Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Mini Review Volume 4 Issue 3

Emotional state recognition using facial expression, voice and physiological signal

Tahirou DJARA, Matine OUSMANE, Abdoul Aziz SOBABE, Antoine VIANOU

Laboratory of Electronic Engineering, Telecommunications and Applied data Processing Technology, University of Abomey-Calavi, Benin

Correspondence: Tahirou DJARA, Laboratory of Electronic Engineering, Telecommunications and Applied data Processing Technology, University of Abomey-Calavi, Benin

Received: October 31, 2017 | Published: May 9, 2018

Citation: Tahirou DJARA, Matine OUSMANE, SOBABE AA, et al. Emotional state recognition using facial expression, voice and physiological signal. Int Rob Auto J. 2018;4(3):164-165. DOI: 10.15406/iratj.2018.04.00115

Download PDF

Abstract

Emotion recognition is an important aspect of affective computing; one of whose goals is the study and development of behavioural and emotional interactions between humans and animated conversational agents. Discoveries from neurophysiology and neuropsychology,1 which establish a strong link between emotion, rationality and decision-making, have intensified research in this area for the consideration of emotions in human multimodal interactions, especially in health and robotics areas. This research has given birth to new scientific and technological tracks, largely related to the modeling and emotion recognition.

Keywords: emotion recognition, physiological signal, pattern recognition, affective computing

Introduction

Since twenty years, the computer modelling of emotion is a theme increasingly recognized, particularly in the field of human-machine interaction.2 The term "emotion" is relatively difficult to define from a scientific point of view. Indeed, the phenomenon of emotion is based at the same time on physical, physiological, mental and behavioural considerations. Thus, many areas such as affective computing and image processing are interested in human emotional dimensions. The growing maturity of the field of emotion recognition is creating new needs in terms of engineering. After a replication phase, during which numerous works have been proposed with recognition systems,3 we are gradually entering an empiricism phase,4 where models for the design are developed.3 Most designed systems allow passive recognition of emotions. To define emotion, we base ourselves on Scherer's theory.5 An emotion is characterized by a highly synchronized expression: the whole body (face, limbs, and physiological reactions) reacts in unison and the human emotional expression is clearly multimodal. Indeed, a large number of studies have been carried out in order to define the relationship between emotion and physiological signal. These have allowed highlighting a significant correlation between this type of signal and certain emotional states.

Architecture of emotion recognition systems

The analysis of existing emotion recognition systems reveals decomposition into three levels each fulfilling a specific function. At the Capture level, the information is captured from the real world and in particular from the user through devices (camera, microphone, etc.). This information is then analyzed in the Analysis level, where emotionally relevant characteristics are extracted from the captured data. Finally, the extracted characteristics are interpreted to obtain an emotion.

Physiological activities and emotional induction

There are several physiological activities that can allow the determination of emotion beyond the face, voice and body gestures:

Electro-myographic activity (EMG)

In particular, EMG makes it possible to measure the electrical activity of the muscles via electrodes placed on the face. Several studies have shown that EMG signals provide an objective measure for the emotion recognition.6

Heart rate (ECG)

It defines the number of heartbeats (heartbeats) per unit of time, usually in beats per minute (BPM). It is generally associated with activation of the autonomic nervous system (ANS)7 itself related to the emotion treatment.8 Thus, the heart rate variation can be associated with different emotions.

Skin temperature (SKT)

The body controls the internal temperature by balancing heat production and heat loss. Heat production is achieved through muscle contraction, metabolic activity and vasoconstriction of the skin blood vessels. The activation of this indicator varies according to the emotion considered and the subjects, which induces a form of complex response making it possible to distinguish different emotions.

Respiratory frequency (FR)

Central nervous system

The central nervous system (CNS) is composed of the brain, cerebellum, brain stem and spinal cord. The brain activities of the CNS play a prominent role in the emotion recognition.

Acquisition and processing of physiological signals

The physiological activity is characterized by the calculation of several characteristics from the recorded signals. Once the acquisition of physiological signals is done, it is important to define a methodology that allows the acquired signals to be translated into a specific emotion. Several works in the emotion recognition have been carried out using these methods6 based on statistical values ​​as well as the construction of relevant indicator vectors. Each physiological signal (EEG, ECG, etc.) is designated by the discrete variable X. Xn represents the value of the nth sample of the raw signal, where n = 1. . .N and N is the total number of samples corresponding to T seconds of signal recording. Assuming that each measured signal is generated by a Gaussian process, with independent samples and identically distributed. The two physiological functions that can be used to characterize a raw physiological signal are the mean and the standard deviation (Eq.1 and Eq.2):

μ x = 1 T ΣX(t)= X ¯ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2aaSbaaeaajugWaiaadIhaaKqbagqaaiaaykW7cqGH9aqpdaWcaaqa aiaaigdaaeaacaWGubaaaiaaykW7caaMc8Uaeu4OdmLaaGPaVlaadI facaaMc8UaaiikaiaadshacaGGPaGaaGPaVlaaykW7cqGH9aqpcaaM c8+aa0aaaeaacaaMc8UaamiwaaaacaaMc8UaaGPaVlaacIcacaWG0b Gaaiykaaaa@57B0@ (1)
σ x = 1 T t=1 T ( X( t ) μ x ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaeaajugWaiaadIhaaKqbagqaaiaaykW7cqGH9aqpdaGcaaqa amaalaaabaGaaGymaaqaaiaadsfaaaWaaabCaeaadaqadaqaaiaadI fadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcqaH8oqBdaWg aaqaaKqzadGaamiEaaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqaba qcLbmacaaIYaaaaaqcfayaaKqzadGaamiDaiabg2da9iaaigdaaKqb agaajugWaiaadsfaaKqbakabggHiLdaabeaaaaa@559A@  (2)
In order to evaluate the trend of an X-signal on a test, the derived average (Eq.3), the normalized first derivative (Eq.4), the second derivative (Eq.5) and the normalized second derivative of the signal ( Eq.6) can also be calculated:
δ x = 1 T1 t=1 T1 | X( t+1 )X( t ) | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiTdq2aaSbaaeaajugWaiaadIhaaKqbagqaaiabg2da9maa laaapaqaa8qacaaIXaaapaqaa8qacaWGubGaeyOeI0IaaGymaaaada GfWbqab8aabaqcLbmapeGaamiDaiabg2da9iaaigdaaKqba+aabaqc LbmapeGaamivaiabgkHiTiaaigdaaKqba+aabaWdbiabggHiLdaada abdaWdaeaapeGaamiwamaabmaapaqaa8qacaWG0bGaey4kaSIaaGym aaGaayjkaiaawMcaaiabgkHiTiaadIfadaqadaWdaeaapeGaamiDaa GaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@5814@  (3)
δ ¯ x = 1 T1 t=1 T1 | X ¯ ( t+1 ) X ¯ (t) | = δ x σ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbes7aKz aaraWaaSbaaKqbGeaacaWG4baajuaGbeaacqGH9aqpdaWcaaqaaiaa igdaaeaacaWGubGaeyOeI0IaaGymaaaadaaeWbqaamaaemaabaGabm iwayaaraWaaeWaaeaacaWG0bGaey4kaSIaaGymaaGaayjkaiaawMca aiabgkHiTiqadIfagaqeaiaacIcacaWG0bGaaiykaaGaay5bSlaawI a7aaqaaKqzadGaamiDaiabg2da9iaaigdaaKqbagaajugWaiaadsfa cqGHsislcaaIXaaajuaGcqGHris5aiabg2da9maalaaabaGaeqiTdq 2aaSbaaKqbGeaacaWG4baajuaGbeaaaeaacqaHdpWCdaWgaaqaaKqz adGaamiEaaqcfayabaaaaaaa@5F3D@  (4)
γ x = 1 T2 t=1 T2 | X( t+2 )X( t ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4SdC2damaaBaaabaqcLbmapeGaamiEaaqcfa4daeqaa8qa cqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamivaiabgkHiTi aaikdaaaWaaybCaeqapaqaaKqzadWdbiaadshacqGH9aqpcaaIXaaa juaGpaqaaKqzadWdbiaadsfacqGHsislcaaIYaaajuaGpaqaa8qacq GHris5aaWaaqWaa8aabaWdbiaadIfadaqadaWdaeaapeGaamiDaiab gUcaRiaaikdaaiaawIcacaGLPaaacqGHsislcaWGybWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@5856@ (5)
γ ¯ x = 1 T2 t=1 T2 | X ¯ ( t+2 ) X ¯ ( t ) |= γ x σ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGafq4SdCMbaebapaWaaSbaaeaajugWa8qacaWG4baajuaGpaqa baWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGubGaey OeI0IaaGOmaaaadaGfWbqab8aabaqcLbmapeGaamiDaiabg2da9iaa igdaaKqba+aabaqcLbmapeGaamivaiabgkHiTiaaikdaaKqba+aaba WdbiabggHiLdaadaabdaWdaeaaceWGybGbaebapeWaaeWaa8aabaWd biaadshacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaeyOeI0YdaiqadI fagaqea8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaay5b SlaawIa7aiabg2da9maalaaapaqaa8qacqaHZoWzpaWaaSbaaeaape GaamiEaaWdaeqaaaqaa8qacqaHdpWCpaWaaSbaaeaapeGaamiEaaWd aeqaaaaaaaa@6004@  (6)

Finally, the maximum (Eq.7) and minimum (Eq.8) of a signal can also provide relevant information.
min x = min x x( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa aeaaaaaaaaa8qaciGGTbGaaiyAaiaac6gaa8aabaqcLbmapeGaamiE aaqcfa4daeqaa8qacqGH9aqppaWaaCbeaeaapeGaciyBaiaacMgaca GGUbaapaqaaKqzadWdbiaadIhaaKqba+aabeaapeGaamiEamaabmaa paqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@47A6@ (7)
max x = max x x( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa aeaaaaaaaaa8qaciGGTbGaaiyyaiaacIhaa8aabaqcLbmapeGaamiE aaqcfa4daeqaa8qacqGH9aqppaWaaCbeaeaapeGaciyBaiaacggaca GG4baapaqaaKqzadWdbiaadIhaaKqba+aabeaapeGaamiEamaabmaa paqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@47AA@  (8)
These characteristics are very general and can be applied to a wide range of physiological signals (EEG, EMG, ECG, RED, etc.). Using these characteristics, we obtain a characteristic vector Y of 8 values ​​for each sample. This vector can cover and expand a statistical series typically measured in the literature.6
X=[ μ x    σ x    δ x δ ¯ x   γ x γ ¯ x min x  max x ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiwaiabg2da9maadmaapaqaa8qacqaH8oqBpaWaaSbaaeaa peGaamiEaiaacckaa8aabeaapeGaaiiOaiabeo8aZ9aadaWgaaqaa8 qacaWG4baapaqabaWdbiaacckacaGGGcGaeqiTdq2damaaBaaabaWd biaadIhaa8aabeaapeGafqiTdqMbaebapaWaaSbaaeaapeGaamiEaa Wdaeqaa8qacaGGGcGaeq4SdC2damaaBaaabaWdbiaadIhaa8aabeaa peGafq4SdCMbaebapaWaaSbaaeaapeGaamiEaaWdaeqaamaaxababa WdbiGac2gacaGGPbGaaiOBaaWdaeaapeGaamiEaaWdaeqaamaaxaba baWdbiaabckacaqGTbGaaeyyaiaabIhaa8aabaWdbiaadIhaa8aabe aaa8qacaGLBbGaayzxaaaaaa@5CA2@

Conclusion

After the extraction of the desired characteristics, it is necessary to identify the corresponding emotion. This treatment is usually done by a classifier. A classifier is a system that groups similar data into a single class. It is able to make the correspondence between the calculated parameters and the emotions. There are several classification methods. These include: Support Vector Machine (SVM), Bayesian Naïve Classification, Logistic Regression. It is therefore necessary to evaluate the performance of a classifier. The criterion used to evaluate this performance is the rate of good classification expressed by the following formula:

tbc= Number of item identified correctly   total element Number MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCe9Ff0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiDaiaadkgacaWGJbGaeyypa0ZaaSaaa8aabaWdbiaad6ea caWG1bGaamyBaiaadkgacaWGLbGaamOCaiaacckacaWGVbGaamOzai aacckacaWGPbGaamiDaiaadwgacaWGTbGaaiiOaiaadMgacaWGKbGa amyzaiaad6gacaWG0bGaamyAaiaadAgacaWGPbGaamyzaiaadsgaca GGGcGaam4yaiaad+gacaWGYbGaamOCaiaadwgacaWGJbGaamiDaiaa dYgacaWG5bGaaiiOaiaacckaa8aabaWdbiaabshacaqGVbGaaeiDai aabggacaqGSbGaaeiOaiaabwgacaqGSbGaaeyzaiaab2gacaqGLbGa aeOBaiaabshacaqGGcGaaeOtaiaabwhacaqGTbGaaeOyaiaabwgaca qGYbaaaaaa@71D6@

Acknowledgements

None.

Conflict of interest

The author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Tahirou, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.