Processing math: 75%
Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 2 Issue 4

Fault–tolerant attitude control for flexible spacecraft with input saturation

Haihui Long, Jiankang Zhao

School of Electronic Information and Electrical Engineering, Shang Hai Jiao Tong University, China

Correspondence: Jiankang Zhao, School of Electronic Information and Electrical Engineering, Shang Hai Jiao Tong University, China, Tel +8618801969342

Received: April 24, 2017 | Published: June 12, 2017

Citation: Long H, Zhao J. Fault–tolerant attitude control for flexible spacecraft with input saturation. Int Rob Auto J. 2017;2(4):122-132. DOI: 10.15406/iratj.2017.02.00026

Download PDF

Abstract

Fault-tolerant constrained attitude controllers are proposed for flexible spacecraft in the presence of input saturation and actuator fault, as well as model uncertainty and external disturbance. Two input saturations, that is amplitude saturation and, amplitude and rate saturation are considered and simple and effective compensators are designed to deal with the effect of input saturation. Two parameter update laws are designed to endure stuck fault, partial and complete loss of effectiveness fault. The stability of the resulting closed-loop systems by the proposed controllers is guaranteed by Lyapunov-based approach. The effectiveness of the proposed algorithms is assessed through numerical simulations.

Keywords: Fault-tolerant; Attitude control; Flexible spacecraft; Input saturation

Introduction

In the past several decades, the attitude control problem of spacecraft has attracted a great deal of attention due to its important applications.1-3 As actuation devices generate toques with only limited amplitude and/or rate,4-6 input saturation may frequently occur during the entire attitude maneuvers of a spacecraft. As discussed in7,8 input saturation can severely degrade closed-loop system performance or even in some cases cause system instability if they are not carefully tackled in attitude control process. Because of this, many researchers have focused on input saturation in attitude controller design of spacecraft.9-13 In,12 neural network was used to estimate the unknown input saturation and then the effect of input saturation was compensated by inserting the saturation compensator into the feed-forward loop of the system. In,13 an auxiliary variable was employed to compensate the effect of input saturation in attitude controller design. However, the tracking error would be modified to get a stable control system with this auxiliary variable. In addition, during the spacecraft mission, actuators may undergo faults due to aging or accidents, such as partial loss of effectiveness, stuck and outage. These faults may cause system instability or even end up with catastrophic events if they are not well handled. Therefore, designing a controller that is robust to these actuator faults is one of the significant issues that need to be considered by researchers. Fault-tolerant control (FTC)14,15 is considered as one of the most effective approaches for maintaining stability and expected performance of system during the actuator faults occurrence. More and more literatures have focused on fault-tolerant attitude control for a spacecraft; see.16-22 In,21 the authors proposed fault-tolerant attitude control of spacecraft to accommodate the partial loss of effectiveness faults in actuators with a prior knowledge of the lower bound of the effectiveness factor. In,22 the knowledge of the bound of the partial effectiveness factor was not need by employing an update law to estimate the lower bound online. However, these mentioned literatures above less considered another important fault scenario of actuators, i.e., stuck fault. As far as we know, in attitude control design, there are few literatures that take stuck fault into account explicitly expect for.23 But in 23 input saturation were not considered, which might be sometimes conservative in practical applications.

Model uncertainty and external disturbance are another two large challenges that need to be considered in the attitude controller design of a spacecraft. Inverse optimal method is an attractive control approach for system with model uncertainty and external disturbance as it has the properties of robust to uncertainty and disturbance, and can achieve H optimality without the need to solve the Hamilton-Jacobi-Isaacs partial differential (HJIPD) equation directly. Several researchers studied this approach to solve the attitude control problem of spacecraft.24-26 However, these literatures above more or less ignored the constraints on control input and the scenario of actuator faults. In addition, the vibration effect of the flexible appendages induced by the orbiting attitude slewing operation was also not handled explicitly. Therefore when input saturation and actuator faults occur simultaneously, stability will no long be guaranteed by using these existing inverse optimal methods. Furthermore, the stability of system becomes worse when serious vibration effect of the flexible appendages happens, because it tends to be aggressive while seeking the expected control performance. To overcome the shortcomings of the preceding research for spacecraft attitude control systems, novel constrained fault-tolerant attitude control strategies are proposed in this work for flexible spacecraft in the presence of actuator faults, input saturation, uncertainty inertia matrix and external disturbance. The main contributions of this paper are shown as follows:

  1. Unlike existing compensator in,13 in our work, a simple and effective compensator is introduced and embedded to the feedback controllers to eliminate the effect of input saturation.
  2. To handle the stuck faults and loss of effectiveness (including partial and complete loss of effectiveness) in actuator for a spacecraft, a new Lemma is first proposed and rigorous proof is presented. Two robust constrained fault-tolerant controllers, accounting for actuator amplitude constraint and, actuator amplitude and rate constraints, respectively, are proposed by introducing two parameter update laws to estimate the unknown parameters caused by actuator faults.
  3. In comparison with the existing literatures in,24-26 we extend the inverse optimal method to flexible spacecraft with input saturation and actuator faults.

The remainder of the paper is organized as follows: Section 2 presents the mathematical model of flexible spacecraft and control problem. Robust constrained fault-tolerant attitude controllers are derived in Section 3. Numerical simulation results of a flexible spacecraft with the derived controllers are given in Section 4, and Section 5 comprises conclusions and possibilities of future work.

Model description and problem formulation

This section briefly introduces the attitude kinematics and dynamic models of a flexible spacecraft. The model of the actuator faults is also established. The attitude kinematic equation of spacecraft can be expressed by unit quaternion as

˙Q = [˙q0˙q] = 12 [qTqx+q0I] ω  (1)

Where    ωR3 is the angular velocity of the spacecraft with respect to an inertial frame and expressed in body frame, Q is the unit quaternion with the unit norm constraint Q, Q = q20+qTq = 1 given by

Q = [q0q] = [cos(θ/2)esin(θ/2)]            (2)

q=[q1,q2q3]TR3 and q0R1  are the vector part and the scalar part of the unit quaternion Q, respectively, eR3 3 and θ denote the Euler axis and Euler angle, respectively, I is the identity matrix with appropriate dimension, and the superscript X is an operator which is denoted by                                                                                                      

ax= [0a3a2a30a1a2a10]           (3)

a is a three dimensional vector with elements a1 , a2 and a3 . Obviously, ax is a skew-symmetric matrix.

The dynamic equations of a flexible spacecraft can be written as12

Js˙ω + σT¨η = ωx(Jsω+σT˙η)+u+ds  (4)

¨η=D˙ηEησ˙ω  (5)

where     Js JsR3×3 represents the inertia matrix of the whole spacecraft,          ηRN denotes the model coordinate vector with is the model number, σRN×3 denotes the coupling matrix between the elastic and rigid structure, uR3 N is the actual control torque,                dsR3 is disturbance torques, D = diag {2ξiϑ12i, i= 1,2,....,N} and E = diag {ϑi, i= 1,2,....,N} are the damping and stiffness matrices, respectively, ξi is the corresponding damping ratio, and ϑ12i is the natural frequency. When considering actuator faults, the actual control torque    u can be modeled as                                                                                                                                                                                                                                                                          

u(t) = (ukh(t)+(I) F(t)uc(t))                                      (6)

Where  R3×L, L  3 is the actuators distribution matrix, = diag(1,...,L)  with {0,1}  being the fault switch factor, ukh(t) = [ukh1(t),ukh2(t),....,uL(t)]TRL  is the struck fault of actuators, uc=[uc1,uc2,ucl]TRL  denotes the input torque of actuators, F(t) = diag(F1(t)F2(t),...,FL(t))  represents effectiveness matrix of actuators. F (t) can be modeled as19

Fi = AFi+BFi2(cos(ϑFi)1), AFi [0,1], BFi [0,1],  i=1,2,....,L

Where AFi denotes the magnitude of the actuator effectiveness and, BFi and ωFi are the amplitude and frequency of the high-frequency component, respectively, with AFi BFi . Therefore, we have Fi  0 , i=1,2,…,L.

Remark 1: Note that ukhi  and Fi , i=1,…, L , can be constant or time-varying. From (6) we can conclude that, for the i th actuator, in the case of i=1 and ukhi0 , the actuator occurs stuck fault; In the case of i=0 and 0<Fi<1 , the actuator experiences partial loss of actuator effectiveness; In the case of i=0 , Fi =0 or i=1  , ukhi=0 , the actuator undergoes outage; In the case of i=0  , Fi =1, the actuator is fault-free . If all the actuators are fault-free in the whole attitude control process, the dynamic system (4) become the nominal system where u=uc . In the following controller designs, the fault system and nominal system are considered, respectively.

In practice, due to fuel consumption, out-gassing during operation, onboard payload motion and rotation Of flexible appendages and so on, the inertial matrix Js of the whole spacecraft structure is time varying and uncertain. We divide it into two parts, that Js=J+ΔJ , where J and ΔJ represent the nominal value component and the parameter perturbation component of the inertial matrix Js  , respectively. As ΔJ is time-varying and unknown, the terms ΔJ˙ω and ω×ΔJω  are also time-varying and unknown. Therefore we can treat them as the disturbance to be tackled in the controller design. When considering ΔJ˙ω , ω×ΔJω and ds  as the total disturbance d ,(4) can be rewritten as

J˙ω+σT¨η=ω×(Jω+σT˙η)+u+d  (7)

Where d(t)=ΔJ˙ωω×ΔJω+ds(t) .

The following assumptions are taken throughout this paper.

Assumption 1: Both J and JσTσ are known positive definite symmetric and bounded constant matrices.

Assumption 2: The actuators distribution matrix , fault switch matrix and actuator effectiveness matrix F satisfy rank()=rank((I)F)=3 .

Assumption 3: The stuck faults ukhi,i=1,...,L are bounded, i.e., |ukhi|ˉukh .

Assumption 4: The total disturbance d is bounded with a bound constant ˉε , i.e., t0d(s)2ds<ˉε for t0 , where denotes the norm of vector or matrix.

Assumption 5: The control input torque of actuators uc(t)=[uc1(t),uc2(t),uc3(t)]T  satisfies

ucΓmax (8)

Where Γmax>0 max is a known constant.

Remark 2: Assumption 2 is used to guarantee that the remaining actuators can still achieve the designed control aims even though some actuators undergo outage or stuck. From Assumption 2 and the fact min{rank(),rank((I)F)}rank((I)F)=3 , we have rank((I)F)3 . From Assumption 5, we have c u = uc  Γmax when all actuators are fault-free. The rest-to-rest maneuver of the spacecraft is considered in this work. The control aim is to design a controller c u for the system in (1), (4)-(6) such that for all initial conditions the desired rotations are achieved in the presence of model uncertainty, external disturbances, inputs saturation or ever actuator faults under Assumptions 1-5, that is limtq(t)=0,limtω(t)=0,limtη(t)=0,limt˙η(t)=0

Robust Attitude Control for Flexible Spacecraft

Mathematical preliminaries

This section includes some important mathematical preliminaries required for the rest of the paper. Consider the nonlinear dynamic system

˙x=f(x)+g1(x)d+g2(x)u  (9)

Where xRn is the state, uRp is the input, dRs is the disturbance, and g2:RnRn×p are smooth vector- or matrix-valued function, respectively. System (9) is said to be input-to-state stable (ISS)27,28 from d to x if the following property is satisfied:

|x(t)|α(|x(0)|,t)+ρ(sup0τt|d(τ)|)

Where α  is a class κ L functions and ρ is a class κ function.

Definition 1:27,28 A smooth function positive definite and radically unbounded V(x):Rn×RR is called an input-to-state stabilizable control Lyapunov function (ISS-CLF) for (9) if there exists some class κ function ρ such that the following implication holds for all x 0 and all d

|x|ρ(|d|)infu˙V0  (10)

Definition 2:27 For system (9), let V is an ISS-CLF with the control law u=12ξ(x)=F(x)1(Lg2V)T  , where F(x) is positive definite symmetric matrix and Lg2 V is Lie derivative defined as Lg2V=(V(x)/x)g2(x) , then the stabilizing control law

u=ξ(x)=2F(x)1(Lg2V)T  (11)

Is H inverse optimal with respect to the cost functional

J(u)=supdD{limt[4V(x(t),t)+t0(l(x,t)+uTF(x)uγ2d2)dκ]}

Where l(x) = 4LfV 4γ2Lg1V(Lg1V)T+ 4Lg2VF1(Lg2V)T> 0,x 0, D is the set of locally bounded functions of x and γ >0

Remark 3: A necessary and sufficient condition for system being ISS is the existence of an ISS-CLF.28 The main characteristic of the inverse optimal approach is that the meaningful cost function is a posteriori determined from the stabilizing feedback control law. The inverse optimal controller u=ξ*(x) (x) in (11) can achieve γ level of H disturbance attenuation for all t0 . Compared with nonlinear H control, the inverse optimal method solves the nonlinear optimal-assignment problem with respect to a meaningful cost functional without solving the HJIPD equation explicitly.

Robust controller design for flexible spacecraft

For simplicity, we denote the following variable v by v=σω+˙η  differentiating the variable v yields v=σω+˙η=DvEη+Dσω . Let ξ=[ηT,vT]T , and then (5) can be written as

˙ξ=[0IED]ξ+Bω,  (12)

Where B=[σDσ] . Since matrix [0IED]  has all its eigen values in the left-hand plane, there exists a symmetric and positive-definite solution PR2N×2N satisfying

P[0IED]+[0IED]TP=T  (13)

Where TR2N×2N  is positive definite symmetric matrix In view of (7), one has

(JσTσ)˙ω=ω×(JσTσ)σTDσω+[σTEσTDω×σT]ξ+u+d  (14)

Define x=ω+Kq  (15)

Where KR3×3 and K=KT>0 . as a result, the subsystem (14) becomes

˙x=(JσTσ)1[ω×(JσTσ)ωσTDσω+12(JσTσ)K(q0I3+q×)ω+[σTEσTDω×σT]ξ+u+d]  (16)

Amplitude constrained attitude controller design: In this section, one controller is presented by constructing control Lyapunov function and using inverse optimal method for normal system in (1) and (4)-(6) with actuator fault-free in the presence of inertia matrix uncertainty, external disturbance and amplitude constraint of actuator. A compensator is proposed and embedded into the feedback controller to eliminate the effect of input saturation. And then a fault-tolerant version is designed to deal with the stuck faults and loss of effectiveness of actuators by employing two parameter update laws with e-modifications to estimate the unknown parameters caused by actuator faults. For convenience, we firstly define the two saturation functions as

SATM(τ2,τmax2,x)={τmax2xxτ>τmaxτ2ττmax  (17)

Where τmax>0,x=[x1,x2,x3]T  and τ=[τ1,τ2,τ3]TR3 , and

SATR(h)=[c1,c2,c3]T  (18)

Where ci={Ri|hi|>Rihi|hi|Ri, i=1,2,3,

With h=[h1,h2,h3]TR3 and R=[R1,R2,R3]TR3 , Ri >0, i=1,2,3, .

In the follows, in order to propose the fault-tolerant constrained controllers, a significant Lemma is proposed.

Theorem 1: For flexible spacecraft system in (1), (12) and (16), under Assumptions 1-5, given γ>0 , let γq>0 , κ=diag(κ1,κ2,κ3)R3×3 , where κi>0, i=1,2,3, κR3×3, κ1R3×3 and κ1R3×3  be positive definite symmetric matrices. If γq , K and satisfy the following inequality

=[γq2λminκ12(maxq0+qTq=1{12(JσTσ)K(q0I3+q*)K}+σTDσK+γqI)12PBK*(12λminκmaxq0+qTq=1{12(JσTσ)K(q0I+q*)}σTDσK)12([σTEσTD]+BTP+maxq0+qTq=1{(Kq)*σT})**12λminT]>0 (19)

Where λminA denotes the minimum singular value of matrix A , then the dynamic feedback control law

u=F11x=SATM(τ2,τmax2,x)  (20)

Where τ=ψ+2l  (21)

ψ=[1γqω×(JσTσ)T(K+γqK11)(ω×(JσTσ))+2K1+2γ2]x  (22)

l=κG˙G  (23)

˙G=κG+(uτ2)  (24)

Renders the resulting closed loop system in (1), (12) and (16) ISS from the total disturbance d to the state [qT,xT,ξT]T furthermore, the control law u=F11x=2SATM(τ2,τmax2,x)  (25)

Where τ=ψ+l  (26)

l=κG˙G  (27)

˙G=κG+(uτ)  (28)

, and ψ  is defined in (22), is inverse optimal in the sense that it minimizes the meaningful functional

J(u)=limt[4V(t)+t0(X(x)+uTF1uγ2d2)ds]  (29)

X  (30)

Proof: Consider the smooth positive-definite radically unbounded function

V=12γqqTq+12γq(1q0)2+12xT(JσTσ)x+12ξTPξ  (31)

The time derivate V along (1), (12) and (16), substituting (21), (23)-(24) into (20) and based on the definition SATM(τ2,τmax2,x) in (17), using (13), (19)-(21), (22), (31) and the fact xT[0x×σT]ξ=0 , we have

˙V=γqqTKq+γqxTq+xT[ω×(JσTσ)ωσTDσω+12(JσTσ)K(q0I+q×)ω+[σTEσTDω×σT]ξ+u+d]+ξTP([0IED]ξ+Bω)

γqqTKq12ξTTξxT[12(JσTσ)K(q0I3+q×)KσTDσKγqI]q+xTω×(JσTσ)Kq+xT[12(JσTσ)K(q0I3+q×)σTDσ]xxTω×(JσTσ)x+xT[0xxσT]ξ+xT[σTEσTD+(Kq)×σT]ξ+ξTPBxξTPBKq+xT(ψ2+d)

γq2λminkq212λminTξ2(12λminki12(JσTσ)K(q0I3+q×)σTDσ)x212γqK12q1γqK12(ω×(JσTσ))x212xT(K1+(ω×(JσTσ)))TK11(K1+(ω×(JσTσ)))x+(12(JσTσ)K(q0I3+q×)K+σTDσ+γqI)xq+PBKξq+([σTEσTD]+BTP+(Kq)×σT)xξx(dx/γ2)λmin(q2+x2ξ2)+x(dx/γ2)  (32)

Choosing ρ(|d|)=γ2dκ , then when xγ2d we have ˙V0 , which implies that V in (31) is ISS-CLF for system in (1), (12) and (16) based on Definition 1.Therefore the resulting closed loop system in (1), (12) and (16) is ISS from the total disturbance d to the state [qT,xT,ξT] based on Remark 3. In addition, from the definition of χ(x) in (30) and the proof above, it is not difficult to yield

χ(x)4λmin(q2+x2+ξ2)>0  (33)

Which implies that χ(x)  is positive definite. From Definition 2 we get that control law u in (25) is H inverse optimal control with respect to (u). To this end, from the controller in (25) and the definition in (17), the inequality uτmaxxxτmax can be obtained. The proof of Theorem 1 is completed. From (28) we have

ddt(0.5G2)=GT(κG+|(uτ)|)2λminκ0.5G2+2uτ0.5G  (34)

Solving the above inequality, we can obtain G(t)eλmintκG(0)+2max0stu(s)τ(s)(1eλmintκ)/2λminκ , , which implies that system in (28) is ISS with input (u(t)τ(t)) .

Remark 4: The proposed control law in (25) involves parameters γq,K and K1 which should be determined by designing in advance before it is implemented. Here, we can first determine the parameters γq and matrix K, for example γq=1200 and K=0.4I3 , and then PBK , maxq0+qTq=1{12(JσTσ)K(q0I3+q×)K}+σTDσK+γqI , σTEσTD+PB+maxq0+qTq=1{(Kq)×σT}  and maxq0+qTq=1{12(JσTσ)K(q0I3+q×)}σTDσ  can be determined accordingly based on the constraint condition q2+q20=1 . Finally, an appropriate gain matrix K1 can be selected to make the matrix inequality (19) satisfied. The given parameter γ in (22) represents the disturbance attenuation level of the resulting closed system in (1), (12) and (16). As discussed in,26 any level of L2 disturbance attenuation can be achieved by choosing γ  sufficiently small at the expense of a larger control effort.
From Theorem 1, we can obtain the amplitude constrained attitude controller (ACAC) for normal system in (1) and (4)-(6):

uc=2ΣT(ΣΣT)1SATM(τ2,τmax2,x)  (35)

with (25)-(28). Based on Theorem 1 and equation (35), the overall structure of the ACAC is shown in Figure 1, and the design procedure for ACAC is given as follows.

Figure 1 The overall structure of FTACAC.

Step 1: Given γ>0 and select the parameter, γq , K and K1 based on Remark 4 such that the matrix
inequality in (19) is satisfied;

Step 2: Select compensator parameter diagonal matrix κ , set G(0)=[0,0,0]T and construct the saturation compensator l in (27)-(28), where the input of the saturation compensator can be obtained by the feedback loop as shown in Figure 1;

Step 3: Obtain the controller u in (25);

Step4: Further get the ACAC controller uc based on (35).

The proposed amplitude constrained attitude controller in (35) with (26)-(28) achieves asymptotical stability of the resulting closed-loop attitude system with fault-free actuators. However, when actuator faults occur, it no longer ensures the stabilization and accuracy for the attitude control system. Therefore, to guarantee the stability of the system, a controller that can accommodate the actuator faults is needed for flexible spacecraft during actuator fault occurrence. In the follows, in order to propose the fault-tolerant constrained controllers, a significant Lemma is proposed.

Lemma 1:For the actuator distribution matrix Σ  , fault switch matrix  and actuator effectiveness matrix F under assumption 2, there exists a function matrix S(t) and a constant ˉs>0 , such that the following equation holds:

Σ(I(t))F(t)ΣT=S(t)ΣΣTˉsΣΣT  (36)

Proof: Because rank(Σ)=3 , therefore ΣΣTR3×3 is a positive definite symmetric matrix. Let S(t)=(Σ(I(t))F(t)ΣT)(ΣΣT)1 , we have S(t)ΣΣT=Σ(I(t))F(t)ΣT . As rank rank((I(t))F(t))3 , (I(t))F(t)=diag(F1,...,0) , without loss of generality, suppose (I(t))F(t)=diag(F1,..FL.,0,...,0) with Fi>0,i=1,...,L1,L13 and then there exists a constant ˉs>0 such that Fi>0,i=1,...,L1  Let Σ=[Σ1,Σ2]  with Σ1 and Σ2  being 3×L1  and 3×(LL1)  orders, respectively, and then Σ(I(t))F(t)=[Σ1,Σ2]diag(F1,...FL,0,..0)=[Σ1diag(F1,...FL),03×(LL1)] .

As XΣ((I(t))F(t)ˉsI)ΣXT=(XΣ1)(diag(F1,...FL)ˉsI)(XΣ1)T>0,X0,  therefore we have rank(Σ1)=3  based on the fact 3rank(Σ1)min{rank(Σ1),rank(Σ1diag(F1,...F))=3} . Let XR3 be a row vector. As rank(Σ1)=3 system of linear equations XΣ1=0 only has zero solution. So, we have XΣ10 for X0  . As XΣ((I(t))F(t)ˉsI)ΣXT=(XΣ1)(diag(F1,...FL)ˉsI)(XΣ1)T>0,X0, which implies that Σ(F(t)(I(t))ˉsI)ΣT  is a positive definite symmetric matrix. Therefore we have (t)ΣΣT=(Σ(I(t))F(t)ΣT)ˉsΣΣT  this proof is completed.

As the fault switch matrix  and the actuator effectiveness matrix F are unknown, the constant ˉs is also unknown, which needs to be estimated in the following control design. From Assumption 3 and the fact 1  we have ukhˉukh (37)

Based on Theorem 1 and Lemma 1, we propose the following fault-tolerant amplitude constrained attitude controller (FTACAC) in (38) with (39)-(44).

Theorem 2: Consider the flexible spacecraft system that consists of (1), (12) and (16) under actuator faults in (6) for which Assumptions 1-5 hold. Given γ>0  , let γq>0 , κ=diag(κ1,κ2,κ3)R3×3 , where κi>0 , 1,2,3,κR3×3 and κ1R3×3 be positive definite symmetric matrices. If γq , K and κ1 satisfy the inequality in (19), then the dynamic feedback control law

uc=2λmax(ΣΣT)1ΣTF12x=2λmax(ΣΣT)1ΣTSATM(τ2,τmax2,x)  (38)

Where

τ=ˆˉsψ+l  (39)

ψ=[1γqω×(JσTσ)T(K+γqK11)(ω×(JσTσ))+2K1+2γ2+2Σˆukh]x  (40)

l=κG˙G  (41)

˙G=κG+(2SATM(τ2,τmax2,x)τ)  (42)

˙ˆˉs=1γ2ˉsψxβˉsγ2ˉsxˆˉs  (43)

˙ˆˉukh=1γ2ˉukhxβˉukhγ2ˉukhxˆˉukh  (44)

λmax(ΣΣT)1  Denotes the maximum singular value of matrix (ΣΣT)1 , ˆˉs , ˆˉukh are the estimates of 1/ˉs and ˆˉukh respectively, γˉs,βˉs,γˉukh and βˉukh re positive constants, renders the closed loop system in (1), (12) and (16) under actuator faults in (6) ISS from the input [dT,ˉs,ˆˉukh]T to the state [qT,xT,ξT]T

Proof: Define the estimation errors of 1/ s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca GGVaGabm4Cayaaraaaaa@38F7@ and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaaa@3A54@ as follows: s ¯ ˜ = s ¯ ^ 1 s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaacaiabg2da9iqadohagaqegaqcaiabgkHiTmaalaaabaGaaGym aaqaaiqadohagaqeaaaaaaa@3C84@ and u ¯ ˜ kh = u ¯ kh u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaacamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabg2da9iqa dwhagaqeamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabgkHiTi qadwhagaqegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaaa @43ED@ . Following the same steps as the proof in Theorem 1, we consider the smooth positive-definite radically unbounded function as follows

V 1 = 1 2 γ q q T q+ 1 2 γ q ( 1 q 0 ) 2 + 1 2 x T ( J σ T σ )x+ 1 2 ξ T Pξ+ 1 2 γ s ¯ 2 s ¯ s ¯ ˜ 2 + 1 2 γ u ¯ kh 2 Σ u ¯ ˜ kh 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaaigdaaeqaaKqbakabg2da9maalaaabaGaaGymaaqa aiaaikdaaaGaeq4SdC2aaSbaaKqbGeaacaWGXbaabeaajuaGcaWGXb WaaWbaaeqajuaibaGaamivaaaajuaGcaWGXbGaey4kaSYaaSaaaeaa caaIXaaabaGaaGOmaaaacqaHZoWzdaWgaaqcfasaaiaadghaaKqbag qaamaabmaabaGaaGymaiabgkHiTiaadghadaWgaaqcfasaaiaaicda aeqaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaqcfa Oaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWG4bWaaWbaaKqb GeqabaGaamivaaaajuaGdaqadaqaaiaadQeacqGHsislcqaHdpWCda ahaaqabKqbGeaacaWGubaaaKqbakabeo8aZbGaayjkaiaawMcaaiaa dIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCa aajuaibeqaaiaadsfaaaqcfaOaamiuaiabe67a4jabgUcaRmaalaaa baGaaGymaaqaaiaaikdaaaGaeq4SdC2aa0baaKqbGeaaceWGZbGbae baaeaacaaIYaaaaKqbakqadohagaqeaiqadohagaqegaacamaaCaaa juaibeqaaiaaikdaaaGaey4kaSscfa4aaSaaaeaacaaIXaaabaGaaG OmaaaacqaHZoWzdaqhaaqcfasaaiqadwhagaqeaKqbaoaaBaaajuai baGaam4AaiaadIgaaeqaaaqaaiaaikdaaaqcfa4aauWaaeaacqqHJo WuaiaawMa7caGLkWoaceWG1bGbaeHbaGaadaqhaaqcfasaaiaadUga caWGObaabaGaaGOmaaaaaaa@8394@  (45)

The time derivate V1 along (1), (6), (12) and (16) is given by

V ˙ 1 = γ q q T Kq+ γ q x T q+ ξ T P( Aξ+Bω )+ γ s ¯ 2 s ¯ s ¯ ˜ s ¯ ^ γ u ¯ kh 2 Σ u ¯ ˜ kh + x T [ ω × ( J σ T σ )ω σ T Dσω+ 1 2 ( J σ T σ )K( q 0 I 3 + q × )ω+ [ σ T E σ T D ω × σ T ]ξ+Σ( u kh +( I )F u c ( t ) )+d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm OvayaacaWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcqGHsisl cqaHZoWzdaWgaaqcfasaaiaadghaaeqaaKqbakaadghadaahaaqabK qbGeaacaWGubaaaKqbakaadUeacaWGXbGaey4kaSIaeq4SdC2aaSba aKqbGeaacaWGXbaajuaGbeaacaWG4bWaaWbaaeqajuaibaGaamivaa aajuaGcaWGXbGaey4kaSIaeqOVdG3aaWbaaeqajuaibaGaamivaaaa juaGcaWGqbWaaeWaaeaacaWGbbGaeqOVdGNaey4kaSIaamOqaiabeM 8a3bGaayjkaiaawMcaaiabgUcaRiabeo7aNnaaDaaajuaibaGabm4C ayaaraaabaGaaGOmaaaajuaGceWGZbGbaebaceWGZbGbaeHbaGaace WGZbGbaeHbaKaacqGHsislcqaHZoWzdaqhaaqcfasaaiqadwhagaqe aKqbaoaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaaqcfasaaiaaik daaaqcfa4aauWaaeaacqqHJoWuaiaawMa7caGLkWoaceWG1bGbaeHb aGaadaWgaaqcfasaaiaadUgacaWGObaajuaGbeaacqGHRaWkaeaaca WG4bWaaWbaaeqajuaibaGaamivaaaajuaGdaWadaabaeqabaGaeyOe I0IaeqyYdC3aaWbaaKqbGeqabaGaey41aqlaaKqbaoaabmaabaGaam OsaiabgkHiTiabeo8aZnaaCaaajuaibeqaaiaadsfaaaqcfaOaeq4W dmhacaGLOaGaayzkaaGaeqyYdCNaeyOeI0Iaeq4Wdm3aaWbaaKqbGe qabaGaamivaaaajuaGcaWGebGaeq4WdmNaeqyYdCNaey4kaSYaaSaa aeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadQeacqGHsislcqaHdp WCdaahaaqcfasabeaacaWGubaaaKqbakabeo8aZbGaayjkaiaawMca aiaadUeadaqadaqaaiaadghadaWgaaqcfasaaiaaicdaaeqaaKqbak aadMeadaWgaaqcfasaaiaaiodaaeqaaKqbakabgUcaRiaadghadaah aaqcfasabeaacqGHxdaTaaaajuaGcaGLOaGaayzkaaGaeqyYdCNaey 4kaScabaWaamWaaeaafaqabeqacaaabaGaeq4Wdm3aaWbaaeqajuai baGaamivaaaajuaGcaWGfbaabaGaeq4Wdm3aaWbaaKqbGeqabaGaam ivaaaajuaGcaWGebGaeyOeI0IaeqyYdC3aaWbaaKqbGeqabaGaey41 aqlaaKqbakabeo8aZnaaCaaabeqcfasaaiaadsfaaaaaaaqcfaOaay 5waiaaw2faaiabe67a4jabgUcaRiabfo6atnaabmaabaGaey4jIKTa amyDamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabgUcaRmaabm aabaGaamysaiabgkHiTiabgEIizdGaayjkaiaawMcaaiaadAeacaWG 1bWaaSbaaKqbGeaacaWGJbaajuaGbeaadaqadaqaaiaadshaaiaawI cacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcaWGKbaaaiaawUfacaGL Dbaaaaaa@D5C6@  (46)

From update law in (43), we can obtain that s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@ >0 if choosing s ¯ ^ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaiaacIcacaaIWaGaaiykaaaa@39AB@ > 0. Therefore, we have the following
Inequality hold based on Lemma 1:

x T Σ( I( t ) )F( t ) Σ T λ ( Σ Σ T ) 1 max F 2 1 x2 s ¯ x T SA T M ( τ 2 , τ max 2 ,x ) s ¯ x T SA T M ( τ 2 , τ max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aadIhadaahaaqcfasabeaacaWGubaaaKqbakabfo6atnaabmaabaGa amysaiabgkHiTiabgEIizpaabmaabaGaamiDaaGaayjkaiaawMcaaa GaayjkaiaawMcaaiaadAeadaqadaqaaiaadshaaiaawIcacaGLPaaa cqqHJoWudaahaaqcfasabeaacaWGubaaaKqbakabeU7aSnaaDaaaju aibaqcfa4aaeWaaKqbGeaacqqHJoWucqqHJoWujuaGdaahaaqcfasa beaacaWGubaaaaGaayjkaiaawMcaaKqbaoaaCaaajuaibeqaaiabgk HiTiaaigdaaaaabaGaciyBaiaacggacaGG4baaaKqbakaadAeadaqh aaqcfasaaiaaikdaaeaacqGHsislcaaIXaaaaKqbakaadIhacqGHKj YOcaaIYaGabm4CayaaraGaamiEamaaCaaajuaibeqaaiaadsfaaaqc faOaam4uaiaadgeacaWGubWaaSbaaKqbGeaacaWGnbaabeaajuaGda qadaqaamaalaaabaGaeqiXdqhabaGaaGOmaaaacaGGSaWaaSaaaeaa cqaHepaDdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaaaba GaaGOmaaaacaGGSaGaamiEaaGaayjkaiaawMcaaiabgsMiJkqadoha gaqeaiaadIhadaahaaqcfasabeaacaWGubaaaKqbakaadofacaWGbb GaamivamaaBaaajuaibaGaamytaaqabaqcfa4aaeWaaeaadaWcaaqa aiabes8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaSbaaK qbGeaaciGGTbGaaiyyaiaacIhaaeqaaaqcfayaaiaaikdaaaGaaiil aiaadIhaaiaawIcacaGLPaaaaaa@8B00@

The last inequality in (47) is based on the fact that s ¯ s ¯ ^ x T SAT( τ, τ max ,x )0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qeaiqadohagaqegaqcaiaadIhadaahaaqcfasabeaacaWGubaaaKqb akaadofacaWGbbGaamivamaabmaabaGaeqiXdqNaaiilaiabes8a0n aaBaaajuaibaGaciyBaiaacggacaGG4baabeaajuaGcaGGSaGaamiE aaGaayjkaiaawMcaaiabgsMiJkaaicdaaaa@4B63@ . In order to prove V ˙ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga GaamaaBaaajuaibaGaaGymaaqabaGaeyipaWJaaGimaaaa@3A25@ , we first prove the following inequality holds

x T Σ( u kh +( I )F u c ( t ) )+ γ u ¯ kh 2 s ¯ s ¯ ˜ s ¯ ^ ˙ γ u ¯ kh 2 Σ u ¯ ˜ kh u ¯ ^ ˙ kh x Σ u ¯ kh + x T ( ψ+ s ¯ s ¯ ˜ ψ ) x T s ¯ s ¯ ˜ ψ+ x Σ u ¯ kh β s ¯ x s ¯ s ¯ ˜ s ¯ ^ β u ¯ kh x Σ u ¯ ˜ kh u ¯ ^ kh = x T ψ+ x Σ u ¯ ^ kh β s ¯ x s ¯ ( s ¯ ˜ + s ¯ 2 ) 2 + 1 4 β s ¯ x s ¯ s ¯ 2 β u ¯ kh Σ x ( u ¯ ˜ kh + u ¯ kh 2 ) 2 + β u ¯ kh x Σ u ¯ ˜ kh u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam iEamaaCaaajuaibeqaaiaadsfaaaqcfaOaeu4Odm1aaeWaaeaacqGH Nis2caWG1bWaaSbaaKqbGeaacaWGRbGaamiAaaqcfayabaGaey4kaS YaaeWaaeaacaWGjbGaeyOeI0Iaey4jIKnacaGLOaGaayzkaaGaamOr aiaadwhadaWgaaqcfasaaiaadogaaeqaaKqbaoaabmaabaGaamiDaa GaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiabeo7aNnaaDaaa juaibaGabmyDayaaraqcfa4aaSbaaKqbGeaacaWGRbGaamiAaaqaba aabaGaaGOmaaaajuaGceWGZbGbaebaceWGZbGbaeHbaGaaceWGZbGb aeHbaKGbaiaacqGHsislcqaHZoWzdaqhaaqcfasaaiqadwhagaqeaK qbaoaaBaaajuaibaGaam4AaiaadIgaaeqaaaqaaiaaikdaaaqcfa4a auWaaeaacqqHJoWuaiaawMa7caGLkWoaceWG1bGbaeHbaGaadaWgaa qcfasaaiaadUgacaWGObaajuaGbeaaceWG1bGbaeHbaKGbaiaadaWg aaqcfasaaiaadUgacaWGObaajuaGbeaaaeaacqGHKjYOdaqbdaqaai aadIhaaiaawMa7caGLkWoadaqbdaqaaiabfo6atbGaayzcSlaawQa7 aiqadwhagaqeamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabgU caRiaadIhadaahaaqabKqbGeaacaWGubaaaKqbaoaabmaabaGaeqiY dKNaey4kaSIabm4CayaaraGabm4CayaaryaaiaGaeqiYdKhacaGLOa GaayzkaaGaeyOeI0IaamiEamaaCaaabeqcfasaaiaadsfaaaqcfaOa bm4CayaaraGabm4CayaaryaaiaGaeqiYdKNaey4kaSYaauWaaeaaca WG4baacaGLjWUaayPcSdWaauWaaeaacqqHJoWuaiaawMa7caGLkWoa ceWG1bGbaebadaWgaaqcfasaaiaadUgacaWGObaajuaGbeaacqGHsi slcqaHYoGydaWgaaqaaiqadohagaqeaaqabaWaauWaaeaacaWG4baa caGLjWUaayPcSdGabm4CayaaraGabm4CayaaryaaiaGabm4Cayaary aajaqcfaIaeyOeI0scfaOaeqOSdi2aaSbaaKqbGeaaceWG1bGbaeba juaGdaWgaaqcfasaaiaadUgacaWGObaabeaaaKqbagqaamaafmaaba GaamiEaaGaayzcSlaawQa7amaafmaabaGaeu4OdmfacaGLjWUaayPc SdGabmyDayaaryaaiaWaaSbaaKqbGeaacaWGRbGaamiAaaqcfayaba GabmyDayaaryaajaWaaSbaaKqbGeaacaWGRbGaamiAaaqcfayabaaa baGaeyypa0JaamiEamaaCaaabeqcfasaaiaadsfaaaqcfaOaeqiYdK Naey4kaSYaauWaaeaacaWG4baacaGLjWUaayPcSdWaauWaaeaacqqH JoWuaiaawMa7caGLkWoaceWG1bGbaeHbaKaadaWgaaqcfasaaiaadU gacaWGObaajuaGbeaacqGHsislcqaHYoGydaWgaaqcfasaaiqadoha gaqeaaqabaqcfa4aauWaaeaacaWG4baacaGLjWUaayPcSdGabm4Cay aaraWaaeWaaeaaceWGZbGbaeHbaGaacqGHRaWkdaWcaaqaaiqadoha gaqeaaqaaiaaikdaaaaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaG OmaaaajuaGcqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiabek7a InaaBaaabaGabm4CayaaraaabeaadaqbdaqaaiaadIhaaiaawMa7ca GLkWoaceWGZbGbaebaceWGZbGbaebadaahaaqcfasabeaacaaIYaaa aiabgkHiTKqbakabek7aInaaBaaajuaibaGabmyDayaaraqcfa4aaS baaKqbGeaacaWGRbGaamiAaaqabaaajuaGbeaadaqbdaqaaiabfo6a tbGaayzcSlaawQa7amaafmaabaGaamiEaaGaayzcSlaawQa7amaabm aabaGabmyDayaaryaaiaWaaSbaaKqbGeaacaWGRbGaamiAaaqcfaya baGaey4kaSYaaSaaaeaaceWG1bGbaebadaWgaaqcfasaaiaadUgaca WGObaajuaGbeaaaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaajuai beqaaiaaikdaaaaajuaGbaGaey4kaSIaeqOSdi2aaSbaaKqbGeaace WG1bGbaebajuaGdaWgaaqcfasaaiaadUgacaWGObaabeaaaKqbagqa amaafmaabaGaamiEaaGaayzcSlaawQa7amaafmaabaGaeu4Odmfaca GLjWUaayPcSdGabmyDayaaryaaiaWaaSbaaKqbGeaacaWGRbGaamiA aaqcfayabaGabmyDayaaryaajaWaaSbaaKqbGeaacaWGRbGaamiAaa qcfayabaaaaaa@2511@  (48)

So from Theorem 1 and (46)-(48) we can obtain

V ˙ 1 λ min ( q 2 + x 2 + ξ 2 )+ x ( d + 1 4 β s ¯ S ¯ 3 + 1 4 β u ¯ kh Σ u ¯ kh 2 x / γ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga GaamaaBaaajuaibaGaaGymaaqabaqcfaOaeyizImQaeyOeI0Iaeq4U dW2aa0baaKqbGeaacqGHNis2aeaaciGGTbGaaiyAaiaac6gaaaqcfa 4aaeWaaeaadaqbdaqaaiaadghaaiaawMa7caGLkWoadaahaaqabKqb GeaacaaIYaaaaKqbakabgUcaRmaafmaabaGaamiEaaGaayzcSlaawQ a7amaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaauWaaeaacqaH +oaEaiaawMa7caGLkWoadaahaaqabKqbGeaacaaIYaaaaaqcfaOaay jkaiaawMcaaiabgUcaRmaafmaabaGaamiEaaGaayzcSlaawQa7amaa bmaabaWaauWaaeaacaWGKbaacaGLjWUaayPcSdGaey4kaSYaaSaaae aacaaIXaaabaGaaGinaaaacqaHYoGydaWgaaqaaiqadohagaqeaaqa baGabm4uayaaraWaaWbaaKqbGeqabaGaaG4maaaacqGHRaWkjuaGda WcaaqaaiaaigdaaeaacaaI0aaaaiabek7aInaaBaaajuaibaGabmyD ayaaraqcfa4aaSbaaKqbGeaacaWGRbGaamiAaaqabaaajuaGbeaada qbdaqaaiabfo6atbGaayzcSlaawQa7aiqadwhagaqeamaaDaaajuai baGaam4AaiaadIgaaeaacaaIYaaaaiabgkHiTKqbaoaafmaabaGaam iEaaGaayzcSlaawQa7aiaac+cacqaHZoWzdaahaaqcfasabeaacaaI YaaaaaqcfaOaayjkaiaawMcaaaaa@8544@  (49)

Choosing ρ( | [ d T , S ¯ , u ¯ kh ] T | )= γ 2 ( d + 1 4 β s ¯ S ¯ 3 + β u ¯ kh Σ u ¯ kh 2 ) Κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aabmaabaWaaqWaaeaadaWadaqaaiaadsgadaahaaqabKqbGeaacaWG ubaaaKqbakaacYcaceWGtbGbaebacaGGSaGabmyDayaaraWaaSbaaK qbGeaacaWGRbGaamiAaaqcfayabaaacaGLBbGaayzxaaWaaWbaaeqa juaibaGaamivaaaaaKqbakaawEa7caGLiWoaaiaawIcacaGLPaaacq GH9aqpcqaHZoWzdaahaaqcfasabeaacaaIYaaaaKqbaoaabmaabaWa auWaaeaacaWGKbaacaGLjWUaayPcSdGaey4kaSYaaSaaaeaacaaIXa aabaGaaGinaaaacqaHYoGydaWgaaqaaiqadohagaqeaaqabaGabm4u ayaaraWaaWbaaKqbGeqabaGaaG4maaaajuaGcqGHRaWkcqaHYoGyda WgaaqcfasaaiqadwhagaqeaKqbaoaaBaaajuaibaGaam4AaiaadIga aeqaaaqcfayabaWaauWaaeaacqqHJoWuaiaawMa7caGLkWoaceWG1b GbaebadaqhaaqcfasaaiaadUgacaWGObaabaGaaGOmaaaaaKqbakaa wIcacaGLPaaacqGHiiIZcqqHAoWsdaWgaaqcfasaaiabg6HiLcqaba aaaa@7008@ , then when x γ 2 ( d + 1 4 β s ¯ S ¯ 3 + β u ¯ kh Σ u ¯ kh 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamiEaaGaayzcSlaawQa7aiabgwMiZkabeo7aNnaaCaaajuaibeqa aiaaikdaaaqcfa4aaeWaaeaadaqbdaqaaiaadsgaaiaawMa7caGLkW oacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiabek7aInaaBaaa baGabm4CayaaraaabeaaceWGtbGbaebadaahaaqcfasabeaacaaIZa aaaKqbakabgUcaRiabek7aInaaBaaajuaibaGabmyDayaaraqcfa4a aSbaaKqbGeaacaWGRbGaamiAaaqabaaajuaGbeaadaqbdaqaaiabfo 6atbGaayzcSlaawQa7aiqadwhagaqeamaaDaaajuaibaGaam4Aaiaa dIgaaeaacaaIYaaaaaqcfaOaayjkaiaawMcaaaaa@5D65@  we have V ˙ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga GaamaaBaaajuaibaGaaGymaaqabaaaaa@3867@ =0 , which implies that V1 in (45) is ISS-CLF based on Definition 1. Therefore, the resulting closed loop system in (1), (12) and (16) under actuator faults in (6) is ISS from the input [ d T , S ¯ , u ¯ kh ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamizamaaCaaabeqcfasaaiaadsfaaaqcfaOaaiilaiqadofagaqe aiaacYcaceWG1bGbaebadaWgaaqcfasaaiaadUgacaWGObaajuaGbe aaaiaawUfacaGLDbaadaahaaqabKqbGeaacaWGubaaaaaa@4250@ to the state [ q T , x T , ξ T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamyCamaaCaaajuaibeqaaiaadsfaaaGaaiilaKqbakaadIhadaah aaqabKqbGeaacaWGubaaaKqbakaacYcacqaH+oaEdaahaaqabKqbGe aacaWGubaaaaqcfaOaay5waiaaw2faamaaCaaajuaibeqaaiaadsfa aaaaaa@43CF@  . The proof of Theorem 2 is completed.

Remark 5: The second terms of parameter update laws in (43)-(44) are the e-modifications, which guarantee bounded parameter estimates. Based on Theorem 2, the overall structure of the FTACAC is shown in Figure 2, and the design procedure for FTACAC is given as follows

Figure 2 Quaternion with faulty actuators.

Step1: Given γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNj abg6da+iaaicdaaaa@39E2@ and select the parameter γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqabaaaaa@3965@ , K and K1 based on Remark 4 such that the matrix inequality in (19) is satisfied;

Step 2: Select compensator parameter diagonal matrix κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRb aa@382B@  , set G( 0 )= [ 0,0,0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada qadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWadaqaaiaaicda caGGSaGaaGimaiaacYcacaaIWaaacaGLBbGaayzxaaWaaWbaaeqaju aibaGaamivaaaaaaa@4137@ and construct the saturation compensator l in (41)-(42), where the input ( uτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHsislcqaHepaDaaa@3A25@ ) of the saturation compensator can be obtained by the feedback loop as shown in Figure 2;

Step 3: Select parameters, γ s , β s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaam4CaaqabaGaaiilaiabek7aILqbaoaaBaaajuai baGaam4Caaqcfayabaaaaa@3E1B@  and γ u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGabmyDayaaraqcfa4aaSbaaKqbGeaacaWGRbGaamiA aaqabaaajuaGbeaaaaa@3CC9@ , set s ¯ ^ ( 0 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcamaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaigda aaa@3B9C@  and u ¯ kh ( 0 )=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qeamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaamaabmaabaGaaGim aaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaGynaaaa@3FB9@ , and construct the parameters update laws in (43)-(44);

Step 4: Obtain the FTACAC controller u c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada Wgaaqcfasaaiaadogaaeqaaaaa@38AA@  in (38).

A fault-tolerant amplitude and rate constrained attitude controller design: Control law in (38) only accounts for actuator amplitude constraint. In fact, many cases we require not only the amplitude constraint but also rate constraint of actuators to limit the possible excitation of high-frequency UN modeled dynamic of spacecraft as discussed in.9 However, there are still few results that take both actuator amplitude and rate constraints into account in the attitude control of spacecraft. To account for the amplitude and rate constraints, we proposed the fault-tolerant amplitude and rate constrained attitude controller (FTARCAC) in (50) with (51)-(58) based on the following Theorem 3.

Theorem 3: Consider the flexible spacecraft system that consists of (1), (12) and (16) under actuator faults in (6) for which Assumptions 1-5 hold, given γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@ >0 let γ q >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqcfayabaGaeyOpa4JaaGimaaaa@3BB5@ , κ=diag( κ 1 , κ 2 , κ 3 ) R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRj abg2da9iaadsgacaWGPbGaamyyaiaadEgadaqadaqaaiabeQ7aRnaa BaaajuaibaGaaGymaaqabaGaaiilaKqbakabeQ7aRnaaBaaajuaiba GaaGOmaaqabaqcfaOaaiilaiabeQ7aRnaaBaaajuaibaGaaG4maaqa baaajuaGcaGLOaGaayzkaaGaeyicI4SaamOuamaaCaaabeqcfasaai aaiodacqGHxdaTcaaIZaaaaaaa@4FE0@ , where κ i >0,1,2,3,κ R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaamyAaaqabaqcfaOaeyOpa4JaaGimaiaacYcacqGH sislcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacqaH6oWAcq GHiiIZcaWGsbWaaWbaaeqajuaibaGaaG4maiabgEna0kaaiodaaaaa aa@4987@ and κ 1 R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeQ7aRn aaBaaajuaibaGaaGymaaqabaqcfaOaeyicI4SaamOuamaaCaaabeqc fasaaiaaiodacqGHxdaTcaaIZaaaaaaa@3FFF@ be positive definite symmetric matrices. If γ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaamyCaaqcfayabaaaaa@39F3@ , K and K1 satisfy the inequality in (19), then the dynamic feedback control law

u c =2 λ ( Σ Σ T ) 1 max Σ T F 3 1 x=2 λ ( Σ Σ T ) 1 max Σ T SAT( τ 2 , τ # max 2 ,R,x )= λ ( Σ Σ T ) 1 max Σ T u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadogaaKqbagqaaiabg2da9iabgkHiTiaaikdacqaH 7oaBdaqhaaqcfasaaKqbaoaabmaajuaibaGaeu4OdmLaeu4Odmvcfa 4aaWbaaKqbGeqabaGaamivaaaaaiaawIcacaGLPaaajuaGdaahaaqc fasabeaacqGHsislcaaIXaaaaaqaaiGac2gacaGGHbGaaiiEaaaaju aGcqqHJoWudaahaaqcfasabeaacaWGubaaaKqbakaadAeadaqhaaqc fasaaiaaiodaaeaacqGHsislcaaIXaaaaKqbakaadIhacqGH9aqpca aIYaGaeq4UdW2aa0baaKqbGeaajuaGdaqadaqcfasaaiabfo6atjab fo6atLqbaoaaCaaajuaibeqaaiaadsfaaaaacaGLOaGaayzkaaqcfa 4aaWbaaKqbGeqabaGaeyOeI0IaaGymaaaaaeaaciGGTbGaaiyyaiaa cIhaaaqcfaOaeu4Odm1aaWbaaKqbGeqabaGaamivaaaajuaGcaWGtb GaamyqaiaadsfadaqadaqaamaalaaabaGaeqiXdqhabaGaaGOmaaaa caGGSaWaaSaaaeaacqaHepaDdaahaaqabKqbGeaacaGGJaaaaKqbao aaBaaajuaibaGaciyBaiaacggacaGG4baajuaGbeaaaeaacaaIYaaa aiaacYcacaGGsbGaaiilaiaadIhaaiaawIcacaGLPaaacqGH9aqpcq aH7oaBdaqhaaqcfasaaKqbaoaabmaajuaibaGaeu4OdmLaeu4Odmvc fa4aaWbaaKqbGeqabaGaamivaaaaaiaawIcacaGLPaaajuaGdaahaa qcfasabeaacqGHsislcaaIXaaaaaqaaiGac2gacaGGHbGaaiiEaaaa juaGcqqHJoWudaahaaqcfasabeaacaWGubaaaKqbakaadwhaaaa@8D70@  (50)

With the time derivative of u=2SAT( τ 2 , τ # max 2 ,R,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcaaIYaGaam4uaiaadgeacaWGubWaaeWaaeaadaWcaaqaaiab es8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaWbaaeqaju aibaGaai4iaaaajuaGdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqc fayabaaabaGaaGOmaaaacaGGSaGaaiOuaiaacYcacaWG4baacaGLOa Gaayzkaaaaaa@4B70@  defined as

u ˙ =SA T R ( ω ¯ ( 2SA T M ( τ 2 , τ # max 2 ,R,x )u ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga Gaaiabg2da9iaadofacaWGbbGaamivamaaBaaajuaibaGaamOuaaqa baqcfa4aaeWaaeaacuaHjpWDgaqeamaabmaabaGaaGOmaiaadofaca WGbbGaamivamaaBaaajuaibaGaamytaaqcfayabaWaaeWaaeaadaWc aaqaaiabes8a0bqaaiaaikdaaaGaaiilamaalaaabaGaeqiXdq3aaW baaeqajuaibaGaai4iaaaajuaGdaWgaaqcfasaaiGac2gacaGGHbGa aiiEaaqcfayabaaabaGaaGOmaaaacaGGSaGaaiOuaiaacYcacaWG4b aacaGLOaGaayzkaaGaeyOeI0IaamyDaaGaayjkaiaawMcaaaGaayjk aiaawMcaaaaa@5831@  (51)

Where ω ¯ =diag( ω ¯ 1 , ω ¯ 2 , ω ¯ 3 ) R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeM8a3z aaraGaeyypa0JaamizaiaadMgacaWGHbGaam4zamaabmaabaGafqyY dCNbaebadaWgaaqcfasaaiaaigdaaeqaaKqbakaacYcacuaHjpWDga qeamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaiqbeM8a3zaaraWa aSbaaKqbGeaacaaIZaaabeaaaKqbakaawIcacaGLPaaacqGHiiIZca WGsbWaaWbaaeqajuaibaGaaG4maaaaaaa@4DD8@ ,

τ= s ¯ ^ ψ+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0j abg2da9iqadohagaqegaqcaiabeI8a5jabgUcaRiaadYgaaaa@3E04@  (52)

ψ=[ 1 γ q ( ω × ( J σ T σ ) ) T ( K+ γ q K 1 1 )( ω × ( J σ T σ ) ) +2 k 1 + 2 γ 2 +2 Σ u ^ kh ]x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5j abg2da9iabgkHiTmaadmaabaWaaSaaaeaacaaIXaaabaGaeq4SdC2a aSbaaKqbGeaacaWGXbaajuaGbeaaaaWaauWaaeaadaqadaqaaiabeM 8a3naaCaaabeqaaiabgEna0caadaqadaqaaiaadQeacqGHsislcqaH dpWCdaahaaqcfasabeaacaWGubaaaKqbakabeo8aZbGaayjkaiaawM caaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaadsfaaaqcfa4aaeWa aeaacaWGlbGaey4kaSIaeq4SdC2aaSbaaKqbGeaacaWGXbaajuaGbe aacaWGlbWaa0baaKqbGeaacaaIXaaabaGaeyOeI0IaaGymaaaaaKqb akaawIcacaGLPaaadaqadaqaaiabeM8a3naaCaaajuaibeqaaiabgE na0caajuaGdaqadaqaaiaadQeacqGHsislcqaHdpWCdaahaaqcfasa beaacaWGubaaaKqbakabeo8aZbGaayjkaiaawMcaaaGaayjkaiaawM caaaGaayzcSlaawQa7aiabgUcaRiaaikdadaqbdaqaaiaadUgadaWg aaqcfasaaiaaigdaaeqaaaqcfaOaayzcSlaawQa7aiabgUcaRmaala aabaGaaGOmaaqaaiabeo7aNnaaCaaajuaibeqaaiaaikdaaaaaaKqb akabgUcaRiaaikdadaqbdaqaaiabfo6atjqadwhagaqcamaaBaaaju aibaGaam4AaiaadIgaaKqbagqaaaGaayzcSlaawQa7aaGaay5waiaa w2faaiaadIhaaaa@8439@  (53)

l=κG G ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgacq GH9aqpcqGHsislcqaH6oWAcaWGhbGaeyOeI0Iabm4rayaacaaaaa@3D9D@  (54)

G ˙ =κG+( 2SAT( τ 2 , τ # max 2 ,R,x )τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadEeaga Gaaiabg2da9iabeQ7aRjaadEeacqGHRaWkdaqadaqaaiaaikdacaWG tbGaamyqaiaadsfadaqadaqaamaalaaabaGaeqiXdqhabaGaaGOmaa aacaGGSaWaaSaaaeaacqaHepaDdaahaaqabKqbGeaacaGGJaaaaKqb aoaaBaaajuaibaGaciyBaiaacggacaGG4baajuaGbeaaaeaacaaIYa aaaiaacYcacaGGsbGaaiilaiaadIhaaiaawIcacaGLPaaacqGHsisl cqaHepaDaiaawIcacaGLPaaaaaa@52E6@  (55)

τ # max = τ max R / ω >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaCaaabeqcfasaaiaacocaaaqcfa4aaSbaaKqbGeaaciGGTbGaaiyy aiaacIhaaKqbagqaaiabg2da9iabes8a0naaBaaajuaibaGaciyBai aacggacaGG4baajuaGbeaacqGHsisldaqbdaqaaiaadkfaaiaawMa7 caGLkWoacaGGVaWaauWaaeaacqaHjpWDaiaawMa7caGLkWoacqGH+a GpcaaIWaaaaa@5044@  (56)

s ¯ ^ ˙ = 1 γ s ¯ 2 ψ x β s ¯ γ s ¯ 2 x s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcgaGaaiabg2da9maalaaabaGaaGymaaqaaiabeo7aNnaaDaaa juaibaGabm4CayaaraaabaGaaGOmaaaaaaqcfa4aauWaaeaacqaHip qEaiaawMa7caGLkWoadaqbdaqaaiaadIhaaiaawMa7caGLkWoacqGH sisldaWcaaqaaiabek7aInaaBaaajuaibaGabm4CayaaraaabeaaaK qbagaacqaHZoWzdaqhaaqcfasaaiqadohagaqeaaqaaiaaikdaaaaa aKqbaoaafmaabaGaamiEaaGaayzcSlaawQa7aiqadohagaqegaqcaa aa@54FA@  (57)

u ¯ ^ ˙ kh = 1 γ s ¯ 2 x β u ¯ kh γ u ¯ kh 2 x u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcgaGaamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaaiabg2da 9maalaaabaGaaGymaaqaaiabeo7aNnaaDaaajuaibaGabm4Cayaara aabaGaaGOmaaaaaaqcfa4aauWaaeaacaWG4baacaGLjWUaayPcSdGa eyOeI0YaaSaaaeaacqaHYoGydaWgaaqcfasaaiqadwhagaqeaKqbao aaBaaajuaibaGaam4AaiaadIgaaeqaaaqabaaajuaGbaGaeq4SdC2a a0baaKqbGeaaceWG1bGbaebajuaGdaWgaaqcfasaaiaadUgacaWGOb aabeaaaeaacaaIYaaaaaaajuaGdaqbdaqaaiaadIhaaiaawMa7caGL kWoaceWG1bGbaeHbaKaadaWgaaqcfasaaiaadUgacaWGObaajuaGbe aaaaa@5AF5@  (58)

Renders the closed loop system in (1), (12) and (16) under actuator faults in (6) ISS from the input [ d T , S ¯ , u ¯ kh ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamizamaaCaaabeqcfasaaiaadsfaaaqcfaOaaiilaiqadofagaqe aiaacYcaceWG1bGbaebadaWgaaqcfasaaiaadUgacaWGObaajuaGbe aaaiaawUfacaGLDbaadaahaaqabKqbGeaacaWGubaaaaaa@4250@ to the state [ q T , x T , ξ T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaamyCamaaCaaajuaibeqaaiaadsfaaaGaaiilaKqbakaadIhadaah aaqabKqbGeaacaWGubaaaKqbakaacYcacqaH+oaEdaahaaqabKqbGe aacaWGubaaaaqcfaOaay5waiaaw2faamaaCaaajuaibeqaaiaadsfa aaaaaa@43CF@ .

Proof: following Theorem 1 and Theorem 2, the proof can be completed and therefore we omit it. Finally, we prove control law u in (50) satisfying u τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamyDaaGaayzcSlaawQa7aiabgsMiJkabes8a0naaBaaajuaibaGa ciyBaiaacggacaGG4baajuaGbeaaaaa@41C5@  Define ε( x )=u2SA T M ( τ 2 , τ # max 2 ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLn aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadwhacqGHsisl caaIYaGaam4uaiaadgeacaWGubWaaSbaaKqbGeaacaWGnbaajuaGbe aadaqadaqaamaalaaabaGaeqiXdqhabaGaaGOmaaaacaGGSaWaaSaa aeaacqaHepaDdaahaaqabKqbGeaacaGGJaaaaKqbaoaaBaaajuaiba GaciyBaiaacggacaGG4baajuaGbeaaaeaacaaIYaaaaiaacYcacaWG 4baacaGLOaGaayzkaaaaaa@50B3@ . From (51) and the and the SA T R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGbbGaamivamaaBaaajuaibaGaamOuaaqcfayabaaaaa@3AA4@  in (18), we can obtain ε( x ) R / ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaeqyTdu2aaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLjWUaayPc SdGaeyizIm6aauWaaeaacaWGsbaacaGLjWUaayPcSdGaai4lamaafm aabaGafqyYdCNbaebaaiaawMa7caGLkWoaaaa@493F@  . Therefore u τ # max + ε( x ) τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaafmaaba GaamyDaaGaayzcSlaawQa7aiabgsMiJoaafmaabaGaeqiXdq3aaWba aeqajuaibaGaai4iaaaajuaGdaWgaaqcfasaaiGac2gacaGGHbGaai iEaaqcfayabaaacaGLjWUaayPcSdGaey4kaSYaauWaaeaacqaH1oqz daqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawMa7caGLkWoacqGHKj YOcqaHepaDdaWgaaqcfasaaiGac2gacaGGHbGaaiiEaaqcfayabaaa aa@55D2@  So the inequality in (8) is satisfied.

Remark 6: The overall structure of the FTARCAC is shown in Figure 3. Equation (51) can be considered as a linear, stable and low-pass filter, where ω ¯ =diag( ω ¯ 1 , ω ¯ 2 , ω ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeM8a3z aaraGaeyypa0JaamizaiaadMgacaWGHbGaam4zamaabmaabaGafqyY dCNbaebadaWgaaqcfasaaiaaigdaaeqaaKqbakaacYcacuaHjpWDga qeamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaiqbeM8a3zaaraWa aSbaaKqbGeaacaaIZaaabeaaaKqbakaawIcacaGLPaaaaaa@4A70@ is the natural frequency of the filter. By employing the filter in (51), the robust controller in (50) with (51)-(58) accounts for not only amplitude constraint but also rate constraint, as well as actuator faults in the presence of inertia matrix uncertainty and external disturbance.

Numerical Numerical Simulations

In this section, numerical simulations are presented to demonstrate the effectiveness of the proposed ACAC in (25) with (26)-(28), FTACAC in (38) with (39)-(44) and FTARCAC in (50) with (51)-(58). The anti-windup Proportional-integral-derivative (AWPID) method in11 is also performed for the purpose of comparison. The rest-to-rest maneuver of the flexible spacecraft is considered in the following simulations. Parameters used in all simulations are given as follows. The nominal value component of the inertia matrix.

Js for a spacecraft is described as:22 J=[ 350 3 4 3 280 10 4 10 190 ]kg/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq GH9aqpdaWadaqaauaabeqadmaaaeaacaaIZaGaaGynaiaaicdaaeaa caaIZaaabaGaaGinaaqaaiaaiodaaeaacaaIYaGaaGioaiaaicdaae aacaaIXaGaaGimaaqaaiaaisdaaeaacaaIXaGaaGimaaqaaiaaigda caaI5aGaaGimaaaaaiaawUfacaGLDbaacaWGRbGaam4zaiaac+caca WGTbWaaWbaaeqajuaibaGaaGOmaaaaaaa@4B6A@  ,and the perturbation component is given by ΔJ=[ 4.2+0.5cost 3 4+sin5t 3 7+cos3t 2.5 4+0.1sin5t 2.5 5.89+1.5sint ]kg/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadQeacqGH9aqpdaWadaqaauaabeqadmaaaeaacaaI0aGaaiOlaiaa ikdacqGHRaWkcaaIWaGaaiOlaiaaiwdaciGGJbGaai4Baiaacohaca WG0baabaGaaG4maaqaaiaaisdacqGHRaWkciGGZbGaaiyAaiaac6ga caaI1aGaamiDaaqaaiaaiodaaeaacqGHsislcaaI3aGaey4kaSIaci 4yaiaac+gacaGGZbGaaG4maiaadshaaeaacaaIYaGaaiOlaiaaiwda aeaacaaI0aGaey4kaSIaaGimaiaac6cacaaIXaGaci4CaiaacMgaca GGUbGaaGynaiaadshaaeaacaaIYaGaaiOlaiaaiwdaaeaacaaI1aGa aiOlaiaaiIdacaaI5aGaey4kaSIaaGymaiaac6cacaaI1aGaci4Cai aacMgacaGGUbGaamiDaaaaaiaawUfacaGLDbaacaWGRbGaam4zaiaa c+cacaWGTbWaaWbaaeqajuaibaGaaGOmaaaaaaa@6E99@ ; the couple matrix is σ=[ 6.45637 1.27814 2.15629 1.25619 0.91756 1.67264 1.23637 2.6581 1.12503 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZj abg2da9maadmaabaqbaeqabmWaaaqaaiaaiAdacaGGUaGaaGinaiaa iwdacaaI2aGaaG4maiaaiEdaaeaacaaIXaGaaiOlaiaaikdacaaI3a GaaGioaiaaigdacaaI0aaabaGaaGOmaiaac6cacaaIXaGaaGynaiaa iAdacaaIYaGaaGyoaaqaaiabgkHiTiaaigdacaGGUaGaaGOmaiaaiw dacaaI2aGaaGymaiaaiMdaaeaacaaIWaGaaiOlaiaaiMdacaaIXaGa aG4naiaaiwdacaaI2aaabaGaeyOeI0IaaGymaiaac6cacaaI2aGaaG 4naiaaikdacaaI2aGaaGinaaqaaiaaigdacaGGUaGaaGOmaiaaioda caaI2aGaaG4maiaaiEdaaeaacqGHsislcaaIYaGaaiOlaiaaiAdaca aI1aGaaGioaiaaigdaaeaacqGHsislcaaIXaGaaiOlaiaaigdacaaI YaGaaGynaiaaicdacaaIZaaaaaGaay5waiaaw2faaaaa@6C98@ ; The first four elastic modes are considered and, the damping and stiffness matrices of the flexible appendages are given by D=[ 0.0086 0 0 0 0 0.19. 0 0 0 0 0.0487 0 0 0 0 0.1275 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseacq GH9aqpdaWadaqaauaabeqaeqaaaaaabaGaaGimaiaac6cacaaIWaGa aGimaiaaiIdacaaI2aaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdacaGGUaGaaGymaiaaiMdacaGGUaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdacaGGUaGaaG imaiaaisdacaaI4aGaaG4naaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaGaaiOlaiaaigdacaaIYaGaaG4naiaaiw daaaaacaGLBbGaayzxaaaaaa@53DA@  and E=[ 0.3900 0 0 0 0 1.2184 0 0 0 0 3.5093 0 0 0 0 6.5005 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GH9aqpdaWadaqaauaabeqaeqaaaaaabaGaaGimaiaac6cacaaIZaGa aGyoaiaaicdacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaigdacaGGUaGaaGOmaiaaigdacaaI4aGaaGinaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIZaGaai OlaiaaiwdacaaIWaGaaGyoaiaaiodaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGOnaiaac6cacaaI1aGaaGimaiaaic dacaaI1aaaaaGaay5waiaaw2faaaaa@54A3@  respectively; To consider possible spillover effects, only the first three elastic modes are taken into account in the controller design; The actuators distribution matrix is given by:22 Σ=[ 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 3 /3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atj abg2da9maadmaabaqbaeqabmabaaaabaWaaOaaaeaacaaIZaaabeaa caGGVaGaaG4maaqaaiabgkHiTmaakaaabaGaaG4maaqabaGaai4lai aaiodaaeaacqGHsisldaGcaaqaaiaaiodaaeqaaiaac+cacaaIZaaa baWaaOaaaeaacaaIZaaabeaacaGGVaGaaG4maaqaaiabgkHiTmaaka aabaGaaG4maaqabaGaai4laiaaiodaaeaacqGHsisldaGcaaqaaiaa iodaaeqaaiaac+cacaaIZaaabaGaeyOeI0YaaOaaaeaacaaIZaaabe aacaGGVaGaaG4maaqaaiabgkHiTmaakaaabaGaaG4maaqabaGaai4l aiaaiodaaeaadaGcaaqaaiaaiodaaeqaaiaac+cacaaIZaaabaWaaO aaaeaacaaIZaaabeaacaGGVaGaaG4maaqaaiabgkHiTmaakaaabaGa aG4maaqabaGaai4laiaaiodaaeaacqGHsisldaGcaaqaaiaaiodaae qaaiaac+cacaaIZaaaaaGaay5waiaaw2faaaaa@5D54@  that is to say, four actuators are considered in the following simulations; The disturbance toque is given by d s ( t )=( ω 2 +0.15 ) [ cos( 0.1t ) sin( 0.5t ) sin( 0.3t ) ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgada WgaaqcfasaaiaadohaaeqaaKqbaoaabmaabaGaamiDaaGaayjkaiaa wMcaaiabg2da9maabmaabaWaauWaaeaacqaHjpWDaiaawMa7caGLkW oadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaaicdacaGGUaGa aGymaiaaiwdaaiaawIcacaGLPaaadaWadaqaauaabeqabmaaaeaaci GGJbGaai4BaiaacohadaqadaqaaiaaicdacaGGUaGaaGymaiaadsha aiaawIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiaaic dacaGGUaGaaGynaiaadshaaiaawIcacaGLPaaaaeaaciGGZbGaaiyA aiaac6gadaqadaqaaiaaicdacaGGUaGaaG4maiaadshaaiaawIcaca GLPaaaaaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaamivaaaaaaa@624C@  The maximum allowable torque input is τ max =10N.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaBaaajuaibaGaamyBaiaadggacaWG4baajuaGbeaacqGH9aqpcaaI XaGaaGimaiaad6eacaGGUaGaamyBaaaa@40E2@  The initial attitude orientation of the unit quaternion is q( 0 )= [ 0.2 0.7 0.35 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada qadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWadaqaauaabeqa bmaaaeaacqGHsislcaaIWaGaaiOlaiaaikdaaeaacaaIWaGaaiOlai aaiEdaaeaacqGHsislcaaIWaGaaiOlaiaaiodacaaI1aaaaaGaay5w aiaaw2faamaaCaaabeqcfasaaiaadsfaaaaaaa@46F9@  and the initial angular velocity is ω( 0 )= [ 0 0 0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9maadmaabaqbaeqa beWaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawUfacaGLDb aadaahaaqabKqbGeaacaWGubaaaaaa@40E7@  the initial vibration state of flexible appendage is η i ( 0 )= η ˙ i ( 0 )=0,i=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOn aaBaaajuaibaGaamyAaaqabaqcfa4aaeWaaeaacaaIWaaacaGLOaGa ayzkaaGaeyypa0Jafq4TdGMbaiaadaWgaaqcfasaaiaadMgaaeqaaK qbaoaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdacaGG SaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaai ilaiaaisdaaaa@4C62@  The initial value of the adaptive parameters are s ¯ ^ ( 0 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcamaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaigda aaa@3B9C@  and u ¯ ^ kh ( 0 )=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaKqbagqaamaabmaabaGa aGimaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaGynaaaa@3FC8@  The control gains of the proposed controllers are given by r q =1200,K=0.4I, K 1 =700I, γ=2, κ=diag( 2,2,2 ),  γ s ¯ = 5 ,  β s ¯ =0.5,  γ u ¯ kh =0.5,  ω ¯ =diag( 5,5,5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam OCamaaBaaajuaibaGaamyCaaqcfayabaGaeyypa0JaaGymaiaaikda caaIWaGaaGimaiaacYcacaWGlbGaeyypa0JaaGimaiaac6cacaaI0a GaamysaiaacYcacaWGlbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH 9aqpcaaI3aGaaGimaiaaicdacaWGjbGaaiilaabaaaaaaaaapeGaai iOa8aacqaHZoWzcqGH9aqpcaaIYaGaaiila8qacaGGGcWdaiabeQ7a Rjabg2da9iaacsgacaGGPbGaaiyyaiaacEgadaqadaqaaiaaikdaca GGSaGaaGOmaiaacYcacaaIYaaacaGLOaGaayzkaaGaaiila8qacaGG GcWdaiabeo7aNnaaBaaajuaibaGabm4CayaaraaajuaGbeaacqGH9a qpdaGcaaqaaiaaiwdaaeqaaiaacYcapeGaaiiOa8aacqaHYoGydaWg aaqcfasaaiqadohagaqeaaqcfayabaaakeaajuaGcqGH9aqpcaaIWa GaaiOlaiaaiwdacaGGSaWdbiaacckapaGaeq4SdC2aaSbaaKqbGeaa ceWG1bGbaebajuaGdaWgaaqcfasaaiaadUgacaWGObaabeaaaKqbag qaaiabg2da9iaaicdacaGGUaGaaGynaiaacYcapeGaaiiOa8aacuaH jpWDgaqeaiabg2da9iaadsgacaWGPbGaamyyaiaadEgadaqadaqaai aaiwdacaGGSaGaaGynaiaacYcacaaI1aaacaGLOaGaayzkaaaaaaa@867A@ and R= [ 10,10,10 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfacq GH9aqpdaWadaqaaiaaigdacaaIWaGaaiilaiaaigdacaaIWaGaaiil aiaaigdacaaIWaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaamivaa aaaaa@4130@ . The control gains of the AWPID are designed after repeated attempts until good control performances are obtained. Two cases of actuator scenario are considered in the following simulations, i.e., all actuators are normal and some actuators occur faults at some moments. In the actuator fault scenario, we consider that one actuator undergoes the partial loss of effectiveness during 5st70s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiwdaca WGZbGaeyizImQaamiDaiabgsMiJkaaiEdacaaIWaGaam4Caaaa@3F06@ that is F 1 ={ 0.5+0.05( cos( 2πt )1 ) 5st70s 1 otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqcfasaaiaaigdaaKqbagqaaiabg2da9maaceaabaqbaeqabiGa aaqaaiaaicdacaGGUaGaaGynaiabgUcaRiaaicdacaGGUaGaaGimai aaiwdadaqadaqaaiGacogacaGGVbGaai4CamaabmaabaGaaGOmaiab ec8aWjaadshaaiaawIcacaGLPaaacqGHsislcaaIXaaacaGLOaGaay zkaaaabaGaaGynaiaadohacqGHKjYOcaWG0bGaeyizImQaaG4naiaa icdacaWGZbaabaGaaGymaaqaaiaad+gacaWG0bGaamiAaiaadwgaca WGYbGaam4DaiaadMgacaWGZbGaamyzaaaaaiaawUhaaaaa@5DCC@ , and another experiences stuck fault at t10s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshacq GHLjYScaaIXaGaaGimaiaadohaaaa@3BA5@ given by u kh2 =0.45+0.1sint      t10s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadUgacaWGObGaaGOmaaqcfayabaGaeyypa0JaaGim aiaac6cacaaI0aGaaGynaiabgUcaRiaaicdacaGGUaGaaGymaiGaco hacaGGPbGaaiOBaiaadshaqaaaaaaaaaWdbiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOa8aacaWG0bGaeyyzImRaaGymaiaaicdaca WGZbaaaa@51E5@ . The others are normal in the whole process of the spacecraft operator.

Faulty case

In this section, we consider the case that some actuators generate the partial loss of effectiveness and stuck fault at some moments in the process of attitude control for flexible spacecraft. Figure 2-8 show the simulation results of the FTACAC, FTARCAC and AWPID. Figure 2 & 3 show the trajectories of the unit quaternion and angular velocity of the flexible spacecraft under the three controllers, which can be seen that, when actuator faults occur, acceptable control performance and convergence rate of the resulting closed-loop system can still be obtained by FTACAC and FTARCAC in the presence of input saturation, inertia matrix uncertainty and external disturbance. While for AWPID, unexpected control result happens under actuator faults occurrence. The reason is that when actuators of spacecraft undergo faults especially severe faults, the stability of the control system can no longer be guaranteed by the conventional controller such as AWPID. While for our proposed FTACAC and FTARCAC, as we employ two adaptive parameters s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@  and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39C6@  eliminate the effect of the actuator faults in the controller design, therefore acceptable control performance can also be achieved even though severe actuator faults occur. Figure 4 shows the trajectories of the flexible vibration, from which we can see that, a serious vibration of flexible appendages appears for AWPID. While for FTACAC and FTARCAC, a low vibration level also achieved. Figure 5-6 show the trajectories of the thruster outputs and compensator. Figure 7-8 show the trajectories of adaptive parameters s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@ and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39C6@ from which we can find that, the estimation parameters s ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadohaga qegaqcaaaa@3798@ and u ¯ ^ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qegaqcamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39C6@ are convergent but uncertain convergent to the true parameters 1/ s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca GGVaGabm4Cayaaraaaaa@38F7@ and u ¯ kh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qeamaaBaaajuaibaGaam4AaiaadIgaaeqaaaaa@39B7@ , respectively.

Figure 3 Angular velocity with fault actuators.

Figure 4 Flexible vibration with fault actuators.

Figure 5 Thruster outputs with fault actuators.

Figure 6 Compensator with fault actuators.

Figure 7 Estimation parameter.

Figure 8 Estimation parameter.

Conclusion

This paper presents robust constrained fault-tolerant attitude control algorithms for flexible spacecraft in the presence of actuator fault, control input saturation, model uncertainty and external disturbances. In order to compensate the effect of input saturation, a compensator is employed in the controller design. To handle the actuator amplitude and/or rate constraints under actuator fault occurrence, two constrained fault-tolerant controllers are designed by two parameter update laws to estimate the unknown parameters caused by actuator faults. The proposed controllers are assessed and compared with AWPID through numerical simulations. The result shows that the proposed constrained fault-tolerant attitude controllers are able to accommodate the actuator fault and achieve high precision pointing while conventional methods fail to attain expected control objective.

Acknowledgments

None.

Conflict of interest

Author declares that there are none of the conflicts.

References

  1. Jasim NF, jasim IF. Robust adaptive control of spacecraft attitude systems with unknown dead zones of unknown bounds. J Syst Control Eng. 2012;226(7):947–955.
  2. Song Z, Li H, Sun K. Finite–time control for nonlinear spacecraft attitude based terminal sliding mode technique. ISA Trans. 2014;53(1):117–124.
  3. Wu S, Radice G, Gao Y, et al. Quaternion–based finite time control for spacecraft attitude tracking. Acta Astronautica. 2011;69(1–2):48–58.
  4. Nguyen T, Jabbari F. Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation. Automatica. 2000;36(9):1339–1346.
  5. Leonessa A, Haddad WM, Hayakawa T, et al. Adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints. Int J Adapt Control signal process. 2009;23(1):73–96.
  6. Yuan R, Tan X, Fan G, et al. Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations. Neurocomputing. 2013;125:72–80.
  7. Boškovié JD, Li SM, Mehra RK, et al. Robust adaptive variable structure control of spacecraft under control input saturation. J Guid Control Dyn. 2001;24(1):14–22.
  8. Boškovié JD, SM Li, Mehra RK. Robust tracking control design for spacecraft under control input saturation. J Guid Control Dyn. 2004;27(4):627–633.
  9. Wallsgrove RJ, Akella MR. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. J Guid Control Dyn. 2005;28(5):957–963.
  10. Zhu Z, Xia Y, Fu M. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans Indust Electronics. 2011;58(10):4898–4907.
  11. Bang H, Tahk MJ, Choi HD. Large angle attitude control of spacecraft with actuator saturation. Control Eng Pract. 2003;11(9):989–997.
  12. Hu QL, Xiao B. Intelligent proportional–derivative control for flexible spacecraft attitude stabilization with unknown input saturation. Aeros Sci tech. 2012;23(1):63–74.
  13. Q L Hu, Xiao B. Robust adaptive back stepping attitude stabilization and vibration reduction of flexible spacecraft subject to actuator saturation. J Vibrat Control. 2010;17(1):1657–1671.
  14. Wang T, Xie W, Zhang Y. Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults. ISA Transactions. 2012;51(3):386–392.
  15. Li XJ, Yang GH. Robust adaptive fault–tolerant control for uncertain linear systems with actuator failures. IET Control Theory Appl. 2012;6(10):1544–1551.
  16. Jin JH, Ko SH, Ryoo CK. Fault tolerant control for satellites with four reaction wheels. Control Eng Pract. 2008;16(10):1250–1258.
  17. Cai WC, Liao XH, Song YD. Indirect robust adaptive fault–tolerant control for attitude tracking of spacecraft. J Guid Control Dyn. 2008;31(5):1456–1463.
  18. Mirshams M, Khosrojerdi M, Hasani M. Passive fault–tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters. J Aeros Eng. 2013;228(12):1–15.
  19. Lee H, Kim Y. Fault–tolerant control scheme for satellite attitude control system. IET control Theory Appl. 2009;4(8):1436–1450.
  20. Meng Q, Zhang T, Song JY. Modified model–based fault–tolerant time–varying attitude tracking control of uncertain flexible satellites. J Aerosp Control. 2012;227(11):1–15.
  21. Jiang Y, Hu Q, Ma G. Adaptive back stepping fault–tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans. 2010;49(1):57–69.
  22. Hu QL. Robust adaptive sliding–mode fault–tolerant control with wheels. IET control Theory Appl. 2009;4(6):1055–1070.
  23. Hu QL. Adaptive integral–type sliding mode control for spacecraft attitude maneuvering under actuator stuck failures. Chinese J Aerona. 2011;24(1):32–45.
  24. Krstic M. Inverse optimal stabilization of a rigid spacecraft. IEEE Trans Auto Control. 1999;44:1042–1049.
  25. Luo WC, Chu YC, Ling KV. H infinity inverse optimal attitude–tracking control of rigid spacecraft. J Guid Control Dyn. 2005;28(3):481–493.
  26. Luo WC, Chu YC, Ling K. Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans Auto Control. 2005;50(11):1639–1654.
  27. Krstic M, Li ZH. Inverse optimal design of Input–to–State stabilizing nonlinear controllers. IEEE Trans Auto Control. 1998;43(3):336–350.
  28. M Krstic, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design. IEEE Trans Automatic Control. 1995;41(12):1–5.
Creative Commons Attribution License

©2017 Long, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.