamaaCaaajuaibeqa aiaadsfaaaqcfaOaey4kaSYdbiaacckapaGaaGinaiaadYeadaWgaa qaaiaadEgajuaicaaIYaaajuaGbeaacaWGwbGaamOramaaCaaabeqc fasaaiabgkHiTiaaigdaaaqcfa4aaeWaaeaacaWGmbWaaSbaaeaaca WGNbqcfaIaaGOmaaqcfayabaGaamOvaaGaayjkaiaawMcaamaaCaaa juaibeqaaiaadsfaaaqcfaOaeyOpa4ZdbiaacckapaGaaGimaiaacY cacqGHaiIicaWG4bGaeyiyIK7dbiaacckapaGaaGimaiaacYcapeGa aiiOa8aacaGGebaaaa@72A3@ is the set of locally bounded functions of x and γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@ >0

Remark 3: A necessary and sufficient condition for system being ISS is the existence of an ISS-CLF.28 The main characteristic of the inverse optimal approach is that the meaningful cost function is a posteriori determined from the stabilizing feedback control law. The inverse optimal controller u= ξ * ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcqaH+oaEdaahaaqcfasabeaacaGGQaaaaKqbaoaabmaabaGa amiEaaGaayjkaiaawMcaaaaa@3E4E@ (x) in (11) can achieve γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@ level of H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiabg6HiLcqcfayabaaaaa@3994@ disturbance attenuation for all t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshacq GHLjYScaaIWaaaaa@39F2@ . Compared with nonlinear H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiabg6HiLcqcfayabaaaaa@3994@ control, the inverse optimal method solves the nonlinear optimal-assignment problem with respect to a meaningful cost functional without solving the HJIPD equation explicitly.

Robust controller design for flexible spacecraft

For simplicity, we denote the following variable v by v=σω+ η ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhacq GH9aqpcqaHdpWCcqaHjpWDcqGHRaWkcuaH3oaAgaGaaaaa@3EA1@  differentiating the variable v yields v=σω+ η ˙ =DvEη+Dσω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhacq GH9aqpcqaHdpWCcqaHjpWDcqGHRaWkcuaH3oaAgaGaaiabg2da9iab gkHiTiaadseacaWG2bGaeyOeI0IaamyraiabeE7aOjabgUcaRiaads eacqaHdpWCcqaHjpWDaaa@4AF6@ . Let ξ= [ η T , v T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe67a4j abg2da9maadmaabaGaeq4TdG2aaWbaaKqbGeqabaGaamivaaaajuaG caGGSaGaamODamaaCaaajuaibeqaaiaadsfaaaaajuaGcaGLBbGaay zxaaWaaWbaaeqajuaibaGaamivaaaaaaa@4322@ , and then (5) can be written as

ξ ˙ =[ 0 I E D ]ξ+Bω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbe67a4z aacaGaeyypa0ZaamWaaeaafaqabeGacaaabaGaaGimaaqaaiaadMea aeaacqGHsislcaWGfbaabaGaeyOeI0IaamiraaaaaiaawUfacaGLDb aacqaH+oaEcqGHRaWkcaWGcbGaeqyYdCNaaiilaaaa@462B@  (12)

Where B=[ σ Dσ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaackeacq GH9aqpdaWadaqaauaabeqaceaaaeaacqGHsislcqaHdpWCaeaacaWG ebGaeq4WdmhaaaGaay5waiaaw2faaaaa@3F80@ . Since matrix [ 0 I E D ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba qbaeqabiGaaaqaaiaaicdaaeaacaWGjbaabaGaeyOeI0Iaamyraaqa aiabgkHiTiaadseaaaaacaGLBbGaayzxaaaaaa@3D70@  has all its eigen values in the left-hand plane, there exists a symmetric and positive-definite solution P R 2N×2N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfacq GHiiIZcaWGsbWaaWbaaKqbGeqabaGaaGOmaiaad6eacqGHxdaTcaaI YaGaamOtaaaaaaa@3F2E@ satisfying

P[ 0 I E D ]+ [ 0 I E D ] T P=T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfada WadaqaauaabeqaciaaaeaacaaIWaaabaGaamysaaqaaiabgkHiTiaa dweaaeaacqGHsislcaWGebaaaaGaay5waiaaw2faaiabgUcaRmaadm aabaqbaeqabiGaaaqaaiaaicdaaeaacaWGjbaabaGaeyOeI0Iaamyr aaqaaiabgkHiTiaadseaaaaacaGLBbGaayzxaaWaaWbaaKqbGeqaba GaamivaaaajuaGcaWGqbGaeyypa0JaeyOeI0Iaamivaaaa@4B76@  (13)

Where T R 2N×2N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfacq GHiiIZcaWGsbWaaWbaaKqbGeqabaGaaGOmaiaad6eacqGHxdaTcaaI YaGaamOtaaaaaaa@3F32@  is positive definite symmetric matrix In view of (7), one has

( J σ T σ ) ω ˙ = ω × ( J σ T σ ) σ T Dσω+[ σ T E σ T D ω × σ T ]ξ+u+d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOsaiabgkHiTiabeo8aZnaaCaaabeqcfasaaiaadsfaaaqcfaOa eq4WdmhacaGLOaGaayzkaaGafqyYdCNbaiaacqGH9aqpcqGHsislcq aHjpWDdaahaaqabKqbGeaacqGHxdaTaaqcfa4aaeWaaeaacaWGkbGa eyOeI0Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaGcqaHdpWCai aawIcacaGLPaaacqGHsislcqaHdpWCdaahaaqabKqbGeaacaWGubaa aKqbakaadseacqaHdpWCcqaHjpWDcqGHRaWkdaWadaqaauaabeqabi aaaeaacqaHdpWCdaahaaqcfasabeaacaWGubaaaKqbakaadweaaeaa cqaHdpWCdaahaaqabKqbGeaacaWGubaaaKqbakaadseacqGHsislcq aHjpWDdaahaaqcfasabeaacqGHxdaTaaaaaKqbakabeo8aZnaaCaaa beqcfasaaiaadsfaaaaajuaGcaGLBbGaayzxaaGaeqOVdGNaey4kaS IaamyDaiabgUcaRiaadsgaaaa@72C3@  (14)

Define x=ω+Kq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GH9aqpcqaHjpWDcqGHRaWkcaWGlbGaamyCaaaa@3CF1@  (15)

Where K R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeacq GHiiIZcaWGsbWaaWbaaeqajuaibaGaaG4maiabgEna0kaaiodaaaaa aa@3D85@ and K= K T >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeacq GH9aqpcaWGlbWaaWbaaeqajuaibaGaamivaaaajuaGcqGH+aGpcaaI Waaaaa@3C98@ . as a result, the subsystem (14) becomes

x ˙ = ( J σ T σ ) 1 [ ω × ( J σ T σ )ω σ T Dσω+ 1 2 ( J σ T σ )K( q 0 I 3 + q × )ω +[ σ T E σ T D ω × σ T ]ξ+u+d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga Gaaiabg2da9maabmaabaGaamOsaiabgkHiTiabeo8aZnaaCaaabeqc fasaaiaadsfaaaqcfaOaeq4WdmhacaGLOaGaayzkaaWaaWbaaeqaju aibaGaeyOeI0IaaGymaaaajuaGdaWadaabaeqabaGaeyOeI0IaeqyY dC3aaWbaaeqajuaibaGaey41aqlaaKqbaoaabmaabaGaamOsaiabgk HiTiabeo8aZnaaCaaabeqcfasaaiaadsfaaaqcfaOaeq4WdmhacaGL OaGaayzkaaGaeqyYdCNaeyOeI0Iaeq4Wdm3aaWbaaeqajuaibaGaam ivaaaajuaGcaWGebGaeq4WdmNaeqyYdCNaey4kaSYaaSaaaeaacaaI XaaabaGaaGOmaaaadaqadaqaaiaadQeacqGHsislcqaHdpWCdaahaa qabKqbGeaacaWGubaaaKqbakabeo8aZbGaayjkaiaawMcaaiaadUea daqadaqaaiaadghadaWgaaqcfasaaiaaicdaaKqbagqaaiaadMeada WgaaqcfasaaiaaiodaaKqbagqaaiabgUcaRiaadghadaahaaqabeaa cqGHxdaTaaaacaGLOaGaayzkaaGaeqyYdChabaGaey4kaSYaamWaae aafaqabeqacaaabaGaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaG caWGfbaabaGaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaGcaWGeb GaeyOeI0IaeqyYdC3aaWbaaeqajuaibaGaey41aqlaaKqbakabeo8a ZnaaCaaabeqcfasaaiaadsfaaaaaaaqcfaOaay5waiaaw2faaiabe6 7a4jabgUcaRiaadwhacqGHRaWkcaWGKbaaaiaawUfacaGLDbaaaaa@9056@  (16)

Amplitude constrained attitude controller design: In this section, one controller is presented by constructing control Lyapunov function and using inverse optimal method for normal system in (1) and (4)-(6) with actuator fault-free in the presence of inertia matrix uncertainty, external disturbance and amplitude constraint of actuator. A compensator is proposed and embedded into the feedback controller to eliminate the effect of input saturation. And then a fault-tolerant version is designed to deal with the stuck faults and loss of effectiveness of actuators by employing two parameter update laws with e-modifications to estimate the unknown parameters caused by actuator faults. For convenience, we firstly define the two saturation functions as

SA T M ( τ 2 , τ max 2 ,x )={ τ max 2 x x τ > τ max τ 2 τ τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGbbGaamivamaaBaaajuaibaGaamytaaqcfayabaWaaeWaaeaadaWc aaqaaiabes8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaS baaKqbGeaaciGGTbGaaiyyaiaacIhaaKqbagqaaaqaaiaaikdaaaGa aiilaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaGabaqaauaabeqaci aaaeaadaWcaaqaaiabes8a0naaBaaajuaibaGaciyBaiaacggacaGG 4baajuaGbeaaaeaacaaIYaaaamaalaaabaGaamiEaaqaamaafmaaba GaamiEaaGaayzcSlaawQa7aaaaaeaadaqbdaqaaiabes8a0bGaayzc SlaawQa7aiabg6da+iabes8a0naaBaaajuaibaGaciyBaiaacggaca GG4baajuaGbeaaaeaadaWcaaqaaiabes8a0bqaaiaaikdaaaaabaWa auWaaeaacqaHepaDaiaawMa7caGLkWoacqGHKjYOcqaHepaDdaWgaa qcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaaaaaGaay5Eaaaaaa@6F0D@  (17)

Where τ max >0,x= [ x 1 , x 2 , x 3 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaBaaajuaibaGaciyBaiaacggacaGG4baajuaGbeaacqGH+aGpcaaI WaGaaiilaiaadIhacqGH9aqpdaWadaqaaiaadIhadaWgaaqcfasaai aaigdaaeqaaiaacYcajuaGcaWG4bWaaSbaaKqbGeaacaaIYaaabeaa juaGcaGGSaGaamiEamaaBaaajuaibaGaaG4maaqabaaajuaGcaGLBb GaayzxaaWaaWbaaKqbGeqabaGaamivaaaaaaa@4CA1@  and τ= [ τ 1 , τ 2 , τ 3 ] T R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0j abg2da9maadmaabaGaeqiXdq3aaSbaaKqbGeaacaaIXaaabeaacaGG SaqcfaOaeqiXdq3aaSbaaKqbGeaacaaIYaaabeaajuaGcaGGSaGaeq iXdq3aaSbaaKqbGeaacaaIZaaabeaaaKqbakaawUfacaGLDbaadaah aaqcfasabeaacaWGubaaaKqbakabgIGiolaadkfadaahaaqcfasabe aacaaIZaaaaaaa@4BCF@ , and

SA T R ( h )= [ c 1 , c 2 , c 3 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGbbGaamivamaaBaaajuaibaGaamOuaaqcfayabaWaaeWaaeaacaWG ObaacaGLOaGaayzkaaGaeyypa0ZaamWaaeaacaWGJbWaaSbaaKqbGe aacaaIXaaabeaacaGGSaqcfaOaam4yamaaBaaajuaibaGaaGOmaaqa baqcfaOaaiilaiaadogadaWgaaqcfasaaiaaiodaaeqaaaqcfaOaay 5waiaaw2faamaaCaaajuaibeqaaiaadsfaaaaaaa@4A1E@  (18)

Where c i ={ R i | h i |> R i h i | h i | R i , i=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadogada WgaaqcfasaaiaadMgaaeqaaKqbakabg2da9maaceaabaqbaeqabiGa aaqaaiaadkfadaWgaaqaaiaadMgaaeqaaaqaamaaemaabaGaamiAam aaBaaabaGaamyAaaqabaaacaGLhWUaayjcSdGaeyOpa4JaamOuamaa BaaabaGaamyAaaqabaaabaGaamiAamaaBaaabaGaamyAaaqabaaaba WaaqWaaeaacaWGObWaaSbaaeaacaWGPbaabeaaaiaawEa7caGLiWoa cqGHKjYOcaWGsbWaaSbaaeaacaWGPbaabeaaaaaacaGL7baacaGGSa aeaaaaaaaaa8qacaGGGcWdaiaadMgacqGH9aqpcaaIXaGaaiilaiaa ikdacaGGSaGaaG4maiaacYcaaaa@583E@

With h= [ h 1 , h 2 , h 3 ] T R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgacq GH9aqpdaWadaqaaiaadIgadaWgaaqcfasaaiaaigdaaeqaaiaacYca juaGcaGGObWaaSbaaKqbGeaacaaIYaaabeaajuaGcaGGSaGaaiiAam aaBaaajuaibaGaaG4maaqabaaajuaGcaGLBbGaayzxaaWaaWbaaKqb GeqabaGaamivaaaajuaGcqGHiiIZcaWGsbWaaWbaaKqbGeqabaGaaG 4maaaaaaa@486D@ and R= [ R 1 , R 2 , R 3 ] T R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfacq GH9aqpdaWadaqaaiaadkfadaWgaaqcfasaaiaaigdaaeqaaiaacYca juaGcaWGsbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaGGSaGaamOuam aaBaaajuaibaGaaG4maaqabaaajuaGcaGLBbGaayzxaaWaaWbaaKqb GeqabaGaamivaaaajuaGcqGHiiIZcaWGsbWaaWbaaKqbGeqabaGaaG 4maaaaaaa@4817@ , R i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfada WgaaqcfasaaiaadMgaaeqaaaaa@388D@ >0, i=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcaaaa@3CB1@ .

In the follows, in order to propose the fault-tolerant constrained controllers, a significant Lemma is proposed.

Theorem 1: For flexible spacecraft system in (1), (12) and (16), under Assumptions 1-5, given γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNj abg6da+iaaicdaaaa@39E2@ , let γ q >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaabaGaamyCaaqabaGaeyOpa4JaaGimaaaa@3AF9@ , κ=diag( κ 1 , κ 2 , κ 3 ) R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRj abg2da9iaadsgacaWGPbGaamyyaiaadEgadaqadaqaaiabeQ7aRnaa BaaajuaibaGaaGymaaqcfayabaGaaiilaiabeQ7aRnaaBaaajuaiba GaaGOmaaqcfayabaGaaiilaiabeQ7aRnaaBaaajuaibaGaaG4maaqc fayabaaacaGLOaGaayzkaaGaeyicI4SaamOuamaaCaaabeqcfasaai aaiodacqGHxdaTcaaIZaaaaaaa@4FE0@ , where κ i >0, i=1,2,3, κ R 3×3 ,  κ 1 R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaamyAaaqcfayabaGaeyOpa4JaaGimaiaacYcaqaaa aaaaaaWdbiaacckapaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmai aacYcacaaIZaGaaiila8qacaGGGcWdaiabeQ7aRjabgIGiolaadkfa daahaaqabKqbGeaacaaIZaGaey41aqRaaG4maaaajuaGcaGGSaWdbi aacckapaGaeqOUdS2aaSbaaKqbGeaacaaIXaaabeaajuaGcqGHiiIZ caWGsbWaaWbaaeqajuaibaGaaG4maiabgEna0kaaiodaaaaaaa@592B@ and κ 1 R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaaGymaaqabaqcfaOaeyicI4SaamOuamaaCaaabeqc fasaaiaaiodacqGHxdaTcaaIZaaaaaaa@3FFF@  be positive definite symmetric matrices. If γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqabaaaaa@3965@ , K and satisfy the following inequality

= [ γ q 2 λ κ min 1 2 ( max q 0 + q T q=1 { 1 2 ( J σ T σ )K( q 0 I 3 + q * )K }+ σ T DσK+ γ q I ) 1 2 PBK * ( 1 2 λ κ min max q 0 + q T q=1 { 1 2 ( J σ T σ )K( q 0 I+ q * ) } σ T DσK ) 1 2 ( [ σ T E σ T D ]+ B T P + max q 0 + q T q=1 { ( Kq ) * σ T } ) * * 1 2 λ T min ]>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaey 4jIKTaeyypa0dakeaajuaGdaWadaqaauaabeqadmaaaeaadaWcaaqa aiabeo7aNnaaBaaajuaibaGaamyCaaqcfayabaaabaGaaGOmaaaacq aH7oaBdaqhaaqcfasaaiabeQ7aRbqaaiGac2gacaGGPbGaaiOBaaaa aKqbagaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaaba WaaCbeaeaaciGGTbGaaiyyaiaacIhaaeaacaWGXbWaaSbaaeaacaaI WaaabeaacqGHRaWkcaWGXbWaaWbaaKqbGeqabaGaamivaaaajuaGca WGXbGaeyypa0JaaGymaaqabaWaaiWaaeaadaqbdaqaamaalaaabaGa aGymaaqaaiaaikdaaaWaaeWaaeaacaWGkbGaeyOeI0Iaeq4Wdm3aaW baaeqajuaibaGaamivaaaajuaGcqaHdpWCaiaawIcacaGLPaaacaWG lbWaaeWaaeaacaWGXbWaaSbaaeaacaaIWaaabeaacaWGjbWaaSbaae aacaaIZaaabeaacqGHRaWkcaWGXbWaaWbaaeqabaGaaiOkaaaaaiaa wIcacaGLPaaacaWGlbaacaGLjWUaayPcSdaacaGL7bGaayzFaaGaey 4kaSYaauWaaeaacqaHdpWCdaahaaqabKqbGeaacaWGubaaaKqbakaa dseacqaHdpWCcaWGlbGaey4kaSIaeq4SdC2aaSbaaKqbGeaacaWGXb aajuaGbeaacaWGjbaacaGLjWUaayPcSdaacaGLOaGaayzkaaaabaWa aSaaaeaacqGHsislcaaIXaaabaGaaGOmaaaadaqbdaqaaiaadcfaca WGcbGaam4saaGaayzcSlaawQa7aaqaaiaacQcaaeaadaqadaqaamaa laaabaGaaGymaaqaaiaaikdaaaGaeq4UdW2aa0baaKqbGeaacqaH6o WAaeaaciGGTbGaaiyAaiaac6gaaaqcfaOaeyOeI0YaaCbeaeaaciGG TbGaaiyyaiaacIhaaeaacaWGXbWaaSbaaeaacaaIWaaabeaacqGHRa WkcaWGXbWaaWbaaKqbGeqabaGaamivaaaajuaGcaWGXbGaeyypa0Ja aGymaaqabaWaaiWaaeaadaqbdaqaamaalaaabaGaaGymaaqaaiaaik daaaWaaeWaaeaacaWGkbGaeyOeI0Iaeq4Wdm3aaWbaaeqajuaibaGa amivaaaajuaGcqaHdpWCaiaawIcacaGLPaaacaWGlbWaaeWaaeaaca WGXbWaaSbaaeaacaaIWaaabeaacaWGjbGaey4kaSIaamyCamaaCaaa beqaaiaacQcaaaaacaGLOaGaayzkaaaacaGLjWUaayPcSdaacaGL7b GaayzFaaGaeyOeI0YaauWaaeaacqaHdpWCdaahaaqabKqbGeaacaWG ubaaaKqbakaadseacqaHdpWCcaWGlbaacaGLjWUaayPcSdaacaGLOa GaayzkaaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaamaafmaabaWaamWaaeaafaqabeqacaaabaGaeq4Wdm3aaWbaae qajuaibaGaamivaaaajuaGcaWGfbaabaGaeq4Wdm3aaWbaaKqbGeqa baGaamivaaaajuaGcaWGebaaaaGaay5waiaaw2faaiabgUcaRiaadk eadaahaaqabKqbGeaacaWGubaaaKqbakaadcfaaiaawMa7caGLkWoa cqGHRaWkdaWfqaqaaiGac2gacaGGHbGaaiiEaaqaaiaadghadaWgaa qaaiaaicdaaeqaaiabgUcaRiaadghadaahaaqcfasabeaacaWGubaa aKqbakaadghacqGH9aqpcaaIXaaabeaadaGadaqaamaafmaabaWaae WaaeaacaWGlbGaamyCaaGaayjkaiaawMcaamaaCaaabeqaaiaacQca aaGaeq4Wdm3aaWbaaKqbGeqabaGaamivaaaaaKqbakaawMa7caGLkW oaaiaawUhacaGL9baaaiaawIcacaGLPaaaaeaacaGGQaaabaGaaiOk aaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaeq4UdW2aa0baaKqbGe aacaWGubaabaGaciyBaiaacMgacaGGUbaaaaaaaKqbakaawUfacaGL DbaacqGH+aGpcaaIWaaaaaa@F978@ (19)

Where λ A min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaDaaajuaibaGaamyqaaqaaiGac2gacaGGPbGaaiOBaaaaaaa@3C15@ denotes the minimum singular value of matrix A , then the dynamic feedback control law

u= F 1 1 x=SA T M ( τ 2 , τ max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcqGHsislcaWGgbWaa0baaKqbGeaacaaIXaaabaGaeyOeI0Ia aGymaaaajuaGcaWG4bGaeyypa0Jaam4uaiaadgeacaWGubWaaSbaaK qbGeaacaWGnbaajuaGbeaadaqadaqaamaalaaabaGaeqiXdqhabaGa aGOmaaaacaGGSaWaaSaaaeaacqaHepaDdaWgaaqcfasaaiGac2gaca GGHbGaaiiEaaqabaaajuaGbaGaaGOmaaaacaGGSaGaamiEaaGaayjk aiaawMcaaaaa@5054@  (20)

Where τ=ψ+2l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0j abg2da9iabeI8a5jabgUcaRiaaikdacaWGSbaaaa@3DA1@  (21)

ψ=[ 1 γ q ω × ( J σ T σ ) T ( K+ γ q K 1 1 )( ω × ( J σ T σ ) ) +2 K 1 + 2 γ 2 ]x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5j abg2da9iabgkHiTmaadmaabaWaaSaaaeaacaaIXaaabaGaeq4SdC2a aSbaaKqbGeaacaWGXbaajuaGbeaaaaWaauWaaeaacqaHjpWDdaahaa qcfasabeaacqGHxdaTaaqcfa4aaeWaaeaacaWGkbGaeyOeI0Iaeq4W dm3aaWbaaKqbGeqabaGaamivaaaajuaGcqaHdpWCaiaawIcacaGLPa aadaahaaqcfasabeaacaWGubaaaKqbaoaabmaabaGaam4saiabgUca Riabeo7aNnaaBaaajuaibaGaamyCaaqcfayabaGaam4samaaDaaaju aibaGaaGymaaqaaiabgkHiTiaaigdaaaaajuaGcaGLOaGaayzkaaWa aeWaaeaacqaHjpWDdaahaaqcfasabeaacqGHxdaTaaqcfa4aaeWaae aacaWGkbGaeyOeI0Iaeq4Wdm3aaWbaaKqbGeqabaGaamivaaaajuaG cqaHdpWCaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawMa7caGLkW oacqGHRaWkcaaIYaWaauWaaeaacaWGlbWaaSbaaKqbGeaacaaIXaaa beaaaKqbakaawMa7caGLkWoacqGHRaWkdaWcaaqaaiaaikdaaeaacq aHZoWzdaahaaqabKqbGeaacaaIYaaaaaaaaKqbakaawUfacaGLDbaa caWG4baaaa@793F@  (22)

l=κG G ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgacq GH9aqpcqGHsislcqaH6oWAcaWGhbGaeyOeI0Iabm4rayaacaaaaa@3D9D@  (23)

G ˙ =κG+( u τ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadEeaga Gaaiabg2da9iabgkHiTiabeQ7aRjaadEeacqGHRaWkdaqadaqaaiaa dwhacqGHsisldaWcaaqaaiabes8a0bqaaiaaikdaaaaacaGLOaGaay zkaaaaaa@42A2@  (24)

Renders the resulting closed loop system in (1), (12) and (16) ISS from the total disturbance d to the state [ q T , x T , ξ T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamyCamaaCaaabeqcfasaaiaadsfaaaqcfaOaaiilaiaadIhadaah aaqabKqbGeaacaWGubaaaKqbakaacYcacqaH+oaEdaahaaqabKqbGe aacaWGubaaaaqcfaOaay5waiaaw2faamaaCaaabeqcfasaaiaadsfa aaaaaa@43CF@ furthermore, the control law u= F 1 1 x=2SA T M ( τ 2 , τ max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcqGHsislcaWGgbWaa0baaKqbGeaacaaIXaaabaGaeyOeI0Ia aGymaaaajuaGcaWG4bGaeyypa0JaaGOmaiaadofacaWGbbGaamivam aaBaaajuaibaGaamytaaqcfayabaWaaeWaaeaadaWcaaqaaiabes8a 0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaSbaaKqbGeaaca WGTbGaamyyaiaadIhaaKqbagqaaaqaaiaaikdaaaGaaiilaiaadIha aiaawIcacaGLPaaaaaa@5111@  (25)

Where τ=ψ+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0j abg2da9iabeI8a5jabgUcaRiaadYgaaaa@3CE5@  (26)

l=κG G ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgacq GH9aqpcqGHsislcqaH6oWAcaWGhbGaeyOeI0Iabm4rayaacaaaaa@3D9D@  (27)

G ˙ =κG+( uτ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadEeaga Gaaiabg2da9iabgkHiTiabeQ7aRjaadEeacqGHRaWkdaqadaqaaiaa dwhacqGHsislcqaHepaDaiaawIcacaGLPaaaaaa@41D6@  (28)

, and ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5b aa@3847@  is defined in (22), is inverse optimal in the sense that it minimizes the meaningful functional

J( u )= lim t [ 4V( t )+ 0 t ( X( x )+ u T F 1 u γ 2 d 2 )ds ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada qadaqaaiaadwhaaiaawIcacaGLPaaacqGH9aqpdaWfqaqaaiGacYga caGGPbGaaiyBaaqaaiaadshacqGHsgIRcqGHEisPaeqaamaadmaaba GaaGinaiaadAfadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHRaWk daWdXbqaamaabmaabaGaamiwamaabmaabaGaamiEaaGaayjkaiaawM caaiabgUcaRiaadwhadaahaaqabKqbGeaacaWGubaaaKqbakaadAea daWgaaqcfasaaiaaigdaaeqaaKqbakaadwhacqGHsislcqaHZoWzda ahaaqabKqbGeaacaaIYaaaaKqbaoaafmaabaGaamizaaGaayzcSlaa wQa7amaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaam izaiaadohaaeaacaaIWaaabaGaamiDaaGaey4kIipaaiaawUfacaGL Dbaaaaa@64AE@  (29)

X( x )=4{ γ q q T ω+ x T [ ω × ( J σ T σ )ω σ T Dσω+ 1 2 ( J σ T σ )K( q 0 I+ q × )ω+[ σ T E σ T D ω × σ T ]ξ ]+ ξ T P( [ 0 I E D ]ξ+Bω ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfada qadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaaI0aWa aiWaaeaacqaHZoWzdaWgaaqaaiaadghaaeqaaiaadghadaahaaqcfa sabeaacaWGubaaaKqbakabeM8a3jabgUcaRiaadIhadaahaaqcfasa beaacaWGubaaaKqbaoaadmaabaGaeyOeI0IaeqyYdC3aaWbaaKqbGe qabaGaey41aqlaaKqbaoaabmaabaGaamOsaiabgkHiTiabeo8aZnaa CaaabeqcfasaaiaadsfaaaqcfaOaeq4WdmhacaGLOaGaayzkaaGaeq yYdCNaeyOeI0Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaGcaWG ebGaeq4WdmNaeqyYdCNaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaa aadaqadaqaaiaadQeacqGHsislcqaHdpWCdaahaaqabKqbGeaacaWG ubaaaKqbakabeo8aZbGaayjkaiaawMcaaiaadUeadaqadaqaaiaadg hadaWgaaqcfasaaiaaicdaaeqaaKqbakaadMeacqGHRaWkcaWGXbWa aWbaaeqajuaibaGaey41aqlaaaqcfaOaayjkaiaawMcaaiabeM8a3j abgUcaRmaadmaabaqbaeqabeGaaaqaaiabeo8aZnaaCaaabeqcfasa aiaadsfaaaqcfaOaamyraaqaaiabeo8aZnaaCaaabeqcfasaaiaads faaaqcfaOaamiraiabgkHiTiabeM8a3naaCaaajuaibeqaaiabgEna 0caajuaGcqaHdpWCdaahaaqcfasabeaacaWGubaaaaaaaKqbakaawU facaGLDbaacqaH+oaEaiaawUfacaGLDbaacqGHRaWkcqaH+oaEdaah aaqabKqbGeaacaWGubaaaKqbakaadcfadaqadaqaamaadmaabaqbae qabiGaaaqaaiaaicdaaeaacaWGjbaabaGaeyOeI0Iaamyraaqaaiab gkHiTiaadseaaaaacaGLBbGaayzxaaGaeqOVdGNaey4kaSIaamOqai abeM8a3bGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@A4B3@  (30)

Proof: Consider the smooth positive-definite radically unbounded function

V= 1 2 γ q q T q+ 1 2 γ q ( 1 q 0 ) 2 + 1 2 x T ( J σ T σ )x+ 1 2 ξ T Pξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfacq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabeo7aNnaaBaaajuai baGaamyCaaqabaqcfaOaamyCamaaCaaabeqcfasaaiaadsfaaaqcfa OaamyCaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeq4SdC2a aSbaaKqbGeaacaWGXbaabeaajuaGdaqadaqaaiaaigdacqGHsislca WGXbWaaSbaaKqbGeaacaaIWaaabeaaaKqbakaawIcacaGLPaaadaah aaqcfasabeaacaaIYaaaaKqbakabgUcaRmaalaaabaGaaGymaaqaai aaikdaaaGaamiEamaaCaaajuaibeqaaiaadsfaaaqcfa4aaeWaaeaa caWGkbGaeyOeI0Iaeq4Wdm3aaWbaaKqbGeqabaGaamivaaaajuaGcq aHdpWCaiaawIcacaGLPaaacaWG4bGaey4kaSYaaSaaaeaacaaIXaaa baGaaGOmaaaacqaH+oaEdaahaaqabKqbGeaacaWGubaaaKqbakaadc facqaH+oaEaaa@6550@  (31)

The time derivate V along (1), (12) and (16), substituting (21), (23)-(24) into (20) and based on the definition SA T M ( τ 2 , τ max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGbbGaamivamaaBaaajuaibaGaamytaaqcfayabaWaaeWaaeaadaWc aaqaaiabes8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaS baaKqbGeaacaWGTbGaamyyaiaadIhaaKqbagqaaaqaaiaaikdaaaGa aiilaiaadIhaaiaawIcacaGLPaaaaaa@4759@ in (17), using (13), (19)-(21), (22), (31) and the fact x T [ 0 x × σ T ]ξ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada ahaaqcfasabeaacaWGubaaaKqbaoaadmaabaGaaGimaiabgkHiTiaa dIhadaahaaqabeaacqGHxdaTaaGaeq4Wdm3aaWbaaKqbGeqabaGaam ivaaaaaKqbakaawUfacaGLDbaacqaH+oaEcqGH9aqpcaaIWaaaaa@46F9@ , we have

V ˙ = γ q q T Kq+ γ q x T q+ x T [ ω × ( J σ T σ )ω σ T Dσω+ 1 2 ( J σ T σ )K( q 0 I+ q × )ω +[ σ T E σ T D ω × σ T ]ξ+u+d ] + ξ T P( [ 0 I E D ]ξ+Bω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm OvayaacaGaeyypa0JaeyOeI0Iaeq4SdC2aaSbaaeaacaWGXbaabeaa caWGXbWaaWbaaKqbGeqabaGaamivaaaajuaGcaWGlbGaamyCaiabgU caRiabeo7aNnaaBaaabaGaamyCaaqabaGaamiEamaaCaaabeqcfasa aiaadsfaaaqcfaOaamyCaiabgUcaRiaadIhadaahaaqabKqbGeaaca WGubaaaKqbaoaadmaaeaqabeaacqGHsislcqaHjpWDdaahaaqabeaa cqGHxdaTaaWaaeWaaeaacaWGkbGaeyOeI0Iaeq4Wdm3aaWbaaeqaju aibaGaamivaaaajuaGcqaHdpWCaiaawIcacaGLPaaacqaHjpWDcqGH sislcqaHdpWCdaahaaqabKqbGeaacaWGubaaaKqbakaadseacqaHdp WCcqaHjpWDcqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaa baGaamOsaiabgkHiTiabeo8aZnaaCaaabeqcfasaaiaadsfaaaqcfa Oaeq4WdmhacaGLOaGaayzkaaGaam4samaabmaabaGaamyCamaaBaaa juaibaGaaGimaaqabaqcfaOaamysaiabgUcaRiaadghadaahaaqabK qbGeaacqGHxdaTaaaajuaGcaGLOaGaayzkaaGaeqyYdChabaGaey4k aSYaamWaaeaafaqabeqacaaabaGaeq4Wdm3aaWbaaeqajuaibaGaam ivaaaajuaGcaWGfbaabaGaeq4Wdm3aaWbaaeqajuaibaGaamivaaaa juaGcaWGebGaeyOeI0IaeqyYdC3aaWbaaKqbGeqabaGaey41aqlaaK qbakabeo8aZnaaCaaajuaibeqaaiaadsfaaaaaaaqcfaOaay5waiaa w2faaiabe67a4jabgUcaRiaadwhacqGHRaWkcaWGKbaaaiaawUfaca GLDbaaaeaacqGHRaWkcqaH+oaEdaahaaqcfasabeaacaWGubaaaKqb akaadcfadaqadaqaamaadmaabaqbaeqabiGaaaqaaiaaicdaaeaaca WGjbaabaGaeyOeI0IaamyraaqaaiabgkHiTiaadseaaaaacaGLBbGa ayzxaaGaeqOVdGNaey4kaSIaamOqaiabeM8a3bGaayjkaiaawMcaaa aaaa@A981@

γ q q T Kq 1 2 ξ T Tξ x T [ 1 2 ( J σ T σ )K( q 0 I 3 + q × )K σ T DσK γ q I ]q + x T ω × ( J σ T σ )Kq+ x T [ 1 2 ( J σ T σ )K( q 0 I 3 + q × ) σ T Dσ ]x x T ω × ( J σ T σ )x+ x T [ 0 x x σ T ]ξ+ x T [ σ T E σ T D+ ( Kq ) × σ T ]ξ+ ξ T PBx ξ T PBKq+ x T ( ψ 2 +d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaey OeI0Iaeq4SdC2aaSbaaeaacaWGXbaabeaacaWGXbWaaWbaaKqbGeqa baGaamivaaaajuaGcaWGlbGaamyCaiabgkHiTmaalaaabaGaaGymaa qaaiaaikdaaaGaeqOVdG3aaWbaaeqajuaibaGaamivaaaajuaGcaWG ubGaeqOVdGNaeyOeI0IaamiEamaaCaaabeqcfasaaiaadsfaaaqcfa 4aamWaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaamOs aiabgkHiTiabeo8aZnaaCaaabeqcfasaaiaadsfaaaqcfaOaeq4Wdm hacaGLOaGaayzkaaGaam4samaabmaabaGaamyCamaaBaaajuaibaGa aGimaaqabaqcfaOaamysamaaBaaajuaibaGaaG4maaqcfayabaGaey 4kaSIaamyCamaaCaaabeqcfasaaiabgEna0caaaKqbakaawIcacaGL PaaacaWGlbGaeyOeI0Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaaju aGcaWGebGaeq4WdmNaam4saiabgkHiTiabeo7aNnaaBaaabaGaamyC aaqabaGaamysaaGaay5waiaaw2faaiaadghaaeaacqGHRaWkcaWG4b WaaWbaaKqbGeqabaGaamivaaaajuaGcqaHjpWDdaahaaqcfasabeaa cqGHxdaTaaqcfa4aaeWaaeaacaWGkbGaeyOeI0Iaeq4Wdm3aaWbaae qajuaibaGaamivaaaajuaGcqaHdpWCaiaawIcacaGLPaaacaWGlbGa amyCaiabgUcaRiaadIhadaahaaqcfasabeaacaWGubaaaKqbaoaadm aabaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadQeacqGH sislcqaHdpWCdaahaaqabKqbGeaacaWGubaaaKqbakabeo8aZbGaay jkaiaawMcaaiaadUeadaqadaqaaiaadghadaWgaaqcfasaaiaaicda aeqaaKqbakaadMeadaWgaaqcfasaaiaaiodaaKqbagqaaiabgUcaRi aadghadaahaaqabKqbGeaacqGHxdaTaaaajuaGcaGLOaGaayzkaaGa eyOeI0Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaGcaWGebGaeq 4WdmhacaGLBbGaayzxaaGaamiEaaqaaiabgkHiTiaadIhadaahaaqc fasabeaacaWGubaaaKqbakabeM8a3naaCaaajuaibeqaaiabgEna0c aajuaGdaqadaqaaiaadQeacqGHsislcqaHdpWCdaahaaqabKqbGeaa caWGubaaaKqbakabeo8aZbGaayjkaiaawMcaaiaadIhacqGHRaWkca WG4bWaaWbaaKqbGeqabaGaamivaaaajuaGdaWadaqaaiaaicdacqGH sislcaWG4bWaaWbaaeqajuaibaGaamiEaaaajuaGcqaHdpWCdaahaa qabKqbGeaacaWGubaaaaqcfaOaay5waiaaw2faaiabe67a4jabgUca RiaadIhadaahaaqcfasabeaacaWGubaaaKqbaoaadmaabaqbaeqabe Gaaaqaaiabeo8aZnaaCaaabeqcfasaaiaadsfaaaqcfaOaamyraaqa aiabeo8aZnaaCaaabeqcfasaaiaadsfaaaqcfaOaamiraiabgUcaRm aabmaabaGaam4saiaadghaaiaawIcacaGLPaaadaahaaqcfasabeaa cqGHxdaTaaqcfaOaeq4Wdm3aaWbaaeqajuaibaGaamivaaaaaaaaju aGcaGLBbGaayzxaaGaeqOVdGNaey4kaScabaGaeqOVdG3aaWbaaeqa juaibaGaamivaaaajuaGcaWGqbGaamOqaiaadIhacqGHsislcqaH+o aEdaahaaqabKqbGeaacaWGubaaaKqbakaadcfacaWGcbGaam4saiaa dghacqGHRaWkcaWG4bWaaWbaaKqbGeqabaGaamivaaaajuaGdaqada qaamaalaaabaGaeqiYdKhabaGaaGOmaaaacqGHRaWkcaWGKbaacaGL OaGaayzkaaaaaaa@FB06@

γ q 2 λ k min q 2 1 2 λ T min ξ 2 ( 1 2 λ ki min 1 2 ( J σ T σ )K( q 0 I 3 + q × ) σ T Dσ ) x 2 1 2 γ q K 1 2 q 1 γ q K 1 2 ( ω × ( J σ T σ ) )x 2 1 2 x T ( K 1 +( ω × ( J σ T σ ) ) ) T K 1 1 ( K 1+ ( ω × ( J σ T σ ) ) )x+( 1 2 ( J σ T σ )K( q 0 I 3 + q × )K + σ T Dσ+ γ q I ) x q + PBK ξ q +( [ σ T E σ T D ]+ B T P + ( Kq ) × σ T ) x ξ x ( d x / γ 2 ) λ min ( q 2 + x 2 ξ 2 )+ x ( d x / γ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaey OeI0YaaSaaaeaacqaHZoWzdaWgaaqaaiaadghaaeqaaaqaaiaaikda aaGaeq4UdW2aa0baaKqbGeaacaWGRbaabaGaciyBaiaacMgacaGGUb aaaKqbaoaafmaabaGaamyCaaGaayzcSlaawQa7amaaCaaajuaibeqa aiaaikdaaaqcfaOaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacq aH7oaBdaqhaaqcfasaaiaadsfaaeaaciGGTbGaaiyAaiaac6gaaaqc fa4aauWaaeaacqaH+oaEaiaawMa7caGLkWoadaahaaqcfasabeaaca aIYaaaaKqbakabgkHiTmaabmaabaWaaSaaaeaacaaIXaaabaGaaGOm aaaacqaH7oaBdaqhaaqcfasaaiaadUgacaWGPbaabaGaciyBaiaacM gacaGGUbaaaKqbakabgkHiTmaafmaabaWaaSaaaeaacaaIXaaabaGa aGOmaaaadaqadaqaaiaadQeacqGHsislcqaHdpWCdaahaaqabKqbGe aacaWGubaaaKqbakabeo8aZbGaayjkaiaawMcaaiaadUeadaqadaqa aiaadghadaWgaaqcfasaaiaaicdaaeqaaKqbakaadMeadaWgaaqcfa saaiaaiodaaKqbagqaaiabgUcaRiaadghadaahaaqabKqbGeaacqGH xdaTaaaajuaGcaGLOaGaayzkaaaacaGLjWUaayPcSdGaeyOeI0Yaau WaaeaacqaHdpWCdaahaaqabKqbGeaacaWGubaaaKqbakaadseacqaH dpWCaiaawMa7caGLkWoaaiaawIcacaGLPaaadaqbdaqaaiaadIhaai aawMa7caGLkWoadaahaaqabKqbGeaacaaIYaaaaaqcfayaaiabgkHi TmaalaaabaGaaGymaaqaaiaaikdaaaWaauWaaeaadaGcaaqaaiabeo 7aNnaaBaaajuaibaGaamyCaaqcfayabaaabeaacaWGlbWaaWbaaKqb Geqabaqcfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaaaaaaqcfaOaam yCaiabgkHiTmaalaaabaGaaGymaaqaamaakaaabaGaeq4SdC2aaSba aKqbGeaacaWGXbaajuaGbeaaaeqaaaaacaWGlbWaaWbaaKqbGeqaba qcfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaaaaaaqcfa4aaeWaaeaa cqaHjpWDdaahaaqabeaacqGHxdaTaaWaaeWaaeaacaWGkbGaeyOeI0 Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaGcqaHdpWCaiaawIca caGLPaaaaiaawIcacaGLPaaacaWG4baacaGLjWUaayPcSdWaaWbaaK qbGeqabaGaaGOmaaaajuaGcqGHsisldaWcaaqaaiaaigdaaeaacaaI YaaaaiaadIhadaahaaqcfasabeaacaWGubaaaKqbaoaabmaabaGaam 4samaaBaaajuaibaGaaGymaaqabaGaey4kaSscfa4aaeWaaeaacqaH jpWDdaahaaqcfasabeaacqGHxdaTaaqcfa4aaeWaaeaacaWGkbGaey OeI0Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaGcqaHdpWCaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaqabK qbGeaacaWGubaaaaqcfayaaiaadUeadaqhaaqcfasaaiaaigdaaeaa cqGHsislcaaIXaaaaKqbaoaabmaabaGaam4samaaBaaabaqcfaIaaG ymaKqbakabgUcaRaqabaWaaeWaaeaacqaHjpWDdaahaaqcfasabeaa cqGHxdaTaaqcfa4aaeWaaeaacaWGkbGaeyOeI0Iaeq4Wdm3aaWbaae qajuaibaGaamivaaaajuaGcqaHdpWCaiaawIcacaGLPaaaaiaawIca caGLPaaaaiaawIcacaGLPaaacaWG4bGaey4kaSYaaeWaaeaadaqbda qaamaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWGkbGaeyOe I0Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaGcqaHdpWCaiaawI cacaGLPaaacaWGlbWaaeWaaeaacaWGXbWaaSbaaKqbGeaacaaIWaaa beaajuaGcaWGjbWaaSbaaKqbGeaacaaIZaaajuaGbeaacqGHRaWkca WGXbWaaWbaaeqajuaibaGaey41aqlaaaqcfaOaayjkaiaawMcaaiaa dUeaaiaawMa7caGLkWoacqGHRaWkdaqbdaqaaiabeo8aZnaaCaaabe qcfasaaiaadsfaaaqcfaOaamiraiabeo8aZjabgUcaRiabeo7aNnaa BaaabaGaamyCaaqabaGaamysaaGaayzcSlaawQa7aaGaayjkaiaawM caamaafmaabaGaamiEaaGaayzcSlaawQa7amaafmaabaGaamyCaaGa ayzcSlaawQa7aaqaaiabgUcaRmaafmaabaGaamiuaiaadkeacaWGlb aacaGLjWUaayPcSdWaauWaaeaacqaH+oaEaiaawMa7caGLkWoadaqb daqaaiaadghaaiaawMa7caGLkWoacqGHRaWkdaqadaqaamaafmaaba WaamWaaeaafaqabeqacaaabaGaeq4Wdm3aaWbaaeqajuaibaGaamiv aaaajuaGcaWGfbaabaGaeq4Wdm3aaWbaaeqajuaibaGaamivaaaaju aGcaWGebaaaaGaay5waiaaw2faaiabgUcaRiaadkeadaahaaqabKqb GeaacaWGubaaaKqbakaadcfaaiaawMa7caGLkWoacqGHRaWkdaqbda qaamaabmaabaGaam4saiaadghaaiaawIcacaGLPaaadaahaaqcfasa beaacqGHxdaTaaqcfaOaeq4Wdm3aaWbaaeqajuaibaGaamivaaaaaK qbakaawMa7caGLkWoaaiaawIcacaGLPaaadaqbdaqaaiaadIhaaiaa wMa7caGLkWoadaqbdaqaaiabe67a4bGaayzcSlaawQa7aaqaamaafm aabaGaamiEaaGaayzcSlaawQa7amaabmaabaWaauWaaeaacaWGKbaa caGLjWUaayPcSdGaeyOeI0YaauWaaeaacaWG4baacaGLjWUaayPcSd Gaai4laiabeo7aNnaaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGa ayzkaaGaeyizImQaeyOeI0Iaeq4UdW2aa0baaKqbGeaacqGHNis2ae aaciGGTbGaaiyAaiaac6gaaaqcfa4aaeWaaeaadaqbdaqaaiaadgha aiaawMa7caGLkWoadaahaaqcfasabeaacaaIYaaaaiabgUcaRKqbao aafmaabaGaamiEaaGaayzcSlaawQa7amaaCaaajuaibeqaaiaaikda aaqcfa4aauWaaeaacqaH+oaEaiaawMa7caGLkWoadaahaaqcfasabe aacaaIYaaaaaqcfaOaayjkaiaawMcaaiabgUcaRmaafmaabaGaamiE aaGaayzcSlaawQa7amaabmaabaWaauWaaeaacaWGKbaacaGLjWUaay PcSdGaeyOeI0YaauWaaeaacaWG4baacaGLjWUaayPcSdGaai4laiab eo7aNnaaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaaaaa a@98FD@  (32)

Choosing ρ( | d | )= γ 2 d κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aabmaabaWaaqWaaeaacaWGKbaacaGLhWUaayjcSdaacaGLOaGaayzk aaGaeyypa0Jaeq4SdC2aaWbaaeqajuaibaGaaGOmaaaajuaGdaqbda qaaiaadsgaaiaawMa7caGLkWoacqGHiiIZcqaH6oWAdaWgaaqcfasa aiabg6HiLcqcfayabaaaaa@4BA8@ , then when x γ 2 d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamiEaaGaayzcSlaawQa7aiabgwMiZkabeo7aNnaaCaaabeqcfasa aiaaikdaaaqcfa4aauWaaeaacaWGKbaacaGLjWUaayPcSdaaaa@43B4@ we have V ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga GaaiabgsMiJkaaicdaaaa@39CC@ , which implies that V in (31) is ISS-CLF for system in (1), (12) and (16) based on Definition 1.Therefore the resulting closed loop system in (1), (12) and (16) is ISS from the total disturbance d to the state [ q T , x T , ξ T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamyCamaaCaaajuaibeqaaiaadsfaaaqcfaOaaiilaiaadIhadaah aaqcfasabeaacaWGubaaaKqbakaacYcacqaH+oaEdaahaaqabKqbGe aacaWGubaaaaqcfaOaay5waiaaw2faaaaa@42A6@ based on Remark 3. In addition, from the definition of χ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE8aJn aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3AB6@ in (30) and the proof above, it is not difficult to yield

χ( x )4 λ min ( q 2 + x 2 + ξ 2 )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE8aJn aabmaabaGaamiEaaGaayjkaiaawMcaaiabgwMiZkaaisdacqaH7oaB daqhaaqcfasaaiabgEIizdqaaiGac2gacaGGPbGaaiOBaaaajuaGda qadaqaamaafmaabaGaamyCaaGaayzcSlaawQa7amaaCaaajuaibeqa aiaaikdaaaqcfaOaey4kaSYaauWaaeaacaWG4baacaGLjWUaayPcSd WaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaqbdaqaaiabe67a 4bGaayzcSlaawQa7amaaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOa GaayzkaaGaeyOpa4JaaGimaaaa@5B54@  (33)

Which implies that χ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE8aJn aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3AB6@  is positive definite. From Definition 2 we get that control law u in (25) is H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiabg6HiLcqcfayabaaaaa@3994@ inverse optimal control with respect to (u). To this end, from the controller in (25) and the definition in (17), the inequality u τ max x x τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamyDaaGaayzcSlaawQa7aiabgsMiJoaafmaabaWaaSaaaeaacqaH epaDdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaGaamiEaa qaamaafmaabaGaamiEaaGaayzcSlaawQa7aaaaaiaawMa7caGLkWoa cqGHKjYOcqaHepaDdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfa yabaaaaa@5148@ can be obtained. The proof of Theorem 1 is completed. From (28) we have

d dt ( 0.5 G 2 )= G T ( κG+| ( uτ ) | ) 2 λ κ min 0.5G 2 + 2 uτ 0.5 G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aaS aaaeaacaWGKbaabaGaamizaiaadshaaaWaaeWaaeaacaaIWaGaaiOl aiaaiwdadaqbdaqaaiaadEeaaiaawMa7caGLkWoadaahaaqcfasabe aacaaIYaaaaaqcfaOaayjkaiaawMcaaiabg2da9iaadEeadaahaaqc fasabeaacaWGubaaaKqbaoaabmaabaGaeqOUdSMaam4raiabgUcaRm aaemaabaWaaeWaaeaacaWG1bGaeyOeI0IaeqiXdqhacaGLOaGaayzk aaaacaGLhWUaayjcSdaacaGLOaGaayzkaaaabaGaeyizImQaeyOeI0 IaaGOmaiabeU7aSnaaDaaajuaibaGaeqOUdSgabaGaciyBaiaacMga caGGUbaaaKqbaoaafmaabaGaaGimaiaac6cacaaI1aGaam4raaGaay zcSlaawQa7amaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSYaaOaa aeaacaaIYaaabeaadaqbdaqaaiaadwhacqGHsislcqaHepaDaiaawM a7caGLkWoadaqbdaqaamaakaaabaGaaGimaiaac6cacaaI1aaabeaa caWGhbaacaGLjWUaayPcSdaaaaa@7440@  (34)

Solving the above inequality, we can obtain G( t ) e λ κ min t G( 0 ) + 2 max 0st u( s )τ( s ) ( 1 e λ κ min t )/2 λ κ min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba Gaam4ramaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayzcSlaawQa7 aiabgsMiJkaadwgadaahaaqabKqbGeaacqGHsislcqaH7oaBjuaGda qhaaqcfasaaiabeQ7aRbqaaiGac2gacaGGPbGaaiOBaKqbaoaaBaaa juaibaGaamiDaaqabaaaaaaajuaGdaqbdaqaaiaadEeadaqadaqaai aaicdaaiaawIcacaGLPaaaaiaawMa7caGLkWoacqGHRaWkdaGcaaqa aiaaikdaaeqaamaaxababaGaciyBaiaacggacaGG4baabaGaaGimai abgsMiJkaadohacqGHKjYOcaWG0baabeaadaqbdaqaaiaadwhadaqa daqaaiaadohaaiaawIcacaGLPaaacqGHsislcqaHepaDdaqadaqaai aadohaaiaawIcacaGLPaaaaiaawMa7caGLkWoadaqadaqaaiaaigda cqGHsislcaWGLbWaaWbaaeqajuaibaGaeyOeI0Iaeq4UdWwcfa4aa0 baaKqbGeaacqaH6oWAaeaaciGGTbGaaiyAaiaac6gajuaGdaWgaaqc fasaaiaadshaaeqaaaaaaaaajuaGcaGLOaGaayzkaaGaai4laiaaik dacqaH7oaBdaqhaaqcfasaaiabeQ7aRbqaaiGac2gacaGGPbGaaiOB aaaaaaa@7DDD@ , , which implies that system in (28) is ISS with input ( u( t )τ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyDamaabmaabaGaamiDaaGaayjkaiaawMcaaiabgkHiTiabes8a 0naabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@40B2@ .

Remark 4: The proposed control law in (25) involves parameters γ q ,K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqcfayabaGaaiilaiaadUeaaaa@3B73@ and K 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada Wgaaqcfasaaiaaigdaaeqaaaaa@3853@ which should be determined by designing in advance before it is implemented. Here, we can first determine the parameters γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqcfayabaaaaa@39F3@ and matrix K, for example γ q =1200 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqcfayabaGaeyypa0JaaGymaiaaikdacaaI WaGaaGimaaaa@3DE4@ and K=0.4 I 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeacq GH9aqpcaaIWaGaaiOlaiaaisdacaWGjbWaaSbaaKqbGeaacaaIZaaa juaGbeaaaaa@3CE1@ , and then PBK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamiuaiaadkeacaWGlbaacaGLjWUaayPcSdaaaa@3C0C@ , max q 0 + q T q=1 { 1 2 ( J σ T σ )K( q 0 I 3 + q × )K }+ σ T DσK+ γ q I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa GaciyBaiaacggacaGG4baabaGaamyCamaaBaaajuaibaGaaGimaaqa baqcfaOaey4kaSIaamyCamaaCaaabeqcfasaaiaadsfaaaqcfaOaam yCaiabg2da9iaaigdaaeqaamaacmaabaWaauWaaeaadaWcaaqaaiaa igdaaeaacaaIYaaaamaabmaabaGaamOsaiabgkHiTiabeo8aZnaaCa aajuaibeqaaiaadsfaaaqcfaOaeq4WdmhacaGLOaGaayzkaaGaam4s amaabmaabaGaamyCamaaBaaajuaibaGaaGimaaqcfayabaGaamysam aaBaaajuaibaGaaG4maaqabaqcfaOaey4kaSIaamyCamaaCaaajuai beqaaiabgEna0caaaKqbakaawIcacaGLPaaacaWGlbaacaGLjWUaay PcSdaacaGL7bGaayzFaaGaey4kaSYaauWaaeaacqaHdpWCdaahaaqa bKqbGeaacaWGubaaaKqbakaadseacqaHdpWCcaWGlbGaey4kaSIaeq 4SdC2aaSbaaKqbGeaacaWGXbaajuaGbeaacaWGjbaacaGLjWUaayPc Sdaaaa@6EA3@ , σ T E σ T D+PB + max q 0 + q T q=1 { ( Kq ) × σ T } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba qbaeqabeGaaaqaaiabeo8aZnaaCaaajuaibeqaaiaadsfaaaqcfaOa amyraaqaaiabeo8aZnaaCaaajuaibeqaaiaadsfaaaqcfaOaamirai abgUcaRiaadcfacaWGcbaaaaGaayzcSlaawQa7aiabgUcaRmaaxaba baGaciyBaiaacggacaGG4baabaGaamyCamaaBaaajuaibaGaaGimaa qabaqcfaOaey4kaSIaamyCamaaCaaabeqcfasaaiaadsfaaaqcfaOa amyCaiabg2da9iaaigdaaeqaamaacmaabaWaauWaaeaadaqadaqaai aadUeacaWGXbaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaey41aqla aKqbakabeo8aZnaaCaaajuaibeqaaiaadsfaaaaajuaGcaGLjWUaay PcSdaacaGL7bGaayzFaaaaaa@607F@  and max q 0 + q T q=1 { 1 2 ( J σ T σ )K( q 0 I 3 + q × ) } σ T Dσ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTm aaxababaGaciyBaiaacggacaGG4baabaGaamyCamaaBaaajuaibaGa aGimaaqabaqcfaOaey4kaSIaamyCamaaCaaabeqcfasaaiaadsfaaa qcfaOaamyCaiabg2da9iaaigdaaeqaamaacmaabaWaauWaaeaadaWc aaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaamOsaiabgkHiTiabeo 8aZnaaCaaajuaibeqaaiaadsfaaaqcfaOaeq4WdmhacaGLOaGaayzk aaGaam4samaabmaabaGaamyCamaaBaaajuaibaGaaGimaaqcfayaba GaamysamaaBaaajuaibaGaaG4maaqabaqcfaOaey4kaSIaamyCamaa CaaajuaibeqaaiabgEna0caaaKqbakaawIcacaGLPaaaaiaawMa7ca GLkWoaaiaawUhacaGL9baacqGHsisldaqbdaqaaiabeo8aZnaaCaaa beqcfasaaiaadsfaaaqcfaOaamiraiabeo8aZbGaayzcSlaawQa7aa aa@68D1@  can be determined accordingly based on the constraint condition q 2 + q 0 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamyCaaGaayzcSlaawQa7amaaCaaajuaibeqaaiaaikdaaaqcfaOa ey4kaSIaamyCamaaDaaajuaibaGaaGimaaqaaiaaikdaaaqcfaOaey ypa0JaaGymaaaa@421D@ . Finally, an appropriate gain matrix K1 can be selected to make the matrix inequality (19) satisfied. The given parameter γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@ in (22) represents the disturbance attenuation level of the resulting closed system in (1), (12) and (16). As discussed in,26 any level of L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada WgaaqcfasaaiaaikdaaKqbagqaaaaa@38E3@ disturbance attenuation can be achieved by choosing γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@  sufficiently small at the expense of a larger control effort.
From Theorem 1, we can obtain the amplitude constrained attitude controller (ACAC) for normal system in (1) and (4)-(6):

u c =2 Σ T ( Σ Σ T ) 1 SA T M ( τ 2 , τ max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadogaaKqbagqaaiabg2da9iaaikdacqqHJoWudaah aaqabKqbGeaacaWGubaaaKqbaoaabmaabaGaeu4OdmLaeu4Odm1aaW baaeqajuaibaGaamivaaaaaKqbakaawIcacaGLPaaadaahaaqabKqb GeaacqGHsislcaaIXaaaaKqbakaadofacaWGbbGaamivamaaBaaaju aibaGaamytaaqcfayabaWaaeWaaeaadaWcaaqaaiabes8a0bqaaiaa ikdaaaGaaiilamaalaaabaGaeqiXdq3aaSbaaKqbGeaaciGGTbGaai yyaiaacIhaaKqbagqaaaqaaiaaikdaaaGaaiilaiaadIhaaiaawIca caGLPaaaaaa@57E2@  (35)

with (25)-(28). Based on Theorem 1 and equation (35), the overall structure of the ACAC is shown in Figure 1, and the design procedure for ACAC is given as follows.

Figure 1 The overall structure of FTACAC.

Step 1: Given γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNj abg6da+iaaicdaaaa@39E2@ and select the parameter, γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqabaaaaa@3965@ , K and K1 based on Remark 4 such that the matrix
inequality in (19) is satisfied;

Step 2: Select compensator parameter diagonal matrix κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRb aa@382B@ , set G( 0 )= [ 0,0,0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada qadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWadaqaaiaaicda caGGSaGaaGimaiaacYcacaaIWaaacaGLBbGaayzxaaWaaWbaaKqbGe qabaGaamivaaaaaaa@4137@ and construct the saturation compensator l in (27)-(28), where the input of the saturation compensator can be obtained by the feedback loop as shown in Figure 1;

Step 3: Obtain the controller u in (25);

Step4: Further get the ACAC controller uc based on (35).

The proposed amplitude constrained attitude controller in (35) with (26)-(28) achieves asymptotical stability of the resulting closed-loop attitude system with fault-free actuators. However, when actuator faults occur, it no longer ensures the stabilization and accuracy for the attitude control system. Therefore, to guarantee the stability of the system, a controller that can accommodate the actuator faults is needed for flexible spacecraft during actuator fault occurrence. In the follows, in order to propose the fault-tolerant constrained controllers, a significant Lemma is proposed.

Lemma 1:For the actuator distribution matrix Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atb aa@37FD@  , fault switch matrix MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizd aa@3827@  and actuator effectiveness matrix F under assumption 2, there exists a function matrix S(t) and a constant s ¯ >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qeaiabg6da+iaaicdaaaa@394B@ , such that the following equation holds:

Σ( I( t ) )F( t ) Σ T =S( t )Σ Σ T s ¯ Σ Σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aabmaabaGaamysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaayjk aiaawMcaaaGaayjkaiaawMcaaiaadAeadaqadaqaaiaadshaaiaawI cacaGLPaaacqqHJoWudaahaaqcfasabeaacaWGubaaaKqbakabg2da 9iaadofadaqadaqaaiaadshaaiaawIcacaGLPaaacqqHJoWucqqHJo WudaahaaqcfasabeaacaWGubaaaKqbakabgwMiZkqadohagaqeaiab fo6atjabfo6atnaaCaaajuaibeqaaiaadsfaaaaaaa@561F@  (36)

Proof: Because rank( Σ )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaca WGHbGaamOBaiaadUgadaqadaqaaiabfo6atbGaayjkaiaawMcaaiab g2da9iaaiodaaaa@3F09@ , therefore Σ Σ T R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atj abfo6atnaaCaaajuaibeqaaiaadsfaaaqcfaOaeyicI4SaamOuamaa CaaajuaibeqaaiaaiodacqGHxdaTcaaIZaaaaaaa@4174@ is a positive definite symmetric matrix. Let S( t )=( Σ( I( t ) )F( t ) Σ T ) ( Σ Σ T ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada qadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiabfo6a tnaabmaabaGaamysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaay jkaiaawMcaaaGaayjkaiaawMcaaiaadAeadaqadaqaaiaadshaaiaa wIcacaGLPaaacqqHJoWudaahaaqcfasabeaacaWGubaaaaqcfaOaay jkaiaawMcaamaabmaabaGaeu4OdmLaeu4Odm1aaWbaaKqbGeqabaGa amivaaaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaacqGHsislca aIXaaaaaaa@5422@ , we have S( t )Σ Σ T =Σ( I( t ) )F( t ) Σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada qadaqaaiaadshaaiaawIcacaGLPaaacqqHJoWucqqHJoWudaahaaqc fasabeaacaWGubaaaKqbakabg2da9iabfo6atnaabmaabaGaamysai abgkHiTiabgEIizpaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjk aiaawMcaaiaadAeadaqadaqaaiaadshaaiaawIcacaGLPaaacqqHJo WudaahaaqcfasabeaacaWGubaaaaaa@4E8A@ . As rank rank( ( I( t ) )F( t ) )3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaca WGHbGaamOBaiaadUgadaqadaqaamaabmaabaGaamysaiabgkHiTiab gEIizpaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaai aadAeadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHLjYScaaIZaaaaa@4906@ , ( I( t ) )F( t )=diag( F 1 ,...,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaayjkaiaawMca aaGaayjkaiaawMcaaiaadAeadaqadaqaaiaadshaaiaawIcacaGLPa aacqGH9aqpcaWGKbGaamyAaiaadggacaWGNbWaaeWaaeaacaWGgbWa aSbaaKqbGeaacaaIXaaabeaajuaGcaGGSaGaaiOlaiaac6cacaGGUa GaaiilaiaaicdaaiaawIcacaGLPaaaaaa@4E05@ , without loss of generality, suppose ( I( t ) )F( t )=diag( F 1 ,.. F L .,0,...,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaayjkaiaawMca aaGaayjkaiaawMcaaiaadAeadaqadaqaaiaadshaaiaawIcacaGLPa aacqGH9aqpcaWGKbGaamyAaiaadggacaWGNbWaaeWaaeaacaWGgbWa aSbaaKqbGeaacaaIXaaabeaajuaGcaGGSaGaaiOlaiaac6cacaGGgb WaaSbaaKqbGeaacaWGmbaabeaajuaGcaGGUaGaaiilaiaaicdacaGG SaGaaiOlaiaac6cacaGGUaGaaiilaiaaicdaaiaawIcacaGLPaaaaa a@54AD@ with F i >0,i=1,..., L 1 , L 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqcfasaaiaadMgaaKqbagqaaiabg6da+iaaicdacaGGSaGaamyA aiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaacY eadaWgaaqcfasaaiaaigdaaeqaaKqbakaacYcacaGGmbWaaSbaaKqb GeaacaaIXaaabeaajuaGcqGHLjYScaaIZaaaaa@49A9@ and then there exists a constant s ¯ >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qeaiabg6da+iaaicdaaaa@394B@ such that F i >0,i=1,..., L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqcfasaaiaadMgaaKqbagqaaiabg6da+iaaicdacaGGSaGaamyA aiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaacY eadaWgaaqcfasaaiaaigdaaeqaaaaa@4380@  Let Σ=[ Σ 1 , Σ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atj abg2da9maadmaabaGaeu4Odm1aaSbaaKqbGeaacaaIXaaabeaacaGG SaqcfaOaeu4Odm1aaSbaaKqbGeaacaaIYaaabeaaaKqbakaawUfaca GLDbaaaaa@41DE@  with Σ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aaBaaajuaibaGaaGymaaqabaaaaa@3907@ and Σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aaBaaajuaibaGaaGOmaaqabaaaaa@3908@  being 3× L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiodacq GHxdaTcaGGmbWaaSbaaKqbGeaacaaIXaaabeaaaaa@3B27@  and 3×( L L 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiodacq GHxdaTdaqadaqaaiaacYeacqGHsislcaGGmbWaaSbaaKqbGeaacaaI XaaabeaaaKqbakaawIcacaGLPaaaaaa@3EFB@  orders, respectively, and then Σ( I( t ) )F( t )=[ Σ 1 , Σ 2 ]diag( F 1 ,... F L ,0,..0 )=[ Σ 1 diag( F 1 ,... F L ), 0 3×( L L 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aabmaabaGaamysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaayjk aiaawMcaaaGaayjkaiaawMcaaiaadAeadaqadaqaaiaadshaaiaawI cacaGLPaaacqGH9aqpdaWadaqaaiabfo6atnaaBaaajuaibaGaaGym aaqabaGaaiilaKqbakabfo6atnaaBaaajuaibaGaaGOmaaqabaaaju aGcaGLBbGaayzxaaGaamizaiaadMgacaWGHbGaam4zamaabmaabaGa amOramaaBaaajuaibaGaaGymaaqabaqcfaOaaiilaiaac6cacaGGUa GaaiOlaiaadAeadaWgaaqcfasaaiaadYeaaeqaaKqbakaacYcacaaI WaGaaiilaiaac6cacaGGUaGaaGimaaGaayjkaiaawMcaaiabg2da9m aadmaabaGaeu4Odm1aaSbaaKqbGeaacaaIXaaabeaajuaGcaWGKbGa amyAaiaadggacaWGNbWaaeWaaeaacaWGgbWaaSbaaKqbGeaacaaIXa aabeaajuaGcaGGSaGaaiOlaiaac6cacaGGUaGaamOramaaBaaajuai baGaamitaaqabaaajuaGcaGLOaGaayzkaaGaaiilaiaaicdadaWgaa qcfasaaiaaiodacqGHxdaTjuaGdaqadaqcfasaaiaacYeacqGHsisl caGGmbqcfa4aaSbaaKazfa0=baGaaGymaaqabaaajuaicaGLOaGaay zkaaaajuaGbeaaaiaawUfacaGLDbaaaaa@7DC9@ .

As XΣ( ( I( t ) )F( t ) s ¯ I )Σ X T =( X Σ 1 )( diag( F 1 ,... F L ) s ¯ I ) ( X Σ 1 ) T >0,X0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq qHJoWudaqadaqaamaabmaabaGaamysaiabgkHiTiabgEIizpaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadAeadaqada qaaiaadshaaiaawIcacaGLPaaacqGHsislceWGZbGbaebacaWGjbaa caGLOaGaayzkaaGaeu4OdmLaamiwamaaCaaajuaibeqaaiaadsfaaa qcfaOaeyypa0ZaaeWaaeaacaWGybGaeu4Odm1aaSbaaKqbGeaacaaI XaaabeaaaKqbakaawIcacaGLPaaadaqadaqaaiaadsgacaWGPbGaam yyaiaadEgadaqadaqaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaKqb akaacYcacaGGUaGaaiOlaiaac6cacaWGgbWaaSbaaKqbGeaacaWGmb aabeaaaKqbakaawIcacaGLPaaacqGHsislceWGZbGbaebacaWGjbaa caGLOaGaayzkaaWaaeWaaeaacaWGybGaeu4Odm1aaSbaaKqbGeaaca aIXaaabeaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaacaWGubaa aKqbakabg6da+iaaicdacaGGSaGaeyiaIiIaamiwaiabgcMi5kaaic dacaGGSaaaaa@7240@  therefore we have rank( Σ 1 )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaca WGHbGaamOBaiaadUgadaqadaqaaiabfo6atnaaBaaajuaibaGaaGym aaqabaaajuaGcaGLOaGaayzkaaGaeyypa0JaaG4maaaa@40A1@  based on the fact 3rank( Σ 1 )min{ rank( Σ 1 ),rank( Σ 1 diag( F 1 ,...F ) )=3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiodacq GHLjYScaWGYbGaamyyaiaad6gacaWGRbWaaeWaaeaacqqHJoWudaWg aaqcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawMcaaiabgwMiZkGac2 gacaGGPbGaaiOBamaacmaabaGaamOCaiaadggacaWGUbGaam4Aamaa bmaabaGaeu4Odm1aaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcaca GLPaaacaGGSaGaamOCaiaadggacaWGUbGaam4AamaabmaabaGaeu4O dm1aaSbaaKqbGeaacaaIXaaabeaajuaGcaWGKbGaamyAaiaadggaca WGNbWaaeWaaeaacaWGgbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaGG SaGaaiOlaiaac6cacaGGUaGaamOraaGaayjkaiaawMcaaaGaayjkai aawMcaaiabg2da9iaaiodaaiaawUhacaGL9baaaaa@668D@ . Let X R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq GHiiIZcaWGsbWaaWbaaKqbGeqabaGaaG4maaaaaaa@3ABE@ be a row vector. As rank( Σ 1 )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaca WGHbGaamOBaiaadUgadaqadaqaaiabfo6atnaaBaaajuaibaGaaGym aaqabaaajuaGcaGLOaGaayzkaaGaeyypa0JaaG4maaaa@40A1@ system of linear equations X Σ 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq qHJoWudaWgaaqcfasaaiaaigdaaeqaaKqbakabg2da9iaaicdaaaa@3C32@ only has zero solution. So, we have X Σ 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq qHJoWudaWgaaqcfasaaiaaigdaaeqaaKqbakabgcMi5kaaicdaaaa@3CF3@ for X0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgcGiIi aadIfacqGHGjsUcaaIWaaaaa@3AA7@  . As XΣ( ( I( t ) )F( t ) s ¯ I )Σ X T =( X Σ 1 )( diag( F 1 ,... F L ) s ¯ I ) ( X Σ 1 ) T >0,X0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfacq qHJoWudaqadaqaamaabmaabaGaamysaiabgkHiTiabgEIizpaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadAeadaqada qaaiaadshaaiaawIcacaGLPaaacqGHsislceWGZbGbaebacaWGjbaa caGLOaGaayzkaaGaeu4OdmLaamiwamaaCaaajuaibeqaaiaadsfaaa qcfaOaeyypa0ZaaeWaaeaacaWGybGaeu4Odm1aaSbaaKqbGeaacaaI XaaabeaaaKqbakaawIcacaGLPaaadaqadaqaaiaadsgacaWGPbGaam yyaiaadEgadaqadaqaaiaadAeadaWgaaqcfasaaiaaigdaaeqaaKqb akaacYcacaGGUaGaaiOlaiaac6cacaWGgbWaaSbaaKqbGeaacaWGmb aabeaaaKqbakaawIcacaGLPaaacqGHsislceWGZbGbaebacaWGjbaa caGLOaGaayzkaaWaaeWaaeaacaWGybGaeu4Odm1aaSbaaKqbGeaaca aIXaaabeaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaacaWGubaa aKqbakabg6da+iaaicdacaGGSaGaeyiaIiIaamiwaiabgcMi5kaaic dacaGGSaaaaa@7240@ which implies that Σ( F( t )( I( t ) ) s ¯ I ) Σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aabmaabaGaamOramaabmaabaGaamiDaaGaayjkaiaawMcaamaabmaa baGaamysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaayjkaiaawM caaaGaayjkaiaawMcaaiabgkHiTiqadohagaqeaiaadMeaaiaawIca caGLPaaacqqHJoWudaahaaqcfasabeaacaWGubaaaaaa@49BF@  is a positive definite symmetric matrix. Therefore we have ( t )Σ Σ T =( Σ( I( t ) )F( t ) Σ T ) s ¯ Σ Σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiDaaGaayjkaiaawMcaaiabfo6atjabfo6atnaaCaaajuaibeqa aiaadsfaaaqcfaOaeyypa0ZaaeWaaeaacqqHJoWudaqadaqaaiaadM eacqGHsislcqGHNis2daqadaqaaiaadshaaiaawIcacaGLPaaaaiaa wIcacaGLPaaacaWGgbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeu 4Odm1aaWbaaKqbGeqabaGaamivaaaaaKqbakaawIcacaGLPaaacqGH LjYSceWGZbGbaebacqqHJoWucqqHJoWudaahaaqcfasabeaacaWGub aaaaaa@56D0@  this proof is completed.

As the fault switch matrix MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEIizd aa@3827@  and the actuator effectiveness matrix F are unknown, the constant s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qeaaaa@3789@ is also unknown, which needs to be estimated in the following control design. From Assumption 3 and the fact 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba Gaey4jIKnacaGLjWUaayPcSdGaeyizImQaaGymaaaa@3DBE@  we have u kh u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba Gaey4jIKTaamyDamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaGa ayzcSlaawQa7aiabgsMiJkqadwhagaqeamaaBaaajuaibaGaam4Aai aadIgaaeqaaaaa@43F5@ (37)

Based on Theorem 1 and Lemma 1, we propose the following fault-tolerant amplitude constrained attitude controller (FTACAC) in (38) with (39)-(44).

Theorem 2: Consider the flexible spacecraft system that consists of (1), (12) and (16) under actuator faults in (6) for which Assumptions 1-5 hold. Given γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNj abg6da+iaaicdaaaa@39E2@  , let γ q >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaabaGaamyCaaqabaGaeyOpa4JaaGimaaaa@3AF9@ , κ=diag( κ 1 , κ 2 , κ 3 ) R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRj abg2da9iaadsgacaWGPbGaamyyaiaadEgadaqadaqaaiabeQ7aRnaa BaaajuaibaGaaGymaaqabaGaaiilaKqbakabeQ7aRnaaBaaajuaiba GaaGOmaaqabaqcfaOaaiilaiabeQ7aRnaaBaaajuaibaGaaG4maaqa baaajuaGcaGLOaGaayzkaaGaeyicI4SaamOuamaaCaaabeqcfasaai aaiodacqGHxdaTcaaIZaaaaaaa@4FE0@ , where κ i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaamyAaaqabaqcfaOaeyOpa4JaaGimaaaa@3BB8@ , 1,2,3,κ R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaiabeQ7aRjabgIGi olaadkfadaahaaqabKqbGeaacaaIZaGaey41aqRaaG4maaaaaaa@4398@ and κ 1 R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaaGymaaqabaqcfaOaeyicI4SaamOuamaaCaaabeqc fasaaiaaiodacqGHxdaTcaaIZaaaaaaa@3FFF@ be positive definite symmetric matrices. If γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaabaGaamyCaaqabaaaaa@3937@ , K and κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaaGymaaqabaaaaa@3935@ satisfy the inequality in (19), then the dynamic feedback control law

u c =2 λ ( Σ Σ T ) 1 max Σ T F 2 1 x=2 λ ( Σ Σ T ) 1 max Σ T SA T M ( τ 2 , τ max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada Wgaaqaaiaadogaaeqaaiabg2da9iabgkHiTiaaikdacqaH7oaBdaqh aaqcfasaaKqbaoaabmaajuaibaGaeu4OdmLaeu4Odmvcfa4aaWbaaK qbGeqabaGaamivaaaaaiaawIcacaGLPaaajuaGdaahaaqcfasabeaa cqGHsislcaaIXaaaaaqaaiGac2gacaGGHbGaaiiEaaaajuaGcqqHJo WudaahaaqabKqbGeaacaWGubaaaKqbakaadAeadaqhaaqcfasaaiaa ikdaaeaacqGHsislcaaIXaaaaKqbakaadIhacqGH9aqpcaaIYaGaeq 4UdW2aa0baaKqbGeaajuaGdaqadaqcfasaaiabfo6atjabfo6atLqb aoaaCaaajuaibeqaaiaadsfaaaaacaGLOaGaayzkaaqcfa4aaWbaaK qbGeqabaGaeyOeI0IaaGymaaaaaeaaciGGTbGaaiyyaiaacIhaaaqc faOaeu4Odm1aaWbaaeqajuaibaGaamivaaaajuaGcaWGtbGaamyqai aadsfadaWgaaqcfasaaiaad2eaaeqaaKqbaoaabmaabaWaaSaaaeaa cqaHepaDaeaacaaIYaaaaiaacYcadaWcaaqaaiabes8a0naaBaaaju aibaGaamyBaiaadggacaWG4baajuaGbeaaaeaacaaIYaaaaiaacYca caWG4baacaGLOaGaayzkaaaaaa@772D@  (38)

Where

τ= s ¯ ^ ψ+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0j abg2da9iqadohagaqegaqcaiabeI8a5jabgUcaRiaadYgaaaa@3E04@  (39)

ψ=[ 1 γ q ω × ( J σ T σ ) T ( K+ γ q K 1 1 )( ω × ( J σ T σ ) ) +2 K 1 + 2 γ 2 +2 Σ u ^ kh ]x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5j abg2da9iabgkHiTmaadmaabaWaaSaaaeaacaaIXaaabaGaeq4SdC2a aSbaaKqbGeaacaWGXbaajuaGbeaaaaWaauWaaeaacqaHjpWDdaahaa qcfasabeaacqGHxdaTaaqcfa4aaeWaaeaacaWGkbGaeyOeI0Iaeq4W dm3aaWbaaeqajuaibaGaamivaaaajuaGcqaHdpWCaiaawIcacaGLPa aadaahaaqcfasabeaacaWGubaaaKqbaoaabmaabaGaam4saiabgUca Riabeo7aNnaaBaaajuaibaGaamyCaaqcfayabaGaam4samaaDaaaju aibaGaaGymaaqaaiabgkHiTiaaigdaaaaajuaGcaGLOaGaayzkaaWa aeWaaeaacqaHjpWDdaahaaqcfasabeaacqGHxdaTaaqcfa4aaeWaae aacaWGkbGaeyOeI0Iaeq4Wdm3aaWbaaeqajuaibaGaamivaaaajuaG cqaHdpWCaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawMa7caGLkW oacqGHRaWkcaaIYaWaauWaaeaacaWGlbWaaSbaaKqbGeaacaaIXaaa beaaaKqbakaawMa7caGLkWoacqGHRaWkdaWcaaqaaiaaikdaaeaacq aHZoWzdaahaaqabKqbGeaacaaIYaaaaaaajuaGcqGHRaWkcaaIYaWa auWaaeaacqqHJoWuceWG1bGbaKaadaWgaaqcfasaaiaadUgacaWGOb aajuaGbeaaaiaawMa7caGLkWoaaiaawUfacaGLDbaacaWG4baaaa@834C@  (40)

l=κG G ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgacq GH9aqpcqGHsislcqaH6oWAcaWGhbGaeyOeI0Iabm4rayaacaaaaa@3D9D@  (41)

G ˙ =κG+( 2SA T M ( τ 2 , τ max 2 ,x )τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadEeaga Gaaiabg2da9iabgkHiTiabeQ7aRjaadEeacqGHRaWkdaqadaqaaiaa ikdacaWGtbGaamyqaiaadsfadaWgaaqcfasaaiaad2eaaKqbagqaam aabmaabaWaaSaaaeaacqaHepaDaeaacaaIYaaaaiaacYcadaWcaaqa aiabes8a0naaBaaajuaibaGaamyBaiaadggacaWG4baajuaGbeaaae aacaaIYaaaaiaacYcacaWG4baacaGLOaGaayzkaaGaeyOeI0IaeqiX dqhacaGLOaGaayzkaaaaaa@5278@  (42)

s ¯ ^ ˙ = 1 γ s ¯ 2 ψ x β s ¯ γ s ¯ 2 x s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcgaGaaiabg2da9maalaaabaGaaGymaaqaaiabeo7aNnaaDaaa juaibaGabm4CayaaraaabaGaaGOmaaaaaaqcfa4aauWaaeaacqaHip qEaiaawMa7caGLkWoadaqbdaqaaiaadIhaaiaawMa7caGLkWoacqGH sisldaWcaaqaaiabek7aInaaBaaajuaibaGabm4CayaaraaajuaGbe aaaeaacqaHZoWzdaqhaaqcfasaaiqadohagaqeaaqaaiaaikdaaaaa aKqbaoaafmaabaGaamiEaaGaayzcSlaawQa7aiqadohagaqegaqcaa aa@54FA@  (43)

u ¯ ^ ˙ kh = 1 γ u ¯ kh 2 x β u ¯ kh γ u ¯ kh 2 x u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcgaGaamaaBaaajuaibaGaam4AaiaadIgaaeqaaKqbakabg2da 9maalaaabaGaaGymaaqaaiabeo7aNnaaDaaajuaibaGabmyDayaara qcfa4aaSbaaKqbGeaacaWGRbGaamiAaaqabaaabaGaaGOmaaaaaaqc fa4aauWaaeaacaWG4baacaGLjWUaayPcSdGaeyOeI0YaaSaaaeaacq aHYoGydaWgaaqcfasaaiqadwhagaqeaKqbaoaaBaaajuaibaGaam4A aiaadIgaaeqaaaqcfayabaaabaGaeq4SdC2aa0baaKqbGeaaceWG1b GbaebajuaGdaWgaaqcfasaaiaadUgacaWGObaabeaaaeaacaaIYaaa aaaajuaGdaqbdaqaaiaadIhaaiaawMa7caGLkWoaceWG1bGbaeHbaK aadaWgaaqcfasaaiaadUgacaWGObaabeaaaaa@5D23@  (44)

λ ( Σ Σ T ) 1 max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaDaaajuaibaqcfa4aaeWaaKqbGeaacqqHJoWucqqHJoWujuaGdaah aaqcfasabeaacaWGubaaaaGaayjkaiaawMcaaKqbaoaaCaaajuaibe qaaiabgkHiTiaaigdaaaaabaGaciyBaiaacggacaGG4baaaaaa@44DB@  Denotes the maximum singular value of matrix ( Σ Σ T ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba WaaWbaaeqabaGaeu4OdmLaeu4Odm1aaWbaaeqajuaibaGaamivaaaa aaaajuaGcaGLOaGaayzkaaWaaWbaaKqbGeqabaGaeyOeI0IaaGymaa aaaaa@3EDB@ , s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@ , u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaaa@3A54@ are the estimates of 1/ s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca GGVaGabm4Cayaaraaaaa@38F7@ and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaaa@3A54@ respectively, γ s ¯ , β s ¯ , γ u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGabm4CayaaraaajuaGbeaacaGGSaGaeqOSdi2aaSba aKqbGeaaceWGZbGbaebaaKqbagqaaiaacYcacqaHZoWzdaWgaaqcfa saaiqadwhagaqeaKqbaoaaBaaajuaibaGaam4AaiaadIgaaeqaaaqa baaaaa@44BD@ and β u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIn aaBaaajuaibaGabmyDayaaraqcfa4aaSbaaKqbGeaacaWGRbGaamiA aaqabaaabeaaaaa@3C35@ re positive constants, renders the closed loop system in (1), (12) and (16) under actuator faults in (6) ISS from the input [ d T, s ¯ , u ¯ ^ kh ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamizamaaCaaabeqcfasaaiaadsfacaGGSaaaaKqbakqadohagaqe aiaacYcaceWG1bGbaeHbaKaadaWgaaqcfasaaiaadUgacaWGObaaju aGbeaaaiaawUfacaGLDbaadaahaaqcfasabeaacaWGubaaaaaa@427F@ to the state [ q T, x T, ξ T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamyCamaaCaaabeqcfasaaiaadsfacaGGSaaaaKqbakaadIhadaah aaqabKqbGeaacaWGubGaaiilaaaajuaGcqaH+oaEdaahaaqabKqbGe aacaWGubaaaaqcfaOaay5waiaaw2faamaaCaaabeqcfasaaiaadsfa aaaaaa@43CF@

Proof: Define the estimation errors of 1/ s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca GGVaGabm4Cayaaraaaaa@38F7@ and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaaa@3A54@ as follows: s ¯ ˜ = s ¯ ^ 1 s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaacaiabg2da9iqadohagaqegaqcaiabgkHiTmaalaaabaGaaGym aaqaaiqadohagaqeaaaaaaa@3C84@ and u ¯ ˜ kh = u ¯ kh u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaacamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabg2da9iqa dwhagaqeamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabgkHiTi qadwhagaqegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaaa @43ED@ . Following the same steps as the proof in Theorem 1, we consider the smooth positive-definite radically unbounded function as follows

V 1 = 1 2 γ q q T q+ 1 2 γ q ( 1 q 0 ) 2 + 1 2 x T ( J σ T σ )x+ 1 2 ξ T Pξ+ 1 2 γ s ¯ 2 s ¯ s ¯ ˜ 2 + 1 2 γ u ¯ kh 2 Σ u ¯ ˜ kh 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaaigdaaeqaaKqbakabg2da9maalaaabaGaaGymaaqa aiaaikdaaaGaeq4SdC2aaSbaaKqbGeaacaWGXbaabeaajuaGcaWGXb WaaWbaaeqajuaibaGaamivaaaajuaGcaWGXbGaey4kaSYaaSaaaeaa caaIXaaabaGaaGOmaaaacqaHZoWzdaWgaaqcfasaaiaadghaaKqbag qaamaabmaabaGaaGymaiabgkHiTiaadghadaWgaaqcfasaaiaaicda aeqaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaqcfa Oaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWG4bWaaWbaaKqb GeqabaGaamivaaaajuaGdaqadaqaaiaadQeacqGHsislcqaHdpWCda ahaaqabKqbGeaacaWGubaaaKqbakabeo8aZbGaayjkaiaawMcaaiaa dIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCa aajuaibeqaaiaadsfaaaqcfaOaamiuaiabe67a4jabgUcaRmaalaaa baGaaGymaaqaaiaaikdaaaGaeq4SdC2aa0baaKqbGeaaceWGZbGbae baaeaacaaIYaaaaKqbakqadohagaqeaiqadohagaqegaacamaaCaaa juaibeqaaiaaikdaaaGaey4kaSscfa4aaSaaaeaacaaIXaaabaGaaG OmaaaacqaHZoWzdaqhaaqcfasaaiqadwhagaqeaKqbaoaaBaaajuai baGaam4AaiaadIgaaeqaaaqaaiaaikdaaaqcfa4aauWaaeaacqqHJo WuaiaawMa7caGLkWoaceWG1bGbaeHbaGaadaqhaaqcfasaaiaadUga caWGObaabaGaaGOmaaaaaaa@8394@  (45)

The time derivate V1 along (1), (6), (12) and (16) is given by

V ˙ 1 = γ q q T Kq+ γ q x T q+ ξ T P( Aξ+Bω )+ γ s ¯ 2 s ¯ s ¯ ˜ s ¯ ^ γ u ¯ kh 2 Σ u ¯ ˜ kh + x T [ ω × ( J σ T σ )ω σ T Dσω+ 1 2 ( J σ T σ )K( q 0 I 3 + q × )ω+ [ σ T E σ T D ω × σ T ]ξ+Σ( u kh +( I )F u c ( t ) )+d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm OvayaacaWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcqGHsisl cqaHZoWzdaWgaaqcfasaaiaadghaaeqaaKqbakaadghadaahaaqabK qbGeaacaWGubaaaKqbakaadUeacaWGXbGaey4kaSIaeq4SdC2aaSba aKqbGeaacaWGXbaajuaGbeaacaWG4bWaaWbaaeqajuaibaGaamivaa aajuaGcaWGXbGaey4kaSIaeqOVdG3aaWbaaeqajuaibaGaamivaaaa juaGcaWGqbWaaeWaaeaacaWGbbGaeqOVdGNaey4kaSIaamOqaiabeM 8a3bGaayjkaiaawMcaaiabgUcaRiabeo7aNnaaDaaajuaibaGabm4C ayaaraaabaGaaGOmaaaajuaGceWGZbGbaebaceWGZbGbaeHbaGaace WGZbGbaeHbaKaacqGHsislcqaHZoWzdaqhaaqcfasaaiqadwhagaqe aKqbaoaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaqcfasaaiaaik daaaqcfa4aauWaaeaacqqHJoWuaiaawMa7caGLkWoaceWG1bGbaeHb aGaadaWgaaqcfasaaiaadUgacaWGObaajuaGbeaacqGHRaWkaeaaca WG4bWaaWbaaeqajuaibaGaamivaaaajuaGdaWadaabaeqabaGaeyOe I0IaeqyYdC3aaWbaaKqbGeqabaGaey41aqlaaKqbaoaabmaabaGaam OsaiabgkHiTiabeo8aZnaaCaaajuaibeqaaiaadsfaaaqcfaOaeq4W dmhacaGLOaGaayzkaaGaeqyYdCNaeyOeI0Iaeq4Wdm3aaWbaaKqbGe qabaGaamivaaaajuaGcaWGebGaeq4WdmNaeqyYdCNaey4kaSYaaSaa aeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadQeacqGHsislcqaHdp WCdaahaaqcfasabeaacaWGubaaaKqbakabeo8aZbGaayjkaiaawMca aiaadUeadaqadaqaaiaadghadaWgaaqcfasaaiaaicdaaeqaaKqbak aadMeadaWgaaqcfasaaiaaiodaaeqaaKqbakabgUcaRiaadghadaah aaqcfasabeaacqGHxdaTaaaajuaGcaGLOaGaayzkaaGaeqyYdCNaey 4kaScabaWaamWaaeaafaqabeqacaaabaGaeq4Wdm3aaWbaaeqajuai baGaamivaaaajuaGcaWGfbaabaGaeq4Wdm3aaWbaaKqbGeqabaGaam ivaaaajuaGcaWGebGaeyOeI0IaeqyYdC3aaWbaaKqbGeqabaGaey41 aqlaaKqbakabeo8aZnaaCaaabeqcfasaaiaadsfaaaaaaaqcfaOaay 5waiaaw2faaiabe67a4jabgUcaRiabfo6atnaabmaabaGaey4jIKTa amyDamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabgUcaRmaabm aabaGaamysaiabgkHiTiabgEIizdGaayjkaiaawMcaaiaadAeacaWG 1bWaaSbaaKqbGeaacaWGJbaajuaGbeaadaqadaqaaiaadshaaiaawI cacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcaWGKbaaaiaawUfacaGL Dbaaaaaa@D5C6@  (46)

From update law in (43), we can obtain that s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@ >0 if choosing s ¯ ^ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaiaacIcacaaIWaGaaiykaaaa@39AB@ > 0. Therefore, we have the following
Inequality hold based on Lemma 1:

x T Σ( I( t ) )F( t ) Σ T λ ( Σ Σ T ) 1 max F 2 1 x2 s ¯ x T SA T M ( τ 2 , τ max 2 ,x ) s ¯ x T SA T M ( τ 2 , τ max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aadIhadaahaaqcfasabeaacaWGubaaaKqbakabfo6atnaabmaabaGa amysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaayjkaiaawMcaaa GaayjkaiaawMcaaiaadAeadaqadaqaaiaadshaaiaawIcacaGLPaaa cqqHJoWudaahaaqcfasabeaacaWGubaaaKqbakabeU7aSnaaDaaaju aibaqcfa4aaeWaaKqbGeaacqqHJoWucqqHJoWujuaGdaahaaqcfasa beaacaWGubaaaaGaayjkaiaawMcaaKqbaoaaCaaajuaibeqaaiabgk HiTiaaigdaaaaabaGaciyBaiaacggacaGG4baaaKqbakaadAeadaqh aaqcfasaaiaaikdaaeaacqGHsislcaaIXaaaaKqbakaadIhacqGHKj YOcaaIYaGabm4CayaaraGaamiEamaaCaaajuaibeqaaiaadsfaaaqc faOaam4uaiaadgeacaWGubWaaSbaaKqbGeaacaWGnbaabeaajuaGda qadaqaamaalaaabaGaeqiXdqhabaGaaGOmaaaacaGGSaWaaSaaaeaa cqaHepaDdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaaaba GaaGOmaaaacaGGSaGaamiEaaGaayjkaiaawMcaaiabgsMiJkqadoha gaqeaiaadIhadaahaaqcfasabeaacaWGubaaaKqbakaadofacaWGbb GaamivamaaBaaajuaibaGaamytaaqabaqcfa4aaeWaaeaadaWcaaqa aiabes8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaSbaaK qbGeaaciGGTbGaaiyyaiaacIhaaeqaaaqcfayaaiaaikdaaaGaaiil aiaadIhaaiaawIcacaGLPaaaaaa@8B00@

The last inequality in (47) is based on the fact that s ¯ s ¯ ^ x T SAT( τ, τ max ,x )0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qeaiqadohagaqegaqcaiaadIhadaahaaqcfasabeaacaWGubaaaKqb akaadofacaWGbbGaamivamaabmaabaGaeqiXdqNaaiilaiabes8a0n aaBaaajuaibaGaciyBaiaacggacaGG4baabeaajuaGcaGGSaGaamiE aaGaayjkaiaawMcaaiabgsMiJkaaicdaaaa@4B63@ . In order to prove V ˙ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga GaamaaBaaajuaibaGaaGymaaqabaGaeyipaWJaaGimaaaa@3A25@ , we first prove the following inequality holds

x T Σ( u kh +( I )F u c ( t ) )+ γ u ¯ kh 2 s ¯ s ¯ ˜ s ¯ ^ ˙ γ u ¯ kh 2 Σ u ¯ ˜ kh u ¯ ^ ˙ kh x Σ u ¯ kh + x T ( ψ+ s ¯ s ¯ ˜ ψ ) x T s ¯ s ¯ ˜ ψ+ x Σ u ¯ kh β s ¯ x s ¯ s ¯ ˜ s ¯ ^ β u ¯ kh x Σ u ¯ ˜ kh u ¯ ^ kh = x T ψ+ x Σ u ¯ ^ kh β s ¯ x s ¯ ( s ¯ ˜ + s ¯ 2 ) 2 + 1 4 β s ¯ x s ¯ s ¯ 2 β u ¯ kh Σ x ( u ¯ ˜ kh + u ¯ kh 2 ) 2 + β u ¯ kh x Σ u ¯ ˜ kh u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam iEamaaCaaajuaibeqaaiaadsfaaaqcfaOaeu4Odm1aaeWaaeaacqGH Nis2caWG1bWaaSbaaKqbGeaacaWGRbGaamiAaaqcfayabaGaey4kaS YaaeWaaeaacaWGjbGaeyOeI0Iaey4jIKnacaGLOaGaayzkaaGaamOr aiaadwhadaWgaaqcfasaaiaadogaaeqaaKqbaoaabmaabaGaamiDaa GaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiabeo7aNnaaDaaa juaibaGabmyDayaaraqcfa4aaSbaaKqbGeaacaWGRbGaamiAaaqaba aabaGaaGOmaaaajuaGceWGZbGbaebaceWGZbGbaeHbaGaaceWGZbGb aeHbaKGbaiaacqGHsislcqaHZoWzdaqhaaqcfasaaiqadwhagaqeaK qbaoaaBaaajuaibaGaam4AaiaadIgaaeqaaaqaaiaaikdaaaqcfa4a auWaaeaacqqHJoWuaiaawMa7caGLkWoaceWG1bGbaeHbaGaadaWgaa qcfasaaiaadUgacaWGObaajuaGbeaaceWG1bGbaeHbaKGbaiaadaWg aaqcfasaaiaadUgacaWGObaajuaGbeaaaeaacqGHKjYOdaqbdaqaai aadIhaaiaawMa7caGLkWoadaqbdaqaaiabfo6atbGaayzcSlaawQa7 aiqadwhagaqeamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabgU caRiaadIhadaahaaqabKqbGeaacaWGubaaaKqbaoaabmaabaGaeqiY dKNaey4kaSIabm4CayaaraGabm4CayaaryaaiaGaeqiYdKhacaGLOa GaayzkaaGaeyOeI0IaamiEamaaCaaabeqcfasaaiaadsfaaaqcfaOa bm4CayaaraGabm4CayaaryaaiaGaeqiYdKNaey4kaSYaauWaaeaaca WG4baacaGLjWUaayPcSdWaauWaaeaacqqHJoWuaiaawMa7caGLkWoa ceWG1bGbaebadaWgaaqcfasaaiaadUgacaWGObaajuaGbeaacqGHsi slcqaHYoGydaWgaaqaaiqadohagaqeaaqabaWaauWaaeaacaWG4baa caGLjWUaayPcSdGabm4CayaaraGabm4CayaaryaaiaGabm4Cayaary aajaqcfaIaeyOeI0scfaOaeqOSdi2aaSbaaKqbGeaaceWG1bGbaeba juaGdaWgaaqcfasaaiaadUgacaWGObaabeaaaKqbagqaamaafmaaba GaamiEaaGaayzcSlaawQa7amaafmaabaGaeu4OdmfacaGLjWUaayPc SdGabmyDayaaryaaiaWaaSbaaKqbGeaacaWGRbGaamiAaaqcfayaba GabmyDayaaryaajaWaaSbaaKqbGeaacaWGRbGaamiAaaqcfayabaaa baGaeyypa0JaamiEamaaCaaabeqcfasaaiaadsfaaaqcfaOaeqiYdK Naey4kaSYaauWaaeaacaWG4baacaGLjWUaayPcSdWaauWaaeaacqqH JoWuaiaawMa7caGLkWoaceWG1bGbaeHbaKaadaWgaaqcfasaaiaadU gacaWGObaajuaGbeaacqGHsislcqaHYoGydaWgaaqcfasaaiqadoha gaqeaaqabaqcfa4aauWaaeaacaWG4baacaGLjWUaayPcSdGabm4Cay aaraWaaeWaaeaaceWGZbGbaeHbaGaacqGHRaWkdaWcaaqaaiqadoha gaqeaaqaaiaaikdaaaaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaG OmaaaajuaGcqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiabek7a InaaBaaabaGabm4CayaaraaabeaadaqbdaqaaiaadIhaaiaawMa7ca GLkWoaceWGZbGbaebaceWGZbGbaebadaahaaqcfasabeaacaaIYaaa aiabgkHiTKqbakabek7aInaaBaaajuaibaGabmyDayaaraqcfa4aaS baaKqbGeaacaWGRbGaamiAaaqabaaajuaGbeaadaqbdaqaaiabfo6a tbGaayzcSlaawQa7amaafmaabaGaamiEaaGaayzcSlaawQa7amaabm aabaGabmyDayaaryaaiaWaaSbaaKqbGeaacaWGRbGaamiAaaqcfaya baGaey4kaSYaaSaaaeaaceWG1bGbaebadaWgaaqcfasaaiaadUgaca WGObaajuaGbeaaaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaajuai beqaaiaaikdaaaaajuaGbaGaey4kaSIaeqOSdi2aaSbaaKqbGeaace WG1bGbaebajuaGdaWgaaqcfasaaiaadUgacaWGObaabeaaaKqbagqa amaafmaabaGaamiEaaGaayzcSlaawQa7amaafmaabaGaeu4Odmfaca GLjWUaayPcSdGabmyDayaaryaaiaWaaSbaaKqbGeaacaWGRbGaamiA aaqcfayabaGabmyDayaaryaajaWaaSbaaKqbGeaacaWGRbGaamiAaa qcfayabaaaaaa@2511@  (48)

So from Theorem 1 and (46)-(48) we can obtain

V ˙ 1 λ min ( q 2 + x 2 + ξ 2 )+ x ( d + 1 4 β s ¯ S ¯ 3 + 1 4 β u ¯ kh Σ u ¯ kh 2 x / γ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga GaamaaBaaajuaibaGaaGymaaqabaqcfaOaeyizImQaeyOeI0Iaeq4U dW2aa0baaKqbGeaacqGHNis2aeaaciGGTbGaaiyAaiaac6gaaaqcfa 4aaeWaaeaadaqbdaqaaiaadghaaiaawMa7caGLkWoadaahaaqabKqb GeaacaaIYaaaaKqbakabgUcaRmaafmaabaGaamiEaaGaayzcSlaawQ a7amaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaauWaaeaacqaH +oaEaiaawMa7caGLkWoadaahaaqabKqbGeaacaaIYaaaaaqcfaOaay jkaiaawMcaaiabgUcaRmaafmaabaGaamiEaaGaayzcSlaawQa7amaa bmaabaWaauWaaeaacaWGKbaacaGLjWUaayPcSdGaey4kaSYaaSaaae aacaaIXaaabaGaaGinaaaacqaHYoGydaWgaaqaaiqadohagaqeaaqa baGabm4uayaaraWaaWbaaKqbGeqabaGaaG4maaaacqGHRaWkjuaGda WcaaqaaiaaigdaaeaacaaI0aaaaiabek7aInaaBaaajuaibaGabmyD ayaaraqcfa4aaSbaaKqbGeaacaWGRbGaamiAaaqabaaajuaGbeaada qbdaqaaiabfo6atbGaayzcSlaawQa7aiqadwhagaqeamaaDaaajuai baGaam4AaiaadIgaaeaacaaIYaaaaiabgkHiTKqbaoaafmaabaGaam iEaaGaayzcSlaawQa7aiaac+cacqaHZoWzdaahaaqcfasabeaacaaI YaaaaaqcfaOaayjkaiaawMcaaaaa@8544@  (49)

Choosing ρ( | [ d T , S ¯ , u ¯ kh ] T | )= γ 2 ( d + 1 4 β s ¯ S ¯ 3 + β u ¯ kh Σ u ¯ kh 2 ) Κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aabmaabaWaaqWaaeaadaWadaqaaiaadsgadaahaaqabKqbGeaacaWG ubaaaKqbakaacYcaceWGtbGbaebacaGGSaGabmyDayaaraWaaSbaaK qbGeaacaWGRbGaamiAaaqcfayabaaacaGLBbGaayzxaaWaaWbaaeqa juaibaGaamivaaaaaKqbakaawEa7caGLiWoaaiaawIcacaGLPaaacq GH9aqpcqaHZoWzdaahaaqcfasabeaacaaIYaaaaKqbaoaabmaabaWa auWaaeaacaWGKbaacaGLjWUaayPcSdGaey4kaSYaaSaaaeaacaaIXa aabaGaaGinaaaacqaHYoGydaWgaaqaaiqadohagaqeaaqabaGabm4u ayaaraWaaWbaaKqbGeqabaGaaG4maaaajuaGcqGHRaWkcqaHYoGyda WgaaqcfasaaiqadwhagaqeaKqbaoaaBaaajuaibaGaam4AaiaadIga aeqaaaqcfayabaWaauWaaeaacqqHJoWuaiaawMa7caGLkWoaceWG1b GbaebadaqhaaqcfasaaiaadUgacaWGObaabaGaaGOmaaaaaKqbakaa wIcacaGLPaaacqGHiiIZcqqHAoWsdaWgaaqcfasaaiabg6HiLcqaba aaaa@7008@ , then when x γ 2 ( d + 1 4 β s ¯ S ¯ 3 + β u ¯ kh Σ u ¯ kh 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamiEaaGaayzcSlaawQa7aiabgwMiZkabeo7aNnaaCaaajuaibeqa aiaaikdaaaqcfa4aaeWaaeaadaqbdaqaaiaadsgaaiaawMa7caGLkW oacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiabek7aInaaBaaa baGabm4CayaaraaabeaaceWGtbGbaebadaahaaqcfasabeaacaaIZa aaaKqbakabgUcaRiabek7aInaaBaaajuaibaGabmyDayaaraqcfa4a aSbaaKqbGeaacaWGRbGaamiAaaqabaaajuaGbeaadaqbdaqaaiabfo 6atbGaayzcSlaawQa7aiqadwhagaqeamaaDaaajuaibaGaam4Aaiaa dIgaaeaacaaIYaaaaaqcfaOaayjkaiaawMcaaaaa@5D65@  we have V ˙ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga GaamaaBaaajuaibaGaaGymaaqabaaaaa@3867@ =0 , which implies that V1 in (45) is ISS-CLF based on Definition 1. Therefore, the resulting closed loop system in (1), (12) and (16) under actuator faults in (6) is ISS from the input [ d T , S ¯ , u ¯ kh ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamizamaaCaaabeqcfasaaiaadsfaaaqcfaOaaiilaiqadofagaqe aiaacYcaceWG1bGbaebadaWgaaqcfasaaiaadUgacaWGObaajuaGbe aaaiaawUfacaGLDbaadaahaaqabKqbGeaacaWGubaaaaaa@4250@ to the state [ q T , x T , ξ T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamyCamaaCaaajuaibeqaaiaadsfaaaGaaiilaKqbakaadIhadaah aaqabKqbGeaacaWGubaaaKqbakaacYcacqaH+oaEdaahaaqabKqbGe aacaWGubaaaaqcfaOaay5waiaaw2faamaaCaaajuaibeqaaiaadsfa aaaaaa@43CF@  . The proof of Theorem 2 is completed.

Remark 5: The second terms of parameter update laws in (43)-(44) are the e-modifications, which guarantee bounded parameter estimates. Based on Theorem 2, the overall structure of the FTACAC is shown in Figure 2, and the design procedure for FTACAC is given as follows

Figure 2 Quaternion with faulty actuators.

Step1: Given γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNj abg6da+iaaicdaaaa@39E2@ and select the parameter γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqabaaaaa@3965@ , K and K1 based on Remark 4 such that the matrix inequality in (19) is satisfied;

Step 2: Select compensator parameter diagonal matrix κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRb aa@382B@  , set G( 0 )= [ 0,0,0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada qadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWadaqaaiaaicda caGGSaGaaGimaiaacYcacaaIWaaacaGLBbGaayzxaaWaaWbaaeqaju aibaGaamivaaaaaaa@4137@ and construct the saturation compensator l in (41)-(42), where the input ( uτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHsislcqaHepaDaaa@3A25@ ) of the saturation compensator can be obtained by the feedback loop as shown in Figure 2;

Step 3: Select parameters, γ s , β s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaam4CaaqabaGaaiilaiabek7aILqbaoaaBaaajuai baGaam4Caaqcfayabaaaaa@3E1B@  and γ u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGabmyDayaaraqcfa4aaSbaaKqbGeaacaWGRbGaamiA aaqabaaajuaGbeaaaaa@3CC9@ , set s ¯ ^ ( 0 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcamaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaigda aaa@3B9C@  and u ¯ kh ( 0 )=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qeamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaamaabmaabaGaaGim aaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaGynaaaa@3FB9@ , and construct the parameters update laws in (43)-(44);

Step 4: Obtain the FTACAC controller u c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada Wgaaqcfasaaiaadogaaeqaaaaa@38AA@  in (38).

A fault-tolerant amplitude and rate constrained attitude controller design: Control law in (38) only accounts for actuator amplitude constraint. In fact, many cases we require not only the amplitude constraint but also rate constraint of actuators to limit the possible excitation of high-frequency UN modeled dynamic of spacecraft as discussed in.9 However, there are still few results that take both actuator amplitude and rate constraints into account in the attitude control of spacecraft. To account for the amplitude and rate constraints, we proposed the fault-tolerant amplitude and rate constrained attitude controller (FTARCAC) in (50) with (51)-(58) based on the following Theorem 3.

Theorem 3: Consider the flexible spacecraft system that consists of (1), (12) and (16) under actuator faults in (6) for which Assumptions 1-5 hold, given γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@ >0 let γ q >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqcfayabaGaeyOpa4JaaGimaaaa@3BB5@ , κ=diag( κ 1 , κ 2 , κ 3 ) R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRj abg2da9iaadsgacaWGPbGaamyyaiaadEgadaqadaqaaiabeQ7aRnaa BaaajuaibaGaaGymaaqabaGaaiilaKqbakabeQ7aRnaaBaaajuaiba GaaGOmaaqabaqcfaOaaiilaiabeQ7aRnaaBaaajuaibaGaaG4maaqa baaajuaGcaGLOaGaayzkaaGaeyicI4SaamOuamaaCaaabeqcfasaai aaiodacqGHxdaTcaaIZaaaaaaa@4FE0@ , where κ i >0,1,2,3,κ R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaamyAaaqabaqcfaOaeyOpa4JaaGimaiaacYcacqGH sislcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacqaH6oWAcq GHiiIZcaWGsbWaaWbaaeqajuaibaGaaG4maiabgEna0kaaiodaaaaa aa@4987@ and κ 1 R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaaGymaaqabaqcfaOaeyicI4SaamOuamaaCaaabeqc fasaaiaaiodacqGHxdaTcaaIZaaaaaaa@3FFF@ be positive definite symmetric matrices. If γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqcfayabaaaaa@39F3@ , K and K1 satisfy the inequality in (19), then the dynamic feedback control law

u c =2 λ ( Σ Σ T ) 1 max Σ T F 3 1 x=2 λ ( Σ Σ T ) 1 max Σ T SAT( τ 2 , τ # max 2 ,R,x )= λ ( Σ Σ T ) 1 max Σ T u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadogaaKqbagqaaiabg2da9iabgkHiTiaaikdacqaH 7oaBdaqhaaqcfasaaKqbaoaabmaajuaibaGaeu4OdmLaeu4Odmvcfa 4aaWbaaKqbGeqabaGaamivaaaaaiaawIcacaGLPaaajuaGdaahaaqc fasabeaacqGHsislcaaIXaaaaaqaaiGac2gacaGGHbGaaiiEaaaaju aGcqqHJoWudaahaaqcfasabeaacaWGubaaaKqbakaadAeadaqhaaqc fasaaiaaiodaaeaacqGHsislcaaIXaaaaKqbakaadIhacqGH9aqpca aIYaGaeq4UdW2aa0baaKqbGeaajuaGdaqadaqcfasaaiabfo6atjab fo6atLqbaoaaCaaajuaibeqaaiaadsfaaaaacaGLOaGaayzkaaqcfa 4aaWbaaKqbGeqabaGaeyOeI0IaaGymaaaaaeaaciGGTbGaaiyyaiaa cIhaaaqcfaOaeu4Odm1aaWbaaKqbGeqabaGaamivaaaajuaGcaWGtb GaamyqaiaadsfadaqadaqaamaalaaabaGaeqiXdqhabaGaaGOmaaaa caGGSaWaaSaaaeaacqaHepaDdaahaaqabKqbGeaacaGGJaaaaKqbao aaBaaajuaibaGaciyBaiaacggacaGG4baajuaGbeaaaeaacaaIYaaa aiaacYcacaGGsbGaaiilaiaadIhaaiaawIcacaGLPaaacqGH9aqpcq aH7oaBdaqhaaqcfasaaKqbaoaabmaajuaibaGaeu4OdmLaeu4Odmvc fa4aaWbaaKqbGeqabaGaamivaaaaaiaawIcacaGLPaaajuaGdaahaa qcfasabeaacqGHsislcaaIXaaaaaqaaiGac2gacaGGHbGaaiiEaaaa juaGcqqHJoWudaahaaqcfasabeaacaWGubaaaKqbakaadwhaaaa@8D70@  (50)

With the time derivative of u=2SAT( τ 2 , τ # max 2 ,R,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcaaIYaGaam4uaiaadgeacaWGubWaaeWaaeaadaWcaaqaaiab es8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaWbaaeqaju aibaGaai4iaaaajuaGdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqc fayabaaabaGaaGOmaaaacaGGSaGaaiOuaiaacYcacaWG4baacaGLOa Gaayzkaaaaaa@4B70@  defined as

u ˙ =SA T R ( ω ¯ ( 2SA T M ( τ 2 , τ # max 2 ,R,x )u ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga Gaaiabg2da9iaadofacaWGbbGaamivamaaBaaajuaibaGaamOuaaqa baqcfa4aaeWaaeaacuaHjpWDgaqeamaabmaabaGaaGOmaiaadofaca WGbbGaamivamaaBaaajuaibaGaamytaaqcfayabaWaaeWaaeaadaWc aaqaaiabes8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaW baaeqajuaibaGaai4iaaaajuaGdaWgaaqcfasaaiGac2gacaGGHbGa aiiEaaqcfayabaaabaGaaGOmaaaacaGGSaGaaiOuaiaacYcacaWG4b aacaGLOaGaayzkaaGaeyOeI0IaamyDaaGaayjkaiaawMcaaaGaayjk aiaawMcaaaaa@5831@  (51)

Where ω ¯ =diag( ω ¯ 1 , ω ¯ 2 , ω ¯ 3 ) R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeM8a3z aaraGaeyypa0JaamizaiaadMgacaWGHbGaam4zamaabmaabaGafqyY dCNbaebadaWgaaqcfasaaiaaigdaaeqaaKqbakaacYcacuaHjpWDga qeamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaiqbeM8a3zaaraWa aSbaaKqbGeaacaaIZaaabeaaaKqbakaawIcacaGLPaaacqGHiiIZca WGsbWaaWbaaeqajuaibaGaaG4maaaaaaa@4DD8@ ,

τ= s ¯ ^ ψ+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0j abg2da9iqadohagaqegaqcaiabeI8a5jabgUcaRiaadYgaaaa@3E04@  (52)

ψ=[ 1 γ q ( ω × ( J σ T σ ) ) T ( K+ γ q K 1 1 )( ω × ( J σ T σ ) ) +2 k 1 + 2 γ 2 +2 Σ u ^ kh ]x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5j abg2da9iabgkHiTmaadmaabaWaaSaaaeaacaaIXaaabaGaeq4SdC2a aSbaaKqbGeaacaWGXbaajuaGbeaaaaWaauWaaeaadaqadaqaaiabeM 8a3naaCaaabeqaaiabgEna0caadaqadaqaaiaadQeacqGHsislcqaH dpWCdaahaaqcfasabeaacaWGubaaaKqbakabeo8aZbGaayjkaiaawM caaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaadsfaaaqcfa4aaeWa aeaacaWGlbGaey4kaSIaeq4SdC2aaSbaaKqbGeaacaWGXbaajuaGbe aacaWGlbWaa0baaKqbGeaacaaIXaaabaGaeyOeI0IaaGymaaaaaKqb akaawIcacaGLPaaadaqadaqaaiabeM8a3naaCaaajuaibeqaaiabgE na0caajuaGdaqadaqaaiaadQeacqGHsislcqaHdpWCdaahaaqcfasa beaacaWGubaaaKqbakabeo8aZbGaayjkaiaawMcaaaGaayjkaiaawM caaaGaayzcSlaawQa7aiabgUcaRiaaikdadaqbdaqaaiaadUgadaWg aaqcfasaaiaaigdaaeqaaaqcfaOaayzcSlaawQa7aiabgUcaRmaala aabaGaaGOmaaqaaiabeo7aNnaaCaaajuaibeqaaiaaikdaaaaaaKqb akabgUcaRiaaikdadaqbdaqaaiabfo6atjqadwhagaqcamaaBaaaju aibaGaam4AaiaadIgaaKqbagqaaaGaayzcSlaawQa7aaGaay5waiaa w2faaiaadIhaaaa@8439@  (53)

l=κG G ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgacq GH9aqpcqGHsislcqaH6oWAcaWGhbGaeyOeI0Iabm4rayaacaaaaa@3D9D@  (54)

G ˙ =κG+( 2SAT( τ 2 , τ # max 2 ,R,x )τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadEeaga Gaaiabg2da9iabeQ7aRjaadEeacqGHRaWkdaqadaqaaiaaikdacaWG tbGaamyqaiaadsfadaqadaqaamaalaaabaGaeqiXdqhabaGaaGOmaa aacaGGSaWaaSaaaeaacqaHepaDdaahaaqabKqbGeaacaGGJaaaaKqb aoaaBaaajuaibaGaciyBaiaacggacaGG4baajuaGbeaaaeaacaaIYa aaaiaacYcacaGGsbGaaiilaiaadIhaaiaawIcacaGLPaaacqGHsisl cqaHepaDaiaawIcacaGLPaaaaaa@52E6@  (55)

τ # max = τ max R / ω >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaCaaabeqcfasaaiaacocaaaqcfa4aaSbaaKqbGeaaciGGTbGaaiyy aiaacIhaaKqbagqaaiabg2da9iabes8a0naaBaaajuaibaGaciyBai aacggacaGG4baajuaGbeaacqGHsisldaqbdaqaaiaadkfaaiaawMa7 caGLkWoacaGGVaWaauWaaeaacqaHjpWDaiaawMa7caGLkWoacqGH+a GpcaaIWaaaaa@5044@  (56)

s ¯ ^ ˙ = 1 γ s ¯ 2 ψ x β s ¯ γ s ¯ 2 x s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcgaGaaiabg2da9maalaaabaGaaGymaaqaaiabeo7aNnaaDaaa juaibaGabm4CayaaraaabaGaaGOmaaaaaaqcfa4aauWaaeaacqaHip qEaiaawMa7caGLkWoadaqbdaqaaiaadIhaaiaawMa7caGLkWoacqGH sisldaWcaaqaaiabek7aInaaBaaajuaibaGabm4CayaaraaabeaaaK qbagaacqaHZoWzdaqhaaqcfasaaiqadohagaqeaaqaaiaaikdaaaaa aKqbaoaafmaabaGaamiEaaGaayzcSlaawQa7aiqadohagaqegaqcaa aa@54FA@  (57)

u ¯ ^ ˙ kh = 1 γ s ¯ 2 x β u ¯ kh γ u ¯ kh 2 x u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcgaGaamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabg2da 9maalaaabaGaaGymaaqaaiabeo7aNnaaDaaajuaibaGabm4Cayaara aabaGaaGOmaaaaaaqcfa4aauWaaeaacaWG4baacaGLjWUaayPcSdGa eyOeI0YaaSaaaeaacqaHYoGydaWgaaqcfasaaiqadwhagaqeaKqbao aaBaaajuaibaGaam4AaiaadIgaaeqaaaqabaaajuaGbaGaeq4SdC2a a0baaKqbGeaaceWG1bGbaebajuaGdaWgaaqcfasaaiaadUgacaWGOb aabeaaaeaacaaIYaaaaaaajuaGdaqbdaqaaiaadIhaaiaawMa7caGL kWoaceWG1bGbaeHbaKaadaWgaaqcfasaaiaadUgacaWGObaajuaGbe aaaaa@5AF5@  (58)

Renders the closed loop system in (1), (12) and (16) under actuator faults in (6) ISS from the input [ d T , S ¯ , u ¯ kh ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamizamaaCaaabeqcfasaaiaadsfaaaqcfaOaaiilaiqadofagaqe aiaacYcaceWG1bGbaebadaWgaaqcfasaaiaadUgacaWGObaajuaGbe aaaiaawUfacaGLDbaadaahaaqabKqbGeaacaWGubaaaaaa@4250@ to the state [ q T , x T , ξ T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamyCamaaCaaajuaibeqaaiaadsfaaaGaaiilaKqbakaadIhadaah aaqabKqbGeaacaWGubaaaKqbakaacYcacqaH+oaEdaahaaqabKqbGe aacaWGubaaaaqcfaOaay5waiaaw2faamaaCaaajuaibeqaaiaadsfa aaaaaa@43CF@ .

Proof: following Theorem 1 and Theorem 2, the proof can be completed and therefore we omit it. Finally, we prove control law u in (50) satisfying u τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamyDaaGaayzcSlaawQa7aiabgsMiJkabes8a0naaBaaajuaibaGa ciyBaiaacggacaGG4baajuaGbeaaaaa@41C5@  Define ε( x )=u2SA T M ( τ 2 , τ # max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLn aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadwhacqGHsisl caaIYaGaam4uaiaadgeacaWGubWaaSbaaKqbGeaacaWGnbaajuaGbe aadaqadaqaamaalaaabaGaeqiXdqhabaGaaGOmaaaacaGGSaWaaSaa aeaacqaHepaDdaahaaqabKqbGeaacaGGJaaaaKqbaoaaBaaajuaiba GaciyBaiaacggacaGG4baajuaGbeaaaeaacaaIYaaaaiaacYcacaWG 4baacaGLOaGaayzkaaaaaa@50B3@ . From (51) and the and the SA T R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGbbGaamivamaaBaaajuaibaGaamOuaaqcfayabaaaaa@3AA4@  in (18), we can obtain ε( x ) R / ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaeqyTdu2aaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLjWUaayPc SdGaeyizIm6aauWaaeaacaWGsbaacaGLjWUaayPcSdGaai4lamaafm aabaGafqyYdCNbaebaaiaawMa7caGLkWoaaaa@493F@  . Therefore u τ # max + ε( x ) τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamyDaaGaayzcSlaawQa7aiabgsMiJoaafmaabaGaeqiXdq3aaWba aeqajuaibaGaai4iaaaajuaGdaWgaaqcfasaaiGac2gacaGGHbGaai iEaaqcfayabaaacaGLjWUaayPcSdGaey4kaSYaauWaaeaacqaH1oqz daqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawMa7caGLkWoacqGHKj YOcqaHepaDdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaaa aa@55D2@  So the inequality in (8) is satisfied.

Remark 6: The overall structure of the FTARCAC is shown in Figure 3. Equation (51) can be considered as a linear, stable and low-pass filter, where ω ¯ =diag( ω ¯ 1 , ω ¯ 2 , ω ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeM8a3z aaraGaeyypa0JaamizaiaadMgacaWGHbGaam4zamaabmaabaGafqyY dCNbaebadaWgaaqcfasaaiaaigdaaeqaaKqbakaacYcacuaHjpWDga qeamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaiqbeM8a3zaaraWa aSbaaKqbGeaacaaIZaaabeaaaKqbakaawIcacaGLPaaaaaa@4A70@ is the natural frequency of the filter. By employing the filter in (51), the robust controller in (50) with (51)-(58) accounts for not only amplitude constraint but also rate constraint, as well as actuator faults in the presence of inertia matrix uncertainty and external disturbance.

Numerical Numerical Simulations

In this section, numerical simulations are presented to demonstrate the effectiveness of the proposed ACAC in (25) with (26)-(28), FTACAC in (38) with (39)-(44) and FTARCAC in (50) with (51)-(58). The anti-windup Proportional-integral-derivative (AWPID) method in11 is also performed for the purpose of comparison. The rest-to-rest maneuver of the flexible spacecraft is considered in the following simulations. Parameters used in all simulations are given as follows. The nominal value component of the inertia matrix.

Js for a spacecraft is described as:22 J=[ 350 3 4 3 280 10 4 10 190 ]kg/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq GH9aqpdaWadaqaauaabeqadmaaaeaacaaIZaGaaGynaiaaicdaaeaa caaIZaaabaGaaGinaaqaaiaaiodaaeaacaaIYaGaaGioaiaaicdaae aacaaIXaGaaGimaaqaaiaaisdaaeaacaaIXaGaaGimaaqaaiaaigda caaI5aGaaGimaaaaaiaawUfacaGLDbaacaWGRbGaam4zaiaac+caca WGTbWaaWbaaeqajuaibaGaaGOmaaaaaaa@4B6A@  ,and the perturbation component is given by ΔJ=[ 4.2+0.5cost 3 4+sin5t 3 7+cos3t 2.5 4+0.1sin5t 2.5 5.89+1.5sint ]kg/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadQeacqGH9aqpdaWadaqaauaabeqadmaaaeaacaaI0aGaaiOlaiaa ikdacqGHRaWkcaaIWaGaaiOlaiaaiwdaciGGJbGaai4Baiaacohaca WG0baabaGaaG4maaqaaiaaisdacqGHRaWkciGGZbGaaiyAaiaac6ga caaI1aGaamiDaaqaaiaaiodaaeaacqGHsislcaaI3aGaey4kaSIaci 4yaiaac+gacaGGZbGaaG4maiaadshaaeaacaaIYaGaaiOlaiaaiwda aeaacaaI0aGaey4kaSIaaGimaiaac6cacaaIXaGaci4CaiaacMgaca GGUbGaaGynaiaadshaaeaacaaIYaGaaiOlaiaaiwdaaeaacaaI1aGa aiOlaiaaiIdacaaI5aGaey4kaSIaaGymaiaac6cacaaI1aGaci4Cai aacMgacaGGUbGaamiDaaaaaiaawUfacaGLDbaacaWGRbGaam4zaiaa c+cacaWGTbWaaWbaaeqajuaibaGaaGOmaaaaaaa@6E99@ ; the couple matrix is σ=[ 6.45637 1.27814 2.15629 1.25619 0.91756 1.67264 1.23637 2.6581 1.12503 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZj abg2da9maadmaabaqbaeqabmWaaaqaaiaaiAdacaGGUaGaaGinaiaa iwdacaaI2aGaaG4maiaaiEdaaeaacaaIXaGaaiOlaiaaikdacaaI3a GaaGioaiaaigdacaaI0aaabaGaaGOmaiaac6cacaaIXaGaaGynaiaa iAdacaaIYaGaaGyoaaqaaiabgkHiTiaaigdacaGGUaGaaGOmaiaaiw dacaaI2aGaaGymaiaaiMdaaeaacaaIWaGaaiOlaiaaiMdacaaIXaGa aG4naiaaiwdacaaI2aaabaGaeyOeI0IaaGymaiaac6cacaaI2aGaaG 4naiaaikdacaaI2aGaaGinaaqaaiaaigdacaGGUaGaaGOmaiaaioda caaI2aGaaG4maiaaiEdaaeaacqGHsislcaaIYaGaaiOlaiaaiAdaca aI1aGaaGioaiaaigdaaeaacqGHsislcaaIXaGaaiOlaiaaigdacaaI YaGaaGynaiaaicdacaaIZaaaaaGaay5waiaaw2faaaaa@6C98@ ; The first four elastic modes are considered and, the damping and stiffness matrices of the flexible appendages are given by D=[ 0.0086 0 0 0 0 0.19. 0 0 0 0 0.0487 0 0 0 0 0.1275 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseacq GH9aqpdaWadaqaauaabeqaeqaaaaaabaGaaGimaiaac6cacaaIWaGa aGimaiaaiIdacaaI2aaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdacaGGUaGaaGymaiaaiMdacaGGUaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdacaGGUaGaaG imaiaaisdacaaI4aGaaG4naaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaGaaiOlaiaaigdacaaIYaGaaG4naiaaiw daaaaacaGLBbGaayzxaaaaaa@53DA@  and E=[ 0.3900 0 0 0 0 1.2184 0 0 0 0 3.5093 0 0 0 0 6.5005 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GH9aqpdaWadaqaauaabeqaeqaaaaaabaGaaGimaiaac6cacaaIZaGa aGyoaiaaicdacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaigdacaGGUaGaaGOmaiaaigdacaaI4aGaaGinaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIZaGaai OlaiaaiwdacaaIWaGaaGyoaiaaiodaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGOnaiaac6cacaaI1aGaaGimaiaaic dacaaI1aaaaaGaay5waiaaw2faaaaa@54A3@  respectively; To consider possible spillover effects, only the first three elastic modes are taken into account in the controller design; The actuators distribution matrix is given by:22 Σ=[ 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atj abg2da9maadmaabaqbaeqabmabaaaabaWaaOaaaeaacaaIZaaabeaa caGGVaGaaG4maaqaaiabgkHiTmaakaaabaGaaG4maaqabaGaai4lai aaiodaaeaacqGHsisldaGcaaqaaiaaiodaaeqaaiaac+cacaaIZaaa baWaaOaaaeaacaaIZaaabeaacaGGVaGaaG4maaqaaiabgkHiTmaaka aabaGaaG4maaqabaGaai4laiaaiodaaeaacqGHsisldaGcaaqaaiaa iodaaeqaaiaac+cacaaIZaaabaGaeyOeI0YaaOaaaeaacaaIZaaabe aacaGGVaGaaG4maaqaaiabgkHiTmaakaaabaGaaG4maaqabaGaai4l aiaaiodaaeaadaGcaaqaaiaaiodaaeqaaiaac+cacaaIZaaabaWaaO aaaeaacaaIZaaabeaacaGGVaGaaG4maaqaaiabgkHiTmaakaaabaGa aG4maaqabaGaai4laiaaiodaaeaacqGHsisldaGcaaqaaiaaiodaae qaaiaac+cacaaIZaaaaaGaay5waiaaw2faaaaa@5D54@  that is to say, four actuators are considered in the following simulations; The disturbance toque is given by d s ( t )=( ω 2 +0.15 ) [ cos( 0.1t ) sin( 0.5t ) sin( 0.3t ) ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgada WgaaqcfasaaiaadohaaeqaaKqbaoaabmaabaGaamiDaaGaayjkaiaa wMcaaiabg2da9maabmaabaWaauWaaeaacqaHjpWDaiaawMa7caGLkW oadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaaicdacaGGUaGa aGymaiaaiwdaaiaawIcacaGLPaaadaWadaqaauaabeqabmaaaeaaci GGJbGaai4BaiaacohadaqadaqaaiaaicdacaGGUaGaaGymaiaadsha aiaawIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiaaic dacaGGUaGaaGynaiaadshaaiaawIcacaGLPaaaaeaaciGGZbGaaiyA aiaac6gadaqadaqaaiaaicdacaGGUaGaaG4maiaadshaaiaawIcaca GLPaaaaaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaamivaaaaaaa@624C@  The maximum allowable torque input is τ max =10N.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaBaaajuaibaGaamyBaiaadggacaWG4baajuaGbeaacqGH9aqpcaaI XaGaaGimaiaad6eacaGGUaGaamyBaaaa@40E2@  The initial attitude orientation of the unit quaternion is q( 0 )= [ 0.2 0.7 0.35 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada qadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWadaqaauaabeqa bmaaaeaacqGHsislcaaIWaGaaiOlaiaaikdaaeaacaaIWaGaaiOlai aaiEdaaeaacqGHsislcaaIWaGaaiOlaiaaiodacaaI1aaaaaGaay5w aiaaw2faamaaCaaabeqcfasaaiaadsfaaaaaaa@46F9@  and the initial angular velocity is ω( 0 )= [ 0 0 0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9maadmaabaqbaeqa beWaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawUfacaGLDb aadaahaaqabKqbGeaacaWGubaaaaaa@40E7@  the initial vibration state of flexible appendage is η i ( 0 )= η ˙ i ( 0 )=0,i=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aaBaaajuaibaGaamyAaaqabaqcfa4aaeWaaeaacaaIWaaacaGLOaGa ayzkaaGaeyypa0Jafq4TdGMbaiaadaWgaaqcfasaaiaadMgaaeqaaK qbaoaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdacaGG SaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaai ilaiaaisdaaaa@4C62@  The initial value of the adaptive parameters are s ¯ ^ ( 0 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcamaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaigda aaa@3B9C@  and u ¯ ^ kh ( 0 )=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaamaabmaabaGa aGimaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaGynaaaa@3FC8@  The control gains of the proposed controllers are given by r q =1200,K=0.4I, K 1 =700I, γ=2, κ=diag( 2,2,2 ),  γ s ¯ = 5 ,  β s ¯ =0.5,  γ u ¯ kh =0.5,  ω ¯ =diag( 5,5,5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam OCamaaBaaajuaibaGaamyCaaqcfayabaGaeyypa0JaaGymaiaaikda caaIWaGaaGimaiaacYcacaWGlbGaeyypa0JaaGimaiaac6cacaaI0a GaamysaiaacYcacaWGlbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH 9aqpcaaI3aGaaGimaiaaicdacaWGjbGaaiilaabaaaaaaaaapeGaai iOa8aacqaHZoWzcqGH9aqpcaaIYaGaaiila8qacaGGGcWdaiabeQ7a Rjabg2da9iaacsgacaGGPbGaaiyyaiaacEgadaqadaqaaiaaikdaca GGSaGaaGOmaiaacYcacaaIYaaacaGLOaGaayzkaaGaaiila8qacaGG GcWdaiabeo7aNnaaBaaajuaibaGabm4CayaaraaajuaGbeaacqGH9a qpdaGcaaqaaiaaiwdaaeqaaiaacYcapeGaaiiOa8aacqaHYoGydaWg aaqcfasaaiqadohagaqeaaqcfayabaaakeaajuaGcqGH9aqpcaaIWa GaaiOlaiaaiwdacaGGSaWdbiaacckapaGaeq4SdC2aaSbaaKqbGeaa ceWG1bGbaebajuaGdaWgaaqcfasaaiaadUgacaWGObaabeaaaKqbag qaaiabg2da9iaaicdacaGGUaGaaGynaiaacYcapeGaaiiOa8aacuaH jpWDgaqeaiabg2da9iaadsgacaWGPbGaamyyaiaadEgadaqadaqaai aaiwdacaGGSaGaaGynaiaacYcacaaI1aaacaGLOaGaayzkaaaaaaa@867A@ and R= [ 10,10,10 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfacq GH9aqpdaWadaqaaiaaigdacaaIWaGaaiilaiaaigdacaaIWaGaaiil aiaaigdacaaIWaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaamivaa aaaaa@4130@ . The control gains of the AWPID are designed after repeated attempts until good control performances are obtained. Two cases of actuator scenario are considered in the following simulations, i.e., all actuators are normal and some actuators occur faults at some moments. In the actuator fault scenario, we consider that one actuator undergoes the partial loss of effectiveness during 5st70s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiwdaca WGZbGaeyizImQaamiDaiabgsMiJkaaiEdacaaIWaGaam4Caaaa@3F06@ that is F 1 ={ 0.5+0.05( cos( 2πt )1 ) 5st70s 1 otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqcfasaaiaaigdaaKqbagqaaiabg2da9maaceaabaqbaeqabiGa aaqaaiaaicdacaGGUaGaaGynaiabgUcaRiaaicdacaGGUaGaaGimai aaiwdadaqadaqaaiGacogacaGGVbGaai4CamaabmaabaGaaGOmaiab ec8aWjaadshaaiaawIcacaGLPaaacqGHsislcaaIXaaacaGLOaGaay zkaaaabaGaaGynaiaadohacqGHKjYOcaWG0bGaeyizImQaaG4naiaa icdacaWGZbaabaGaaGymaaqaaiaad+gacaWG0bGaamiAaiaadwgaca WGYbGaam4DaiaadMgacaWGZbGaamyzaaaaaiaawUhaaaaa@5DCC@ , and another experiences stuck fault at t10s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshacq GHLjYScaaIXaGaaGimaiaadohaaaa@3BA5@ given by u kh2 =0.45+0.1sint      t10s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadUgacaWGObGaaGOmaaqcfayabaGaeyypa0JaaGim aiaac6cacaaI0aGaaGynaiabgUcaRiaaicdacaGGUaGaaGymaiGaco hacaGGPbGaaiOBaiaadshaqaaaaaaaaaWdbiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOa8aacaWG0bGaeyyzImRaaGymaiaaicdaca WGZbaaaa@51E5@ . The others are normal in the whole process of the spacecraft operator.

Faulty case

In this section, we consider the case that some actuators generate the partial loss of effectiveness and stuck fault at some moments in the process of attitude control for flexible spacecraft. Figure 2-8 show the simulation results of the FTACAC, FTARCAC and AWPID. Figure 2 & 3 show the trajectories of the unit quaternion and angular velocity of the flexible spacecraft under the three controllers, which can be seen that, when actuator faults occur, acceptable control performance and convergence rate of the resulting closed-loop system can still be obtained by FTACAC and FTARCAC in the presence of input saturation, inertia matrix uncertainty and external disturbance. While for AWPID, unexpected control result happens under actuator faults occurrence. The reason is that when actuators of spacecraft undergo faults especially severe faults, the stability of the control system can no longer be guaranteed by the conventional controller such as AWPID. While for our proposed FTACAC and FTARCAC, as we employ two adaptive parameters s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@  and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39C6@  eliminate the effect of the actuator faults in the controller design, therefore acceptable control performance can also be achieved even though severe actuator faults occur. Figure 4 shows the trajectories of the flexible vibration, from which we can see that, a serious vibration of flexible appendages appears for AWPID. While for FTACAC and FTARCAC, a low vibration level also achieved. Figure 5-6 show the trajectories of the thruster outputs and compensator. Figure 7-8 show the trajectories of adaptive parameters s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@ and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39C6@ from which we can find that, the estimation parameters s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@ and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39C6@ are convergent but uncertain convergent to the true parameters 1/ s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca GGVaGabm4Cayaaraaaaa@38F7@ and u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qeamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39B7@ , respectively.

Figure 3 Angular velocity with fault actuators.

Figure 4 Flexible vibration with fault actuators.

Figure 5 Thruster outputs with fault actuators.

Figure 6 Compensator with fault actuators.

Figure 7 Estimation parameter.

Figure 8 Estimation parameter.

Conclusion

This paper presents robust constrained fault-tolerant attitude control algorithms for flexible spacecraft in the presence of actuator fault, control input saturation, model uncertainty and external disturbances. In order to compensate the effect of input saturation, a compensator is employed in the controller design. To handle the actuator amplitude and/or rate constraints under actuator fault occurrence, two constrained fault-tolerant controllers are designed by two parameter update laws to estimate the unknown parameters caused by actuator faults. The proposed controllers are assessed and compared with AWPID through numerical simulations. The result shows that the proposed constrained fault-tolerant attitude controllers are able to accommodate the actuator fault and achieve high precision pointing while conventional methods fail to attain expected control objective.

Acknowledgments

None.

Conflict of interest

Author declares that there are none of the conflicts.

References

  1. Jasim NF, jasim IF. Robust adaptive control of spacecraft attitude systems with unknown dead zones of unknown bounds. J Syst Control Eng. 2012;226(7):947–955.
  2. Song Z, Li H, Sun K. Finite–time control for nonlinear spacecraft attitude based terminal sliding mode technique. ISA Trans. 2014;53(1):117–124.
  3. Wu S, Radice G, Gao Y, et al. Quaternion–based finite time control for spacecraft attitude tracking. Acta Astronautica. 2011;69(1–2):48–58.
  4. Nguyen T, Jabbari F. Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation. Automatica. 2000;36(9):1339–1346.
  5. Leonessa A, Haddad WM, Hayakawa T, et al. Adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints. Int J Adapt Control signal process. 2009;23(1):73–96.
  6. Yuan R, Tan X, Fan G, et al. Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations. Neurocomputing. 2013;125:72–80.
  7. Boškovié JD, Li SM, Mehra RK, et al. Robust adaptive variable structure control of spacecraft under control input saturation. J Guid Control Dyn. 2001;24(1):14–22.
  8. Boškovié JD, SM Li, Mehra RK. Robust tracking control design for spacecraft under control input saturation. J Guid Control Dyn. 2004;27(4):627–633.
  9. Wallsgrove RJ, Akella MR. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. J Guid Control Dyn. 2005;28(5):957–963.
  10. Zhu Z, Xia Y, Fu M. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans Indust Electronics. 2011;58(10):4898–4907.
  11. Bang H, Tahk MJ, Choi HD. Large angle attitude control of spacecraft with actuator saturation. Control Eng Pract. 2003;11(9):989–997.
  12. Hu QL, Xiao B. Intelligent proportional–derivative control for flexible spacecraft attitude stabilization with unknown input saturation. Aeros Sci tech. 2012;23(1):63–74.
  13. Q L Hu, Xiao B. Robust adaptive back stepping attitude stabilization and vibration reduction of flexible spacecraft subject to actuator saturation. J Vibrat Control. 2010;17(1):1657–1671.
  14. Wang T, Xie W, Zhang Y. Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults. ISA Transactions. 2012;51(3):386–392.
  15. Li XJ, Yang GH. Robust adaptive fault–tolerant control for uncertain linear systems with actuator failures. IET Control Theory Appl. 2012;6(10):1544–1551.
  16. Jin JH, Ko SH, Ryoo CK. Fault tolerant control for satellites with four reaction wheels. Control Eng Pract. 2008;16(10):1250–1258.
  17. Cai WC, Liao XH, Song YD. Indirect robust adaptive fault–tolerant control for attitude tracking of spacecraft. J Guid Control Dyn. 2008;31(5):1456–1463.
  18. Mirshams M, Khosrojerdi M, Hasani M. Passive fault–tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters. J Aeros Eng. 2013;228(12):1–15.
  19. Lee H, Kim Y. Fault–tolerant control scheme for satellite attitude control system. IET control Theory Appl. 2009;4(8):1436–1450.
  20. Meng Q, Zhang T, Song JY. Modified model–based fault–tolerant time–varying attitude tracking control of uncertain flexible satellites. J Aerosp Control. 2012;227(11):1–15.
  21. Jiang Y, Hu Q, Ma G. Adaptive back stepping fault–tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans. 2010;49(1):57–69.
  22. Hu QL. Robust adaptive sliding–mode fault–tolerant control with wheels. IET control Theory Appl. 2009;4(6):1055–1070.
  23. Hu QL. Adaptive integral–type sliding mode control for spacecraft attitude maneuvering under actuator stuck failures. Chinese J Aerona. 2011;24(1):32–45.
  24. Krstic M. Inverse optimal stabilization of a rigid spacecraft. IEEE Trans Auto Control. 1999;44:1042–1049.
  25. Luo WC, Chu YC, Ling KV. H infinity inverse optimal attitude–tracking control of rigid spacecraft. J Guid Control Dyn. 2005;28(3):481–493.
  26. Luo WC, Chu YC, Ling K. Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans Auto Control. 2005;50(11):1639–1654.
  27. Krstic M, Li ZH. Inverse optimal design of Input–to–State stabilizing nonlinear controllers. IEEE Trans Auto Control. 1998;43(3):336–350.
  28. M Krstic, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design. IEEE Trans Automatic Control. 1995;41(12):1–5.
Creative Commons Attribution License

©2017 Long, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.