Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 7 Issue 1

Dynamics, stability and sustainable optimal control in wolf-moose systems

Peter Lohmander

Optimal Solutions in cooperation with Linnaeus University, Sweden

Correspondence: Peter Lohmander, Optimal Solutions in cooperation with Linnaeus University, Sweden, Tel +46-738-288294

Received: February 01, 2021 | Published: March 30, 2021

Citation: Lohmander P. Dynamics, stability and sustainable optimal control in wolf-moose systems. Int Rob Auto J. 2021;7(1):24-33 DOI: 10.15406/iratj.2021.07.00223

Download PDF

Abstract

A wolf-moose predator-prey system is defined as a nonlinear continuous time differential equation system. The parameters are estimated via a discretized approximation and empirical data from Isle Royale, USA, representing a 61 year period. All parameter estimates confirm the hypotheses and all P-values are below 5%. Possible dynamic equilibria are determined as explicit general functions of the parameters and as numerical values based on the empirical data. General dynamic properties of the system are determined via phase -plane analysis and nonlinear simulation. The nonlinear system is also linearized close to the single equilibrium with two strictly positive populations. The explicit equations of the time path of the linearized system are compared to the nonlinear simulation. Both methods give almost identical solutions close to the equilibrium. Far from the equilibrium, the time paths of the two methods deviate considerably. The solution is a stable converging spiral (center) (unstable diverging spiral) in case the system equilibrium prey population is located at a higher (the same) (lower) level than the population level that gives maximum sustainable net production. Based on the empirically determined expected parameter values, the system is stable but converges very slowly, as a spiral, to the two-species equilibrium. The estimated standard deviations of the parameters can be used to determine the probability that the system solution is a center or an unstable diverging spiral. The optimal management of the wolf-moose system is also determined via sustainable optimal control. Moose hunting and adjustments of the wolf population based on different prices and values of sustainable population levels are derived. Optimal hunting and stock levels are determined and reported as explicit functions of all parameters and prices.

Keywords: predator prey system, dynamics, stability, differential equation system, linearization, economic optimization, sustainable control

Introduction

Predator prey systems have gained considerable interest ever since the pioneering work by Lotka and Volterra, described in Lotka.1 In books on differential equations and applications, several authors have devoted many pages to the inspiring problems of predator prey systems. Some of the most well written cases are found in Braun,2 Blanchard et al.,3 & Tung.4 In this study, the ambition is to investigate the dynamic properties of a typical predator prey system, namely the wolf-moose system. Such systems are frequent in large parts of the world, in the large forests in North America, Russian Federation and the Nordic countries. On a rather isolated island, Isle Royale, in Lake Superior, USA, the conditions are favorable for the study of such a system. Detailed data covering the populations of wolf, moose and several other variables of potential interest, have been gathered there since the year 1959. The empirical data used in this study are found in Appendix 1, and come from Michigan Tech.5 Some earlier time series and simulations connected to the Isle Royale project have been presented by Knadler.6 When we consider predator prey systems, this may be done with different objectives. First, the system may be considered as more or less “natural” and unaffected by human regulation. In the first part of this paper, this is done. The dynamic properties of the “unregulated” system are analyzed and considerable attention is given to equilibria and stability. Second, we may also investigate if and how the system may be controlled, in order to satisfy some interests. In the second part of this paper, the options to hunt for moose and to regulate the wolf population, will be used as control variables. An objective function will be defined, where the profits from the hunting and the valuation of the wolf population will be considered. We will see how the optimal management can be designed in a way that makes the objective function and the animal populations sustainable, and simultaneously maximizes the selected objective function.

Motivation for the differential equations

In alternative predator prey models, the details of the differential equations can differ in several ways. In this paper, particular functional forms of relevance to the species under study will be assumed and empirically tested. W denotes the size of the wolf population. In equation (1), we see how the relative growth of the wolf population depends on M, the size of the moose population and the two parameters g and h. The logic behind the equation is that g is the rate of death. The relative reproduction of the wolf is assumed to be an increasing function of the moose population.

( W>0 ) W W = ( dW dt ) W =g+hM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaam4vaiabg6da+iaaicdaaOGaayjkaiaawMcaaKqzGeGa eyO0H4Dcfa4aaSaaaOqaaKqbaoaaxacakeaajugibiaadEfaaSqabe aajugibiabgkci3caaaOqaaKqzGeGaam4vaaaacqGH9aqpjuaGdaWc aaGcbaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadsgacaWGxb aakeaajugibiaadsgacaWG0baaaaGccaGLOaGaayzkaaaabaqcLbsa caWGxbaaaiabg2da9iabgkHiTiaadEgacqGHRaWkcaWGObGaamytaa aa@54F2@   (1)

The functional form of equation (1) is linear. No nonlinear dependences can be discovered via residual analysis. Hence, the linear function is selected. In case the number of wolfs is zero, there is no predation. Then, equation (2) shows that the relative growth of the moose population is a decreasing function of the moose population. The two parameters a and b are strictly positive.

(W=0) M M = ( dM dt ) M =abM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaam4vaiabg2da9iaaicdacaGGPaGaeyO0H4Dcfa4aaSaaaOqaaKqb aoaaxacakeaajugibiaad2eaaSqabeaajugibiabgkci3caaaOqaaK qzGeGaamytaaaacqGH9aqpjuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqb aoaalaaakeaajugibiaadsgacaWGnbaakeaajugibiaadsgacaWG0b aaaaGccaGLOaGaayzkaaaabaqcLbsacaWGnbaaaiabg2da9iaadgga cqGHsislcaWGIbGaamytaaaa@5279@   (2)

Equation (3) follows from (2) and says that, without predation, the moose population growth is a strictly concave function of the population level. This is also the basic assumption that is used in the logistic growth models with one species.

(W=0) M =aMb M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaam4vaiabg2da9iaaicdacaGGPaGaeyO0H4Dcfa4aaybyaeqabeqa aKqzGeGaeyOiGClajuaGbaqcLbsacaWGnbaaaiabg2da9iaadggaca WGnbGaeyOeI0IaamOyaiaad2eajuaGdaahaaWcbeqaaKqzadGaaGOm aaaaaaa@49F0@   (3)

If the wolf population is strictly positive, they will survive by eating moose. Then, the moose population dynamics is modified, as we see in equation (4). The parameter c is strictly positive, representing the number of moose killed per year per wolf.

(W>0) M =aMb M 2 cW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaam4vaiabg6da+iaaicdacaGGPaGaeyO0H4Dcfa4aaCbiaOqaaKqz GeGaamytaaWcbeqaaKqbaoaaBaaabaqcLbsacqGHIaYTaKqbagqaaa aajugibiabg2da9iaadggacaWGnbGaeyOeI0IaamOyaiaad2ealmaa CaaabeqaaKqzadGaaGOmaaaajugibiabgkHiTiaadogacaWGxbaaaa@4DB6@   (4)

With the motivated differential equations, we obtain the simultaneous system (5).

{ M = aMb M 2 cW W = gW+hMW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaqcLbsacqGHIaYTaKqbagqaaaaajugibiabg2 da9aGcbaqcLbsacaWGHbGaamytaiabgkHiTiaadkgacaWGnbWcdaah aaqabeaajugWaiaaikdaaaqcLbsacqGHsislcaWGJbGaam4vaaGcba qcfa4aaCbiaOqaaKqzGeGaam4vaaWcbeqaaKqzGeGaeyOiGClaaiab g2da9aGcbaqcLbsacqGHsislcaWGNbGaam4vaiabgUcaRiaadIgaca WGnbGaam4vaaaaaOGaay5Eaaaaaa@560C@   (5)

Empirical estimation of the differential equations

The two differential equations are approximated as two difference equations. The unit of time is years. The available empirical data set includes one pair of observations (M,W) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad2 eacaGGSaGaam4vaiaacMcaaaa@39AD@ each year. Δt=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDaiabg2da9iaaigdaaaa@3A17@ .

{ M ΔM Δt = aMb M 2 cW W ΔW Δt = gW+hMW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqzGeGaeyOiGClaaiabgIKi7Mqbaoaalaaakeaajugibiabgs 5aejaad2eaaOqaaKqzGeGaeyiLdqKaamiDaaaacqGH9aqpaOqaaKqz GeGaamyyaiaad2eacqGHsislcaWGIbGaamytaKqbaoaaCaaaleqaba qcLbmacaaIYaaaaKqzGeGaeyOeI0Iaam4yaiaadEfaaOqaaKqbaoaa xacakeaajugibiaadEfaaSqabeaajugibiabgkci3caacqGHijYUju aGdaWcaaGcbaqcLbsacqGHuoarcaWGxbaakeaajugibiabgs5aejaa dshaaaGaeyypa0dakeaajugibiabgkHiTiaadEgacaWGxbGaey4kaS IaamiAaiaad2eacaWGxbaaaaGccaGL7baaaaa@650C@   (6)

Then, two multiple regression analyses were performed. The residuals ( ε M , ε W ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH1oqzdaWgaaWcbaGaamytaaqabaGccaGGSaGaeqyTdu2aaSbaaSqa aiaadEfaaeqaaaGccaGLOaGaayzkaaaaaa@3D97@ are assumed to be Normally distributed with zero means and correlations.

{ ( ΔM Δt ) M = abMc W M + ε M ( ΔW Δt ) W = g+hM+ ε W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaSaaaOqaaKqbaoaabmaakeaa juaGdaWcaaGcbaqcLbsacqGHuoarcaWGnbaakeaajugibiabgs5aej aadshaaaaakiaawIcacaGLPaaaaeaajugibiaad2eaaaGaeyypa0da keaajugibiaadggacqGHsislcaWGIbGaamytaiabgkHiTiaadogaju aGdaWcaaGcbaqcLbsacaWGxbaakeaajugibiaad2eaaaGaey4kaSIa eqyTduwcfa4aaSbaaSqaaKqzGeGaamytaaWcbeaaaOqaaKqbaoaala aakeaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyiLdqKaam4v aaGcbaqcLbsacqGHuoarcaWG0baaaaGccaGLOaGaayzkaaaabaqcLb sacaWGxbaaaiabg2da9aGcbaqcLbsacqGHsislcaWGNbGaey4kaSIa amiAaiaad2eacqGHRaWkcqaH1oqzjuaGdaWgaaWcbaqcLbsacaWGxb aaleqaaaaaaOGaay5Eaaaaaa@67B2@   (7)

M-regression

( ΔM Δt ) M =0.3720.178 M 1000 6.593 W M + ε M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqGHuoarcaWGnbaa keaajugibiabgs5aejaadshaaaaakiaawIcacaGLPaaaaeaajugibi aad2eaaaGaeyypa0JaaGimaiaac6cacaaIZaGaaG4naiaaikdacqGH sislcaaIWaGaaiOlaiaaigdacaaI3aGaaGioaKqbaoaalaaakeaaju gibiaad2eaaOqaaKqzGeGaaGymaiaaicdacaaIWaGaaGimaaaacqGH sislcaaI2aGaaiOlaiaaiwdacaaI5aGaaG4maKqbaoaalaaakeaaju gibiaadEfaaOqaaKqzGeGaamytaaaacqGHRaWkcqaH1oqzjuaGdaWg aaWcbaqcLbsacaWGnbaaleqaaaaa@5C2C@   (8)

ε M N( μ M , σ M 2 ), μ M =0, σ M 0.174 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaWcbaqcLbsacaWGnbaaleqaaKqzGeGaeSipIOJaamOt aKqbaoaabmaakeaajugibiabeY7aTLqbaoaaBaaaleaajugibiaad2 eaaSqabaqcLbsacaGGSaGaeq4Wdmxcfa4aa0baaSqaaKqzGeGaamyt aaWcbaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaG zbVlabeY7aTLqbaoaaBaaaleaajugibiaad2eaaSqabaqcLbsacqGH 9aqpcaaIWaGaaiilaiabeo8aZLqbaoaaBaaaleaajugibiaad2eaaS qabaqcLbsacqGHijYUcaaIWaGaaiOlaiaaigdacaaI3aGaaGinaaaa @5DFD@   (9)

( ΔM Δt )=0.372M0.178× 10 3 M 2 6.593W+M ε M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaalaaakeaajugibiabgs5aejaad2eaaOqaaKqzGeGaeyiL dqKaamiDaaaaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaiaac6 cacaaIZaGaaG4naiaaikdacaWGnbGaeyOeI0IaaGimaiaac6cacaaI XaGaaG4naiaaiIdacqGHxdaTcaaIXaGaaGimaKqbaoaaCaaaleqaba qcLbsacqGHsisljugWaiaaiodaaaqcLbsacaWGnbWcdaahaaqabeaa jugWaiaaikdaaaqcLbsacqGHsislcaaI2aGaaiOlaiaaiwdacaaI5a GaaG4maiaadEfacqGHRaWkcaWGnbGaeqyTduwcfa4aaSbaaSqaaKqz GeGaamytaaWcbeaaaaa@5FDE@   (10)

The number of observations was 60 and the multiple R value was 0.367. Clearly, since there is a second order term in the difference equation, the expected value of the difference is in general not constant over time. However, close to a dynamic equilibrium, for short time intervals, second order effects are very small and may be neglected.

E( M )0.372M0.178× 10 3 M 2 6.593W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaeWaaOqaaKqbaoaaxacakeaajugibiaad2eaaSqabeaajuaG daWgaaqaaiabgkci3cqabaaaaaGccaGLOaGaayzkaaqcLbsacqGHij YUcaaIWaGaaiOlaiaaiodacaaI3aGaaGOmaiaad2eacqGHsislcaaI WaGaaiOlaiaaigdacaaI3aGaaGioaiabgEna0kaaigdacaaIWaqcfa 4aaWbaaSqabeaajugibiabgkHiTKqzadGaaG4maaaajugibiaad2ea juaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaiAdaca GGUaGaaGynaiaaiMdacaaIZaGaam4vaaaa@5AFC@   (11)

W-regression

( ΔW Δt ) W =0.244+0.230 M 1000 + ε W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqGHuoarcaWGxbaa keaajugibiabgs5aejaadshaaaaakiaawIcacaGLPaaaaeaajugibi aadEfaaaGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIYaGaaGinaiaa isdacqGHRaWkcaaIWaGaaiOlaiaaikdacaaIZaGaaGimaKqbaoaala aakeaajugibiaad2eaaOqaaKqzGeGaaGymaiaaicdacaaIWaGaaGim aaaacqGHRaWkcqaH1oqzjuaGdaWgaaWcbaqcLbsacaWGxbaaleqaaa aa@5503@   (12)

ε W N( μ W , σ W 2 ), μ W =0, σ W 0.334 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaWcbaqcLbsacaWGxbaaleqaaKqzGeGaeSipIOJaamOt aKqbaoaabmaakeaajugibiabeY7aTLqbaoaaBaaaleaajugibiaadE faaSqabaqcLbsacaGGSaGaeq4Wdmxcfa4aa0baaSqaaKqzGeGaam4v aaWcbaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaG zbVlabeY7aTLqbaoaaBaaaleaajugibiaadEfaaSqabaqcLbsacqGH 9aqpcaaIWaGaaiilaiabeo8aZLqbaoaaBaaaleaajugibiaadEfaaS qabaqcLbsacqGHijYUcaaIWaGaaiOlaiaaiodacaaIZaGaaGinaaaa @5E2D@   (13)

( ΔW Δt )=0.244W+0.230× 10 3 MW+W ε W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaalaaakeaajugibiabgs5aejaadEfaaOqaaKqzGeGaeyiL dqKaamiDaaaaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaeyOeI0IaaG imaiaac6cacaaIYaGaaGinaiaaisdacaWGxbGaey4kaSIaaGimaiaa c6cacaaIYaGaaG4maiaaicdacqGHxdaTcaaIXaGaaGimaKqbaoaaCa aaleqabaqcLbsacqGHsisljugWaiaaiodaaaqcLbsacaWGnbGaam4v aiabgUcaRiaadEfacqaH1oqzjuaGdaWgaaWcbaqcLbsacaWGxbaale qaaaaa@5997@   (14)

The number of observations was 60 and the multiple R value was 0.272.

E( W )0.244W+0.230× 10 3 MW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaeWaaOqaaKqbaoaaxacakeaajugibiaadEfaaSqabeaajuaG daWgaaqaaiabgkci3cqabaaaaaGccaGLOaGaayzkaaqcLbsacqGHij YUcqGHsislcaaIWaGaaiOlaiaaikdacaaI0aGaaGinaiaadEfacqGH RaWkcaaIWaGaaiOlaiaaikdacaaIZaGaaGimaiabgEna0kaaigdaca aIWaqcfa4aaWbaaSqabeaajugibiabgkHiTKqzadGaaG4maaaajugi biaad2eacaWGxbaaaa@5413@   (15)

In Table 1, it is interesting to observe that all parameter values obtained the expected signs. Furthermore, they are all, with more than 95% probability, different from zero. The standard deviations of the parameters, found in Table 1, are important, partly because they can be used to estimate the probability that the differential equation system is stable. Later in this paper, it turns out that the system is stable in case the parameters really have the estimated expected values found in Table 1. If the deviations from these values are sufficiently large, the system may become unstable. Now, let us investigate the behavior of the approximated differential equation system. We make the following assumption:

( M , W )( E( M ),E( W ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacakeaajugibiaad2eaaSqabeaajuaGdaWgaaqaaKqz GeGaeyOiGClajuaGbeaaaaqcLbsacaGGSaqcfa4aaCbiaOqaaKqzGe Gaam4vaaWcbeqaaKqbaoaaBaaabaqcLbsacqGHIaYTaKqbagqaaaaa aOGaayjkaiaawMcaaKqzGeGaeyisISBcfa4aaeWaaOqaaKqzGeGaam yraKqbaoaabmaakeaajuaGdaWfGaGcbaqcLbsacaWGnbaaleqabaqc fa4aaSbaaeaajugibiabgkci3cqcfayabaaaaaGccaGLOaGaayzkaa qcLbsacaGGSaGaamyraKqbaoaabmaakeaajuaGdaWfGaGcbaqcLbsa caWGxbaaleqabaqcfa4aaSbaaeaajugibiabgkci3cqcfayabaaaaa GccaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@5BD9@   (16)

Parameter

a

b

c

g

h

Estimated expected value

0.372

0.178×10–3

6.593

0.244

0.230×10–3

Standard deviation

0.135

0.0845×10–3

2.215

0.117

0.107×10–3

P-value

0.00796

0.0390

0.00427

0.0409

0.0353

Table 1 Parameter value estimates, standard deviations, and P-values

The simplified estimated differential equation system is:

{ M = 0.372M0.178× 10 3 M 2 6.593W W = 0.244W+0.230× 10 3 MW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qzGeGaaGimaiaac6cacaaIZaGaaG4naiaaikdacaWGnbGaeyOeI0Ia aGimaiaac6cacaaIXaGaaG4naiaaiIdacqGHxdaTcaaIXaGaaGimaK qbaoaaCaaaleqabaqcLbsacqGHsisljugWaiaaiodaaaqcLbsacaWG nbqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHsislcaaI2a GaaiOlaiaaiwdacaaI5aGaaG4maiaaykW7caWGxbaakeaajuaGdaWf GaGcbaqcLbsacaWGxbaaleqabaqcfa4aaSbaaeaacqGHIaYTaeqaaa aajugibiabg2da9aGcbaqcLbsacqGHsislcaaIWaGaaiOlaiaaikda caaI0aGaaGinaiaaykW7caWGxbGaey4kaSIaaGimaiaac6cacaaIYa GaaG4maiaaicdacqGHxdaTcaaIXaGaaGimaKqbaoaaCaaaleqabaqc LbsacqGHsisljugWaiaaiodaaaqcLbsacaWGnbGaam4vaaaaaOGaay 5Eaaaaaa@7772@   (17)

Equilibria

The estimated differential equation system has several equilibria. We may consider the cases where both species have strictly positive population sizes, and where one or two of them are zero. Since the main interest in this paper concerns the two species situation, we start with Equilibrium 1.

Equilibrium 1

In equilibrium 1, we have ( M>0,W>0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaiabg6da+iaaicdacaGGSaGaam4vaiabg6da+iaa icdaaOGaayjkaiaawMcaaaaa@3E92@ .

Equation (18) shows that the moose population can be determined from the fact that the wolf population is in equilibrium.

( W>0 W =0 )( 0.230× 10 3 M=0.244 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaam4vaiabg6da+iaaicdacqGHNis2juaGdaWfGaGcbaqc LbsacaWGxbaaleqabaqcfa4aaSbaaeaacqGHIaYTaeqaaaaajugibi abg2da9iaaicdaaOGaayjkaiaawMcaaKqzGeGaeyO0H4Dcfa4aaeWa aOqaaKqzGeGaaGimaiaac6cacaaIYaGaaG4maiaaicdacqGHxdaTca aIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacqGHsisljugWaiaaioda aaqcLbsacaWGnbGaeyypa0JaaGimaiaac6cacaaIYaGaaGinaiaais daaOGaayjkaiaawMcaaaaa@5AC9@   (18)

denotes the moose population in system equilibrium with a strictly positive value of the wolf population.

( W>0 W =0 )( M1061 )( M 1 1061 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaam4vaiabg6da+iaaicdacqGHNis2juaGdaWfGaGcbaqc LbsacaWGxbaaleqabaqcfa4aaSbaaeaacqGHIaYTaeqaaaaajugibi abg2da9iaaicdaaOGaayjkaiaawMcaaKqzGeGaeyO0H4Dcfa4aaeWa aOqaaKqzGeGaamytaiabgIKi7kaaigdacaaIWaGaaGOnaiaaigdaaO GaayjkaiaawMcaaKqzGeGaeyO0H4Dcfa4aaeWaaOqaaKqzGeGaamyt aSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGHijYUcaaIXaGaaG imaiaaiAdacaaIXaaakiaawIcacaGLPaaaaaa@5CAC@   (19)

When the equilibrium moose population is known, we can use this in the moose growth equation, as we see in equation (20). From this, we can determine the equilibrium wolf population.

M =0.372 M 1 0.178× 10 3 M 1 2 6.593W=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiaO qaaKqzGeGaamytaaWcbeqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqc LbsacqGH9aqpcaaIWaGaaiOlaiaaiodacaaI3aGaaGOmaiaad2ealm aaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0IaaGimaiaac6ca caaIXaGaaG4naiaaiIdacqGHxdaTcaaIXaGaaGimaKqbaoaaCaaale qabaqcLbsacqGHsisljugWaiaaiodaaaqcLbsacaWGnbWcdaWgaaqa aKqzadGaaGymaaWcbeaajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaju gibiabgkHiTiaaiAdacaGGUaGaaGynaiaaiMdacaaIZaGaaGPaVlaa dEfacqGH9aqpcaaIWaaaaa@5EE7@   (20)

6.593W=0.372 M 1 0.178× 10 3 M 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI2a GaaiOlaiaaiwdacaaI5aGaaG4maiaaykW7caWGxbGaeyypa0JaaGim aiaac6cacaaIZaGaaG4naiaaikdacaWGnbWcdaWgaaqaaKqzadGaaG ymaaWcbeaajugibiabgkHiTiaaicdacaGGUaGaaGymaiaaiEdacaaI 4aGaey41aqRaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGaeyOeI0 scLbmacaaIZaaaaKqzGeGaamytaSWaaSbaaeaajugWaiaaigdaaSqa baWaaWbaaeqabaqcLbmacaaIYaaaaaaa@569C@   (21)

W= ( 0.372 M 1 0.178× 10 3 M 1 2 ) 6.593 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaaicdacaGG UaGaaG4maiaaiEdacaaIYaGaamytaSWaaSbaaeaajugWaiaaigdaaS qabaqcLbsacqGHsislcaaIWaGaaiOlaiaaigdacaaI3aGaaGioaiab gEna0kaaigdacaaIWaqcfa4aaWbaaSqabeaajugWaiabgkHiTiaaio daaaqcLbsacaWGnbWcdaWgaaqaaKqzadGaaGymaaWcbeaadaahaaqa beaajugWaiaaikdaaaaakiaawIcacaGLPaaaaeaajugibiaaiAdaca GGUaGaaGynaiaaiMdacaaIZaaaaaaa@5873@   (22)

W 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3A0F@ denotes the wolf population in system equilibrium with strictly positive values of the moose and wolf populations.

W 1 = ( 0.372 M 1 0.178× 10 3 M 1 2 ) 6.593 29.47 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9Kqbaoaalaaa keaajuaGdaqadaGcbaqcLbsacaaIWaGaaiOlaiaaiodacaaI3aGaaG Omaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0Ia aGimaiaac6cacaaIXaGaaG4naiaaiIdacqGHxdaTcaaIXaGaaGimaK qbaoaaCaaaleqabaqcLbmacqGHsislcaaIZaaaaKqzGeGaamytaSWa aSbaaeaajugWaiaaigdaaSqabaWaaWbaaeqabaqcLbmacaaIYaaaaa GccaGLOaGaayzkaaaabaqcLbsacaaI2aGaaiOlaiaaiwdacaaI5aGa aG4maaaacqGHijYUcaaIYaGaaGyoaiaac6cacaaI0aGaaG4naaaa@6083@   (23)

Equilibrium 2

In the absence of wolves, we can instantly determine the equilibrium moose population via equation (24).

( M>0,W=0, M =0 )( 0.372M0.178× 10 3 M 2 =0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaiabg6da+iaaicdacaGGSaGaam4vaiabg2da9iaa icdacaGGSaqcfa4aaCbiaOqaaKqzGeGaamytaaWcbeqaaKqbaoaaBa aabaGaeyOiGClabeaaaaqcLbsacqGH9aqpcaaIWaaakiaawIcacaGL PaaajugibiabgkDiENqbaoaabmaakeaajugibiaaicdacaGGUaGaaG 4maiaaiEdacaaIYaGaamytaiabgkHiTiaaicdacaGGUaGaaGymaiaa iEdacaaI4aGaey41aqRaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGe GaeyOeI0scLbmacaaIZaaaaKqzGeGaamytaKqbaoaaCaaaleqabaqc LbmacaaIYaaaaKqzGeGaeyypa0JaaGimaaGccaGLOaGaayzkaaaaaa@62BD@   (24)

0.3720.178× 10 3 M=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaiodacaaI3aGaaGOmaiabgkHiTiaaicdacaGGUaGaaGym aiaaiEdacaaI4aGaey41aqRaaGymaiaaicdajuaGdaahaaWcbeqaaK qzGeGaeyOeI0scLbmacaaIZaaaaKqzGeGaamytaiabg2da9iaaicda aaa@4991@   (25)

M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaKqzadGaaGOmaaWcbeaaaaa@3978@ denotes the moose population in system equilibrium without a wolf population.

M 2 2090 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabgIKi7kaaikda caaIWaGaaGyoaiaaicdaaaa@3F39@   (26)

Obviously, the equilibrium moose population is much lower in case there is a wolf population than if there are no predators in the forest. Of course, this also affects the environment, via more damages on the plants and trees that are eaten by moose.

Equilibrium 3

Here, we consider the maximum equilibrium growth (or “production”, the number of moose per year) of a moose population without any wolf population. This may represent a maximum desired by human moose hunters.

max M Z=0.372M0.178× 10 3 M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeaO qaaKqzGeGaciyBaiaacggacaGG4baaleaajugWaiaad2eaaSqabaqc LbsacaWGAbGaeyypa0JaaGimaiaac6cacaaIZaGaaG4naiaaikdaca WGnbGaeyOeI0IaaGimaiaac6cacaaIXaGaaG4naiaaiIdacqGHxdaT caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacqGHsisljugWaiaaio daaaqcLbsacaWGnbqcfa4aaWbaaSqabeaajugWaiaaikdaaaaaaa@536C@   (27)

First order optimum condition is:

dZ dM =0.37220.178× 10 3 M=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiaadQfaaOqaaKqzGeGaamizaiaad2eaaaGaeyyp a0JaaGimaiaac6cacaaIZaGaaG4naiaaikdacqGHsislcaaIYaGaey yXICTaaGimaiaac6cacaaIXaGaaG4naiaaiIdacqGHxdaTcaaIXaGa aGimaKqbaoaaCaaaleqabaqcLbsacqGHsisljugWaiaaiodaaaqcLb sacaWGnbGaeyypa0JaaGimaaaa@5261@   (28)

There is one and only one optimal solution, namely:

M 3 1045 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiabgIKi7kaaigdacaaI WaGaaGinaiaaiwdaaaa@3EAB@   (29)

The second order maximum condition is satisfied.

d 2 Z d M 2 =20.178× 10 3 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGa amOwaaGcbaqcLbsacaWGKbGaamytaKqbaoaaCaaaleqabaqcLbmaca aIYaaaaaaajugibiabg2da9iabgkHiTiaaikdacqGHflY1caaIWaGa aiOlaiaaigdacaaI3aGaaGioaiabgEna0kaaigdacaaIWaqcfa4aaW baaSqabeaajugibiabgkHiTKqzadGaaG4maaaajugibiabgYda8iaa icdaaaa@544F@   (30)

Hence the unique maximum of the equilibrium number of moose, continuously removed from the forest by hunters, is found in equation (31).

Z * 194.36 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGAb qcfa4aaWbaaSqabeaajugibiaacQcaaaGaeyisISRaaGymaiaaiMda caaI0aGaaiOlaiaaiodacaaI2aaaaa@3F78@   (31)

Qualitative analysis of the system dynamics

A phase plane is a visual display of certain properties of differential equations. In phase plane analysis, we investigate the dynamic properties of the solutions. Figure 1 shows the phase plane of the differential equation system. Along the curved strictly concave line, the moose population is in equilibrium. Along the vertical line, the wolf population is in equilibrium. The red box marks the most interesting Equilibrium 1. The equilibrium moose population and the equilibrium wolf populations are marked with green and blue boxes. The same notation is used in Figures 2–7. The “direction field” is indicated via arrows. The arrows show how the system moves over time. Clearly, the solutions will be spirals. The Figures 2 & 3 will confirm this conclusion.

Figure 1 The phase plane of the system.

Figure 2 The time path of the populations close to the equilibrium, derived via the nonlinear differential equations in the differential equation system. The initial conditions, (M,W)=(1200,25), are marked by a purple ball and the terminal conditions are marked by a yellow ball. The total simulation time represents 200 years. Each year is marked by a small white ball.

Figure 3 The time path of the populations far from the equilibrium, derived via the nonlinear differential equations in the differential equation system. The initial conditions, (M,W)=(1800,25), are marked by a purple ball and the terminal conditions are marked by a yellow ball. The total simulation time represents 200 years. Each year is marked by a small white ball.

Nonlinear simulation of the differential equation system

We may use the differential equation system (17) and simulate it with different initial conditions, to see how it develops. We use very short time intervals and determine the changes of the populations. Figures 2 & 3 show the results of such simulations with different initial conditions. The software used to create these graphs is found in Appendix 2. In the simulations, 20 000 short linear moves of both species are made over time intervals representing 0.01 year. The total time represents 200 years. We note that the solutions are very slowly converging spirals. Hence, the equilibrium seems to be a “sink”. Later, we will confirm this conjecture via a formal investigation of a linearized approximation of the system performed at the equilibrium. 

Linearization of the system close to equilibrium 1

Now, the system will be linearized close to Equilibrium 1. This is done primarily to formally determine if the solution converges, stays at a constant distance from, or diverges from the equilibrium. We will also be able to understand, in general, how the answer to this question depends on the parameters. Our system is found in (32).

{ M = aMb M 2 cW W = gW+hMW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaqcLbsacqGHIaYTaKqbagqaaaaajugibiabg2 da9aGcbaqcLbsacaWGHbGaamytaiabgkHiTiaadkgacaWGnbqcfa4a aWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHsislcaWGJbGaam4vaa Gcbaqcfa4aaCbiaOqaaKqzGeGaam4vaaWcbeqaaKqbaoaaBaaabaqc LbsacqGHIaYTaKqbagqaaaaajugibiabg2da9aGcbaqcLbsacqGHsi slcaWGNbGaam4vaiabgUcaRiaadIgacaWGnbGaam4vaaaaaOGaay5E aaaaaa@5866@   (32)

In equilibrium, we have:

{ M = a M 1 b M 1 2 c W 1 =0 W = g W 1 +h M 1 W 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qzGeGaamyyaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGa eyOeI0IaamOyaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaKqbao aaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0Iaam4yaiaadEfa lmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0JaaGimaaGcba qcfa4aaCbiaOqaaKqzGeGaam4vaaWcbeqaaKqbaoaaBaaabaGaeyOi GClabeaaaaqcLbsacqGH9aqpaOqaaKqzGeGaeyOeI0Iaam4zaiaadE falmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaamiAaiaa d2eajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaam4vaSWaaS baaeaajugWaiaaigdaaSqabaqcLbsacaaMf8UaaGjbVlaaykW7caaM c8Uaeyypa0JaaGimaaaaaOGaay5Eaaaaaa@6FF6@   (33)

Now, we will let u and v represent small deviations from the equilibrium.

M= M 1 +u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb Gaeyypa0JaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGH RaWkcaWG1baaaa@3DBA@   (34)

W= W 1 +v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb Gaeyypa0Jaam4vaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGH RaWkcaWG2baaaa@3DCF@   (35)

The differential equation system may now be rewritten as (36).

{ M = a( M 1 +u )b ( M 1 +u ) 2 c( W 1 +v ) W = g( W 1 +v )+h( M 1 +u )( W 1 +v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qzGeGaamyyaKqbaoaabmaakeaajugibiaad2ealmaaBaaabaqcLbma caaIXaaaleqaaKqzGeGaey4kaSIaamyDaaGccaGLOaGaayzkaaqcLb sacqGHsislcaWGIbqcfa4aaeWaaOqaaKqzGeGaamytaKqbaoaaBaaa leaajugibiaaigdaaSqabaqcLbsacqGHRaWkcaWG1baakiaawIcaca GLPaaajuaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiabgkHiTiaa dogajuaGdaqadaGcbaqcLbsacaWGxbWcdaWgaaqaaKqzadGaaGymaa WcbeaajugibiabgUcaRiaadAhaaOGaayjkaiaawMcaaaqaaKqbaoaa xacakeaajugibiaadEfaaSqabeaajuaGdaWgaaqaaiabgkci3cqaba aaaKqzGeGaeyypa0dakeaajugibiabgkHiTiaadEgajuaGdaqadaGc baqcLbsacaWGxbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgU caRiaadAhaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamiAaKqbaoaa bmaakeaajugibiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGe Gaey4kaSIaamyDaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGa am4vaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGHRaWkcaWG2b aakiaawIcacaGLPaaaaaaacaGL7baaaaa@82C6@   (36)

The system (37) follows:

{ M = a M 1 +aub M 1 2 2b M 1 ub u 2 c W 1 cv W = g W 1 gv+h M 1 W 1 +h M 1 v+h W 1 u+huv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qzGeGaamyyaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGa ey4kaSIaamyyaiaadwhacqGHsislcaWGIbGaamytaKqbaoaaBaaale aajugWaiaaigdaaSqabaqcfa4aaWbaaSqabeaajugWaiaaikdaaaqc LbsacqGHsislcaaIYaGaamOyaiaad2ealmaaBaaabaqcLbmacaaIXa aaleqaaKqzGeGaamyDaiabgkHiTiaadkgacaWG1bWcdaahaaqabeaa jugWaiaaikdaaaqcLbsacqGHsislcaWGJbGaam4vaSWaaSbaaeaaju gWaiaaigdaaSqabaqcLbsacqGHsislcaWGJbGaamODaaGcbaqcfa4a aCbiaOqaaKqzGeGaam4vaaWcbeqaaKqbaoaaBaaabaGaeyOiGClabe aaaaqcLbsacqGH9aqpaOqaaKqzGeGaeyOeI0Iaam4zaiaadEfalmaa BaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0Iaam4zaiaadAhacq GHRaWkcaWGObGaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsa caWGxbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgUcaRiaadI gacaWGnbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaadAhacqGH RaWkcaWGObGaam4vaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsaca WG1bGaey4kaSIaamiAaiaadwhacaWG2baaaaGccaGL7baaaaa@8B8D@   (37)

Thanks to the fact that we have an equilibrium, we get (38). This is further developed into (39) and (40).

( { a M 1 b M 1 2 c W 1 =0 g W 1 +h M 1 W 1 =0 ){ M = au2b M 1 ub u 2 1 cv W = gv+h M 1 v+h W 1 u+huv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaceaakeaajugibuaabeqaceaaaOqaaKqzGeGaamyyaiaa d2ealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0IaamOyai aad2ealmaaBaaabaqcLbmacaaIXaaaleqaamaaCaaabeqaaKqzadGa aGOmaaaajugibiabgkHiTiaadogacaWGxbWcdaWgaaqaaKqzadGaaG ymaaWcbeaajugibiabg2da9iaaicdaaOqaaKqzGeGaeyOeI0Iaam4z aiaadEfajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaey4kaS IaamiAaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaam4v aSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaaMf8UaaGjbVlaayk W7caaMc8Uaeyypa0JaaGimaaaaaOGaay5EaaaacaGLOaGaayzkaaqc LbsacqGHshI3juaGdaGabaGcbaqcLbsafaqabeGacaaakeaajuaGda WfGaGcbaqcLbsacaWGnbaaleqabaqcfa4aaSbaaeaacqGHIaYTaeqa aaaajugibiabg2da9aGcbaqcLbsacaWGHbGaamyDaiabgkHiTiaaik dacaWGIbGaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaWG 1bGaeyOeI0IaamOyaiaadwhajuaGdaahaaWcbeqaaKqzadGaaGOmaa aalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0Iaam4yaiaa dAhaaOqaaKqbaoaaxacakeaajugibiaadEfaaSqabeaajuaGdaWgba qaaiabgkci3cqabaaaaKqzGeGaeyypa0dakeaajugibiabgkHiTiaa dEgacaWG2bGaey4kaSIaamiAaiaad2ealmaaBaaabaqcLbmacaaIXa aaleqaaKqzGeGaamODaiabgUcaRiaadIgacaWGxbWcdaWgaaqaaKqz adGaaGymaaWcbeaajugibiaadwhacqGHRaWkcaWGObGaamyDaiaadA haaaaakiaawUhaaaaa@9F09@   (38)

{ u = M = au2b M 1 ub u 2 1 cv v = W = gv+h M 1 v+h W 1 u+huv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamyDaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpjuaGda WfGaGcbaqcLbsacaWGnbaaleqabaqcfa4aaSbaaeaacqGHIaYTaeqa aaaajugibiabg2da9aGcbaqcLbsacaWGHbGaamyDaiabgkHiTiaaik dacaWGIbGaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaWG 1bGaeyOeI0IaamOyaiaadwhalmaaCaaabeqaaKqzadGaaGOmaaaaju aGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0Iaam4yaiaa dAhaaOqaaKqbaoaaxacakeaajugibiaadAhaaSqabeaajuaGdaWgaa qaaiabgkci3cqabaaaaKqzGeGaeyypa0tcfa4aaCbiaOqaaKqzGeGa am4vaaWcbeqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9a qpaOqaaKqzGeGaeyOeI0Iaam4zaiaadAhacqGHRaWkcaWGObGaamyt aSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaWG2bGaey4kaSIaam iAaiaadEfalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaamyDaiab gUcaRiaadIgacaWG1bGaamODaaaaaOGaay5Eaaaaaa@7932@   (39)

{ u = ( a2b M 1 )u+( c )vb u 2 v = ( h W 1 )u+( g+h M 1 )v+huv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamyDaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qbaoaabmaakeaajugibiaadggacqGHsislcaaIYaGaamOyaiaad2ea lmaaBaaabaqcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsaca WG1bGaey4kaSscfa4aaeWaaOqaaKqzGeGaeyOeI0Iaam4yaaGccaGL OaGaayzkaaqcLbsacaWG2bGaeyOeI0IaamOyaiaadwhalmaaCaaabe qaaKqzadGaaGOmaaaaaOqaaKqbaoaaxacakeaajugibiaadAhaaSqa beaajuaGdaWgaaqaaiabgkci3cqabaaaaKqzGeGaeyypa0dakeaaju aGdaqadaGcbaqcLbsacaWGObGaam4vaSWaaSbaaeaajugWaiaaigda aSqabaaakiaawIcacaGLPaaajugibiaadwhacqGHRaWkjuaGdaqada GcbaqcLbsacqGHsislcaWGNbGaey4kaSIaamiAaiaad2ealmaaBaaa baqcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacaWG2bGaey 4kaSIaamiAaiaadwhacaWG2baaaaGccaGL7baaaaa@731B@   (40)

As we approach an equilibrium, the second order terms go to zero much faster than the first order terms.

( u0v0 )( u 2 u 0 uv u 0 uv v 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyDaiabgkziUkaaicdacqGHNis2caWG2bGaeyOKH4Qa aGimaaGccaGLOaGaayzkaaqcLbsacqGHshI3juaGdaqadaGcbaqcfa 4aaSaaaOqaaKqzGeGaamyDaSWaaWbaaeqabaqcLbmacaaIYaaaaaGc baqcLbsacaWG1baaaiabgkziUkaaicdacqGHNis2juaGdaWcaaGcba qcLbsacaWG1bGaamODaaGcbaqcLbsacaWG1baaaiabgkziUkaaicda cqGHNis2juaGdaWcaaGcbaqcLbsacaWG1bGaamODaaGcbaqcLbsaca WG2baaaiabgkziUkaaicdaaOGaayjkaiaawMcaaaaa@6163@   (41)

Hence, close to the equilibrium, u 2 0uv0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHijYUcaaIWaGa ey4jIKTaamyDaiaadAhacqGHijYUcaaIWaaaaa@432C@ .

{ u = ( a2b M 1 )u+( c )v v = ( h W 1 )u+( g+h M 1 )v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamyDaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qbaoaabmaakeaajugibiaadggacqGHsislcaaIYaGaamOyaiaad2ea lmaaBaaabaqcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsaca WG1bGaey4kaSscfa4aaeWaaOqaaKqzGeGaeyOeI0Iaam4yaaGccaGL OaGaayzkaaqcLbsacaWG2baakeaajuaGdaWfGaGcbaqcLbsacaWG2b aaleqabaqcfa4aaSbaaeaacqGHIaYTaeqaaaaajugibiabg2da9aGc baqcfa4aaeWaaOqaaKqzGeGaamiAaiaadEfajuaGdaWgaaWcbaqcLb macaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacaWG1bGaey4kaSsc fa4aaeWaaOqaaKqzGeGaeyOeI0Iaam4zaiabgUcaRiaadIgacaWGnb WcdaWgaaqaaKqzadGaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGa amODaaaaaOGaay5Eaaaaaa@6B00@   (42)

We may express the linear differential equation system as (43).

[ u v ]=[ ( a2b M 1 ) c h W 1 ( g+h M 1 ) ][ u v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiqaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamyDaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaaakeaajuaGdaWfGaGcba qcLbsacaWG2baaleqabaqcLbsacqGHIaYTaaaaaaGccaGLBbGaayzx aaqcLbsacqGH9aqpjuaGdaWadaGcbaqcLbsafaqabeGacaaakeaaju aGdaqadaGcbaqcLbsacaWGHbGaeyOeI0IaaGOmaiaadkgacaWGnbqc fa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaOGaayjkaiaawMcaaaqaaK qzGeGaeyOeI0Iaam4yaaGcbaqcLbsacaWGObGaam4vaSWaaSbaaeaa jugWaiaaigdaaSqabaaakeaajuaGdaqadaGcbaqcLbsacqGHsislca WGNbGaey4kaSIaamiAaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqa aaGccaGLOaGaayzkaaaaaaGaay5waiaaw2faaKqbaoaadmaakeaaju gibuaabeqaceaaaOqaaKqzGeGaamyDaaGcbaqcLbsacaWG2baaaaGc caGLBbGaayzxaaaaaa@676A@   (43)

We remember that the wolf population is in equilibrium. This gives (44).

( W =0 )( g+h M 1 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacakeaajugibiaadEfaaSqabeaajuaGdaWgaaqaaiab gkci3cqabaaaaKqzGeGaeyypa0JaaGimaaGccaGLOaGaayzkaaqcLb sacqGHshI3juaGdaqadaGcbaqcLbsacqGHsislcaWGNbGaey4kaSIa amiAaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaaGccaGLOaGaay zkaaqcLbsacqGH9aqpcaaIWaaaaa@4D7F@   (44)

Hence, the differential equation system is simplified.

[ u v ]=[ ( a2b M 1 ) c h W 1 0 ][ u v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiqaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamyDaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaaakeaajuaGdaWfGaGcba qcLbsacaWG2baaleqabaqcfa4aaSbaaeaacqGHIaYTaeqaaaaaaaaa kiaawUfacaGLDbaajugibiabg2da9Kqbaoaadmaakeaajugibuaabe qaciaaaOqaaKqbaoaabmaakeaajugibiaadggacqGHsislcaaIYaGa amOyaiaad2ealmaaBaaabaqcLbmacaaIXaaaleqaaaGccaGLOaGaay zkaaaabaqcLbsacqGHsislcaWGJbaakeaajugibiaadIgacaWGxbWc daWgaaqaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaaGimaaaaaOGaay 5waiaaw2faaKqbaoaadmaakeaajugibuaabeqaceaaaOqaaKqzGeGa amyDaaGcbaqcLbsacaWG2baaaaGccaGLBbGaayzxaaaaaa@5EFB@   (45)

The parameter values that we now need are these:

a=0.372,b=0.178× 10 3 ,c=6.593,g=0.244,h=0.230× 10 3 , M 1 1061, W 1 29.47 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb Gaeyypa0JaaGimaiaac6cacaaIZaGaaG4naiaaikdacaGGSaGaaGjb VlaadkgacqGH9aqpcaaIWaGaaiOlaiaaigdacaaI3aGaaGioaiabgE na0kaaigdacaaIWaqcfa4aaWbaaSqabeaajugibiabgkHiTKqzadGa aG4maaaajugibiaacYcacaaMe8Uaam4yaiabg2da9iaaiAdacaGGUa GaaGynaiaaiMdacaaIZaGaaiilaiaaysW7caWGNbGaeyypa0JaaGim aiaac6cacaaIYaGaaGinaiaaisdacaGGSaGaaGjbVlaadIgacqGH9a qpcaaIWaGaaiOlaiaaikdacaaIZaGaaGimaiabgEna0kaaigdacaaI Waqcfa4aaWbaaSqabeaajugibiabgkHiTKqzadGaaG4maaaajugibi aacYcacaaMe8UaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsa cqGHijYUcaaIXaGaaGimaiaaiAdacaaIXaGaaiilaiaaysW7caWGxb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgIKi7kaaikdacaaI 5aGaaiOlaiaaisdacaaI3aaaaa@816B@   (46)

With the parameter values, we get:

[ u v ]=[ 5.716× 10 3 6.593 6.778× 10 3 0 ][ u v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiqaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamyDaaWc beqaaKqzGeGaeyOiGClaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamODaa WcbeqaaKqzGeGaeyOiGClaaaaaaOGaay5waiaaw2faaKqzGeGaeyyp a0tcfa4aamWaaOqaaKqzGeqbaeqabiGaaaGcbaqcLbsacqGHsislca aI1aGaaiOlaiaaiEdacaaIXaGaaGOnaiabgEna0kaaigdacaaIWaqc fa4aaWbaaSqabeaajugibiabgkHiTKqzadGaaG4maaaaaOqaaKqzGe GaeyOeI0IaaGOnaiaac6cacaaI1aGaaGyoaiaaiodaaOqaaKqzGeGa aGOnaiaac6cacaaI3aGaaG4naiaaiIdacqGHxdaTcaaIXaGaaGimaK qbaoaaCaaaleqabaqcLbsacqGHsisljugWaiaaiodaaaaakeaajugi biaaicdaaaaakiaawUfacaGLDbaajuaGdaWadaGcbaqcLbsafaqabe GabaaakeaajugibiaadwhaaOqaaKqzGeGaamODaaaaaOGaay5waiaa w2faaaaa@6CBE@   (47)

We consider exponential functional forms, as in (48).

u(t)= u 0 e λt v(t)= v 0 e λt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b GaaiikaiaadshacaGGPaGaeyypa0JaamyDaKqbaoaaBaaaleaajugi biaaicdaaSqabaqcLbsacaWGLbWcdaahaaqabeaajugWaiabeU7aSj aadshaaaqcLbsacqGHNis2caaMe8UaamODaiaacIcacaWG0bGaaiyk aiabg2da9iaadAhajuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGe GaamyzaSWaaWbaaeqabaqcLbmacqaH7oaBcaWG0baaaaaa@5407@   (48)

Then, the time derivatives can be obtained and included in the equations, as in (49).

[ λu λv ]=[ 5.716× 10 3 6.593 6.778× 10 3 0 ][ u v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacqaH7oaBcaWG1baakeaajugi biabeU7aSjaadAhaaaaakiaawUfacaGLDbaajugibiabg2da9Kqbao aadmaakeaajugibuaabeqaciaaaOqaaKqzGeGaeyOeI0IaaGynaiaa c6cacaaI3aGaaGymaiaaiAdacqGHxdaTcaaIXaGaaGimaKqbaoaaCa aaleqabaqcLbsacqGHsisljugWaiaaiodaaaaakeaajugibiabgkHi TiaaiAdacaGGUaGaaGynaiaaiMdacaaIZaaakeaajugibiaaiAdaca GGUaGaaG4naiaaiEdacaaI4aGaey41aqRaaGymaiaaicdajuaGdaah aaWcbeqaaKqzGeGaeyOeI0scLbmacaaIZaaaaaGcbaqcLbsacaaIWa aaaaGccaGLBbGaayzxaaqcfa4aamWaaOqaaKqzGeqbaeqabiqaaaGc baqcLbsacaWG1baakeaajugibiaadAhaaaaakiaawUfacaGLDbaaaa a@6A3C@   (49)

Clearly, it is necessary that (50) is satisfied.

[ ( 5.716× 10 3 λ ) 6.593 6.778× 10 3 ( 0λ ) ][ u v ]=[ 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaeWaaOqaaKqzGeGaeyOeI0Ia aGynaiaac6cacaaI3aGaaGymaiaaiAdacqGHxdaTcaaIXaGaaGimaK qbaoaaCaaaleqabaqcLbsacqGHsisljugWaiaaiodaaaqcLbsacqGH sislcqaH7oaBaOGaayjkaiaawMcaaaqaaKqzGeGaeyOeI0IaaGOnai aac6cacaaI1aGaaGyoaiaaiodaaOqaaKqzGeGaaGOnaiaac6cacaaI 3aGaaG4naiaaiIdacqGHxdaTcaaIXaGaaGimaKqbaoaaCaaaleqaba qcLbsacqGHsisljugWaiaaiodaaaaakeaajuaGdaqadaGcbaqcLbsa caaIWaGaeyOeI0Iaeq4UdWgakiaawIcacaGLPaaaaaaacaGLBbGaay zxaaqcfa4aamWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1baa keaajugibiaadAhaaaaakiaawUfacaGLDbaajugibiabg2da9Kqbao aadmaakeaajugibuaabeqaceaaaOqaaKqzGeGaaGimaaGcbaqcLbsa caaIWaaaaaGccaGLBbGaayzxaaaaaa@7066@   (50)

We want to be sure that nontrivial solutions can be obtained. This implies the condition found in (51).

( u0v0 )( | D |=| ( 5.716× 10 3 λ ) 6.593 6.778× 10 3 ( 0λ ) |=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyDaiabgcMi5kaaicdacqGHNis2caWG2bGaeyiyIKRa aGimaaGccaGLOaGaayzkaaqcLbsacqGHshI3juaGdaqadaGcbaqcfa 4aaqWaaOqaaKqzGeGaamiraaGccaGLhWUaayjcSdqcLbsacqGH9aqp juaGdaabdaGcbaqcLbsafaqabeGacaaakeaajuaGdaqadaGcbaqcLb sacqGHsislcaaI1aGaaiOlaiaaiEdacaaIXaGaaGOnaiabgEna0kaa igdacaaIWaqcfa4aaWbaaSqabeaajugibiabgkHiTKqzadGaaG4maa aajugibiabgkHiTiabeU7aSbGccaGLOaGaayzkaaaabaqcLbsacqGH sislcaaI2aGaaiOlaiaaiwdacaaI5aGaaG4maaGcbaqcLbsacaaI2a GaaiOlaiaaiEdacaaI3aGaaGioaiabgEna0kaaigdacaaIWaqcfa4a aWbaaSqabeaajugibiabgkHiTKqzadGaaG4maaaaaOqaaKqbaoaabm aakeaajugibiaaicdacqGHsislcqaH7oaBaOGaayjkaiaawMcaaaaa aiaawEa7caGLiWoajugibiabg2da9iaaicdaaOGaayjkaiaawMcaaa aa@7D4A@   (51)

Hence, a quadratic equation has to be solved. This is found in (52).

| D |= λ 2 +5.716× 10 3 λ+44.687× 10 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamiraaGccaGLhWUaayjcSdqcLbsacqGH9aqpcqaH7oaB lmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiwdacaGGUa GaaG4naiaaigdacaaI2aGaey41aqRaaGymaiaaicdajuaGdaahaaWc beqaaKqzGeGaeyOeI0scLbmacaaIZaaaaKqzGeGaeq4UdWMaey4kaS IaaGinaiaaisdacaGGUaGaaGOnaiaaiIdacaaI3aGaey41aqRaaGym aiaaicdajuaGdaahaaWcbeqaaKqzGeGaeyOeI0scLbmacaaIZaaaaK qzGeGaeyypa0JaaGimaaaa@5ED1@   (52)

| D |= λ 2 +pλ+q=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamiraaGccaGLhWUaayjcSdqcLbsacqGH9aqpcqaH7oaB lmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRiaadchacqaH7o aBcqGHRaWkcaWGXbGaeyypa0JaaGimaaaa@4824@   (53)

There are, in general, two solutions.

λ= p 2 + ( p 2 ) 2 q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcqGH9aqpcqGHsisljuaGdaWcaaGcbaqcLbsacaWGWbaakeaajugi biaaikdaaaqcfa4aaSWaaSqaaKqzGeGaey4kaScaleaajugibiabgk HiTaaajuaGdaGcaaGcbaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugi biaadchaaOqaaKqzGeGaaGOmaaaaaOGaayjkaiaawMcaaKqbaoaaCa aaleqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamyCaaWcbeaaaaa@4CC7@   (54)

λ=0.002858 + 0.0446788 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGOmaiaa iIdacaaI1aGaaGioaKqbaoaalmaaleaajugibiabgUcaRaWcbaqcLb sacqGHsislaaqcfa4aaOaaaOqaaKqzGeGaeyOeI0IaaGimaiaac6ca caaIWaGaaGinaiaaisdacaaI2aGaaG4naiaaiIdacaaI4aaaleqaaa aa@4C85@   (55)

Obviously, we have two complex roots. The real part is negative. This means that the solutions will be converging spirals. Since the real part is close to zero, the solution converges very slowly. In fact, it takes approximately 243 years for the spiral to get 50% closer to the equilibrium. This seems reasonable if we compare the spirals in the Figures 2 & 3.

λ=0.002858 + 0.21137i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGOmaiaa iIdacaaI1aGaaGioaKqbaoaalmaaleaajugibiabgUcaRaWcbaqcLb sacqGHsislaaGaaGimaiaac6cacaaIYaGaaGymaiaaigdacaaIZaGa aG4naiaaykW7caWGPbaaaa@4B44@   (56)

ϕ=0.002858,ψ=0.21137 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGOmaiaa iIdacaaI1aGaaGioaiaacYcacaaMe8UaeqiYdKNaeyypa0JaaGimai aac6cacaaIYaGaaGymaiaaigdacaaIZaGaaG4naaaa@4A4C@   (57)

In order to simplify and generalize the notation in the following section, we use equation (58).

λ=ϕ + ψi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcqGH9aqpcqaHvpGzjuaGdaWcdaWcbaqcLbsacqGHRaWkaSqaaKqz GeGaeyOeI0caaiabeI8a5jaaykW7caWGPbaaaa@42F2@   (58)

The equations (59) to (65) show the steps of analysis until we end up with the system solution, found in equation (66).

u= e ϕt ( Acos( ψt )+Bsin( ψt ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b Gaeyypa0JaamyzaSWaaWbaaeqabaqcLbmacqaHvpGzcaWG0baaaKqb aoaabmaakeaajugibiaadgeaciGGJbGaai4BaiaacohajuaGdaqada GcbaqcLbsacqaHipqEcaWG0baakiaawIcacaGLPaaajugibiabgUca RiaadkeaciGGZbGaaiyAaiaac6gajuaGdaqadaGcbaqcLbsacqaHip qEcaWG0baakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@53E6@   (59)

u · =ϕ e ϕt ( Acos( ψt )+Bsin( ψt ) )+ e ϕt ( ψAsin( ψt )+ψBcos( ψt ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiaO qaaKqzGeGaamyDaaWcbeqaaKqbaoaaBaaabaGaeS4JPFgabeaaaaqc LbsacqGH9aqpcqaHvpGzcaWGLbqcfa4aaWbaaSqabeaajugWaiabew 9aMjaadshaaaqcfa4aaeWaaOqaaKqzGeGaamyqaiGacogacaGGVbGa ai4CaKqbaoaabmaakeaajugibiabeI8a5jaadshaaOGaayjkaiaawM caaKqzGeGaey4kaSIaamOqaiGacohacaGGPbGaaiOBaKqbaoaabmaa keaajugibiabeI8a5jaadshaaOGaayjkaiaawMcaaaGaayjkaiaawM caaKqzGeGaey4kaSIaamyzaSWaaWbaaeqabaqcLbmacqaHvpGzcaWG 0baaaKqbaoaabmaakeaajugibiabgkHiTiabeI8a5jaadgeaciGGZb GaaiyAaiaac6gajuaGdaqadaGcbaqcLbsacqaHipqEcaWG0baakiaa wIcacaGLPaaajugibiabgUcaRiabeI8a5jaadkeaciGGJbGaai4Bai aacohajuaGdaqadaGcbaqcLbsacqaHipqEcaWG0baakiaawIcacaGL PaaaaiaawIcacaGLPaaaaaa@7C26@   (60)

u · = e ϕt ( ( ϕA+ψB )cos( ψt )+( ϕBψA )sin( ψt ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiaO qaaKqzGeGaamyDaaWcbeqaaKqbaoaaBaaabaGaeS4JPFgabeaaaaqc LbsacqGH9aqpcaWGLbWcdaahaaqabeaajugWaiabew9aMjaadshaaa qcfa4aaeWaaOqaaKqbaoaabmaakeaajugibiabew9aMjaadgeacqGH RaWkcqaHipqEcaWGcbaakiaawIcacaGLPaaajugibiGacogacaGGVb Gaai4CaKqbaoaabmaakeaajugibiabeI8a5jaadshaaOGaayjkaiaa wMcaaKqzGeGaey4kaSscfa4aaeWaaOqaaKqzGeGaeqy1dyMaamOqai abgkHiTiabeI8a5jaadgeaaOGaayjkaiaawMcaaKqzGeGaci4Caiaa cMgacaGGUbqcfa4aaeWaaOqaaKqzGeGaeqiYdKNaamiDaaGccaGLOa GaayzkaaaacaGLOaGaayzkaaaaaa@6900@   (61)

γ=0.005716,Ω=6.593 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzcqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGynaiaa iEdacaaIXaGaaGOnaiaacYcacaaMe8UaeyyQdCLaeyypa0JaeyOeI0 IaaGOnaiaac6cacaaI1aGaaGyoaiaaiodaaaa@496A@   (62)

u · =γu+Ωv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiaO qaaKqzGeGaamyDaaWcbeqaaKqbaoaaBaaabaGaeS4JPFgabeaaaaqc LbsacqGH9aqpcqaHZoWzcaWG1bGaey4kaSIaeyyQdCLaamODaaaa@4321@   (63)

v= u · γu Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b Gaeyypa0tcfa4aaSaaaOqaaKqbaoaaxacakeaajugibiaadwhaaSqa beaajuaGdaWgaaqaaiabl+y6NbqabaaaaKqzGeGaeyOeI0Iaeq4SdC MaamyDaaGcbaqcLbsacqGHPoWvaaaaaa@44FC@   (64)

v= 1 Ω e ϕt ( ( ϕA+ψBγA )cos( ψt )+( ϕBψAγB )sin( ψt ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacqGHPoWv aaGaamyzaSWaaWbaaeqabaqcLbmacqaHvpGzcaWG0baaaKqbaoaabm aakeaajuaGdaqadaGcbaqcLbsacqaHvpGzcaWGbbGaey4kaSIaeqiY dKNaamOqaiabgkHiTiabeo7aNjaadgeaaOGaayjkaiaawMcaaKqzGe Gaci4yaiaac+gacaGGZbqcfa4aaeWaaOqaaKqzGeGaeqiYdKNaamiD aaGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaGdaqadaGcbaqcLbsacq aHvpGzcaWGcbGaeyOeI0IaeqiYdKNaamyqaiabgkHiTiabeo7aNjaa dkeaaOGaayjkaiaawMcaaKqzGeGaci4CaiaacMgacaGGUbqcfa4aae WaaOqaaKqzGeGaeqiYdKNaamiDaaGccaGLOaGaayzkaaaacaGLOaGa ayzkaaaaaa@6F41@   (65)

{ u(t)= e ϕt ( Acos( ψt )+Bsin( ψt ) ) v(t)= 1 Ω e ϕt ( ( ( ϕγ )A+ψB )cos( ψt )+( ( ϕγ )BψA )sin( ψt ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaaqabiGaaaGcbaqcLbsacaWG1bGaaiikaiaadshacaGG PaGaeyypa0dakeaajugibiaadwgajuaGdaahaaWcbeqaaKqzadGaeq y1dyMaamiDaaaajuaGdaqadaGcbaqcLbsacaWGbbGaci4yaiaac+ga caGGZbqcfa4aaeWaaOqaaKqzGeGaeqiYdKNaamiDaaGccaGLOaGaay zkaaqcLbsacqGHRaWkcaWGcbGaci4CaiaacMgacaGGUbqcfa4aaeWa aOqaaKqzGeGaeqiYdKNaamiDaaGccaGLOaGaayzkaaaacaGLOaGaay zkaaaabaqcLbsacaWG2bGaaiikaiaadshacaGGPaGaeyypa0dakeaa juaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiabgM6axbaacaWGLb qcfa4aaWbaaSqabeaajugWaiabew9aMjaadshaaaqcfa4aaeWaaOqa aKqbaoaabmaakeaajuaGdaqadaGcbaqcLbsacqaHvpGzcqGHsislcq aHZoWzaOGaayjkaiaawMcaaKqzGeGaamyqaiabgUcaRiabeI8a5jaa dkeaaOGaayjkaiaawMcaaKqzGeGaci4yaiaac+gacaGGZbqcfa4aae WaaOqaaKqzGeGaeqiYdKNaamiDaaGccaGLOaGaayzkaaqcLbsacqGH RaWkjuaGdaqadaGcbaqcfa4aaeWaaOqaaKqzGeGaeqy1dyMaeyOeI0 Iaeq4SdCgakiaawIcacaGLPaaajugibiaadkeacqGHsislcqaHipqE caWGbbaakiaawIcacaGLPaaajugibiGacohacaGGPbGaaiOBaKqbao aabmaakeaajugibiabeI8a5jaadshaaOGaayjkaiaawMcaaaGaayjk aiaawMcaaaaaaiaawUhaaaaa@99D5@   (66)

Parameter determination

Now, via equation (66), the parameters of the linear approximation can be determined.

At time zero, we have:

{ u(0)=A v(0)= 1 Ω ( ( ϕγ )A+ψB ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1bGaaiikaiaaicdacaGG PaGaeyypa0JaamyqaaGcbaqcLbsacaWG2bGaaiikaiaaicdacaGGPa Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacqGHPoWv aaqcfa4aaeWaaOqaaKqbaoaabmaakeaajugibiabew9aMjabgkHiTi abeo7aNbGccaGLOaGaayzkaaqcLbsacaWGbbGaey4kaSIaeqiYdKNa amOqaaGccaGLOaGaayzkaaaaaaGaay5Eaaaaaa@548A@   (67)

A=u(0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb Gaeyypa0JaamyDaiaacIcacaaIWaGaaiykaaaa@3B5E@   (68)

B= Ωv(0)+( γϕ )A ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaeyyQdCLaamODaiaacIcacaaI WaGaaiykaiabgUcaRKqbaoaabmaakeaajugibiabeo7aNjabgkHiTi abew9aMbGccaGLOaGaayzkaaqcLbsacaWGbbaakeaajugibiabeI8a 5baaaaa@49DA@   (69)

The initial conditions that were also used in the simulation close to the equilibrium, illustrated in Figure 2, are applied:

( M 0 , W 0 )=( 1200,25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsa caGGSaGaam4vaKqbaoaaBaaaleaajugWaiaaicdaaSqabaaakiaawI cacaGLPaaajugibiabg2da9KqbaoaabmaakeaajugibiaaigdacaaI YaGaaGimaiaaicdacaGGSaGaaGjbVlaaikdacaaI1aaakiaawIcaca GLPaaaaaa@4BE9@   (70)

After the derivations shown via equations (71) to (75), all parameters of the linear approximation of the system path will be known.

{ u(0)= M 0 M 1 v(0)= W 0 W 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1bGaaiikaiaaicdacaGG PaGaeyypa0JaamytaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLb sacqGHsislcaWGnbWcdaWgaaqaaKqzadGaaGymaaWcbeaaaOqaaKqz GeGaamODaiaacIcacaaIWaGaaiykaiabg2da9iaadEfalmaaBaaaba qcLbmacaaIWaaaleqaaKqzGeGaeyOeI0Iaam4vaSWaaSbaaeaajugW aiaaigdaaSqabaaaaaGccaGL7baaaaa@5107@   (71)

{ u(0)=12001061 v(0)=2529.47 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1bGaaiikaiaaicdacaGG PaGaeyypa0JaaGymaiaaikdacaaIWaGaaGimaiabgkHiTiaaigdaca aIWaGaaGOnaiaaigdaaOqaaKqzGeGaamODaiaacIcacaaIWaGaaiyk aiabg2da9iaaikdacaaI1aGaeyOeI0IaaGOmaiaaiMdacaGGUaGaaG inaiaaiEdaaaaakiaawUhaaaaa@4E87@   (72)

{ u(0)=139 v(0)=4.47 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1bGaaiikaiaaicdacaGG PaGaeyypa0JaaGymaiaaiodacaaI5aaakeaajugibiaadAhacaGGOa GaaGimaiaacMcacqGH9aqpcqGHsislcaaI0aGaaiOlaiaaisdacaaI 3aaaaaGccaGL7baaaaa@47BE@   (73)

A=u(0)=139 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb Gaeyypa0JaamyDaiaacIcacaaIWaGaaiykaiabg2da9iaaigdacaaI ZaGaaGyoaaaa@3E9F@   (74)

B=31.192v(0)0.013521A=137.55 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb Gaeyypa0JaeyOeI0IaaG4maiaaigdacaGGUaGaaGymaiaaiMdacaaI YaGaaGjbVlaadAhacaGGOaGaaGimaiaacMcacqGHsislcaaIWaGaai OlaiaaicdacaaIXaGaaG4maiaaiwdacaaIYaGaaGymaiaaysW7caWG bbGaeyypa0JaaGymaiaaiodacaaI3aGaaiOlaiaaiwdacaaI1aaaaa@50C1@   (75)

Now, the linear approximation of the system can be studied. The numerical derivations are found in the software included in Appendix 2. In Figure 4, we see how the linear approximation of the differential equation system works close to the equilibrium. In Figure 5, the time path of the linear approximation is compared to the time path of the original nonlinear differential equation system solution. We note that the linear approximation works very well close to the equilibrium. As the distance to the equilibrium increases, the reliability of the linear approximation is reduced.

Figure 4 The time path of the populations close to the equilibrium, derived via the time path of the linear approximation of the differential equation system. The initial conditions, (M,W)=(1200,25), are marked by a purple ball and the terminal conditions are marked by a yellow ball. The total simulation time represents 200 years. Each year is marked by a small orange ball.

Figure 5 Comparison of the time paths close to the equilibrium, via the nonlinear simulation (white path) and the solution to the linear approximation (orange path). The initial conditions, (M,W)=(1200,25), are marked by a purple ball and the terminal conditions are marked by yellow balls. The total simulation time represents 200 years. Each year is marked by small white and orange balls. Both time paths start in the same point and end in almost the same point, 200 years later. The two solutions stay close all the time. The linear approximation is reliable close to the equilibrium.

Figure 6 The time path of the populations far from the equilibrium, derived via the time path of the linear approximation of the differential equation system. The initial conditions, (M,W)=(1800,25), are marked by a purple ball and the terminal conditions are marked by a yellow ball. The total simulation time represents 200 years. Each year is marked by a small orange ball.

Figure 7 Comparison of the time paths far from the equilibrium, via the nonlinear simulation (white path) and the solution to the linear approximation (orange path). The initial conditions, (M,W)=(1800,25), are marked by a purple ball and the terminal conditions are marked by yellow balls. The total simulation time represents 200 years. Each year is marked by small white and orange balls. The terminal conditions (the yellow balls) are rather close. However, the time paths are located far from each other during long time intervals. The number of orbits around the equilibrium during the 200 years is not the same for the two paths. The linear approximation is not very reliable far from the equilibrium.

General observations concerning equilibrium 1

Since the particular empirical observations investigated in the earlier part of this paper are not always relevant to the problem at hand, it is important to investigate if it is possible to derive some general results. Equations (76) to (80) show how the general solution to the multi species equilibrium (Equilibrium 1) can be determined. Hence, as we see in equation (81), the equilibrium solution is an explicit function of the parameters of the equation system (76).

{ M = aMb M 2 cW W = gW+hMW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qzGeGaamyyaiaad2eacqGHsislcaWGIbGaamytaKqbaoaaCaaaleqa baqcLbmacaaIYaaaaKqzGeGaeyOeI0Iaam4yaiaadEfaaOqaaKqbao aaxacakeaajugibiaadEfaaSqabeaajugibiabgkci3caacqGH9aqp aOqaaKqzGeGaeyOeI0Iaam4zaiaadEfacqGHRaWkcaWGObGaamytai aadEfaaaaakiaawUhaaaaa@557D@   (76)

( W =0W>0 )( g+hM=0 )( M= g h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacakeaajugibiaadEfaaSqabeaajuaGdaWgaaqaaiab gkci3cqabaaaaKqzGeGaeyypa0JaaGimaiabgEIizlaadEfacqGH+a GpcaaIWaaakiaawIcacaGLPaaajugibiabgkDiENqbaoaabmaakeaa jugibiabgkHiTiaadEgacqGHRaWkcaWGObGaamytaiabg2da9iaaic daaOGaayjkaiaawMcaaKqzGeGaeyO0H4Dcfa4aaeWaaOqaaKqzGeGa amytaiabg2da9KqbaoaalaaakeaajugibiaadEgaaOqaaKqzGeGaam iAaaaaaOGaayjkaiaawMcaaaaa@5A43@   (77)

( M =0M= g h )( a g h b g 2 h 2 =cW ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacakeaajugibiaad2eaaSqabeaajuaGdaWgaaqaaiab gkci3cqabaaaaKqzGeGaeyypa0JaaGimaiabgEIizlaad2eacqGH9a qpjuaGdaWcaaGcbaqcLbsacaWGNbaakeaajugibiaadIgaaaaakiaa wIcacaGLPaaajugibiabgkDiENqbaoaabmaakeaajugibiaadggaju aGdaWcaaGcbaqcLbsacaWGNbaakeaajugibiaadIgaaaGaeyOeI0Ia amOyaKqbaoaalaaakeaajugibiaadEgalmaaCaaabeqaaKqzadGaaG OmaaaaaOqaaKqzGeGaamiAaKqbaoaaCaaaleqabaqcLbmacaaIYaaa aaaajugibiabg2da9iaadogacaWGxbaakiaawIcacaGLPaaaaaa@5DDC@   (78)

W= ( aMb M 2 ) c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadggacaWG nbGaeyOeI0IaamOyaiaad2eajuaGdaahaaWcbeqaaKqzadGaaGOmaa aaaOGaayjkaiaawMcaaaqaaKqzGeGaam4yaaaaaaa@4443@   (79)

Equilibrium 1 is:

( M 1 , W 1 )=( ( g h ), ( a M 1 b M 1 2 ) c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGG SaGaam4vaSWaaSbaaeaajugWaiaaigdaaSqabaaakiaawIcacaGLPa aajugibiabg2da9KqbaoaabmaakeaajuaGdaqadaGcbaqcfa4aaSaa aOqaaKqzGeGaam4zaaGcbaqcLbsacaWGObaaaaGccaGLOaGaayzkaa qcLbsacaGGSaqcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadgga caWGnbqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgkHiTi aadkgacaWGnbWcdaWgaaqaaKqzadGaaGymaaWcbeaajuaGdaahaaWc beqaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaaqaaKqzGeGaam4yaa aaaOGaayjkaiaawMcaaaaa@5B4A@   (80)

This can also be stated as:

( M 1 , W 1 )=( ( g h ), ( a( g h )b ( g h ) 2 ) c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGG SaGaam4vaSWaaSbaaeaajugWaiaaigdaaSqabaaakiaawIcacaGLPa aajugibiabg2da9KqbaoaabmaakeaajuaGdaqadaGcbaqcfa4aaSaa aOqaaKqzGeGaam4zaaGcbaqcLbsacaWGObaaaaGccaGLOaGaayzkaa qcLbsacaGGSaqcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadgga juaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaam4zaaGcbaqcLbsaca WGObaaaaGccaGLOaGaayzkaaqcLbsacqGHsislcaWGIbqcfa4aaeWa aOqaaKqbaoaalaaakeaajugibiaadEgaaOqaaKqzGeGaamiAaaaaaO GaayjkaiaawMcaaSWaaWbaaeqabaqcLbmacaaIYaaaaaGccaGLOaGa ayzkaaaabaqcLbsacaWGJbaaaaGccaGLOaGaayzkaaaaaa@6091@   (81)

The general dynamic properties of equilibrium 1

In this section, we will investigate the stability properties of the solution as a function of the parameters in the differential equation system. The linear approximation of the system, close to Equilibrium 1, is equation (82). In (83) and (84), we have the system matrix and the determinant of relevance to the stability determination. Compare the more specific version of the problem analyzed in equations (48) to (58).

[ u v ]=[ ( a2b M 1 ) c h W 1 0 ][ u v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiqaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamyDaaWc beqaaKqzGeGaeyOiGClaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamODaa WcbeqaaKqzGeGaeyOiGClaaaaaaOGaay5waiaaw2faaKqzGeGaeyyp a0tcfa4aamWaaOqaaKqzGeqbaeqabiGaaaGcbaqcfa4aaeWaaOqaaK qzGeGaamyyaiabgkHiTiaaikdacaWGIbGaamytaSWaaSbaaeaajugW aiaaigdaaSqabaaakiaawIcacaGLPaaaaeaajugibiabgkHiTiaado gaaOqaaKqzGeGaamiAaiaadEfajuaGdaWgaaWcbaqcLbmacaaIXaaa leqaaaGcbaqcLbsacaaIWaaaaaGccaGLBbGaayzxaaqcfa4aamWaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1baakeaajugibiaadAha aaaakiaawUfacaGLDbaaaaa@5F49@   (82)

[ ( a2b M 1 ) c h W 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaeWaaOqaaKqzGeGaamyyaiab gkHiTiaaikdacaWGIbGaamytaSWaaSbaaeaajugWaiaaigdaaSqaba aakiaawIcacaGLPaaaaeaajugibiabgkHiTiaadogaaOqaaKqzGeGa amiAaiaadEfalmaaBaaabaqcLbmacaaIXaaaleqaaaGcbaqcLbsaca aIWaaaaaGccaGLBbGaayzxaaaaaa@4A8E@   (83)

| D |=| ( a2b M 1 )λ c h W 1 0λ | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamiraaGccaGLhWUaayjcSdqcLbsacqGH9aqpjuaGdaab daGcbaqcLbsafaqabeGacaaakeaajuaGdaqadaGcbaqcLbsacaWGHb GaeyOeI0IaaGOmaiaadkgacaWGnbWcdaWgaaqaaKqzadGaaGymaaWc beaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaeq4UdWgakeaajugibi abgkHiTiaadogaaOqaaKqzGeGaamiAaiaadEfalmaaBaaabaqcLbma caaIXaaaleqaaaGcbaqcLbsacaaIWaGaeyOeI0Iaeq4UdWgaaaGcca GLhWUaayjcSdaaaa@584A@   (84)

In order to determine if the system is stable or unstable, it turns out that it is necessary to investigate the sign of the first part of the element in the first row and first column of the determinant (84). In order to do this, we first investigate the solution to an alternative problem, found in equation (85).

max M ( aMb M 2 )= M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeaO qaaKqzGeGaciyBaiaacggacaGG4baaleaajugWaiaad2eaaSqabaqc fa4aaeWaaOqaaKqzGeGaamyyaiaad2eacqGHsislcaWGIbGaamytaS WaaWbaaeqabaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpcaWGnbqcfa4aaWbaaSqabeaajuaGdaWgaaqaaiabgEHiQaqaba aaaaaa@4A24@   (85)

d( aMb M 2 ) dM =a2bM=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaabmaakeaajugibiaadggacaWGnbGaeyOe I0IaamOyaiaad2eajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaOGaay jkaiaawMcaaaqaaKqzGeGaamizaiaad2eaaaGaeyypa0Jaamyyaiab gkHiTiaaikdacaWGIbGaamytaiabg2da9iaaicdaaaa@4B2B@   (86)

d 2 ( aMb M 2 ) d M 2 =2b<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqbaoaa bmaakeaajugibiaadggacaWGnbGaeyOeI0IaamOyaiaad2ealmaaCa aabeqaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaaqaaKqzGeGaamiz aiaad2ealmaaCaaabeqaaKqzadGaaGOmaaaaaaqcLbsacqGH9aqpcq GHsislcaaIYaGaamOyaiabgYda8iaaicdaaaa@4E2E@   (87)

Via equations (88) and (89), we find a way to modify the notation in the determinant (84). This modification makes it possible to understand some fundamental principles that will soon be shown.

n=a2b M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb Gaeyypa0JaamyyaiabgkHiTiaaikdacaWGIbGaamytaSWaaSbaaeaa jugWaiaaigdaaSqabaaaaa@3EE6@   (88)

| D |=| nλ c h W 1 λ | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamiraaGccaGLhWUaayjcSdqcLbsacqGH9aqpjuaGdaab daGcbaqcLbsafaqabeGacaaakeaajugibiaad6gacqGHsislcqaH7o aBaOqaaKqzGeGaeyOeI0Iaam4yaaGcbaqcLbsacaWGObGaam4vaSWa aSbaaeaajugWaiaaigdaaSqabaaakeaajugibiabgkHiTiabeU7aSb aaaOGaay5bSlaawIa7aaaa@4F61@   (89)

Now, as we see in equations (90) to (92), the real part of the roots to the quadratic equation (91) has the same sign as we find in equation (88).

| D |=( nλ )( λ )+ch W 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamiraaGccaGLhWUaayjcSdqcLbsacqGH9aqpjuaGdaqa daGcbaqcLbsacaWGUbGaeyOeI0Iaeq4UdWgakiaawIcacaGLPaaaju aGdaqadaGcbaqcLbsacqGHsislcqaH7oaBaOGaayjkaiaawMcaaKqz GeGaey4kaSIaam4yaiaadIgacaWGxbWcdaWgaaqaaKqzadGaaGymaa Wcbeaajugibiabg2da9iaaicdaaaa@50E1@   (90)

λ 2 nλ+ch W 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBlmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgkHiTiaad6gacqaH 7oaBcqGHRaWkcaWGJbGaamiAaiaadEfajuaGdaWgaaWcbaqcLbmaca aIXaaaleqaaKqzGeGaeyypa0JaaGimaaaa@4703@   (91)

λ= n 2 + n 2 4 ch W 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGUbaakeaajugibiaaikda aaqcfa4aaSWaaSqaaKqzGeGaey4kaScaleaajugibiabgkHiTaaaju aGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaamOBaKqbaoaaCaaaleqa baqcLbmacaaIYaaaaaGcbaqcLbsacaaI0aaaaiabgkHiTiaadogaca WGObGaam4vaSWaaSbaaeaajugWaiaaigdaaSqabaaabeaaaaa@4CEE@   (92)

We know that equation (88) is a strictly decreasing function of the moose population, as we see in equation (87), and exactly zero at the moose population level that maximizes the population growth. Hence, the real part of the root of the quadratic equation (92) is strictly positive (zero) (strictly negative) if the equilibrium moose population is lower than (the same as) (higher than) the growth maximizing moose population. Related observations concerning stability criteria have been reported for other species by Fryxell et al.7 

We make one more general observation. In cases of interest and relevance:

K= n 2 4 ch W 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOBaKqbaoaaCaaaleqabaqc LbmacaaIYaaaaaGcbaqcLbsacaaI0aaaaiabgkHiTiaadogacaWGOb Gaam4vaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGH8aap caaIWaaaaa@471A@   (93)

Hence,

λ= n 2 + ( K )i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGUbaakeaajugibiaaikda aaqcfa4aaSWaaSqaaKqzGeGaey4kaScaleaajugibiabgkHiTaaaju aGdaqadaGcbaqcfa4aaOaaaOqaaKqzGeGaeyOeI0Iaam4saaWcbeaa aOGaayjkaiaawMcaaKqzGeGaamyAaaaa@4709@   (94)

Since the two roots in (92) are complex, we know that the solutions are spirals. This is also consistent with the general qualitative analysis connected to Figure 1.

General results concerning the nature of Equilibrium 1:

( M 1 < M )( n>0 )Equilibrium:Unstabledivergingspiral. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsa cqGH8aapcaWGnbqcfa4aaWbaaSqabeaajuaGdaWgaaqaaiabgEHiQa qabaaaaaGccaGLOaGaayzkaaqcLbsacqGHshI3juaGdaqadaGcbaqc LbsacaWGUbGaeyOpa4JaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsh I3caWGfbGaamyCaiaadwhacaWGPbGaamiBaiaadMgacaWGIbGaamOC aiaadMgacaWG1bGaamyBaiaacQdacaWGvbGaamOBaiaadohacaWG0b GaamyyaiaadkgacaWGSbGaamyzaiaaysW7caWGKbGaamyAaiaadAha caWGLbGaamOCaiaadEgacaWGPbGaamOBaiaadEgacaaMe8Uaam4Cai aadchacaWGPbGaamOCaiaadggacaWGSbGaaiOlaaaa@6FDA@   (95)

( M 1 = M )( n=0 )Equilibrium:Center. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGH 9aqpcaWGnbqcfa4aaWbaaSqabeaajuaGdaWgaaqaaiabgEHiQaqaba aaaaGccaGLOaGaayzkaaqcLbsacqGHshI3juaGdaqadaGcbaqcLbsa caWGUbGaeyypa0JaaGimaaGccaGLOaGaayzkaaqcLbsacqGHshI3ca WGfbGaamyCaiaadwhacaWGPbGaamiBaiaadMgacaWGIbGaamOCaiaa dMgacaWG1bGaamyBaiaacQdacaWGdbGaamyzaiaad6gacaWG0bGaam yzaiaadkhacaGGUaaaaa@5CD5@   (96)

( M 1 > M )( n<0 )Equilibrium:Stableconvergingspiral. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGH +aGpcaWGnbqcfa4aaWbaaSqabeaajuaGdaWgaaqaaiabgEHiQaqaba aaaaGccaGLOaGaayzkaaqcLbsacqGHshI3juaGdaqadaGcbaqcLbsa caWGUbGaeyipaWJaaGimaaGccaGLOaGaayzkaaqcLbsacqGHshI3ca WGfbGaamyCaiaadwhacaWGPbGaamiBaiaadMgacaWGIbGaamOCaiaa dMgacaWG1bGaamyBaiaacQdacaWGtbGaamiDaiaadggacaWGIbGaam iBaiaadwgacaaMe8Uaam4yaiaad+gacaWGUbGaamODaiaadwgacaWG YbGaam4zaiaadMgacaWGUbGaam4zaiaaysW7caWGZbGaamiCaiaadM gacaWGYbGaamyyaiaadYgacaGGUaaaaa@6EF6@   (97)

Sustainable optimal system control

It may be rational to replace the uncontrolled development of the two species system described in the earlier part of this paper by a controlled system. Here, we assume that population level adjustments can be made rapidly and that transition periods are short. We study the optimal steady state, not the initial transition. More detailed studies of optimal transitions can sometimes be made via dynamic programming and optimal control in continuous time. We introduce R and S as control variables. R is the moose harvest level and S is the share of the wolf population that is removed from the forest. We are interested in optimal, sustainable and constant control levels. The controlled system is found in equation (98) and in (99) we find the equilibrium conditions.

{ M = aMb M 2 cWR W = gW+hMWSW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqbaoaaBaaabaGaeyOiGClabeaaaaqcLbsacqGH9aqpaOqaaK qzGeGaamyyaiaad2eacqGHsislcaWGIbGaamytaSWaaWbaaeqabaqc LbmacaaIYaaaaKqzGeGaeyOeI0Iaam4yaiaadEfacqGHsislcaWGsb aakeaajuaGdaWfGaGcbaqcLbsacaWGxbaaleqabaqcLbsacqGHIaYT aaGaeyypa0dakeaajugibiabgkHiTiaadEgacaWGxbGaey4kaSIaam iAaiaad2eacaWGxbGaeyOeI0Iaam4uaiaadEfaaaaakiaawUhaaaaa @5954@   (98)

{ M = aMb M 2 cWR=0 W = gW+hMWSW=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabiGaaaGcbaqcfa4aaCbiaOqaaKqzGeGaamytaaWc beqaaKqzGeGaeyOiGClaaiabg2da9aGcbaqcLbsacaWGHbGaamytai abgkHiTiaadkgacaWGnbqcfa4aaWbaaSqabeaajugWaiaaikdaaaqc LbsacqGHsislcaWGJbGaam4vaiabgkHiTiaadkfacqGH9aqpcaaIWa aakeaajuaGdaWfGaGcbaqcLbsacaWGxbaaleqabaqcLbsacqGHIaYT aaGaeyypa0dakeaajugibiabgkHiTiaadEgacaWGxbGaey4kaSIaam iAaiaad2eacaWGxbGaeyOeI0Iaam4uaiaadEfacqGH9aqpcaaIWaaa aaGccaGL7baaaaa@5CB3@   (99)

In order to optimize the system, it is necessary to introduce the objective function. In equation (100), this function is defined. The economic values of one harvested moose is P R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqaaKqzadGaamOuaaWcbeaaaaa@3996@ . The economic value of one removed wolf is P R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqaaKqzadGaamOuaaWcbeaaaaa@3996@ . We assume a strictly positive valuation of the wolf population. We assume that the value of this population is proportional to a logarithmic function of the population size. This is a strictly concave function. This means that the marginal value of a wolf is very high if the population is small. The marginal value of a wolf is a strictly decreasing function of the size of the wolf population. The level of this wolf population valuation function is easily adjusted via the parameter P W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaSqaaKqzadGaam4vaaWcbeaaaaa@3A29@ .

π= P R R+ P S SW+ P W LN(W) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHap aCcqGH9aqpcaWGqbWcdaWgaaqaaKqzadGaamOuaaWcbeaajugibiaa dkfacqGHRaWkcaWGqbqcfa4aaSbaaSqaaKqzadGaam4uaaWcbeaaju gibiaadofacaWGxbGaey4kaSIaamiuaKqbaoaaBaaaleaajugWaiaa dEfaaSqabaqcLbsacaWGmbGaamOtaiaacIcacaWGxbGaaiykaaaa@4D72@   (100)

In system equilibrium, the moose harvest is an explicit function of the population levels, as we see in (101).

( M =0 )( R=aMb M 2 cW ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacakeaajugibiaad2eaaSqabeaajuaGdaWgaaqaaiab gkci3cqabaaaaKqzGeGaeyypa0JaaGimaaGccaGLOaGaayzkaaqcLb sacqGHshI3juaGdaqadaGcbaqcLbsacaWGsbGaeyypa0Jaamyyaiaa d2eacqGHsislcaWGIbGaamytaKqbaoaaCaaaleqabaqcLbmacaaIYa aaaKqzGeGaeyOeI0Iaam4yaiaadEfaaOGaayjkaiaawMcaaaaa@50AC@   (101)

Furthermore, in equilibrium, the wolf population adjustment level is a linear function of the moose population.

( W =0W0 )( S=g+hM ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacakeaajugibiaadEfaaSqabeaajuaGdaWgaaqaaiab gkci3cqabaaaaKqzGeGaeyypa0JaaGimaiabgEIizlaadEfacqGHGj sUcaaIWaaakiaawIcacaGLPaaajugibiabgkDiENqbaoaabmaakeaa jugibiaadofacqGH9aqpcqGHsislcaWGNbGaey4kaSIaamiAaiaad2 eaaOGaayjkaiaawMcaaaaa@4FF9@   (102)

This way, we get the objective function (103), as an explicit function of the population levels.

π= P R ( aMb M 2 cW )+ P S ( g+hM )W+ P W LN(W) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHap aCcqGH9aqpcaWGqbWcdaWgaaqaaKqzadGaamOuaaWcbeaajuaGdaqa daGcbaqcLbsacaWGHbGaamytaiabgkHiTiaadkgacaWGnbqcfa4aaW baaSqabOqaaKqzadGaaGOmaaaajugibiabgkHiTiaadogacaWGxbaa kiaawIcacaGLPaaajugibiabgUcaRiaadcfajuaGdaWgaaWcbaqcLb macaWGtbaaleqaaKqbaoaabmaakeaajugibiabgkHiTiaadEgacqGH RaWkcaWGObGaamytaaGccaGLOaGaayzkaaqcLbsacaWGxbGaey4kaS IaamiuaKqbaoaaBaaaleaajugWaiaadEfaaSqabaqcLbsacaWGmbGa amOtaiaacIcacaWGxbGaaiykaaaa@5FFE@   (103)

Now, we can maximize the objective function with the population levels as the only decision variables. Since the initial two constraints, represented by the differential equations, have already been taken care of, we have a maximization problem without constraints.

max M,W π= P R ( aMb M 2 cW )+ P S ( g+hM )W+ P W LN(W) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeaO qaaKqzGeGaciyBaiaacggacaGG4baaleaajugWaiaad2eacaGGSaGa am4vaaWcbeaajugibiabec8aWjabg2da9iaadcfalmaaBaaabaqcLb macaWGsbaaleqaaKqbaoaabmaakeaajugibiaadggacaWGnbGaeyOe I0IaamOyaiaad2ealmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgk HiTiaadogacaWGxbaakiaawIcacaGLPaaajugibiabgUcaRiaadcfa juaGdaWgaaWcbaqcLbmacaWGtbaaleqaaKqbaoaabmaakeaajugibi abgkHiTiaadEgacqGHRaWkcaWGObGaamytaaGccaGLOaGaayzkaaqc LbsacaWGxbGaey4kaSIaamiuaKqbaoaaBaaaleaajugWaiaadEfaaS qabaqcLbsacaWGmbGaamOtaiaacIcacaWGxbGaaiykaaaa@6731@   (104)

The first order optimum conditions are:

dπ dM = P R ( a2bM )+ P S hW=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiabec8aWbGcbaqcLbsacaWGKbGaamytaaaacqGH 9aqpcaWGqbqcfa4aaSbaaOqaaKqzadGaamOuaaWcbeaajuaGdaqada GcbaqcLbsacaWGHbGaeyOeI0IaaGOmaiaadkgacaWGnbaakiaawIca caGLPaaajugibiabgUcaRiaadcfalmaaBaaakeaajugWaiaadofaaS qabaqcLbsacaWGObGaam4vaiabg2da9iaaicdaaaa@5072@   (105)

dπ dW = P R c+ P S ( g+hM )+ P W W 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiabec8aWbGcbaqcLbsacaWGKbGaam4vaaaacqGH 9aqpcqGHsislcaWGqbqcfa4aaSbaaSqaaKqzadGaamOuaaWcbeaaju gibiaadogacqGHRaWkcaWGqbqcfa4aaSbaaSqaaKqzadGaam4uaaWc beaajuaGdaqadaGcbaqcLbsacqGHsislcaWGNbGaey4kaSIaamiAai aad2eaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamiuaKqbaoaaBaaa leaajugWaiaadEfaaSqabaqcLbsacaWGxbqcfa4aaWbaaSqabeaaju gibiabgkHiTKqzadGaaGymaaaajugibiabg2da9iaaicdaaaa@5BDF@   (106)

The second order derivatives are:

d 2 π d M 2 =2 P R b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiW dahakeaajugibiaadsgacaWGnbWcdaahaaqabeaajugWaiaaikdaaa aaaKqzGeGaeyypa0JaeyOeI0IaaGOmaiaadcfajuaGdaWgaaWcbaqc LbmacaWGsbaaleqaaKqzGeGaamOyaaaa@4937@   (107)

d 2 π dMdW = P S h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGa eqiWdahakeaajugibiaadsgacaWGnbGaamizaiaadEfaaaGaeyypa0 JaamiuaSWaaSbaaeaajugWaiaadofaaSqabaqcLbsacaWGObaaaa@46B4@   (108)

d 2 π dWdM = P S h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiW dahakeaajugibiaadsgacaWGxbGaamizaiaad2eaaaGaeyypa0Jaam iuaKqbaoaaBaaakeaajugWaiaadofaaSqabaqcLbsacaWGObaaaa@46B3@   (109)

d 2 π d W 2 = P W W 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGa eqiWdahakeaajugibiaadsgacaWGxbqcfa4aaWbaaSqabeaajugWai aaikdaaaaaaKqzGeGaeyypa0JaeyOeI0IaamiuaKqbaoaaBaaaleaa jugWaiaadEfaaSqabaqcLbsacaWGxbqcfa4aaWbaaSqabeaajugibi abgkHiTKqzadGaaGOmaaaaaaa@4DBC@   (110)

The second order conditions of a local maximum are:

| 2 P R b |=2 P R b<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaeyOeI0IaaGOmaiaadcfalmaaBaaabaqcLbmacaWGsbaa leqaaKqzGeGaamOyaaGccaGLhWUaayjcSdqcLbsacqGH9aqpcqGHsi slcaaIYaGaamiuaKqbaoaaBaaaleaajugWaiaadkfaaSqabaqcLbsa caWGIbGaeyipaWJaaGimaaaa@4A8A@   (111)

| 2 P R b P S h P S h P W W 2 |=2 P R P W b W 2 P S 2 h 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeqbaeqabiGaaaGcbaqcLbsacqGHsislcaaIYaGaamiuaSWa aSbaaeaajugWaiaadkfaaSqabaqcLbsacaWGIbaakeaajugibiaadc fajuaGdaWgaaWcbaqcLbmacaWGtbaaleqaaKqzGeGaamiAaaGcbaqc LbsacaWGqbWcdaWgaaqaaKqzadGaam4uaaWcbeaajugibiaadIgaaO qaaKqzGeGaeyOeI0IaamiuaSWaaSbaaeaajugWaiaadEfaaSqabaqc LbsacaWGxbqcfa4aaWbaaSqabeaajugibiabgkHiTKqzadGaaGOmaa aaaaaakiaawEa7caGLiWoajugibiabg2da9iaaikdacaWGqbWcdaWg aaqaaKqzadGaamOuaaWcbeaajugibiaadcfajuaGdaWgaaWcbaqcLb macaWGxbaaleqaaKqzGeGaamOyaiaadEfajuaGdaahaaWcbeqaaKqz GeGaeyOeI0scLbmacaaIYaaaaKqzGeGaeyOeI0IaamiuaSWaaSbaae aajugWaiaadofaaSqabaqcfa4aaWbaaSqabeaajugWaiaaikdaaaqc LbsacaWGObWcdaahaaqabeaajugWaiaaikdaaaqcLbsacqGH+aGpca aIWaaaaa@7345@   (112)

From the first order optimum conditions, we get two equations (113, 114) that can be used to determine the optimal values of the populations.

( dπ dM =0 )( W= P R ( 2bMa ) P S h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaalaaakeaajugibiaadsgacqaHapaCaOqaaKqzGeGaamiz aiaad2eaaaGaeyypa0JaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsh I3juaGdaqadaGcbaqcLbsacaWGxbGaeyypa0tcfa4aaSaaaOqaaKqz GeGaamiuaKqbaoaaBaaaleaajugWaiaadkfaaSqabaqcfa4aaeWaaO qaaKqzGeGaaGOmaiaadkgacaWGnbGaeyOeI0IaamyyaaGccaGLOaGa ayzkaaaabaqcLbsacaWGqbqcfa4aaSbaaSqaaKqzadGaam4uaaWcbe aajugibiaadIgaaaaakiaawIcacaGLPaaaaaa@591D@   (113)

( dπ dW =0 )( P R c+ P S ( g+hM )+ P W W 1 =0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaalaaakeaajugibiaadsgacqaHapaCaOqaaKqzGeGaamiz aiaadEfaaaGaeyypa0JaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsh I3juaGdaqadaGcbaqcLbsacqGHsislcaWGqbqcfa4aaSbaaSqaaKqz adGaamOuaaWcbeaajugibiaadogacqGHRaWkcaWGqbWcdaWgaaqaaK qzadGaam4uaaWcbeaajuaGdaqadaGcbaqcLbsacqGHsislcaWGNbGa ey4kaSIaamiAaiaad2eaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaam iuaKqbaoaaBaaaleaajugibiaadEfaaSqabaqcLbsacaWGxbqcfa4a aWbaaSqabeaajugibiabgkHiTKqzadGaaGymaaaajugibiabg2da9i aaicdaaOGaayjkaiaawMcaaaaa@633D@   (114)

Now, we combine the two first order conditions to get equation (115). Then, this is further developed to (116). Finally, we have the quadratic equation (117).

P R c+ P S ( g+hM )+ P W P S h P R ( 2bMa ) =0, P R ( 2bMa )0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaWGqbWcdaWgaaqaaKqzadGaamOuaaWcbeaajugibiaadogacqGH RaWkcaWGqbWcdaWgaaqaaKqzadGaam4uaaWcbeaajuaGdaqadaGcba qcLbsacqGHsislcaWGNbGaey4kaSIaamiAaiaad2eaaOGaayjkaiaa wMcaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaamiuaSWaaSbaae aajugWaiaadEfaaSqabaqcLbsacaWGqbqcfa4aaSbaaSqaaKqzadGa am4uaaWcbeaajugibiaadIgaaOqaaKqzGeGaamiuaKqbaoaaBaaale aajugWaiaadkfaaSqabaqcfa4aaeWaaOqaaKqzGeGaaGOmaiaadkga caWGnbGaeyOeI0IaamyyaaGccaGLOaGaayzkaaaaaKqzGeGaeyypa0 JaaGimaiaaywW7caGGSaGaamiuaSWaaSbaaeaajugWaiaadkfaaSqa baqcfa4aaeWaaOqaaKqzGeGaaGOmaiaadkgacaWGnbGaeyOeI0Iaam yyaaGccaGLOaGaayzkaaqcLbsacqGHGjsUcaaIWaaaaa@6F75@   (115)

P R ( 2bMa )( P R c+ P S ( g+hM ) )+ P W P S h=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqaaKqzadGaamOuaaWcbeaajuaGdaqadaGcbaqcLbsacaaI YaGaamOyaiaad2eacqGHsislcaWGHbaakiaawIcacaGLPaaajuaGda qadaGcbaqcLbsacqGHsislcaWGqbWcdaWgaaqaaKqzadGaamOuaaWc beaajugibiaadogacqGHRaWkcaWGqbWcdaWgaaqaaKqzadGaam4uaa WcbeaajuaGdaqadaGcbaqcLbsacqGHsislcaWGNbGaey4kaSIaamiA aiaad2eaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqzGeGaey4kaS IaamiuaKqbaoaaBaaaleaajugWaiaadEfaaSqabaqcLbsacaWGqbqc fa4aaSbaaSqaaKqzadGaam4uaaWcbeaajugibiaadIgacqGH9aqpca aIWaaaaa@6065@   (116)

M 2 +( 2bc P R 2 2bg P R P S ah P R P S 2bh P R P S )M+( ac P R 2 +ag P R P S +h P S P W 2bh P R P S )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRaWkjuaGdaqa daGcbaqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaaGOmaiaadkgacaWGJb GaamiuaSWaaSbaaeaajugWaiaadkfaaSqabaWaaWbaaeqabaqcLbma caaIYaaaaKqzGeGaeyOeI0IaaGOmaiaadkgacaWGNbGaamiuaKqbao aaBaaaleaajugWaiaadkfaaSqabaqcLbsacaWGqbqcfa4aaSbaaOqa aKqzadGaam4uaaWcbeaajugibiabgkHiTiaadggacaWGObGaamiuaK qbaoaaBaaaleaajugibiaadkfaaSqabaqcLbsacaWGqbWcdaWgaaqa aKqzadGaam4uaaWcbeaaaOqaaKqzGeGaaGOmaiaadkgacaWGObGaam iuaKqbaoaaBaaaleaajugWaiaadkfaaSqabaqcLbsacaWGqbqcfa4a aSbaaSqaaKqzadGaam4uaaWcbeaaaaaakiaawIcacaGLPaaajugibi aad2eacqGHRaWkjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamyy aiaadogacaWGqbqcfa4aaSbaaSqaaKqzadGaamOuaaWcbeaadaahaa qabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGHbGaam4zaiaadcfa juaGdaWgaaWcbaqcLbmacaWGsbaaleqaaKqzGeGaamiuaSWaaSbaae aajugWaiaadofaaSqabaqcLbsacqGHRaWkcaWGObGaamiuaKqbaoaa BaaaleaajugWaiaadofaaSqabaqcLbsacaWGqbqcfa4aaSbaaSqaaK qzadGaam4vaaWcbeaaaOqaaKqzGeGaaGOmaiaadkgacaWGObGaamiu aKqbaoaaBaaaleaajugWaiaadkfaaSqabaqcLbsacaWGqbqcfa4aaS baaSqaaKqzadGaam4uaaWcbeaaaaaakiaawIcacaGLPaaajugibiab g2da9iaaicdaaaa@973B@   (117)

Using the standard procedure of solving quadratic equations, we follow the steps of equations (118) to (122).

p= 2bc P R 2 2bg P R P S ah P R P S 2bh P R P S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaeyOeI0IaaGOmaiaadkgacaWG JbGaamiuaSWaaSbaaeaajugWaiaadkfaaSqabaqcfa4aaWbaaSqabe aajugWaiaaikdaaaqcLbsacqGHsislcaaIYaGaamOyaiaadEgacaWG qbWcdaWgaaqaaKqzadGaamOuaaWcbeaajugibiaadcfalmaaBaaaba qcLbmacaWGtbaaleqaaKqzGeGaeyOeI0IaamyyaiaadIgacaWGqbqc fa4aaSbaaSqaaKqzadGaamOuaaWcbeaajugibiaadcfajuaGdaWgaa WcbaqcLbmacaWGtbaaleqaaaGcbaqcLbsacaaIYaGaamOyaiaadIga caWGqbWcdaWgaaqaaKqzadGaamOuaaWcbeaajugibiaadcfajuaGda WgaaWcbaqcLbmacaWGtbaaleqaaaaaaaa@6328@   (118)

q= ac P R 2 +ag P R P S +h P S P W 2bh P R P S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyyaiaadogacaWGqbqcfa4a aSbaaSqaaKqzadGaamOuaaWcbeaadaahaaqabeaajugWaiaaikdaaa qcLbsacqGHRaWkcaWGHbGaam4zaiaadcfalmaaBaaabaqcLbmacaWG sbaaleqaaKqzGeGaamiuaKqbaoaaBaaaleaajugWaiaadofaaSqaba qcLbsacqGHRaWkcaWGObGaamiuaSWaaSbaaeaajugWaiaadofaaSqa baqcLbsacaWGqbqcfa4aaSbaaSqaaKqzadGaam4vaaWcbeaaaOqaaK qzGeGaaGOmaiaadkgacaWGObGaamiuaKqbaoaaBaaaleaajugWaiaa dkfaaSqabaqcLbsacaWGqbqcfa4aaSbaaSqaaKqzadGaam4uaaWcbe aaaaaaaa@604E@   (119)

M= p 2 + p 2 4 q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb Gaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaamiCaaGcbaqcLbsa caaIYaaaaKqbaoaalmaaleaajugibiabgUcaRaWcbaqcLbsacqGHsi slaaqcfa4aaOaaaOqaaKqbaoaalaaakeaajugibiaadchajuaGdaah aaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGinaaaacqGHsislca WGXbaaleqaaaaa@492D@   (120)

The two optimal values of the moose population size are:

M opt1 = p 2 + p 2 4 q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaKqzadGaam4BaiaadchacaWG0bGaaGymaaWcbeaajugi biabg2da9iabgkHiTKqbaoaalaaakeaajugibiaadchaaOqaaKqzGe GaaGOmaaaacqGHRaWkjuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGa amiCaSWaaWbaaeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaI0aaaai abgkHiTiaadghaaSqabaaaaa@4B6E@   (121)

M opt2 = p 2 p 2 4 q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaKqzadGaam4BaiaadchacaWG0bGaaGOmaaWcbeaajugi biabg2da9iabgkHiTKqbaoaalaaakeaajugibiaadchaaOqaaKqzGe GaaGOmaaaacqGHsisljuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGa amiCaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaI0a aaaiabgkHiTiaadghaaSqabaaaaa@4C08@   (122)

One of the two optima gives a maximum. (The other optimum is a minimum, which is mostly also an unfeasible solution with one or two negative population(s).) Inspection of the second order maximum conditions and the signs of the derived populations, reveals the feasible maximum. Since there is only one feasible solution that satisfies the local maximum conditions, we accept this as the unique global maximum. When we know the value of the moose population, we can also determine the values of the wolf population, the moose harvest level and the wolf adjustment level, that all, in combination, lead to the maximum of the objective function. This is done in (123), (124) and (125).

( dπ dM =0 )( W opt1 = P R ( 2b M opt1 a ) P S h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaalaaakeaajugibiaadsgacqaHapaCaOqaaKqzGeGaamiz aiaad2eaaaGaeyypa0JaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsh I3juaGdaqadaGcbaqcLbsacaWGxbWcdaWgaaqaaKqzadGaam4Baiaa dchacaWG0bGaaGymaaWcbeaajugibiabg2da9Kqbaoaalaaakeaaju gibiaadcfalmaaBaaabaqcLbmacaWGsbaaleqaaKqbaoaabmaakeaa jugibiaaikdacaWGIbGaamytaSWaaSbaaeaajugWaiaad+gacaWGWb GaamiDaiaaigdaaSqabaqcLbsacqGHsislcaWGHbaakiaawIcacaGL PaaaaeaajugibiaadcfajuaGdaWgaaWcbaqcLbmacaWGtbaaleqaaK qzGeGaamiAaaaaaOGaayjkaiaawMcaaaaa@63B1@   (123)

( M =0 )( R opt1 =a M opt1 b M opt1 2 c W opt1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaS qaaKqbaoaaxacaleaajugibiaad2eaaSqabeaajugibiabgkci3caa cqGH9aqpcaaIWaaaliaawIcacaGLPaaajugibiabgkDiENqbaoaabm aaleaajugibiaadkfalmaaBaaakeaajugWaiaad+gacaWGWbGaamiD aiaaigdaaOqabaqcLbsacqGH9aqpcaWGHbGaamytaSWaaSbaaeaaju gWaiaad+gacaWGWbGaamiDaiaaigdaaSqabaqcLbsacqGHsislcaWG IbGaamytaSWaaSbaaeaajugWaiaad+gacaWGWbGaamiDaiaaigdaaS qabaqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHsislcaWG JbGaam4vaSWaaSbaaOqaaKqzadGaam4BaiaadchacaWG0bGaaGymaa GcbeaaaSGaayjkaiaawMcaaaaa@653A@   (124)

( W =0W0 )( S opt1 =g+h M opt1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaaxacakeaajugibiaadEfaaSqabeaajugibiabgkci3caa cqGH9aqpcaaIWaGaey4jIKTaam4vaiabgcMi5kaaicdaaOGaayjkai aawMcaaKqzGeGaeyO0H4Dcfa4aaeWaaOqaaKqzGeGaam4uaSWaaSba aeaajugWaiaad+gacaWGWbGaamiDaiaaigdaaSqabaqcLbsacqGH9a qpcqGHsislcaWGNbGaey4kaSIaamiAaiaad2ealmaaBaaabaqcLbma caWGVbGaamiCaiaadshacaaIXaaaleqaaaGccaGLOaGaayzkaaaaaa@59DD@   (125)

Results

Solutions to the maximization problem, defined via equations (100) to (104), are found in Figures 8–11. In the graphs, the parameter of the value of the wolf population takes different values in the interval $US 10, 000 to $US 190, 000. The following two assumptions are made in all graph: ( P R , P S )= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamiuaSWaaSbaaeaajugWaiaadkfaaSqabaqcLbsacaGG SaGaamiuaKqbaoaaBaaaleaajugWaiaadofaaSqabaaakiaawIcaca GLPaaajugibiabg2da9aaa@4235@ ($US 1000, $US 1000). These values may be considered as typical. The interested reader can easily make other price assumptions and create similar graphs. All equations and parameter values are documented in Appendix 3, in the form of a QB64 code that can be used in combination with the QB64 software, available for free via the Internet. Figure 8 shows that the optimal moose population is found in the interval 1045 to 1064 for all tested parameter values. This is close to the population level that maximizes the yearly production. In Figure 9, we find that the optimal size of the wolf population is an increasing (almost linear) function of the parameter of the value of the wolf population.

Figure 8 Optimal populations of moose (M) and wolf (W) for different levels of the wolf population value parameter PW.

Figure 9 Optimal populations of wolf (W) for different levels of the wolf population value parameter PW.

As we know, the wolf population and the human hunters, kill moose. If the wolf population increases, the hunting has to decrease. Hence, as we see in Figure 10, the moose hunting is a decreasing function of the parameter of the value of the wolf population. This function is also almost linear. Optimal wolf hunting is very close to zero. For different parameter values, it varies in the interval -0.02 to +0.03. Hence, this has not been illustrated in the graphs. Negative wolf hunting may be interpreted as a situation when wolfs are moved to the area from other locations. Such efforts are also sometimes made in order to improve the genetic variation in small and isolated wildlife populations. In Figure 11, we see that the value of the wolf population increases if the parameter of the value of the wolf population increases. This should be expected, since the optimal wolf population increases and since the value parameter simultaneously increases. At the same time, the value of the hunting decreases, since the moose hunting decreases. The total value of moose hunting and the wolf population is an increasing function of the parameter of the value of the wolf population.

Figure 10 Optimal moose hunting for different levels of the wolf population value parameter PW.

Figure 11 Optimal profits and values for different levels of the wolf population value parameter PW. PROF is the sum of the profit from moose hunting and wolf hunting. PWLNW is the value of the wolf population. TOTRES is the sum of PROF and PWLNW.

Discussion

Our world contains many multi species systems that may be modeled and analyzed as predator prey systems. The general methods utilized in this study have been developed by mathematicians and ecologists during centuries and decades. Braun,2 Blanchard et al.,3 & Tung,4 include very qualified descriptions of these theories, general methods, multi discipline efforts and results. In this paper, the ambition has been to cover and treat all of the relevant approaches, starting with theoretical ecological principles. The interested reader will find that the motivated and defined differential equations in this paper are not exactly identical to the standard equations often applied in earlier studies. The empirical estimations however showed that these model assumptions work well with real data. This paper does not only include the estimations of the predator prey system. It also includes several kinds of dynamic stability analysis. Some proofs are given, connected to the optimal solution and the dynamic stability properties of this solution based on the system parameters. Finally, the paper also includes an optimization section, where a solution with sustainable control of the system is optimized. The optimal control rules are given as explicit expressions, as functions of the parameters. Furthermore, the optimal solutions are illustrated for alternative parameter values. Of course, it would be interesting to study the two species optimization problem also with stochastic optimal control theory. The presence of nonlinearities and species interactions in this particular system makes this more complicated than for a single species. Lohmander8 however derived optimal control rules from a stochastic version of the moose management problem without wolves. The interested reader is encouraged to go deeper into the two appendices, where the system dynamics and the optimal control can be studied and determined for arbitrary parameter values. All of these options are open thanks to the presence of two included computer codes that can be executed and modified via freely available software on the Internet.

Conclusion

A wolf-moose predator-prey system could be defined and estimated as a nonlinear continuous time differential equation system, with 61 years of empirical data from Isle Royale, USA. The parameter estimates confirm the hypotheses and all P-values are below 5%. Dynamic equilibria are determined as explicit general functions of the parameters and as numerical values based on the empirical data. General dynamic properties of the system are determined via phase -plane analysis and nonlinear simulation. The nonlinear system is also linearized close to the single equilibrium with two strictly positive populations. The explicit equations of the time path of the linearized system are compared to the nonlinear simulation. Both methods give almost identical solutions close to the equilibrium. Far from the equilibrium, the time paths of the two methods deviate considerably. The solution is a stable converging spiral (center) (unstable diverging spiral) in case the system equilibrium prey population if located at a higher (the same) (lower) level than the population level that gives maximum sustainable net production.

Based on the empirically determined expected parameter values, the system is stable but converges very slowly, as a spiral, to the two-species equilibrium. The estimated standard deviations of the parameters can be used to determine the probability that the system solution is a center or an unstable diverging spiral. The optimal management of the wolf-moose system is also determined via sustainable optimal control. Optimal moose hunting and adjustments of the wolf population based on different prices and values of sustainable population levels are calculated. Optimal hunting and stock levels are determined and reported as explicit functions of all parameters and prices. The optimal moose population is close to the population level that maximizes the yearly production. The optimal size of the wolf population is an increasing function of the parameter of the value of the wolf population. The optimal moose hunting is a decreasing function of the parameter of the value of the wolf population. Optimal wolf hunting is very close to zero. Sometimes, “negative wolf hunting” may be optimal, when wolfs are moved to the area from other locations. This can also improve the genetic variation. The total value of moose hunting and the wolf population is an increasing function of the parameter of the value of the wolf population.

Funding

None.

Acknowledgments

The author is grateful to the Isle Royale Wolf-Moose project that made empirical data available. The project contact service was also prepared to instantly answer detailed questions.

Conflicts of interest

The author declares that there is no conflict of interest.

References

Creative Commons Attribution License

©2021 Lohmander. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.