Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 4 Issue 2

Dynamic response of timoshenko beam resting on non – linear viscoelastic foundation carrying any number of spring - mass systems

Ahmad Salah Edeen Nassef,1 MM Nassar,2 Mohamed M EL Refaee3

1Faculty of Engineering- Matria, Helwan University, Egypt
2Professor Faculty of Engineering, Cairo University, Egypt
3Professor Faculty of Engineering, Misr University for Science and Technology, Egypt

Correspondence: Ahmad Salah Edeen Nassef, Faculty of Engineering - Matria, Helwan University, Egypt, Tel 20-1016-433-771

Received: December 14, 2017 | Published: March 2, 2018

Citation: Nassef ASE, Nassar MM, EL-Refaee MM, Dynamic response of timoshenko beam resting on non–linear viscoelastic foundation carrying any number of spring mass systems. Int Rob Auto J. 2018;4(2):96-100. DOI: 10.15406/iratj.2018.04.00099

Download PDF

Abstract

The vibration characteristic of a Timoshenko beam resting on non-linear viscoelastic foundation subjected to any number of springs – mass systems (sprung masses) is governed by system of non – linear partial differential equations. The governing differential equations are examined using differential quadrature method to be transformed with boundary conditions into a set of algebraic equations. The non – linear Pasternak foundation is assumed to be cubic. Therefore, the effects of shear deformable beam and the shear deformation of foundations are considered at the same time. The numerical investigations show the dynamic response considering different values for engineering properties for both beam and foundation. Also, the numerical investigations show the efficiency and reliability of using differential quadrature method.

Keywords: beam, viscoelastic, sprung masses, differential quadrature, vlasove

Introduction

Vibration analysis of beam type structures rested on a non – linear foundation has recently received a remarkable amount of attention due to importance and various applications of the subject. The differential quadrature method is an effective numerical technique for initial and boundary problems; it has not been applied to calculate nonlinear behaviors of Timoshenko beam rested on non-linear viscoelastic foundation. Application of the multiple scales method (MSM), method of Shaw and Pierre, method of normal forms and method of King and Vakakis in free vibration analysis of a simply supported beam rested on non – linear elastic foundation have been summarized by Nayfeh.1 Ming-Hung Hsu2 proposed new version differential quadrature method to obtain the vibration characteristics of rectangular plates resting on elastic foundations and carrying any number of sprung masses. The electrostatic behavior of the fixed-fixed beam type micro-actuators was simulated using the differential quadrature method by Ming-Hung Hsu.3 The vehicle load is one of the most important reasons for road damage. These pavements – vehicle systems can be theoretically modeled as beams supported by foundations subjected to moving forces of load similar to spring – mass. A novel state-space formulation was used by Giuseppe Muscolino & Alessandro Palmeri4 to scrutinize the response of beams resting on viscoelastically damped foundation under moving single degree of freedom oscillator.4 Li-Qun Chen5 paid special attentions to different nonlinear models and the introduction of the material time derivative into the viscoelastic constitutive relations. Iancu-Bogdan Teodoru & Vasile Musat6 applied Vlasov approach to beams resting on elastic supports. Davood Younesian et al.,7 solve the nonlinear governing differential equation of an elastic beam rested on a nonlinear foundation using Variational Iteration Method (VIM). Numerical solutions based on differential quadrature method were introduced for different structural problems.8 EJ Sapountzakis and AE Kampitsis9 developed boundary element method for the nonlinear dynamic analysis of beam-columns of an arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on a nonlinear three-parameter viscoelastic foundation. Galerkin method was used to find the response of a Timoshenko beam supported by a nonlinear foundation by Yan Yang et al.,10 also the convergence of this method was studied. Hu Ding et al.,11 used the Adomian decomposition method and a perturbation method in conjunction with complex Fourier transformation to get the solution of the governing differential equations for Timoshenko beams with defined length supported by nonlinear viscoelastic foundations subjected to a moving concentrated force.

Problem formulation

Consider a beam of length , with cross section of dimensions b x h carrying any number of sprung masses have masses mi and stiffness ki and resting on viscoelastic Pasternak foundation as shown in the following Figure 1.

Pasternak foundation reaction
The foundation of the considered beam is taken as Pasternak foundation with linear and cubic stiffness and viscous damping:
P( x,t )= K 1 w( x,t )+ K 3 w 3 ( x,t )+η w( x,t ) t G P 2 w( x,t ) x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfada qadaqaaiaadIhacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iaa dUeadaWgaaqcfasaaiaaigdaaKqbagqaaiaadEhadaqadaqaaiaadI hacaGGSaGaamiDaaGaayjkaiaawMcaaiabgUcaRiaadUeadaWgaaqc fasaaiaaiodaaKqbagqaaiaadEhadaahaaqabKqbGeaacaaIZaaaaK qbaoaabmaabaGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaey4k aSIaeq4TdG2aaSaaaeaacqGHciITcaWG3bWaaeWaaeaacaWG4bGaai ilaiaadshaaiaawIcacaGLPaaaaeaacqGHciITcaWG0baaaiabgkHi TiaadEeadaWgaaqaaiaadcfaaeqaamaalaaabaGaeyOaIy7aaWbaaK qbGeqabaGaaGOmaaaajuaGcaWG3bWaaeWaaeaacaWG4bGaaiilaiaa dshaaiaawIcacaGLPaaaaeaacqGHciITcaWG4bWaaWbaaKqbGeqaba GaaGOmaaaaaaaaaa@680F@ (1)
Where P(x,t) is the force induced by the foundation per unit length of the beam as a function of the horizontal coordinate x and time t, K1 and K3 are the first and third order foundation parameters, respectively. Furthermore GP and η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOb aa@3825@ are the shear deformation coefficient and damping coefficient of the foundation respectively. w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhaaa a@3775@ is the vertical displacement of the beam.

Beam strain energy
By considering Timoshenko beam theory, one can obtain the strain energy per unit length of beam element as:
U e = 1 2 0 L ( EI ( θ x ) 2 +kAG ( w x θ ) 2 ) dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfada WgaaqcfasaaiaadwgaaKqbagqaaiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaWaa8qCaeaadaqadaqaaiaadweacaWGjbWaaeWaaeaada WcaaqaaiabgkGi2kabeI7aXbqaaiabgkGi2kaadIhaaaaacaGLOaGa ayzkaaWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHRaWkcaWGRbGaam yqaiaadEeadaqadaqaamaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi 2kaadIhaaaGaeyOeI0IaeqiUdehacaGLOaGaayzkaaWaaWbaaeqaju aibaGaaGOmaaaaaKqbakaawIcacaGLPaaaaeaacaaIWaaabaGaamit aaGaey4kIipacaWGKbGaamiEaaaa@5B3B@ (2)
Where θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXb aa@382F@ is the rotation of the cross section, w x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaam4DaaqaaiabgkGi2kaadIhaaaaaaa@3B4E@ is the slope of the vertical displacement, E is the modulus of elasticity of the beam material, is the second moment of area, is the shear correction factor, is the cross section area and is the shear section modulus.

Beam Equation of Motion
The total strain energy of a beam resting on Pasternak foundation and carrying any numbers of sprung masses (oscillators) is:
U= 1 2 0 L ( EI ( θ x ) 2 +kAG ( w x θ ) 2 +Pw )+ i=1 s 1 2 k i ( y i ( t )w ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfacq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaapedabaWaaeWaaeaa caWGfbGaamysamaabmaabaWaaSaaaeaacqGHciITcqaH4oqCaeaacq GHciITcaWG4baaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaikda aaqcfaOaey4kaSIaam4AaiaadgeacaWGhbWaaeWaaeaadaWcaaqaai abgkGi2kaadEhaaeaacqGHciITcaWG4baaaiabgkHiTiabeI7aXbGa ayjkaiaawMcaamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaam iuaiaadEhaaiaawIcacaGLPaaacqGHRaWkdaaeWaqaamaalaaabaGa aGymaaqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGZb aacqGHris5aaqaaiaaicdaaeaacaWGmbaacqGHRiI8aiaadUgadaWg aaqcfasaaiaadMgaaKqbagqaamaabmaabaGaamyEamaaBaaajuaiba GaamyAaaqcfayabaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOe I0Iaam4DaaGaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaaaaa@6E7F@ (3)
Where y(t) is the vertical displacement of the oscillator and S is the number of sprung masses connected to the beam. The kinetic energy of the system can be expressed as:
T= 1 2 ρ 0 L ( A ( w t ) 2 +I ( θ t ) 2 +Pw ) + i=1 s 1 2 m i ( y i t ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfacq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYnaapedabaWa aeWaaeaacaWGbbWaaeWaaeaadaWcaaqaaiabgkGi2kaadEhaaeaacq GHciITcaWG0baaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaikda aaqcfaOaey4kaSIaamysamaabmaabaWaaSaaaeaacqGHciITcqaH4o qCaeaacqGHciITcaWG0baaaaGaayjkaiaawMcaamaaCaaabeqcfasa aiaaikdaaaqcfaOaey4kaSIaamiuaiaadEhaaiaawIcacaGLPaaaae aacaaIWaaabaGaamitaaGaey4kIipacqGHRaWkdaaeWaqaamaalaaa baGaaGymaaqaaiaaikdaaaGaamyBamaaBaaajuaibaGaamyAaaqaba qcfa4aaeWaaeaadaWcaaqaaiabgkGi2kaadMhadaWgaaqcfasaaiaa dMgaaeqaaaqcfayaaiabgkGi2kaadshaaaaacaGLOaGaayzkaaaaba GaamyAaiabg2da9iaaigdaaeaacaWGZbaacqGHris5amaaCaaabeqc fasaaiaaikdaaaaaaa@6A79@ (4)
Where ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYb aa@3839@ is the density of beam material. By applying Hamilton’s principle:
δ t 1 t 2 ( TU )  dt=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes7aKn aapedabiqaaytfdaqadaqaaiaadsfacqGHsislcaWGvbaacaGLOaGa ayzkaaaabaGaamiDamaaBaaajuaibaGaaGymaaqcfayabaaabaGaam iDamaaBaaajuaibaGaaGOmaaqabaaajuaGcqGHRiI8aOaeaaaaaaaa a8qacaGGGcqcfa4daiaadsgacaWG0bGaeyypa0JaaGimaaaa@4956@ (5)
From equations (3), (4) and (5), one can obtain:
ρA w .. +η w . kAG( w \\ θ \ )+ K 1 w+2 K 3 w 3 G p w \\ i=1 s k i ( y i w )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYj aadgeacaWG3bWaaWbaaeqajuaibaGaaiOlaiaac6caaaqcfaOaey4k aSIaeq4TdGMaam4DamaaCaaajuaibeqaaiaac6caaaqcfaOaeyOeI0 Iaam4AaiaadgeacaWGhbWaaeWaaeaacaWG3bWaaWbaaKqbGeqabaGa aiixaiaacYfaaaqcfaOaeyOeI0IaeqiUde3aaWbaaeqajuaibaGaai ixaaaaaKqbakaawIcacaGLPaaacqGHRaWkcaWGlbWaaSbaaKqbGeaa caaIXaaabeaajuaGcaWG3bGaey4kaSIaaGOmaiaadUeadaWgaaqcfa saaiaaiodaaeqaaKqbakaadEhadaahaaqcfasabeaacaaIZaaaaKqb akabgkHiTiaadEeadaWgaaqcfasaaiaadchaaKqbagqaaiaadEhada ahaaqcfasabeaacaGGCbGaaiixaaaajuaGcqGHsisldaaeWaqaaiaa dUgadaWgaaqcfasaaiaadMgaaKqbagqaamaabmaabaGaamyEamaaBa aajuaibaGaamyAaaqcfayabaGaeyOeI0Iaam4DaaGaayjkaiaawMca aiabg2da9iaaicdaaeaacaWGPbGaeyypa0JaaGymaaqaaiaadohaai abggHiLdaaaa@7188@ (6)
ρI θ .. kAG( w \ θ )EI θ \\ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYj aadMeacqaH4oqCdaahaaqcfasabeaacaGGUaGaaiOlaaaajuaGcqGH sislcaWGRbGaamyqaiaadEeadaqadaqaaiaadEhadaahaaqcfasabe aacaGGCbaaaKqbakabgkHiTiabeI7aXbGaayjkaiaawMcaaiabgkHi TiaadweacaWGjbGaeqiUde3aaWbaaeqajuaibaGaaiixaiaacYfaaa qcfaOaeyypa0JaaGimaaaa@4FED@ 7)
i=1 s k i ( y i w ) i=1 s m i y i .. =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqadaba Gaam4AamaaBaaajuaibaGaamyAaaqcfayabaWaaeWaaeaacaWG5bWa aSbaaKqbGeaacaWGPbaabeaajuaGcqGHsislcaWG3baacaGLOaGaay zkaaGaeyOeI0YaaabmaeaacaWGTbWaaSbaaKqbGeaacaWGPbaajuaG beaacaWG5bWaa0baaKqbGeaacaWGPbaabaGaaiOlaiaac6caaaaaju aGbaGaamyAaiabg2da9iaaigdaaeaacaWGZbaacqGHris5aaqaaiaa dMgacqGH9aqpcaaIXaaabaGaam4CaaGaeyyeIuoacqGH9aqpcaaIWa aaaa@5429@  (8)
Let w( x,t )=W( x ) e λt ,θ( x,t )=ϑ( x ) e λt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada qadaqaaiaadIhacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iaa dEfadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGLbWaaWbaaeqaju aibaGaeq4UdWMaamiDaaaajuaGcaGGSaGaeqiUde3aaeWaaeaacaWG 4bGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcqaHrpGsdaqada qaaiaadIhaaiaawIcacaGLPaaacaWGLbWaaWbaaKqbGeqabaGaeq4U dWMaamiDaaaaaaa@5431@  and y i ( t )= Y i e λt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada WgaaqcfasaaiaadMgaaKqbagqaamaabmaabaGaamiDaaGaayjkaiaa wMcaaiabg2da9iaadMfadaWgaaqcfasaaiaadMgaaeqaaKqbakaadw gadaahaaqcfasabeaacqaH7oaBcaWG0baaaaaa@435A@
Then, equations (6), (7) and (8) yield:
( ρA λ 2 +ηλ+ K 1 +2 K 3 W 2 e 2λt )W+kAG( ϑ \ )( kAG+ G p ) W \\ i=1 s k i ( Y i W ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeqyWdiNaamyqaiabeU7aSnaaCaaajuaibeqaaiaaikdaaaqcfaOa ey4kaSIaeq4TdGMaeq4UdWMaey4kaSIaam4samaaBaaajuaibaGaaG ymaaqabaqcfaOaey4kaSIaaGOmaiaadUeadaWgaaqcfasaaiaaioda aeqaaKqbakaadEfadaahaaqcfasabeaacaaIYaaaaKqbakaadwgada ahaaqabKqbGeaacaaIYaGaeq4UdWMaamiDaaaaaKqbakaawIcacaGL PaaacaWGxbGaey4kaSIaam4AaiaadgeacaWGhbWaaeWaaeaacqaHrp GsdaahaaqabKqbGeaacaGGCbaaaaqcfaOaayjkaiaawMcaaiabgkHi TmaabmaabaGaam4AaiaadgeacaWGhbGaey4kaSIaam4ramaaBaaaju aibaGaamiCaaqcfayabaaacaGLOaGaayzkaaGaam4vamaaCaaabeqc fasaaiaacYfacaGGCbaaaKqbakabgkHiTmaaqadabaGaam4AamaaBa aajuaibaGaamyAaaqabaqcfa4aaeWaaeaacaWGzbWaaSbaaKqbGeaa caWGPbaabeaajuaGcqGHsislcaWGxbaacaGLOaGaayzkaaaabaGaam yAaiabg2da9iaaigdaaeaacaWGZbaacqGHris5aiabg2da9iaaicda aaa@7726@  (9)
ρI λ 2 ϑkAG( W \ ϑ )EI ϑ \\ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYj aadMeacqaH7oaBdaahaaqcfasabeaacaaIYaaaaKqbakabeg9akjab gkHiTiaadUgacaWGbbGaam4ramaabmaabaGaam4vamaaCaaajuaibe qaaiaacYfaaaqcfaOaeyOeI0Iaeqy0dOeacaGLOaGaayzkaaGaeyOe I0IaamyraiaadMeacqaHrpGsdaahaaqabKqbGeaacaGGCbGaaiixaa aajuaGcqGH9aqpcaaIWaaaaa@50AF@  (10)
i=1 s k i ( Y i W ) i=1 s m i λ 2 Y i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqadaba Gaam4AamaaBaaajuaibaGaamyAaaqcfayabaaabaGaamyAaiabg2da 9iaaigdaaeaacaWGZbaacqGHris5amaabmaabiqaaeWecaWGzbWaaS baaKqbGeaacaWGPbaabeaajuaGcqGHsislcaWGxbaacaGLOaGaayzk aaGaeyOeI0YaaabmaeaacaWGTbWaaSbaaKqbGeaacaWGPbaajuaGbe aacqaH7oaBdaahaaqabKqbGeaacaaIYaaaaKqbakaadMfadaWgaaqc fasaaiaadMgaaeqaaKqbakabg2da9iaaicdaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaadohaaiabggHiLdaaaa@55C9@  (11)
For the following non-dimensional variables:
w * = w L ,     y * i = Y i L and   x * = x L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada ahaaqabeaacaGGQaaaaiabg2da9maalaaabaGaam4DaaqaaiaadYea aaGaaiilaabaaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOa8aaca WG5bWaaWbaaeqabaGaaiOkaaaadaWgaaqaaiaadMgaaeqaaiabg2da 9maalaaabaGaamywamaaBaaabaGaamyAaaqabaaabaGaamitaaaaca WGHbGaamOBaiaadsgapeGaaiiOaiaacckapaGaamiEamaaCaaabeqa aiaacQcaaaGaeyypa0ZaaSaaaeaacaWG4baabaGaamitaaaaaaa@5122@  (12)
α 1 = ( ρA λ 2 +ηλ+ K 1 + i=1 s k i )L EA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0ZaaSaaaeaadaqadaqa aiabeg8aYjaadgeacqaH7oaBdaahaaqcfasabeaacaaIYaaaaKqbak abgUcaRiabeE7aOjabeU7aSjabgUcaRiaadUeadaWgaaqcfasaaiaa igdaaeqaaKqbakabgUcaRmaaqadabaGaam4AamaaBaaabaGaamyAaa qabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGZbaacqGHris5aaGa ayjkaiaawMcaaiaadYeaaeaacaWGfbGaamyqaaaaaaa@5482@  (13)
α 2 = 2 K 3 L 3 EA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaajuaibaGaaGOmaaqabaqcfaOaeyypa0ZaaSaaaeaacaaIYaGa am4samaaBaaajuaibaGaaG4maaqabaqcfaOaamitamaaCaaabeqcfa saaiaaiodaaaaajuaGbaGaamyraiaadgeaaaaaaa@41E9@ (14)
α 3 = α 4 + G P EA L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaajuaibaGaaG4maaqabaqcfaOaeyypa0JaeqySde2aaSbaaKqb GeaacaaI0aaabeaajuaGcqGHRaWkdaWcaaqaaiaadEeadaWgaaqaai aadcfaaeqaaaqaaiaadweacaWGbbGaamitamaaCaaajuaibeqaaiaa ikdaaaaaaaaa@4413@  (15)
α 4 = kG EL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaajuaibaGaaGinaaqabaqcfaOaeyypa0ZaaSaaaeaacaWGRbGa am4raaqaaiaadweacaWGmbaaaaaa@3E20@  (16)
β 1 = ρ λ 2 L 2 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIn aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0ZaaSaaaeaacqaHbpGC cqaH7oaBdaahaaqcfasabeaacaaIYaaaaKqbaoaaBaaabaGaamitam aaCaaabeqcfasaaiaaikdaaaaajuaGbeaaaeaacaWGfbaaaaaa@432C@  (17)
β 2 = kAG L 2 EI MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIn aaBaaajuaibaGaaGOmaaqabaqcfaOaeyypa0ZaaSaaaeaacaWGRbGa amyqaiaadEeacaWGmbWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaaca WGfbGaamysaaaaaaa@414E@  (18)
γ 1 = γ 2 m i λ 2 L EA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0Jaeq4SdC2aaSbaaKqb GeaacaaIYaaabeaajuaGcqGHsisldaWcaaqaaiaad2gadaWgaaqcfa saaiaadMgaaeqaaKqbakabeU7aSnaaCaaajuaibeqaaiaaikdaaaqc faOaamitaaqaaiaadweacaWGbbaaaaaa@4767@  (19)
γ 2 = k i L EA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aaBaaajuaibaGaaGOmaaqabaqcfaOaeyypa0ZaaSaaaeaacaWGRbWa aSbaaKqbGeaacaWGPbaabeaajuaGcaWGmbaabaGaamyraiaadgeaaa aaaa@3FEB@ (20)

Equations (9), (10) and (11) can be rewritten as:
α 1 w * + α 2 e 2λt w *3 α 3 w *\\ + α 4 ϑ \ i=1 s γ 2 y * i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaajuaibaGaaGymaaqabaqcfaOaam4DamaaCaaajuaibeqaaiaa cQcaaaqcfaOaey4kaSIaeqySde2aaSbaaKqbGeaacaaIYaaabeaaju aGcaWGLbWaaWbaaeqajuaibaGaaGOmaiabeU7aSjaadshaaaqcfaOa am4DamaaCaaabeqcfasaaiaacQcacaaIZaaaaKqbakabgkHiTiabeg 7aHnaaBaaajuaibaGaaG4maaqabaqcfaOaam4DamaaCaaajuaibeqa aiaacQcacaGGCbGaaiixaaaajuaGcqGHRaWkcqaHXoqydaWgaaqcfa saaiaaisdaaKqbagqaaiabeg9aknaaCaaabeqcfasaaiaacYfaaaqc faOaeyOeI0YaaabmaeaacqaHZoWzdaWgaaqcfasaaiaaikdaaeqaaK qbakaadMhadaahaaqcfasabeaacaGGQaaaaKqbaoaaBaaajuaibaGa amyAaaqabaqcfaOaeyypa0JaaGimaaqaaiaadMgacqGH9aqpcaaIXa aabaGaam4CaaGaeyyeIuoaaaa@688B@  (21)
β 1 ϑ β 2 ( W *\ ϑ ) ϑ \\ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIn aaBaaajuaibaGaaGymaaqabaqcfaOaeqy0dOKaeyOeI0IaeqOSdi2a aSbaaKqbGeaacaaIYaaabeaajuaGdaqadaqaaiaadEfadaahaaqcfa sabeaacaGGQaGaaiixaaaajuaGcqGHsislcqaHrpGsaiaawIcacaGL PaaacqGHsislcqaHrpGsdaahaaqcfasabeaacaGGCbGaaiixaaaaju aGcqGH9aqpcaaIWaaaaa@4DDA@ (22)
i=1 s γ 1 y * i i=1 s γ 2 w * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqadaba Gaeq4SdC2aaSbaaKqbGeaacaaIXaaabeaajuaGcaWG5bWaaWbaaeqa baGaaiOkaaaadaWgaaqaaiaadMgaaeqaaiabgkHiTaqaaiaadMgacq GH9aqpcaaIXaaabaGaam4CaaGaeyyeIuoadaaeWaqaaiabeo7aNnaa BaaajuaibaGaaGOmaaqabaqcfaOaam4DamaaCaaajuaibeqaaiaacQ caaaqcfaOaeyypa0JaaGimaaqaaiaadMgacqGH9aqpcaaIXaaabaGa am4CaaGaeyyeIuoaaaa@502C@  (23)

Boundary conditions
The simply supported end conditions can be expressed as:
w * ( 0 )= w * ( 1 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada ahaaqcfasabeaacaGGQaaaaKqbaoaabmaabaGaaGimaaGaayjkaiaa wMcaaiabg2da9iaadEhadaahaaqcfasabeaacaGGQaaaaKqbaoaabm aabaGaaGymaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@42D6@ (24)
w * ( 0 )= w *\\ ( L )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada ahaaqcfasabeaacaGGQaaaaKqbaoaabmaabaGaaGimaaGaayjkaiaa wMcaaiabg2da9iaadEhadaahaaqcfasabeaacaGGQaGaaiixaiaacY faaaqcfa4aaeWaaeaacaWGmbaacaGLOaGaayzkaaGaeyypa0JaaGim aaaa@44AC@  (25)

Differential quadrature technique
The method of DQ assumes that the function derivatives can be expressed as linear sum of the weighting coefficient times function value at all discrete points in the domain of the concerned variable, and then the function derivative can be written as:
m f( x i ) x m = j=1 N C ij ( m ) f( x j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIy7aaWbaaeqajuaibaGaamyBaaaajuaGcaWGMbWaaeWaaeaa caWG4bWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIcacaGLPaaaae aacqGHciITcaWG4bWaaWbaaKqbGeqabaGaamyBaaaaaaqcfaOaeyyp a0ZaaabCaeaacaWGdbWaa0baaKqbGeaacaWGPbGaamOAaaqaaKqbao aabmaajuaibaGaamyBaaGaayjkaiaawMcaaaaaaKqbagaacaWGQbGa eyypa0JaaGymaaqaaiaad6eaaiabggHiLdGaamOzamaabmaabaGaam iEamaaBaaajuaibaGaamOAaaqcfayabaaacaGLOaGaayzkaaaaaa@55D8@ (26)

Where:
f( x j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadIhadaWgaaqcfasaaiaadQgaaKqbagqaaaGaayjkaiaa wMcaaaaa@3BB6@ is the value of a function at a grid point xj.

C ij ( m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaWGTbaa caGLOaGaayzkaaaaaaaa@3CA5@ is a weighting coefficient for the derivative of order (m).

By determining the weighting coefficients, the link between the derivatives and the functional values can be established.

By supposing that f( x j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadIhadaWgaaqcfasaaiaadQgaaKqbagqaaaGaayjkaiaa wMcaaaaa@3BB6@ is approximated by Fourier series expansion of the form:
f( x j )= c o + k=1 N/2 ( c k cosk x j + d k sink x j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadIhadaWgaaqcfasaaiaadQgaaKqbagqaaaGaayjkaiaa wMcaaiabg2da9iaadogadaWgaaqaaiaad+gaaeqaaiabgUcaRmaaqa dabaWaaeWaaeaacaWGJbWaaSbaaKqbGeaacaWGRbaabeaajuaGciGG JbGaai4BaiaacohacaWGRbGaamiEamaaBaaajuaibaGaamOAaaqaba qcfaOaey4kaSIaamizamaaBaaajuaibaGaam4AaaqcfayabaGaci4C aiaacMgacaGGUbGaam4AaiaadIhadaWgaaqcfasaaiaadQgaaKqbag qaaaGaayjkaiaawMcaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaamOt aiaac+cacaaIYaaacqGHris5aaaa@5B6B@  (27)

Where: N is the number of grid points

By using the above test function, one can obtain explicit formulations to compute weighting coefficients of the first, second and higher order, where the diagonal elements of weighting coefficients are:
C ii ( 1 ) = a ii = j=0,ij N a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGPbaabaqcfa4aaeWaaKqbGeaacaaIXaaa caGLOaGaayzkaaaaaKqbakabg2da9iaadggadaWgaaqcfasaaiaadM gacaWGPbaajuaGbeaacqGH9aqpcqGHsisldaaeWaqaaiaadggadaWg aaqcfasaaiaadMgacaWGQbaajuaGbeaaaeaacaWGQbGaeyypa0JaaG imaiaacYcacaWGPbGaeyiyIKRaamOAaaqaaiaad6eaaiabggHiLdaa aa@50F3@ (28)
C ii ( 2 ) = b ii = j=0,ij N b ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGPbaabaqcfa4aaeWaaKqbGeaacaaIYaaa caGLOaGaayzkaaaaaKqbakabg2da9iaadkgadaWgaaqcfasaaiaadM gacaWGPbaajuaGbeaacqGH9aqpcqGHsisldaaeWaqaaiaadkgadaWg aaqcfasaaiaadMgacaWGQbaajuaGbeaaaeaacaWGQbGaeyypa0JaaG imaiaacYcacaWGPbGaeyiyIKRaamOAaaqaaiaad6eaaiabggHiLdaa aa@50F6@ (29)
C ii ( m ) = j=0,ij N C ij ( m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGPbaabaqcfa4aaeWaaKqbGeaacaWGTbaa caGLOaGaayzkaaaaaKqbakabg2da9iabgkHiTmaaqadabaGaam4qam aaDaaajuaibaGaamyAaiaadQgaaeaajuaGdaqadaqcfasaaiaad2ga aiaawIcacaGLPaaaaaaajuaGbaGaamOAaiabg2da9iaaicdacaGGSa GaamyAaiabgcMi5kaadQgaaeaacaWGobaacqGHris5aaaa@4F9F@  (30)

Also, the non-diagonal elements of weighting coefficients are:

C ij ( 1 ) = a ij = αq( ξ i ) 2sin( ξ i ξ j 2 )q( ξ j ) ;ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaaIXaaa caGLOaGaayzkaaaaaKqbakabg2da9iaadggadaWgaaqaamaaBaaaju aibaGaamyAaiaadQgaaeqaaKqbakabg2da9maalaaabaGaeqySdeMa amyCamaabmaabaGaeqOVdG3aaSbaaKqbGeaacaWGPbaabeaaaKqbak aawIcacaGLPaaaaeaacaaIYaGaci4CaiaacMgacaGGUbWaaeWaaeaa daWcaaqaaiabe67a4naaBaaajuaibaGaamyAaaqabaqcfaOaeyOeI0 IaeqOVdG3aaSbaaKqbGeaacaWGQbaajuaGbeaaaeaacaaIYaaaaaGa ayjkaiaawMcaaiaadghadaqadaqaaiabe67a4naaBaaajuaibaGaam OAaaqcfayabaaacaGLOaGaayzkaaaaaaqabaGaai4oaiaadMgacqGH GjsUcaWGQbaaaa@62E9@  (31)
C ij ( 2 ) = b ij = a ij [ 2 a ii cot( x i x j 2 ) ];ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaaIYaaa caGLOaGaayzkaaaaaKqbakabg2da9iaadkgadaWgaaqcfasaaiaadM gacaWGQbaabeaajuaGcqGH9aqpcaWGHbWaaSbaaKqbGeaacaWGPbGa amOAaaqabaqcfa4aamWaaeaacaaIYaGaamyyamaaBaaajuaibaGaam yAaiaadMgaaeqaaKqbakabgkHiTiGacogacaGGVbGaaiiDamaabmaa baWaaSaaaeaacaWG4bWaaSbaaKqbGeaacaWGPbaabeaajuaGcqGHsi slcaWG4bWaaSbaaKqbGeaacaWGQbaajuaGbeaaaeaacaaIYaaaaaGa ayjkaiaawMcaaaGaay5waiaaw2faaiaacUdacaWGPbGaeyiyIKRaam OAaaaa@5D8E@ (32)
C ij ( m ) = a ij ( 1 2 +m b ii ) m 2 b ij cot x i x j 2 ;ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaWGTbaa caGLOaGaayzkaaaaaKqbakabg2da9iaadggadaWgaaqcfasaaiaadM gacaWGQbaabeaajuaGdaqadaqaamaalaaabaGaaGymaaqaaiaaikda aaGaey4kaSIaamyBaiaadkgadaWgaaqcfasaaiaadMgacaWGPbaabe aaaKqbakaawIcacaGLPaaacqGHsisldaWcaaqaaiaad2gaaeaacaaI YaaaaiaadkgadaWgaaqcfasaaiaadMgacaWGQbaabeaajuaGciGGJb Gaai4BaiaacshadaWcaaqaaiaadIhadaWgaaqcfasaaiaadMgaaeqa aKqbakabgkHiTiaadIhadaWgaaqcfasaaiaadQgaaKqbagqaaaqaai aaikdaaaGaai4oaiaadMgacqGHGjsUcaWGQbaaaa@5F2A@ (33)

Where:
C ij ( m ) = a ij ( 1 2 +m b ii ) m 2 b ij cot x i x j 2 ;ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaWGTbaa caGLOaGaayzkaaaaaKqbakabg2da9iaadggadaWgaaqcfasaaiaadM gacaWGQbaabeaajuaGdaqadaqaamaalaaabaGaaGymaaqaaiaaikda aaGaey4kaSIaamyBaiaadkgadaWgaaqcfasaaiaadMgacaWGPbaabe aaaKqbakaawIcacaGLPaaacqGHsisldaWcaaqaaiaad2gaaeaacaaI YaaaaiaadkgadaWgaaqcfasaaiaadMgacaWGQbaabeaajuaGciGGJb Gaai4BaiaacshadaWcaaqaaiaadIhadaWgaaqcfasaaiaadMgaaeqa aKqbakabgkHiTiaadIhadaWgaaqcfasaaiaadQgaaKqbagqaaaqaai aaikdaaaGaai4oaiaadMgacqGHGjsUcaWGQbaaaa@5F2A@ (34)
The above algebraic equations can be applied to periodic problems, i. e ( 0x2π ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaaGimaiabgsMiJkaadIhacqGHKjYOcaaIYaGaeqiWdahacaGLOaGa ayzkaaaaaa@3F9C@  and non-periodic problems, i.e. ( 0xπ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaaGimaiabgsMiJkaadIhacqGHKjYOcqaHapaCaiaawIcacaGLPaaa aaa@3EE0@ . For practical applications the physical domain is not [ 0,π ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaaGimaiaacYcacqaHapaCaiaawUfacaGLDbaaaaa@3B92@  or [ 0,2π ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaaGimaiaacYcacaaIYaGaeqiWdahacaGLBbGaayzxaaaaaa@3C4E@ , but rather [a,b]. Then for this case, one can perform coordinates transformation from x – domain to – ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqbakab=5 7a4baa@3841@ domain.
C ij ( 1 ) = a ij = αq( ξ i ) 2sin( ξ i ξ j 2 )q( ξ j ) ;ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaaIXaaa caGLOaGaayzkaaaaaKqbakabg2da9iaadggadaWgaaqcfasaaiaadM gacaWGQbaabeaakiabg2da9KqbaoaalaaabaGaeqySdeMaamyCamaa bmaabaGaeqOVdG3aaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIcaca GLPaaaaeaacaaIYaGaci4CaiaacMgacaGGUbWaaeWaaeaadaWcaaqa aiabe67a4naaBaaajuaibaGaamyAaaqabaqcfaOaeyOeI0IaeqOVdG 3aaSbaaKqbGeaacaWGQbaajuaGbeaaaeaacaaIYaaaaaGaayjkaiaa wMcaaiaadghadaqadaqaaiabe67a4naaBaaajuaibaGaamOAaaqcfa yabaaacaGLOaGaayzkaaaaaiaacUdacaWGPbGaeyiyIKRaamOAaaaa @62D2@  (35)
C ij ( 2 ) = b ij = a ij [ 2 a ii αcot( ξ i ξ j 2 ) ];ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaaIYaaa caGLOaGaayzkaaaaaKqbakabg2da9iaadkgadaWgaaqcfasaaiaadM gacaWGQbaabeaajuaGcqGH9aqpcaWGHbWaaSbaaKqbGeaacaWGPbGa amOAaaqabaqcfa4aamWaaeaacaaIYaGaamyyamaaBaaajuaibaGaam yAaiaadMgaaeqaaKqbakabgkHiTiabeg7aHjGacogacaGGVbGaaiiD amaabmaabaWaaSaaaeaacqaH+oaEdaWgaaqcfasaaiaadMgaaeqaaK qbakabgkHiTiabe67a4naaBaaajuaibaGaamOAaaqcfayabaaabaGa aGOmaaaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaGG7aGaamyAai abgcMi5kaadQgaaaa@60B9@  (36)
C ij ( m ) = a ij ( α 2 2 +m b ii ) m 2 α b ij cot ξ i ξ j 2 ;ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada qhaaqcfasaaiaadMgacaWGQbaabaqcfa4aaeWaaKqbGeaacaWGTbaa caGLOaGaayzkaaaaaKqbakabg2da9iaadggadaWgaaqcfasaaiaadM gacaWGQbaabeaajuaGdaqadaqaamaalaaabaGaeqySde2aaWbaaeqa juaibaGaaGOmaaaaaKqbagaacaaIYaaaaiabgUcaRiaad2gacaWGIb WaaSbaaKqbGeaacaWGPbGaamyAaaqabaaajuaGcaGLOaGaayzkaaGa eyOeI0YaaSaaaeaacaWGTbaabaGaaGOmaaaacqaHXoqycaWGIbWaaS baaKqbGeaacaWGPbGaamOAaaqabaqcfaOaci4yaiaac+gacaGG0bWa aSaaaeaacqaH+oaEdaWgaaqcfasaaiaadMgaaeqaaKqbakabgkHiTi abe67a4naaBaaajuaibaGaamOAaaqcfayabaaabaGaaGOmaaaacaGG 7aGaamyAaiabgcMi5kaadQgaaaa@64D3@ (37)

Where:
ξ i =2π x i a ba ,      α= 2π ba   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe67a4n aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaaGOmaiabec8aWnaa laaabaGaamiEamaaBaaajuaibaGaamyAaaqcfayabaGaeyOeI0Iaam yyaaqaaiaadkgacqGHsislcaWGHbaaaiaacYcaqaaaaaaaaaWdbiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aacqaHXoqycqGH9a qpdaWcaaqaaiaaikdacqaHapaCaeaacaWGIbGaeyOeI0Iaamyyaaaa peGaaiiOaaaa@55BE@ (38)

Grid points selection
Chebyshev- Gauss- Lobatto grid points were adopted by Shu and Chen (1999) as the accurate selection of the grid points. The coordinates of the grid points were chosen as:
x i * = 1 2 [ 1cos[ i1 N1 π ] ];i=1,2,....N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaiiEamaaDaaajuaibaGaamyAaaqaaiaacQcaaaqcfaOaeyyp a0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiaaigdacqGHsi slciGGJbGaai4BaiaacohadaWadaqaamaalaaabaGaamyAaiabgkHi TiaaigdaaeaacaWGobGaeyOeI0IaaGymaaaacqaHapaCaiaawUfaca GLDbaaaiaawUfacaGLDbaacaGG7aGaamyAaiabg2da9iaaigdacaGG SaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaamOtaaaa@54FE@  (39)

Boundary conditions implementation
The Direct Substitution approach will be applied. The basic idea of this approach is implementing the function condition at the end points, while the derivative condition should be descritized by the DQ method. The descritized Neumman conditions at the two boundaries are then combined to get the W 2 , W ( N1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada WgaaqcfasaaiaaikdaaKqbagqaaiaacYcacaWGxbWaaSbaaKqbGeaa juaGdaqadaqcfasaaiaad6eacqGHsislcaaIXaaacaGLOaGaayzkaa aabeaaaaa@3F89@ in terms of W3,W4,….,W(N-2). The dimension of the equation system using this technique is ( N4 )×( N4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOtaiabgkHiTiaaisdaaiaawIcacaGLPaaacqGHxdaTdaqadaqa aiaad6eacqGHsislcaaI0aaacaGLOaGaayzkaaaaaa@409E@

For any clamped and simply supported conditions, the descritized end conditions using the DQ method can be expressed as:
k=1 N C 1k ( n0 ) W k * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaabCaeaacaWGdbWaa0baaKqbGeaacaaIXaGaam4AaaqaaKqb aoaabmaajuaibaGaamOBaiaaicdaaiaawIcacaGLPaaaaaaajuaGba Gaam4Aaiabg2da9iaaigdaaeaacaWGobaacqGHris5aiaadEfadaqh aaqcfasaaiaadUgaaeaacaGGQaaaaKqbakabg2da9iaaicdaaaa@48A2@ (40)
k=1 N C 1k ( n1 ) W k * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaabCaeaacaWGdbWaa0baaKqbGeaacaaIXaGaam4AaaqaaKqb aoaabmaajuaibaGaamOBaiaaigdaaiaawIcacaGLPaaaaaaajuaGba Gaam4Aaiabg2da9iaaigdaaeaacaWGobaacqGHris5aiaadEfadaqh aaqcfasaaiaadUgaaeaacaGGQaaaaKqbakabg2da9iaaicdaaaa@48A3@  (41)
Where ( n0 ),( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaeaacaWGUbGaaGimaaGaayjkaiaawMcaaiaacYcadaqa daqaaiaad6gacaaIXaaacaGLOaGaayzkaaaaaa@3DB6@ can be written as 1or 2. By selecting the values of and, one can get the following sets of end conditions:

n0 = 2, n1 = 2 ……….simply supported ----- simply supported

By substitution in equations (40), (41), one can couple these equations together to give

W2, W(N-1) as:
W 2 * = 1 AXN k=3 N2 AXK1 W k * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4vamaaDaaajuaibaGaaGOmaaqaaiaacQcaaaqcfaOaeyyp a0ZaaSaaaeaacaaIXaaabaGaamyqaiaadIfacaWGobaaamaaqahaba GaamyqaiaadIfacaWGlbGaaGymaiaadEfadaqhaaqcfasaaiaadUga aeaacaGGQaaaaaqaaiaadUgacqGH9aqpcaaIZaaabaGaamOtaiabgk HiTiaaikdaaKqbakabggHiLdaaaa@4BE3@  (42)

W N1 * = 1 AXN k=3 N2 AXKN W k * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4vamaaDaaajuaibaGaamOtaiabgkHiTiaaigdaaeaacaGG QaaaaKqbakabg2da9maalaaabaGaaGymaaqaaiaadgeacaWGybGaam OtaaaadaaeWbqaaiaadgeacaWGybGaam4saiaad6eacaWGxbWaa0ba aKqbGeaacaWGRbaabaGaaiOkaaaaaeaacaWGRbGaeyypa0JaaG4maa qaaiaad6eacqGHsislcaaIYaaajuaGcqGHris5aaaa@4DBA@ (43)
where
AXKN1= C 1,k ( n0 ) . C N,N1 ( n1 ) C 1,N1 ( n0 ) . C N,k ( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyqaiaadIfacaWGlbGaamOtaiaaigdacqGH9aqpcaWGdbWa a0baaKqbGeaacaaIXaGaaiilaiaadUgaaeaajuaGdaqadaqcfasaai aad6gacaaIWaaacaGLOaGaayzkaaaaaKqbakaac6cacaWGdbWaa0ba aKqbGeaacaWGobGaaiilaiaad6eacqGHsislcaaIXaaabaqcfa4aae WaaKqbGeaacaWGUbGaaGymaaGaayjkaiaawMcaaaaajuaGcqGHsisl caWGdbWaa0baaKqbGeaacaaIXaGaaiilaiaad6eacqGHsislcaaIXa aabaqcfa4aaeWaaKqbGeaacaWGUbGaaGimaaGaayjkaiaawMcaaaaa juaGcaGGUaGaam4qamaaDaaajuaibaGaamOtaiaacYcacaWGRbaaba qcfa4aaeWaaKqbGeaacaWGUbGaaGymaaGaayjkaiaawMcaaaaaaaa@6077@  (44)
AXKN= C 1,2 ( n0 ) . C N,k ( n1 ) C 1,k ( n0 ) . C N,k ( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyqaiaadIfacaWGlbGaamOtaiabg2da9iaadoeadaqhaaqc fasaaiaaigdacaGGSaGaaGOmaaqaaKqbaoaabmaajuaibaGaamOBai aaicdaaiaawIcacaGLPaaaaaqcfaOaaiOlaiaadoeadaqhaaqcfasa aiaad6eacaGGSaGaai4AaaqaaKqbaoaabmaajuaibaGaamOBaiaaig daaiaawIcacaGLPaaaaaqcfaOaeyOeI0Iaam4qamaaDaaajuaibaGa aGymaiaacYcacaGGRbaabaqcfa4aaeWaaKqbGeaacaWGUbGaaGimaa GaayjkaiaawMcaaaaajuaGcaGGUaGaam4qamaaDaaajuaibaGaamOt aiaacYcacaWGRbaabaqcfa4aaeWaaKqbGeaacaWGUbGaaGymaaGaay jkaiaawMcaaaaaaaa@5C70@  (45)
AXN= C N,2 ( n1 ) . C 1,N1 ( n0 ) C 1,2 ( n0 ) . C N,N1 ( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyqaiaadIfacaWGobGaeyypa0Jaam4qamaaDaaajuaibaGa aiOtaiaacYcacaaIYaaabaqcfa4aaeWaaKqbGeaacaWGUbGaaGymaa GaayjkaiaawMcaaaaajuaGcaGGUaGaam4qamaaDaaajuaibaGaaGym aiaacYcacaWGobGaeyOeI0IaaGymaaqaaKqbaoaabmaajuaibaGaam OBaiaaicdaaiaawIcacaGLPaaaaaqcfaOaeyOeI0Iaam4qamaaDaaa juaibaGaaGymaiaacYcacaaIYaaabaqcfa4aaeWaaKqbGeaacaWGUb GaaGimaaGaayjkaiaawMcaaaaajuaGcaGGUaGaam4qamaaDaaajuai baGaamOtaiaacYcacaGGobGaeyOeI0IaaGymaaqaaKqbaoaabmaaju aibaGaamOBaiaaigdaaiaawIcacaGLPaaaaaaaaa@5E82@  (46)
Hence W 2 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4vamaaDaaajuaibaGaaGOmaaqaaiaacQcaaaaaaa@392F@ , W (N1) * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4vamaaDaaajuaibaGaaiikaiaad6eacqGHsislcaaIXaGa aiykaaqaaiaacQcaaaaaaa@3C47@ are introduced in terms of W 3 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4vamaaDaaajuaibaGaaG4maaqaaiaacQcaaaaaaa@3930@ , W 4 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4vamaaDaaajuaibaGaaGinaaqaaiaacQcaaaaaaa@3931@ ,..., W (N2) * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4vamaaDaaajuaibaGaaiikaiaad6eacqGHsislcaaIYaGa aiykaaqaaiaacQcaaaaaaa@3C48@ , to be smoothly inserted into introduced into discretized from of the governing equations (21), (22) and (23) to be applied at (N-4_ grid points, then the matrices of the weighting coefficients can be obtained from

C 1 = C i,k ( 2 ) C i,2 ( 2 ) AXK1+ C i,N1 ( 2 ) .AXKN AXN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4qamaaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0Jaam4q amaaDaaajuaibaGaamyAaiaacYcacaWGRbaabaqcfa4aaeWaaKqbGe aacaaIYaaacaGLOaGaayzkaaaaaKqbakabgkHiTmaalaaabaGaam4q amaaDaaajuaibaGaaiyAaiaacYcacaaIYaaabaqcfa4aaeWaaKqbGe aacaaIYaaacaGLOaGaayzkaaaaaKqbakaadgeacaWGybGaam4saiaa igdacqGHRaWkcaWGdbWaa0baaKqbGeaacaGGPbGaaiilaiaac6eacq GHsislcaaIXaaabaqcfa4aaeWaaKqbGeaacaaIYaaacaGLOaGaayzk aaaaaKqbakaac6cacaWGbbGaamiwaiaadUeacaWGobaabaGaamyqai aadIfacaWGobaaaaaa@5C6D@ (47)
C m1 = C i,k ( m ) C i,2 ( m ) AXK1+ C i,N1 ( m ) .AXKN AXN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4qamaaBaaajuaibaGaamyBaiabgkHiTiaaigdaaeqaaKqb akabg2da9iaadoeadaqhaaqcfasaaiaadMgacaGGSaGaam4AaaqaaK qbaoaabmaajuaibaGaamyBaaGaayjkaiaawMcaaaaajuaGcqGHsisl daWcaaqaaiaadoeadaqhaaqcfasaaiaacMgacaGGSaGaaGOmaaqaaK qbaoaabmaajuaibaGaamyBaaGaayjkaiaawMcaaaaajuaGcaWGbbGa amiwaiaadUeacaaIXaGaey4kaSIaam4qamaaDaaajuaibaGaaiyAai aacYcacaGGobGaeyOeI0IaaGymaaqaaKqbaoaabmaajuaibaGaamyB aaGaayjkaiaawMcaaaaajuaGcaGGUaGaamyqaiaadIfacaWGlbGaam OtaaqaaiaadgeacaWGybGaamOtaaaaaaa@5EEE@  (48)
Where:
C1 is a new weighting coefficient for second order derivative.
Cm-1 is a new weighting coefficient for mth order derivative

Numerical results
The introduced problem with differential quadrature solution was verified with the model presented by Y Yang et al.10 The considered values for geometric and engineering properties of beam, foundation and sprung masses load are shown in the following Table 1-3. The transverse deflection is plotted versus the longitudinal coordinate (x) considering one oscillator as shown in the following Figure 1. Good agreement between proposed solution for 13 Chebyshev- Gauss- Lobatto grid points and the solution presented by Y. Yang et al.10 for 200-term Galerkin truncation, considering one oscillator, was shown in above Figure 2. The transverse deflection of the beam was investigated for first three modes λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSj abg2da9iaaigdaaaa@39EE@ , λ=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSj abg2da9iaaikdaaaa@39EF@ and 3, considering 13 sprung masses at time As shown in Figure 3 the trend of the curve is the same due to the considered number of sprung masses and the central deflection increases as the mode number increases. The effect of changing modulus of elasticity of beam material, consequently changing the shear modulus of the material, on the transverse deflection of the beam was carried out. As shown in Figure 4, the central deflection increases as both of the modulus of elasticity and shear modulus increases. The effects of both linear and non-linear foundation parameters and are studied. As shown in (Figure 5) & (Figure 6), as the linear foundation parameter increases the transverse deflection increases but as the nonlinear foundation parameter increases the transverse deflection decreases. Finally, the effect of the Pasternak shear deformation coefficient is investigated. As shown in Figure 7, as the shear deformation increases the transverse deflection increases.

Figure 1 Timoshenko Beam Rested on Viscoelastic Fondation.

Figure 2 Verification of Presented Solution.

Figure 3 Transverse Deflection of the Beam for First Three Modes.

Figure 4 Effects of Both Modulus of Elasticity and Shear Modulus on Transverse Deflection of the Beam.

Figure 5 Effect of Linear Foundation Parameter K1 on Transverse Deflection of the Beam.

Figure 6 Effect of Nonlinear Foundation Parameter K3 on Transverse Deflection of the Beam.

Figure 7 Effect of Pasternak Shear Deformation Coefficient (Gp) on Transverse Deflection of the Beam.

Property

Value

Units

Modulus of elasticity (E)

60998

Gpa

Shear modulus (G)

77

Gpa

Mass density ( ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyWdihaaa@3859@ )

2373

Kg

Shear correction factor (k)

0.4

Thickness (m)

0.3

m

Width

1

m

Length

160

m

Table 1 Geometric and Engineering Properties of the Beam

Property

Value

Units

Linear stiffness (K1)

8

Mpa

Nonlinear stiffness (K3)

8

MN.m-4

Viscous dumpling ( μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiVd0gaaa@384F@ )

0.3

MN.s.m-2

Shear deformation coefficient (Gp)

66.69

MN

Table 2 Engineering Properties of the Foundation

Property

Value

Units

Oscillator mass (mi)

21260

kg

Oscillator stiffness (ki)

5.8695x102

N.m-1

Table 3 Engineering Properties of the Sprung Masses

Conclusion

Differential quadrature method is an effective numerical technique can be applied to calculate nonlinear behaviors of Timoshenko beam rested on non-linear viscoelastic foundation. Good agreement between differential quadrature technique using 13 grid points and the Galerkin truncation method for 200 terms that reflect efficiency and reliability of differential quadrature method for this non-linear problem. Also differential quadrature gives the availability of considering any number of sprung masses. The numerical investigation shows that both linear and non-linear foundation parameter have more considerable effects on beam transverse deflection than Pasternak shear deformation coefficient.

Notations

A is the beam cross section area.
b is the width of beam cross section.
Cij(m)is a weighting coefficient for the derivative of order (m).
E is the modulus of elasticity of the beam material.
G is the beam shear modulus.
Gp is the shear deformation coefficient of the foundation.
h is the height of beam cross section.
I is the second moment of area.
K1 is the linear foundation parameter.
Ka is the non-linear foundation parameter.
k is the shear correction factor.
ki is the stiffness of sprung masses.
L is the beam length.
mi is the mass of sprung masses.
N is the number of grid points.
t is the time.
w is the vertical displacement of the beam.
x is the horizontal coordinate.
η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE7aOb aa@3825@ is the damping coefficient of the foundation.
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXb aa@382F@ is the rotation of the cross section.

Acknowledgements

None.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Ali Hasan Nayfeh. Introduction to perturbation techniques. A Wiley-Inter science Publication; 1993. p. 1-532.
  2. Ming-Hung Hsu. Vibration characteristics of rectangular plates resting on elastic foundations and carrying any number of sprung masses. International Journal of Applied Science and Engineering. 2006;4(1):83-89.
  3. Ming-Hung Hsu. Nonlinear deflection analysis of electrostatic micro-actuators with different electrode and beam shapes. Iranian Journal of Electrical and Computer Engineering. 2007;6(1):73-79.
  4. Giuseppe Muscolino, Alessandro Palmeri. Response of beams resting on viscoelastically damped foundation to moving oscillators. International Journal of Solids and Structures. 2007;44(5):1317–1336.
  5. Li-Qun Chen. Nonlinear dynamics. Croatia: INTECH; 2010. 366 p.
  6. Iancu-Bogdan Teodoru and Vasile Musat. The modified vlasov foundation model: an attractive approach for beams resting on elastic supports. Electronic Journal of Geotechnical Engineering. 2010;15:1-13.
  7. Davood Younesian, Zia Saadatnia, Hassan Askari. Analytical solutions for free oscillations of beams on nonlinear elastic foundations using the variational iteration method. Journal of Theoretical and Applied Mechanics. 2012;50(2):639-652.
  8. Ahmad Salah Edeen Nassef. Structural applications on differential quadrature method. Lap Lambert academic publishing. 2012.
  9. EJ Sapountzakis, AE Kampitsis. Nonlinear dynamic analysis of shear deformable beam-columns on nonlinear three-parameter viscoelastic foundation. I: Theory and numerical implementation. Journal of Engineering Mechanics. 2013;139(7):886-896.
  10. Yan Yang, Hu Ding, Li-Qun Chen. Dynamic response to a moving load of a timoshenko beam resting on a nonlinear viscoelastic foundation. Acta Mechanica Sinica. 2013;29(5):718–727.
  11. Hu Ding, Kang-Li Shi, Li-Qun Chen, et al. Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load; Nonlinear Dynamics. 2013;73(1-2):285–298.
Creative Commons Attribution License

©2018 Nassef, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.