Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 5 Issue 1

Decentralized cooperative control with connectivity maintenance for multiagent systems

Xiaowu Yang,1,3 Xiaoping Fan,1,2 Ganrong Li3

1School of Information Science and Engineering, Central South University, Changsha, China
2School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, China
3College of Engineering, Tongren Polytechnic College, Tongren, China

Correspondence: Xiaoping Fan, School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, Hunan 410205, China, Tel +86 135 0731 9135

Received: June 12, 2018 | Published: January 4, 2019

Citation: Yang X, Fan X, Li G. Decentralized cooperative control with connectivity maintenance for multiagent systems. Int Rob Auto J. 2019;5(1):1-9. DOI: 10.15406/iratj.2019.05.00163

Download PDF

Abstract

This paper addresses the cooperative control with connectivity maintenance problem for multi-agent systems. It is assumed that each agent has the same sensing capability, that is to say, each agent can access the relative measurements from its neighboring agents constrained by its sensing maximum distance. In order to fulfill the control objective, the interaction topology of multi-agent systems is first modeled as the graph, and a feasible set of weights is given according to the actual distances of edges established in the graph. Then, a decentralized non-linear controller is provided, which guarantees the property of connectivity maintenance. Moreover, using the above obtained results, the stability analysis of cooperative control for multi-agent systems is investigated by the Lyapunov theory, which shows that the control objective is achieved. To demonstrate the effectiveness of the proposed control schemes, several numerical simulation results are presented.

Keywords: multi-agent systems, cooperative control, connectivity maintenance, laplacian matrix

Introduction

Multi-agent systems have received a great deal of attention by many researchers from different subjects, which can provide a highly efficient way to perform some particular tasks in extreme environments. Many potential practical applications of Multi-agent systems can range from, for instance, space-based interferometers, surveillance, and reconnaissance systems, hazardous material handling, and distributed reconfigurable sensor networks. Hence, agents are required to cooperate to achieve these tasks, which means that agents must interact with each other, in general, each agent should receive some local information needed to accomplish the tasks, which implies that the objective is to present a control approach that meets several physical constraints.1-3

It is assumed that agents can communicate with each other in terms of the sensing constraints, then necessary information can be obtained by using the wireless communication sensors, generally, such information can include states, relative measurements between any two agents and the distances in the Euclidean space.4,5 It is also pointed that the information of each individual agent is always limited due to the presence of physical communication constraints. Therefore, the information interaction plays a critical important role in the cooperation (or coordination) control of multi-agent systems.6,7 As a consequence, the resulting communication architecture of the agents can be abstracted by a graph, which is often called information graph. As a result, a dynamic proximity graph is developed, generally speaking, which relies on the information states of agents, the dynamic topology of the graph can be generated simultaneously according to the movements of agents, which results in different algebraic connectivity properties, therefore, it is meaningful to study the connectivity of the graph modeled by a team of agents. In practical application, for example, the soldiers should react to the potential threats in different terrains and battlefield situations while keeping in touch with each other.

The valuable information can be obtained by investigating the spectral properties of graph Laplacian, i.e., the eigenvalues and eigenvectors, thus the basic structure of graph can be clearly characterized, while the local and limited information can be obtained by each agent due to limited sensing ability and local communicate with other agents, and eigenvectors are easily computed, thus the decentralized control algorithm is considered.8,9 In this paper, we will investigate the nature and performance of the network of agents by investigating its corresponding eigenvalues of the Laplacian L(G). In 1973, Fielder10 defined the algebraic connectivity as the second smallest eigenvalue λ2(L) of Laplacian matrix for undirected graph. Specifically, the connected graph can be fully characterized by using the sign of λ2(L). it is difficult to maintain the connectivity as the connectivity is a time-varying function of movement of the vertices.11 To this purpose, several control strategies are proposed by applying the useful information from the relation between the connectivity and second smallest eigenvalue.12,13 In general, using the information states of the system, mathematically, λ2(L) can be represented. In addition, each agent has local information from its neighbors defined by proximity graph described as follows or R-disk graph,14 which implies that agent does not have the value of the quantity λ2(L), or equivalently, in this way, λ2(L) can hardly be computed directly, thus the optimization methods are used.15,16 In particular, if any two agents have no interaction or the local information of one agent is not available to the other agent, then the relationship between them is not established, and the corresponding graph is not connected, thus we have λ2(L)=0, and λ2(L)=n if the graph is fully connected, namely, each agent have relationships with the rest of agents, from the information flow point of view, the shared information are regarded as the information states of all agents, such information is not easy to obtain in the real applications.

As indicated in,17 a theoretical framework is presented, and connectivity maintenance methods are discussed. In general, two main different approaches are developed to deal with connectivity maintenance problem in multi-agent systems networks, that is local and global connectivity based decentralized control. Decentralized approaches for controlling local connectivity in agent networks have been developed (see e.g.18,19). As illustrated in,20 the authors proposed a decentralized control method for maintaining the global connectivity in mobile robotic systems, both simulation and experiment results are provided to validate the effectiveness of the proposed algorithm.21 Using the bounded control inputs, the authors first proposed control algorithm for maintaining the global connectivity, and a theoretical analysis of the disturbance are presented as well. In order to achieve coordinate control tasks, keeping communication among agents and inter-agent sensing costs limited are major aspects of implementing coordinated tasks in multi-agent systems, which is needed to considered, where the cardinality of the directed edges |E| is defined as communication (or sensing) cost, which is usually defined as communication complexity.

In this paper, motivated by above discussion, we focus on maintaining the connectivity of the dynamic network for a team of agents and the consensus control is used to validate the proposed control approach. To accomplish our control objective, we suppose that each agent can only have local and limited information, which poses theoretical and practical challenges. We investigate the algebraic connectivity of graph by using the second smallest eigenvalue λ2(L) defined by Fielder. The estimate of λ2(L) can be usually computed by using power iteration method. Moreover, the dynamic edge weight is defined, which is usually referred to as edge (or called link) tension. In addition, a sufficient condition for a non-negative matrix is derived, which guarantees the eigenvalues are positive numbers. To maintain the connectivity of the graph, the energy function is defined and the stability of the system is analyzed later.

The remainder of the paper is organized as follows. Some basic terminologies of graph theory and problem formulation are given in Section II. A control strategy using local and limited information is proposed in Section III. Stability analysis of control law and convergence of consensus on information architecture for multiple agents are investigated in Section IV. Numerical simulation results are provided to illustrate the theoretical results in Section V. Finally, the conclusions are presented in Section VI.

Background and preliminaries

In this section, we review some of the useful terminologies of graph theory used throughout in this paper. A graph G=(V, E) is composed of two sets of nodes (or vertices) V and links (or edges) E, respectively. We can label them with integers in numerical order, namely, {1, 2,…, n}, for future reference, thus the set of nodes V={v1, v2,, vn} is determined. Based on this, the edge set E = {e1, e2,…, en} can be recognized if there exists an edge ek E between agent i and agent j for all (i, j) ∈ {1, 2,…, n}. In general, the number of edges is no less than the number of vertices, which is considered in the sequel. An ordered pair of nodes (i, j) is called if single direction is assigned to the edges, specifically, vertices i and j are the parent point and the childhood point, respectively, the important relation (i, j)=(j, i) is guaranteed, and vice versus, geometrically, which is usually denoted by a single arrow, notice that, called unordered pair, if it can be denoted by double arrow or simple line, i.e., (i, j)=(j, i)∈E.

An undirected graph is only considered in this paper, for simplicity, which is directly referred to as a graph. The directed graph is called if all the edges in the graph are ordered pairs of nodes, and the undirected graph are created if all the edges in the graph have the property of (i, j)=(j, i)∈E. A directed path is a sequence of edges satisfies that the vertices taken from the vertices set V are different in the path, self-loops and multiple edges are neglected, i.e., v1 → v2 → v3 vk with vkV, where v1 and vk are interpreted as the start node and the end node, respectively, and {v2, v3,, vk−1} the intermediate nodes. Note that the self-loop edge vi → vi consists of one vertex i such that both start vertex and end vertex are the same.5,22 A directed graph is referred to as strongly connected if there exists a path generated by any two nodes (vi → vj), i= j, (i, j)={1, 2,…, n} with the specified direction of the edges. According to the above results, the information topology of the formation for multi-agent is abstracted to the corresponding graph, where each agent i is represented the vertex vi, i.e., ai → vi.

To introduce the concept of algebraic connectivity, we first define a neighborhood set of agent i, which is widely used in the rest of this paper.

From a practical point of view, it would be interesting to consider the mobile networks, because the communication networks created by a group of agents are characterized by temporal variations and the real time movements of individual agents.23,24 Jadbabaie et al.25 studied the stability properties of coupled non-linear oscillator networks under the spectral graph theory and control theory; moreover, Poonawala and Spong5 investigated the strong connectivity problem in directed proximity graphs, the decentralized control strategy is proposed, despite the presence of disturbances or additional control objectives, the strong connectivity can be maintained.

[Neighborhood set]. For an agent i, we define the neighborhood set of agent i, denoted by Ni={j, (i, j)E} with respect to agent i, i.e., agent j is the neighbor of agent i, implying that agent i can acquire the relative information form Ni, such as relative positions, distances and angles in its local coordinate system, that is to say, the agent j Ni can be view as attractive goals to agent i. Note that the total number of neighbors for agent i is the cardinality of neighborhood set, denoted by |Ni|.

From Figure1, three terminologies related to graphs are provided, namely, strongly connected graph, unilateral connected graph and weakly connected graph, respectively. For a graph G = (V, E), if there exists only a path Γu consists of vertices and edges, such that (vi, vj ) ∈ V and vi ↔ vj , i.e., v1 → e1 → v2 → e2 → v3 → e3 → v4 → e4 → v1 , with the edge ek=(vi, vj).

Figure 1 (A) Strongly connected graph; (B) Unilateral connected graph; (C) Weakly connected graph.

To proceed, we now introduce the important concept of the proximity graphs with the quantity △, where △ can be view as the feasible distance or maximum distance; hence the resulting proximity graphs are referred to as △-disk proximity graphs. Our purpose here is how to define the relative edge between agents i and j, to this end, the standard procedure is applied and its definition is then provided as follows.

[Proximity Graphs] Let pi (xi(t), yi(t)) and pj (xj(t), yj(t)) be the positions of agent i and j in 2-dimensional plane, respectively, dij the Euclidean distance, i.e.,

d ij = ( x i ( t ) x j ( t ) ) 2 + ( y i ( t ) y j ( t ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizam aaBaaajuaibaGaamyAaiaadQgaaKqbagqaaiabg2da9maakaaabaWa aeWaaeaacaWG4bWaaSbaaKqbGeaacaWGPbaabeaajuaGdaqadaqaai aadshaaiaawIcacaGLPaaacqGHsislcaWG4bWaaSbaaKqbGeaacaWG QbaajuaGbeaadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcaca GLPaaadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRmaabmaabaGa amyEamaaBaaajuaibaGaamyAaaqabaqcfa4aaeWaaeaacaWG0baaca GLOaGaayzkaaGaeyOeI0IaamyEamaaBaaajuaibaGaamOAaaqcfaya baWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaW baaKqbGeqabaGaaGOmaaaaaKqbagqaaaaa@596B@ (1)

which results in dynamic proximity graphs characterized by the time-varying states pi(t) and pj(t). We here assume that dij=dji by neglecting model errors, such as the parameter sensor noise and sensor bias. For undirected proximity graph, for instance, if dij≤△, agent j has entered the measurable area of agent i, or equivalently, the information of agent j is available to agent i, and vice versus, as a result, the dynamic edge (or link) ek is generated between two vertices vi and vj, and if agents are out of range of each other, namely, dij>△, no information about each other is acquired by agents i and j, thus no edge is established between two agents i and j. For brevity, we use l(ek) to denote the edge relation as

l( e k )={ 1, d ij Δ, 0, otherwise. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS4eHW 2aaeWaaeaacaWGLbWaaSbaaeaacaWGRbaabeaaaiaawIcacaGLPaaa cqGH9aqpdaGabaqaauaabeqaciaaaeaacaaIXaGaaiilaaqaaiaads gadaWgaaqaaiaadMgacaWGQbaabeaacqGHKjYOcqGHuoarcaGGSaaa baGaaGimaiaacYcaaeaacaWGVbGaamiDaiaadIgacaWGLbGaamOCai aadEhacaWGPbGaam4CaiaadwgacaGGUaaaaaGaay5Eaaaaaa@502A@ (2)

with above results in hand, a proximity graph is obtained, which can provide a rigorous formalization of interaction topology of multiagent system.

As indicated, according to the dynamic nature of the proximity graphs, one can readily observe that an edge should be appeared and disappeared simultaneously. In order to characterize the desired formation, information interaction plays a critical role to the topology of agents, suppose that each agent should interact with its neighbors to obtain necessary knowledge used to change its interior state by selecting appropriate controller. Using the definition of neighborhood set, we present the following assumptions.

As before, suppose that each agent has the same measure range, denoted by △, thus the sensing area of agent i is the sphere Ω with radius △. When agent j Ni travels into this area Ω of agent i, the relative measurements are obtained by agent i, note that not all agents are within this area can be sensed by agent i, for instance, three agents are located at the same line. Moreover, the relative displacement between agent j and agent i can be obtained by agent j, this requirement is readily satisfied if we assume agent j can acquire knowledge from agent i by using the visual sensor.

To proceed, let m be the cardinality of edges, together with the total number of vertices n mentioned above, then the incidence matrix of the graphs, denoted by M(V, E)n×m=[mij] are obtained, with each entry mij=1 if i is the start vertex of edge ek, k={1, 2,…, n}, mij=−1 if i is the end vertex of edge ek , k={1, 2,…, n}, otherwise, mij=0.

In view of M(V, E)n×m , the Laplacian matrix L(V, E) is given as

L( V, E ) = M( V, E )M ( V, E ) T R n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbacbaaaaaaaaapeGaamita8aadaqadaqaa8qacaWGwbGaaiil aiaabccacaWGfbaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0Jaae iiaiaad2eapaWaaeWaaeaapeGaamOvaiaacYcacaqGGaGaamyraaWd aiaawIcacaGLPaaapeGaamyta8aadaqadaqaa8qacaWGwbGaaiilai aabccacaWGfbaapaGaayjkaiaawMcaamaaCaaajuaibeqaa8qacaWG ubaaaKqbakabgIGiolaadkfapaWaaWbaaeqajuaibaWdbiaad6gacq GHxdaTcaWGUbaaaaaa@564B@ (3)

Note that Laplacian matrix can also be defined by L(V, E)=D(V, E)−A(V, E) Rn×n , where D(V, E) and A(V, E) denote the diagonal matrix and adjacency matrix, respectively. We are now ready to state some important properties of Laplacian matrix L(V, E) below.

One can readily verify that i) L(V, E) is positive semi-definite and symmetric; ii) Each row sum of L(V, E) is equal to zero, the rest eigenvalues are positive numbers, i.e., {λ2, λ3,…, λn } > 0, moreover, we assume that λ23<,…, < λn , apparently, the total number of different positive eigenvalues is n–1; iii) The smallest eigenvalue of L(V, E) is always 0, whose corresponding eigenvector is typically, with 1n is the column vector consisting of each component equals to one. In particular, we have Null (V, E)=span{1} when graph G is connected, where Null(V, E) represents the null space of G. In the case of undirected graphs G, we introduce the following well-known property:

λ 2 ( L )=min P T LP P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIYaaajuaGbeaadaqadaqaaiaadYeaaiaawIca caGLPaaacqGH9aqpciGGTbGaaiyAaiaac6gadaWcaaqaaiaadcfada ahaaqcfasabeaacaWGubaaaKqbakaadYeacaWGqbaabaWaauWaaeaa caWGqbaacaGLjWUaayPcSdWaaWbaaKqbGeqabaGaaGOmaaaaaaaaaa@494D@ (4)

with superscript T representing the transpose, P taking from (10) defined in the section III.

We next introduce the important concept of algebraic connectivity. As mentioned above, for undirected graphs, the first positive eigenvalue λ2 taken from eigenvalues {λ2, λ3,…, λn} of its associated Laplacian (3) is called the Fiedler eigenvalue, which is also defined as algebraic connectivity.

Let X R n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwai abgIGiolaadkfadaahaaqcfasabeaacaWGUbGaey41aqRaamOBaaaa aaa@3E09@ be an appropriate permutation matrix, Ψ R n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiQdK LaeyicI4SaamOuamaaCaaajuaibeqaaiaad6gacqGHxdaTcaWGUbaa aaaa@3EBB@ the upper block triangular, if X 1 M x Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwam aaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfaOaamytamaaBaaajuai baGaamiEaaqcfayabaGaeyicI4SaeuiQdKfaaa@3FA6@ , then M is referred to as the reducible matrix. If M is not reducible, then M is irreducible.

[Balanced Graphs]: If the total numbers of out-degree Dout (vi ) and in-degree Din (vi ) of a vertex vi are equal, namely, Dout (vi)=Din (vi), then the vertex vi of a directed graph G is balanced. Moreover, for all i, jV, iff all vertices of a directed graph G are balanced, then the directed graph G is called balanced, which is shown in Figure 2. Apparently, each node (vi, i ∈{1, 2, …, n}) of a bi-directed graph is balanced, thus a bi-directed graph is balanced.

Figure 2 Three cases of balanced graphs.

Using (3), for a undirected graph G(V, E) , we can define a Lyapunov candidate function (or called Lapalacian potential) as

V G = 1 2 ji,j N i n α ij ϕ( p i , p j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadAfadaWgaaqcfasaaiaadEeaaKqbagqaaiabg2da9maa laaabaGaaGymaaqaaiaaikdaaaWaaabCaeaacqaHXoqydaWgaaqaai aadMgajuaicaWGQbaajuaGbeaaaKqbGeaacaWGQbGaeyiyIKRaamyA aiaacYcacaWGQbGaeyicI4SaamOtaKqbaoaaBaaajuaibaGaamyAaa qabaaabaGaamOBaaqcfaOaeyyeIuoacqaHvpGzcaGGOaGaamiCamaa BaaajuaibaGaamyAaaqabaqcfaOaaiilaiaadchadaWgaaqcfasaai aadQgaaeqaaKqbakaacMcaaaa@5AA9@ (5)

where α ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3ADD@ is the entry of the adjacency matrix A(V, E), i.e., α ij A(V,E) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyicI4Saamyqaiaa cIcacaGGwbGaaiilaiaadweacaGGPaaaaa@40D4@ , to be specific, α ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3ADD@ =1 if , otherwise, α ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3ADD@ = 0. Physically, the agents i and j are within the △-proximity graphs as time evolves. Note that, if the edge ek = (vi, vj) E is established at a special time t= t0, which will be contained in the networks of a group of agents i and j in future t>t0. The undirected graph is called if  is a function that depends on both states pi and pj, the following properties should be satisfied.

  1. Φ( p i , p j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy KaaiikaiaacchadaWgaaqcfasaaiaadMgaaKqbagqaaiaacYcacaGG WbWaaSbaaKqbGeaacaWGQbaajuaGbeaacaGGPaaaaa@3F86@ is a continuous function, and Φ( p i , p j )<l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy KaaiikaiaacchadaWgaaqcfasaaiaadMgaaKqbagqaaiaacYcacaGG WbWaaSbaaKqbGeaacaWGQbaajuaGbeaacaGGPaGaeyipaWJaamiBaa aa@417B@ , where l denotes a bounded constant number, i.e., l<R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqZcjuaGca WGSbGaeyipaWJaeyOhIuQaeyicI4SaamOuaaaa@3C87@ , since the feasible distance domain defined as above.
  2. Φ( p i , p j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy KaaiikaiaacchadaWgaaqcfasaaiaadMgaaKqbagqaaiaacYcacaGG WbWaaSbaaKqbGeaacaWGQbaajuaGbeaacaGGPaaaaa@3F86@ is a non-negative scalar function Φ( p i , p j )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy KaaiikaiaacchadaWgaaqcfasaaiaadMgaaKqbagqaaiaacYcacaGG WbWaaSbaaKqbGeaacaWGQbaajuaGbeaacaGGPaGaeyypa0JaaGimaa aa@4146@ , if and only if p i = p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiCam aaBaaajuaibaGaamyAaaqcfayabaGaeyypa0JaaiiCamaaBaaajuai baGaamOAaaqcfayabaaaaa@3D09@ , i.e., p i p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiCam aaBaaajuaibaGaamyAaaqcfayabaGaeyOeI0IaaiiCamaaBaaajuai baGaamOAaaqcfayabaaaaa@3CF0@ is the relative measurement between agents (or nodes) i and j.

To obtain the gradient flow of (5), we first introduce the gradient operator Δ pi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq 0aaSbaaKqbGeaacaWGWbGaamyAaaqcfayabaaaaa@3AAA@ with respect to pi, namely,

p i := p i ,i{ 1,2,...,n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaSbaaKqbGeaacaWGWbqcfa4aaSbaaKqbGeaacaWGPbaabeaaaeqa aKqbakaacQdacqGH9aqpdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadc hadaWgaaqcfasaaiaadMgaaeqaaaaajuaGcaGGSaGaamyAaiabgIGi opaacmaabaGaaGymaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaai OlaiaacYcacaWGUbaacaGL7bGaayzFaaaaaa@4EEA@ (6)

then the gradient flow of (5) is calculated as

p ˙ i = p i V G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aacaWaaSbaaKqbGeaacaWGPbaabeaajuaGcqGH9aqpcqGHsislcqGH his0daWgaaqcfasaaiaadchajuaGdaWgaaqcfasaaiaadMgaaeqaaa qabaqcfaOaamOvamaaBaaajuaibaGaam4raaqcfayabaaaaa@42E7@ (7)

The (7) can be viewed as the control input or velocity of pi, which needs to be determined, thus the controller is obtained by designing the control input, which is usually called as the gradient descent approach.

In order to find the value of algebraic connectivity λ2(L) of the weighted Laplacian matrix, we define a matrix as

H= I n ς L n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9iaadMeadaWgaaqcfasaaiaad6gaaeqaaKqbakabgkHiTiab ek8awjaadYeadaWgaaqcfasaaiaad6gacqGHxdaTcaWGUbaabeaaaa a@42A4@ (8)

where In denotes the identity matrix; ς is a sufficiently small positive number. To this end, each entry h i,j ,i,j{1,2,...,n} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAam aaBaaajuaibaGaamyAaiaacYcacaWGQbaajuaGbeaacaGGSaGaamyA aiaacYcacaWGQbGaeyicI4Saai4EaiaaigdacaGGSaGaaGOmaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaaiOBaiaac2haaaa@482B@ of H=  [ h i,j ] n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamisaiabg2da9iaabccapaWaamWaaeaapeGaamiAa8aadaWg aaqcfasaa8qacaWGPbGaaiilaiaadQgaa8aabeaaaKqbakaawUfaca GLDbaadaWgaaqcfasaa8qacaWGUbGaey41aqRaamOBaaWdaeqaaaaa @4410@ is a zero or positive number by selecting a proper value of ς, which is readily achieved, to be specific, for instance, we can choose ς 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOWdy LaeyizIm6aaSGaaeaacaaIXaaabaGaamOBaaaaaaa@3B9E@ . With the help of H, the estimate of λi can be calculated. For this purpose, the basic procedures of power iteration method are briefly introduced as follows.

For a given matrix A, selecting the initial vector x(0) randomly , the computing algorithm is given as

for i = 1, 2, …, n

y ( k+1 ) =A x ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEam aaCaaabeqcfasaaKqbaoaabmaajuaibaGaam4AaiabgUcaRiaaigda aiaawIcacaGLPaaaaaqcfaOaeyypa0JaamyqaiaadIhadaahaaqabK qbGeaajuaGdaqadaqcfasaaiaadUgaaiaawIcacaGLPaaaaaaaaa@4380@

α k = max( y (k) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqySde2damaaBaaajuaibaWdbiaadUgaaKqba+aabeaapeGa eyypa0Jaaeiiaiaad2gacaWGHbGaamiEa8aadaqadaqaa8qacaWG5b WdamaaCaaabeqcfasaaiaacIcapeGaam4Aa8aacaGGPaaaaaqcfaOa ayjkaiaawMcaaaaa@44BC@ ,

λ 1 = max( y 0 )/max( x 0 ) with max( y(k) ) =  | | y k | | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4UdW2damaaBaaajuaibaWdbiaaigdaaKqba+aabeaapeGa eyypa0Jaaeiiaiaad2gacaWGHbGaamiEa8aadaqadaqaa8qacaWG5b WdamaaCaaabeqcfasaa8qacaaIWaaaaaqcfa4daiaawIcacaGLPaaa peGaai4laiaad2gacaWGHbGaamiEa8aadaqadaqaa8qacaWG4bWdam aaCaaabeqcfasaa8qacaaIWaaaaaqcfa4daiaawIcacaGLPaaapeGa aeiiaiaadEhacaWGPbGaamiDaiaadIgacaqGGaGaamyBaiaadggaca WG4bWdamaabmaabaWdbiaadMhapaGaaiika8qacaWGRbWdaiaacMca aiaawIcacaGLPaaapeGaaeiiaiabg2da9iaabccapaWaaqWaaeaada abdaqaa8qacaWG5bWdamaaCaaabeqcfasaa8qacaWGRbaaaaqcfa4d aiaawEa7caGLiWoaaiaawEa7caGLiWoadaWgaaqcfasaa8qacqGHEi sPaKqba+aabeaaaaa@664E@ ;

    x (k+1) =  α k y (k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaiiOaiaacckacaGGGcGaamiEa8aadaahaaqabKqbGeaacaGG OaWdbiaadUgacqGHRaWkcaaIXaWdaiaacMcaaaqcfa4dbiabg2da9i aabccacqaHXoqypaWaaSbaaKqbGeaapeGaam4Aaaqcfa4daeqaa8qa caWG5bWdamaaCaaabeqcfasaaiaacIcapeGaam4Aa8aacaGGPaaaaa aa@491C@ .

if | m k+1 m k |< MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWGTbWaaWbaaKqbGeqabaGaam4AaiabgUcaRiaaigdaaaqcfaOa eyOeI0IaamyBamaaCaaajuaibeqaaiaadUgaaaaajuaGcaGLhWUaay jcSdGaeyipaWdaaa@42B4@ , where > 0 is sufficiently small number.

end

end.

Note that all eigenvalues and corresponding eigenvectors will be calculated. Moreover, we can readily verify that all eigen values λi (H) have following important property, namely, | λ i (H) |<=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacqaH7oaBdaWgaaqcfasaaiaadMgaaKqbagqaaiaacIcacaWGibGa aiykaaGaay5bSlaawIa7aiabgYda8iabg2da9iaaigdaaaa@4210@ , as the property of spectral norm of H. H=[hij] is the right stochastic matrix or transition matrix, each component hij is defined as

h ij ={ ς, { i,j }E 1ς d i i=j 0, otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAam aaBaaajuaibaGaamyAaiaadQgaaeqaaiabg2da9Kqbaoaaceaabaqb aeqabmGaaaqaaiabek8awjaacYcaaeaadaGadaqaaiaadMgacaGGSa GaamOAaaGaay5Eaiaaw2haaiabgIGiolaadweaaeaacaaIXaGaeyOe I0IaeqOWdyLaamizamaaBaaajuaibaGaamyAaaqcfayabaaabaGaam yAaiabg2da9iaadQgaaeaacaaIWaGaaiilaaqaaiaad+gacaWG0bGa amiAaiaadwgacaWGYbGaam4DaiaadMgacaWGZbGaamyzaaaaaiaawU haaaaa@5894@ (9)

with di denoting the degree of vertex i. In order to guarantee the non-negative entry hij of H and the convergence of the system, the sufficient condition for ς can be deduced by ς(0, 1 d max ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOWdy LaeyicI4SaaiikaiaaicdacaGGSaWaaSGaaeaacaaIXaaabaGaamiz amaaBaaajuaibaGaciyBaiaacggacaGG4baajuaGbeaaaaGaaiykaa aa@41D7@ with dmax representing the

maximum value of degree vector, i.e., d max ={ d 1 , d 2 ,.., d n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizam aaBaaajuaibaGaciyBaiaacggacaGG4baajuaGbeaacqGH9aqpcaGG 7bGaaiizamaaBaaajuaibaGaaGymaaqcfayabaGaaiilaiaacsgada WgaaqcfasaaiaaikdaaKqbagqaaiaacYcacaGGUaGaaiOlaiaacYca caGGKbWaaSbaaKqbGeaacaWGUbaajuaGbeaacaGG9baaaa@4951@ , which can be readily obtained if the maximum number of neighbors defined in the proximity graph is determined. Note that the system is unstable as the negative eigenvalue is computed if ς= d max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOWdy Laeyypa0JaamizamaaBaaajuaibaGaciyBaiaacggacaGG4baajuaG beaaaaa@3DC9@ . This case here is avoided.

Control strategy

In this section, we propose a distributed control strategy using the local measurements for multi-agent system. Consider a team of agents, as before, the positions of agents are given in the following form

P= [ p 1 T , p 2 T ,..., p n T ] T ,i={1,2,...,n} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadcfacqGH9aqpcaGGBbGaamiCamaaDaaajuaibaGaaGym aaqaaiaadsfaaaqcfaOaaiilaiaadchadaqhaaqcfasaaiaaikdaae aacaWGubaaaKqbakaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiC amaaDaaajuaibaGaamOBaaqaaiaadsfaaaqcfaOaaiyxamaaCaaabe qcfasaaiaadsfaaaqcfaOaaiilaiaaysW7caWGPbGaeyypa0Jaai4E aiaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGSa GaamOBaiaac2haaaa@5B56@ (10)

where p i = [ x i , y i ] T R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiCam aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0Jaai4waiaacIhadaWg aaqcfasaaiaadMgaaKqbagqaaiaacYcacaGG5bWaaSbaaKqbGeaaca WGPbaajuaGbeaacaGGDbWaaWbaaeqajuaibaGaamivaaaajuaGcqGH iiIZcaWGsbWaaWbaaeqajuaibaGaaGOmaaaaaaa@4766@ is the position of agent i. As such, the configuration of the team of agents can be rewritten in compact form P R 2n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuai abgIGiolaadkfadaahaaqabKqbGeaacaaIYaGaamOBaaaaaaa@3BB3@ . In what follows, for notational simplicity, we use symbol pi to denote the p i =( x i , y i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiCam aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaaiikaiaacIhadaWg aaqcfasaaiaadMgaaKqbagqaaiaacYcacaGG5bWaaSbaaKqbGeaaca WGPbaajuaGbeaacaGGPaaaaa@41E1@ .

Suppose each individual agent is governed by a single-integrator, one obtains

q i = u i ,i={1,2,...,n} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadghadaWgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaa dwhadaWgaaqcfasaaiaadMgaaKqbagqaaiaacYcacaaMf8UaaGzbVl aadMgacqGH9aqpcaGG7bGaaGymaiaacYcacaaIYaGaaiilaiaac6ca caGGUaGaaiOlaiaacYcacaWGUbGaaiyFaaaa@4F8B@ (11)

where pi remains the same as before, ui denotes the control input that is needed to determined, which is also referred to as the velocity of agent i. To proceed, in light of the dynamic proximity, the useful notion is then presented as follow.

Let ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ be weights that assigned to the edges {i, j}, and ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ depends on the states i and j, mathematically, which can be expressed as

ωij = ϕ (d ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC xcfaIaaeyAaiaabQgajuaGcaqGGaGaaeypaiaabccacqaHvpGzcaqG OaGaaeizamaaBaaajuaibaGaaeyAaiaabQgaaKqbagqaaiaabMcaaa a@43A8@ (12)

where dij is the actual distance between agent i and agent j. Note that Equation (12) is a smooth function. Moreover ω ij =Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyypa0JaeuiLdqea aa@3D77@ ,if d ij >Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizam aaBaaajuaibaGaamyAaiaadQgaaKqbagqaaiabg6da+iabfs5aebaa @3C95@ .

As indicated, in terms of ω ij (0,Δ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyicI4Saaiikaiaa icdacaGGSaGaeuiLdqKaaiykaaaa@40B8@ , the edge ek (vi,vj) between agent i and agent j is established. More specifically, we define the edge-weights by using the bump function as

ω ij ={ e (|| p i p j || d 0 ) 2 / d f 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakabeM8a3naaBaaajuaibaGaamyAaiaadQgaaKqbagqaaiab g2da9maaceaaeaqabeaacaWGLbWaaWbaaeqabaGaeyOeI0Iaaiikai aacYhacaGG8bGaamiCamaaBaaajuaibaGaamyAaaqcfayabaGaeyOe I0IaamiCamaaBaaajuaibaGaamOAaaqcfayabaGaaiiFaiaacYhacq GHsislcaWGKbWaaSbaaeaacaaIWaaabeaacaGGPaWaaWbaaeqajuai baGaaeOmaaaacaGGVaGaamizaKqbaoaaBaaajuaibaGaamOzaaqaba aaaaqcfayaaiaaicdaaaGaay5Eaaaaaa@577F@ (13) 

where dfs denotes the maximum sensing distance for each agent, to be specific, dfs is equal to dmax, which will be discussed later.

It is evident that (13) is a smooth function, which implies that the (13) is a continuously differentiable and can be viewed as the variant of the Gaussian function, which is illustrated in Figure 3. Note that the quantity value of ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ takes on [0,1], i.e., ω ij (0,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyicI4Saaiikaiaa icdacaGGSaGaaGymaiaacMcaaaa@400D@ and ω ij = ω ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyypa0JaeqyYdC3a aSbaaKqbGeaacaWGQbGaamyAaaqcfayabaaaaa@4098@ because of d ij = d ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizam aaBaaajuaibaGaamyAaiaadQgaaKqbagqaaiabg2da9iaadsgadaWg aaqcfasaaiaadQgacaWGPbaajuaGbeaaaaa@3ED0@ , which can greatly simplify the computation complexity. It is also noted that ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ =0, i={1, 2, …, n}, by convention, the self-loops in the graph is precluded. Moreover, the degree of vertex i is defined by

d i = j=1 n ω ij ,{ v i , v j }E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadsgadaWgaaqcfasaaiaadMgaaeqaaKqbakabg2da9maa qahabaGaeqyYdC3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaju aibaGaamOAaiabg2da9iaaigdaaeaacaWGUbaajuaGcqGHris5aiaa cYcacaaMf8Uaai4EaiaadAhadaWgaaqcfasaaiaadMgaaeqaaKqbak aacYcacaWG2bWaaSbaaKqbGeaacaWGQbaajuaGbeaacaGG9bGaeyic I4Saamyraaaa@5642@ (14)

Figure 3 The edge weight ωij (or bump function) varies with the actual distances dij between any two agents

Since ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ denotes the actual relation between any two vertices i and j, which means that the dynamic properties of multi-agent system can be revealed by ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ , therefore, it is instructive to investigate the quantity ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ , moreover, the interaction topology of agents can be dynamically determined as well, it is noted that the agents i and j, i, j={1, 2, …, n} are assumed to interact positively. As a result, we consider a smooth function ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ that depends on the relative distance of agents i and j. To obtain this function, we will provide several important concepts as follows. In order to facilitate our analysis, the limited information obtained from a given valid sensing area of agent i is provided, which is shown in Figure 4.

Figure 4 (A) The feasible sensing area of agent i; (B) Geometrical constraints. We use solid red point denote agent i, dmax denotes the maximum sensing capability, as indicated, dmax=△. From a theoretical point of view, using ε1 defined as follows, the boundary conditions can be defined, which is also referred to as ε1-approximation approach.

From Figure 4, ϵ1 is an arbitrarily sufficiently small positive number;  (or dmin) is a proper positive number to be chosen according to the constraint condition, physically, to avoid the collision between any two agents i and j, the minimum distance d0 must be required, equivalently, the collision avoidance between any two agents i and j can be then guaranteed; dk is the radius of feasible control area, which implies that two agents i and j can interact with each other, namely, the knowledge of agent j is available to agent i, thus the communication link ek(vi,vj), vi,vjV and ekE. Note that agent j may not need to acquire the information from agent i under the assumption on the directed graph, for instance, the relationship between two agents i and j is denoted by a single arrow; as a result, agent i has a limited information from the agents (or called the neighbors) that enter into its valid sensing area at time t, in view of this limited information, the control objective of this paper will be accomplished, and the dynamic nature of multi-agent system can be characterized. For this purpose, the following procedures are now presented.

With above results in hand, from a physical point of view, three constraint conditions are first provided as follows.

  1. Collision avoidance. Collision avoidance is a critical issue for multi-agent system, there are a great number of control strategies that deal with collision problem. In this paper, we do not intend to propose a control method to solve this problem, for brevity, we here assume that the relationship between agents i and j is invalid if the actual distance d ij < d min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWaaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyip aWJaamizamaaBaaajuaibaGaciyBaiaacMgacaGGUbaajuaGbeaaaa a@3FE3@ , thus the collision problem is solved, it would be interesting to investigate this problem in future work.
  2. Representation of dynamic edge. To investigate the dynamic nature of system, the edge effect is vital to the dynamic nature of system, the edge effect is characterized by an edge function (12), as mentioned above, the (12) is a time-varying and continuously weight function, i.e., ϕ( d ij ) C γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHvpGzcaGGOaGaamizamaaBaaajuaibaGaamyAaiaadQga aKqbagqaaiaacMcacqGHiiIZcaGGdbWaaWbaaeqajuaibaGaeq4SdC gaaaaa@41AA@ with C γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGdbWaaWbaaeqajuaibaGaeq4SdCgaaaaa@3962@ denoting the rth-order continuous time derivative.
  3. No interaction. Agents i and j has no limited information from each other in terms of different tasks, for example, to achieve and maintain the connectivity, or equivalently, agent i need to follow agent j at a certain instant t, if the actual distance d ij > d max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWaaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyOp a4JaamizamaaBaaabaqcfaIaciyBaiaacggacaGG4baajuaGbeaaaa a@3FE9@ , to be specific, in view of d ij = d ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWaaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyyp a0JaamizamaaBaaabaqcfaIaamOAaiaadMgaaKqbagqaaaaa@3EF0@ agent j is not within the feasible sensing area of agent i, that is to say, the link between two nodes i and j is broken, which does not imply the connectivity is not maintained for the whole system.

To proceed, to facilitate our analysis and derive the control laws, we can use the mathematical expression to denote the constraint conditions, from (12), thus its associated piece-wise function can be rewritten as follows

ϕ( d ij )={ 1, d ij [ 0, d min ) f( x ), d ij [ d min, d k + 1 ) 0 d ij [ d k +2, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaeWaaeaacaWGKbWaaSbaaKqbGeaacaWGPbGaamOAaaqabaaajuaG caGLOaGaayzkaaGaeyypa0ZaaiqaaeaafaqabeWacaaabaGaaGymai aacYcaaeaacaWGKbWaaSbaaeaajuaicaWGPbGaamOAaaqcfayabaGa eyicI48aaKGeaeaacaaIWaGaaiilaiaadsgadaWgaaqcfasaaiGac2 gacaGGPbGaaiOBaaqcfayabaaacaGLBbGaayzkaaaabaGaamOzamaa bmaabaGaamiEaaGaayjkaiaawMcaaiaacYcaaeaacaWGKbWaaSbaaK qbGeaacaWGPbGaamOAaaqcfayabaGaeyicI48aaKGeaeaacaWGKbWa aSbaaeaajuaiciGGTbGaaiyAaiaac6gajuaGcaGGSaGaaiizamaaBa aajuaibaGaam4AaaqcfayabaGaey4kaSIaeyicI48aaSbaaKqbGeaa caaIXaaabeaaaKqbagqaaaGaay5waiaawMcaaaqaaiaaicdaaeaaca WGKbWaaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaGaeyicI48aaKGe aeaacaWGKbWaaSbaaKqbGeaacaWGRbaajuaGbeaacqGHRaWkcaaIYa GaeyicI4SaaiilaiaaykW7cqGHEisPaiaawUfacaGLPaaaaaaacaGL 7baaaaa@7660@ (15)

where ϕ( d ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHvpGzcaGGOaGaamizamaaBaaajuaibaGaamyAaiaadQga aKqbagqaaiaacMcaaaa@3D68@ is defined according to the geometrical constraint set (or the feasible set), which is shown in Figure 3(A).

From (15), if third case ϕ( d ij )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHvpGzcaGGOaGaamizamaaBaaajuaibaGaamyAaiaadQga aKqbagqaaiaacMcacqGH9aqpcaaIWaaaaa@3F28@ happens, it is hard to establish the edge between agents i and j as two agents move freely without any control input, the connectivity of the system is thus not guaranteed, to overcome this issue, the external control input ui are needed, note that the ue should be properly chosen as the continuous and bounded signals produced by the external force. Note that f(x) is a class of bump function, and the coefficient can be properly chosen such that 0 < f(x) < 1 as time goes to infinity, which is omitted here.

Substituting ue into (11), yields

p ˙ i = u c,i + u ei MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aacaWaaSbaaKqbGeaacaWGPbaabeaajuaGcqGH9aqpcaWG1bWaaSba aKqbGeaacaWGJbGaaiilaiaadMgaaeqaaKqbakabgUcaRiaadwhada WgaaqcfasaaKqbaoaaBaaajuaibaGaamyzaiaadMgaaeqaaaqabaaa aa@4390@ (16)

where uc,i and ue,i denote the Laplacian control input and external control input of agent i, respectively. Compared with (11), one can directly obtain u i = u c,i + u e,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeyDam aaBaaajuaibaGaamyAaaqcfayabaGaeyypa0JaamyDamaaBaaajuai baGaam4yaiaacYcacaWGPbaajuaGbeaacqGHRaWkcaWG1bWaaSbaaK qbGeaacaWGLbGaaiilaiaadMgaaKqbagqaaaaa@43EB@

The control objective of this paper is to maintain the algebraic connectivity L2), and its sufficient condition is guaranteed if λ 2 (L)>0, λ 2 (L) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIYaaajuaGbeaacaGGOaGaamitaiaacMcacqGH +aGpcaaIWaGaaiilaiabeU7aSnaaBaaajuaibaGaaGOmaaqcfayaba GaaiikaiaadYeacaGGPaaaaa@43E4@ is a function of states of agents as edges vary with time. As indicated, agent i has the knowledge about positions p i R n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiCam aaBaaajuaibaGaamyAaaqabaqcfaOaeyicI4SaamOuamaaCaaabeqc fasaaiaad6gaaaaaaa@3CE1@ , i.e., the relative measurements and magnitudes (or distances) of relative positions.

To proceed, we suppose the minimum value of quantity λ 2 = 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcqGHiiIZdaWgaaqc fasaaiaaikdaaKqbagqaaaaa@3DF4@ with 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyicI4 8aaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@39A1@ denoting an arbitrary small positive number. As is customary, the exact value of the quantity is not obtained directly, but we can get the estimates of second eigenvalues by using following rules

λ ^ 2 λ 2 =± λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq4UdW MbaKaadaWgaaqcfasaaiaaikdaaKqbagqaaiabgkHiTiabeU7aSnaa BaaajuaibaGaaGOmaaqabaqcfaOaeyypa0JaeyySaeRaeyicI48aaS baaKqbGeaacqaH7oaBaeqaaaaa@4496@ (17)

where ϵλ is sufficiently small positive number, the interested reader can consult the material [5] for more details.

In terms of (5), which is also referred to as the potential function (or energy function), we obtain

V( λ 2 )=V( λ ^ 2 ± λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbGaaiikaiabeU7aSnaaBaaajuaibaGaaGOmaaqabaqc faOaaiykaiabg2da9iaacAfacaGGOaWdaiqbeU7aSzaajaWaaSbaaK qbGeaacaaIYaaajuaGbeaapeGaeyySae7aaSaaaeaapaGaeyicI4Sa eq4UdWgapeqaaiaaikdaaaGaaiykaaaa@48EB@ (18)

Note that V( λ 2 ) R + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOva8aacaGGOaWdbiabeU7aS9aadaWgaaqcfasaa8qacaaI YaaajuaGpaqabaGaaiyka8qacqGHiiIZcaWGsbWdamaaCaaabeqcfa saa8qacqGHRaWkaaaaaa@4023@ is continuously differentiable.

In order to guarantee the algebraic connectivity maintenance of the graph, the control strategy is derived using the negative gradient descent of V( λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOva8aacaGGOaWdbiabeU7aS9aadaWgaaqcfasaa8qacaaI YaaajuaGpaqabaGaaiykaaaa@3C67@ . Using the chain rule, we then take first time derivative of V( λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOva8aacaGGOaWdbiabeU7aS9aadaWgaaqcfasaa8qacaaI YaaajuaGpaqabaGaaiykaaaa@3C67@ with respect to agent pi, one obtains

V ˙ ( λ 2 )= V( λ 2 (p)) p i,k = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOvay aacaaeaaaaaaaaa8qacaGGOaGaeq4UdW2aaSbaaKqbGeaacaaIYaaa beaajuaGcaGGPaGaeyypa0ZaaSaaaeaacqGHciITcaWGwbGaaiikai abeU7aSnaaBaaajuaibaGaaGOmaaqabaqcfaOaaiikaiaacchacaGG PaGaaiykaaqaaiabgkGi2kaadchadaWgaaqcfasaaiaadMgacaGGSa Gaam4AaaqabaaaaKqbakabg2da9aaa@4D44@ V( λ 2 (p)) ( λ 2 (p) ( λ 2 (p) p i,k ,i,k{1, 2, .... n} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaqaaiabgkGi2kaadAfacaGGOaGaeq4UdW2aaSbaaKqb GeaacaaIYaaabeaajuaGcaGGOaGaaiiCaiaacMcacaGGPaaabaGaey OaIyRaaiikaiabeU7aSnaaBaaajuaibaGaaGOmaaqabaqcfaOaaiik aiaacchacaGGPaaaamaalaaabaGaeyOaIyRaaiikaiabeU7aSnaaBa aajuaibaGaaGOmaaqabaqcfaOaaiikaiaacchacaGGPaaabaGaeyOa IyRaamiCamaaBaaajuaibaGaamyAaiaacYcacaWGRbaabeaaaaqcfa OaaiilaiaadMgacaGGSaGaam4AaiabgIGiolaacUhacaaIXaGaaiil aiaacckacaaIYaGaaiilaiaacckacaGGUaGaaiOlaiaac6cacaGGUa GaaiiOaiaac6gacaGG9baaaa@65D5@ (19)

where pi, j is kth component of pi. Thus, the composite control strategy of agent i is derived as follows

u i= V ˙ ( λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaaSbaaeaajuaicaWGPbqcfaOaeyypa0JaeyOeI0ca beaaceWGwbGbaiaacaGGOaGaeq4UdW2aaSbaaKqbGeaacaaIYaaabe aajuaGcaGGPaaaaa@40E6@ (20)

Stability analysis

In this section, we investigate the stability properties of the system. As discussed, the control law for agent i is proposed as follows

p ˙ i = u i c + u i e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGWbGbaiaadaWgaaqaamaaBaaajuaibaGaamyAaaqcfaya baaabeaacqGH9aqpcaWG1bWaa0baaKqbGeaacaWGPbaabaGaam4yaa aajuaGcqGHRaWkcaWG1bWaa0baaKqbGeaacaWGPbaabaGaamyzaaaa aaa@4246@ (21)

where u i c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaa0baaKqbGeaacaWGPbaabaGaam4yaaaaaaa@39C4@ and u i c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaa0baaKqbGeaacaWGPbaabaGaam4yaaaaaaa@39C4@ are the control law and external control input, respectively. The external control input u i c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaa0baaKqbGeaacaWGPbaabaGaam4yaaaaaaa@39C4@ can be view as the additional task imposed on agent i. As before, notice that agent i will travel freely if u i c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaa0baaKqbGeaacaWGPbaabaGaam4yaaaaaaa@39C4@ =0, physically, no information interaction among agents, any connection between two agents may not be established, in other words, the results of connectivity preservation are not obtained, the proof is omitted due to page constraints. Moreover, since u i c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG1bWaa0baaKqbGeaacaWGPbaabaGaam4yaaaaaaa@39C4@ are bounded, pi(t) are bounded for any initial positions pi(0).

To fulfill the control objective, the control law is therefore considered. In what follows, we analyze the stability property of the system. To proceed, the following procedures are required and first stated formally.

  1. Let d k (i, j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWaaSbaaKqbGeaacaWGRbaajuaGbeaapaGaaiika8qa caWGPbGaaiilaiaabccacaWGQbWdaiaacMcaaaa@3E11@ be the kth, k ={1, 2, …, m} distance between agent i and j at time t, for brevity, we drop the quantity of time t, then d k (I, j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWaaSbaaKqbGeaacaWGRbaajuaGbeaapaGaaiika8qa caWGjbGaaiilaiaabccacaWGQbWdaiaacMcaaaa@3DF1@ has the properties characterized as before, which can be viewed as a function of states pi and pj, namely,
  2. d k (i, j)= p i p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWaaSbaaKqbGeaacaWGRbaabeaajuaGpaGaaiika8qa caWGPbGaaiilaiaabccacaWGQbWdaiaacMcacqGH9aqpdaqbbaqaam aafiaabaGaamiCamaaBaaajuaibaGaamyAaaqabaqcfaOaeyOeI0Ia amiCamaaBaaajuaibaGaamOAaaqcfayabaaacaGLkWoaaiaawMa7aa aa@48B5@ (22)

  3. Taking the first derivative of dk (i, j) with respect to pi, we obtain
  4. d k (i, j) p i = ( p i p j ) p i ( p i p j ) d k 1 (i, j)                =( p i p j ) d k 1 (i, j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaqaaiabgkGi2kaabsgadaWgaaqcfasaaiaabUgaaKqbagqaaiaa bIcacaqGPbGaaeilaiaabccacaqGQbGaaeykaaqaaiaabchadaWgaa qcfasaaiaabMgaaKqbagqaaaaacqGH9aqpdaWcaaqaaiabgkGi2kaa cIcacaqGWbWaaSbaaKqbGeaacaqGPbaajuaGbeaacqGHsislcaqGWb WaaSbaaKqbGeaacaqGQbaajuaGbeaacaGGPaaabaGaaeiCamaaBaaa juaibaGaaeyAaaqcfayabaaaaiaacIcacaqGWbWaaSbaaKqbGeaaca qGPbaajuaGbeaacqGHsislcaqGWbWaaSbaaKqbGeaacaqGQbaajuaG beaacaGGPaGaamizamaaDaaajuaibaGaam4AaaqaaiabgkHiTiaaig daaaqcfaOaaiikaiaadMgacaGGSaaeaaaaaaaaa8qacaGGGcWdaiaa dQgacaGGPaaabaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOa8aacqGH9aqpcaGGOaGaaeiCamaaBaaajuaibaGaaeyAaa qcfayabaGaeyOeI0IaaeiCamaaBaaajuaibaGaaeOAaaqcfayabaGa aiykaiaadsgadaqhaaqcfasaaiaadUgaaeaacqGHsislcaaIXaaaaK qbakaacIcacaWGPbGaaiila8qacaGGGcWdaiaadQgacaGGPaaaaaa@83C7@ (23)

    Where d k 1 (i, j)= 1 d k (i, j) ,  d k (i, j) p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizam aaDaaajuaibaGaam4AaaqaaiabgkHiTiaaigdaaaqcfaOaaiikaiaa dMgacaGGSaaeaaaaaaaaa8qacaGGGcWdaiaadQgacaGGPaGaeyypa0 ZaaSaaaeaacaaIXaaabaGaamizamaaBaaajuaibaGaam4Aaaqcfaya baGaaiikaiaadMgacaGGSaWdbiaacckapaGaamOAaiaacMcaaaGaai ila8qacaGGGcWdamaalaaabaGaeyOaIyRaaeizamaaBaaajuaibaGa ae4AaaqcfayabaGaaeikaiaabMgacaqGSaGaaeiiaiaabQgacaqGPa aabaGaaeiCamaaBaaajuaibaGaaeyAaaqcfayabaaaaaaa@5725@ represents the gradient information, which is called the limited information as dk(i, j) is valid on the feasible sensing area defined by proximity information graph, proximity graph for short.

  5. Since pi is a column vector, with a slight abuse of notation, denoted by p i = [... ,  p i,k , ...] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiCam aaBaaajuaibaGaaeyAaaqabaqcfaOaeyypa0Jaai4waiaac6cacaGG UaGaaiOlaabaaaaaaaaapeGaaiiOa8aacaGGSaWdbiaacckapaGaai iCamaaBaaajuaibaqcfa4aaSbaaKqbGeaacaWGPbGaaiilaiaadUga aeqaaaqcfayabaGaaiila8qacaGGGcWdaiaac6cacaGGUaGaaiOlai aac2fadaahaaqcfasabeaacaWGubaaaaaa@4BD0@ , where pi,k is the kth component of pi, and the superscript T is the transpose.
  6. Taking the first derivative of dk(i, j) with respect to pi, one gets

    d k (i,j) p i =( p i,k p j,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbaoaalaaabaGaeyOaIyRaamizamaaBaaajuaibaGaam4Aaaqc fayabaGaaiikaiaadMgacaGGSaGaamOAaiaacMcacaaMe8oabaGaam iCamaaBaaajuaibaGaamyAaaqcfayabaaaaiaaysW7cqGH9aqpcaaM e8UaaiikaiaadchadaWgaaqcfasaaiaadMgacaGGSaGaam4Aaaqaba qcfaOaeyOeI0IaamiCamaaBaaajuaibaGaamOAaiaacYcacaWGRbaa juaGbeaacaGGPaaaaa@5635@ (24)

From (20), the first part of right hand side of (24) is obtained.

Similarly, using above results, both derivatives with respect to pi and pj,k of dk(i, j) can be computed, respectively. To proceed, with above results in hand, we next define two sets of control laws and external controls as

U c ={ u 1 c , u 2 c ,..., u n c } R n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadwfadaWgaaqcfasaaiaadogaaKqbagqaaiaaysW7cqGH 9aqpcaaMe8Uaai4EaiaadwhadaqhaaqcfasaaiaaigdaaeaacaWGJb aaaKqbakaacYcacaWG1bWaa0baaKqbGeaacaaIYaaabaGaam4yaaaa juaGcaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadwhadaqhaaqcfa saaiaad6gaaeaacaWGJbaaaKqbakaac2hacaaMe8UaeyicI4SaaGjb VlaadkfadaahaaqabKqbGeaacaWGUbGaey41aqRaamOBaaaaaaa@5C00@

and

U e ={ u 1 e , u 2 e ,..., u n e } R n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadwfadaWgaaqcfasaaiaadwgaaKqbagqaaiaaysW7cqGH 9aqpcaaMe8Uaai4EaiaadwhadaqhaaqcfasaaiaaigdaaeaacaWGLb aaaKqbakaacYcacaWG1bWaa0baaKqbGeaacaaIYaaabaGaamyzaaaa juaGcaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadwhadaqhaaqcfa saaiaad6gaaeaacaWGLbaaaKqbakaac2hacaaMe8UaeyicI4SaaGjb VlaadkfadaahaaqabKqbGeaacaWGUbGaey41aqRaamOBaaaaaaa@5C08@

Respectively note that Ue are unknown bounded external control tasks. In light of P, denoted by P={p1, p2,…, pn}, thus the overall control laws can be given as

d k (i,j) p i =( p i,k p j,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbaoaalaaabaGaeyOaIyRaamizamaaBaaajuaibaGaam4Aaaqc fayabaGaaiikaiaadMgacaGGSaGaamOAaiaacMcacaaMe8oabaGaam iCamaaBaaajuaibaGaamyAaaqcfayabaaaaiaaysW7cqGH9aqpcaaM e8UaaiikaiaadchadaWgaaqcfasaaiaadMgacaGGSaGaam4Aaaqcfa yabaGaeyOeI0IaamiCamaaBaaajuaibaGaamOAaiaacYcacaWGRbaa juaGbeaacaGGPaaaaa@5635@ (25)

From (3), for simplicity, we omit the symbols (V, E), then the decentralized control laws are given as

U c =(L I n×n )P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadwfadaWgaaqcfasaaiaadogaaKqbagqaaiaaysW7cqGH 9aqpcaaMe8UaaiikaiaadYeacaaMe8Uaey4LIqSaaGjbVlaadMeada Wgaaqcfasaaiaad6gacqGHxdaTcaWGUbaajuaGbeaacaGGPaGaaGjb Vlaadcfaaaa@50C5@ (26)

where In×n is a n×n identity matrix.

As indicated, we define the energy function as V(pi, pj), it is noted that V(pi, pj), jNi >0. Taking the first time derivative of V (pi, pj) w.r.t pi, one obtains

V( p ˙ i , p j )= V( p i , p j ) p i + i=1 n p i T L p ˙ i               = ϕ u (p)+ ϕ e (p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaamaqaaK qbakaadAfacaGGOaGabiiCayaacaWaaSbaaKqbGeaacaWGPbaajuaG beaacaGGSaGaaiiCamaaBaaajuaibaGaamOAaaqcfayabaGaaiykai abg2da9maalaaabaGaeyOaIyRaamOvaiaacIcacaGGWbWaaSbaaKqb GeaacaWGPbaajuaGbeaacaGGSaGaaiiCamaaBaaajuaibaGaamOAaa qcfayabaGaaiykaaqaaiabgkGi2kaadchadaWgaaqcfasaaiaadMga aKqbagqaaaaacqGHRaWkdaaeWbqaaiaadchadaqhaaqcfasaaiaadM gaaeaacaWGubaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqc faOaeyyeIuoacaWGmbGabiiCayaacaWaaSbaaKqbGeaacaWGPbaaju aGbeaaaeaaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaeyypa0Zdaiabew9aMnaaBaaajuaibaGaamyDaaqabaqc faOaaiikaiaadchacaGGPaGaey4kaSIaeqy1dy2aaSbaaKqbGeaaca WGLbaabeaajuaGcaGGOaGaaiiCaiaacMcaaaaa@79C4@ (27)

where

ϕ u (p)= i=1 n p i T L 2 p ˙ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaWG1baabeaajuaGcaGGOaGaamiCaiaacMcacqGH 9aqpcqGHsisldaaeWbqaaiaadchadaqhaaqcfasaaiaadMgaaeaaca WGubaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqcfaOaeyye IuoacaWGmbWaaWbaaeqajuaibaGaaGOmaaaajuaGceWGWbGbaiaada WgaaqcfasaaiaadMgaaKqbagqaaaaa@4CFE@ (28)

and

ϕ e (p)= i=1 n p i T L u e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaWGLbaabeaajuaGcaGGOaGaamiCaiaacMcacqGH 9aqpdaaeWbqaaiaadchadaqhaaqcfasaaiaadMgaaeaacaWGubaaaa qaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqcfaOaeyyeIuoacaWG mbGaamyDamaaDaaajuaibaGaamyzaaqaaiaadMgaaaaaaa@4AC0@ (29)

where the capital letter T remains the same as before.

To proceed, the valuable property is introduced and stated formally as follows. Let An×nRn×n and Bn×nRn×n be two matrices, we have the A× B <=| | AB | | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauqaae aadaqbcaqaaiaadgeaaiaawQa7aaGaayzcSdGaey41aq7aauWaaeaa caWGcbaacaGLjWUaayPcSdGaeyipaWJaeyypa0ZaaqWaaeaadaabda qaaabaaaaaaaaapeGaamyqaiaadkeaa8aacaGLhWUaayjcSdaacaGL hWUaayjcSdaaaa@4A89@ proof is straightforward and omitted here. Using above results, we have

ϕ u (P)<= i=1 n ||L p i | | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakabew9aMnaaBaaajuaibaGaamyDaaqcfayabaGaaiikaiaa dcfacaGGPaGaaGjbVlabgYda8iabg2da9iaaysW7cqGHsisldaaeWb qaaiaacYhacaGG8bGaamitaiaadchadaWgaaqaaiaadMgaaeqaaiaa cYhacaGG8bWaaWbaaeqajuaibaGaaGOmaaaaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaad6gaaKqbakabggHiLdaaaa@54C8@ (30)

and similarly

ϕ e (p)<= i=1 n L p i μ e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaWGLbaajuaGbeaacaGGOaGaaiiCaiaacMcacqGH 8aapcqGH9aqpdaaeWbqaamaafmaabaGaamitaiaadchadaWgaaqcfa saaiaadMgaaKqbagqaaaGaayzcSlaawQa7aaqcfasaaiaadMgacqGH 9aqpcaaIXaaabaGaamOBaaqcfaOaeyyeIuoadaqbdaqaaiabeY7aTn aaDaaajuaibaGaamyzaaqaaiaadMgaaaaajuaGcaGLjWUaayPcSdaa aa@533D@ (31)

Thus

ϕ u (p)+ ϕ e (p)<= i=1 n L p i 2 + i=1 n L p i u e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaWG1baajuaGbeaacaGGOaGaaiiCaiaacMcacqGH RaWkcqaHvpGzdaWgaaqcfasaaiaadwgaaKqbagqaaiaacIcacaWGWb GaaiykaiabgYda8iabg2da9iabgkHiTmaaqahabaWaauWaaeaacaWG mbGaamiCamaaBaaabaGaamyAaaqabaaacaGLjWUaayPcSdaajuaiba GaamyAaiabg2da9iaaigdaaeaacaWGUbaajuaGcqGHris5amaaCaaa beqcfasaaiaaikdaaaqcfaOaey4kaSYaaabCaeaadaqbdaqaaiaadY eacaWGWbWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaawMa7caGLkWoa aKqbGeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaaKqbakabggHiLd WaauWaaeaacaWG1bWaa0baaKqbGeaacaWGLbaabaGaamyAaaaaaKqb akaawMa7caGLkWoaaaa@693D@ (32)

For simplicity, it is noticed that we have dropped the dependence on time t for each term in the above. Let be ϕ {u,e} (i,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaeaacaGG7bGaaiyDaiaacYcacaGGLbGaaiyFaaqabaGaaiik aiaadMgacaGGSaGaamiDaiaacMcaaaa@40EF@ expressed by

ϕ {u,e} (i,t)= L p i 2 + L p i μ e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaGG7bGaaiyDaiaacYcacaGGLbGaaiyFaaqabaqc faOaaiikaiaadMgacaGGSaGaamiDaiaacMcacqGH9aqpcqGHsislda qbdaqaaiaadYeacaWGWbWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaa wMa7caGLkWoadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRmaafm aabaGaamitaiaadchadaWgaaqcfasaaiaadMgaaKqbagqaaaGaayzc SlaawQa7amaafmaabaGaeqiVd02aa0baaKqbGeaacaWGLbaabaGaam yAaaaaaKqbakaawMa7caGLkWoaaaa@5B1D@ (33)

By factoring out the term L p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWGmbGaamiCamaaBaaajuaibaGaamyAaaqcfayabaaacaGLjWUa ayPcSdaaaa@3D3C@ , we obtain

ϕ {u,e} (i,t)=||L p i ||(||L p i |||| u e i ||) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakabew9aMnaaBaaajuaibaGaai4EaiaadwhacaGGSaGaamyz aiaac2haaeqaaKqbakaacIcacaWGPbGaaiilaiaadshacaGGPaGaaG jbVlabg2da9iaaysW7cqGHsislcaGG8bGaaiiFaiaadYeacaWGWbWa aSbaaKqbGeaacaWGPbaabeaajuaGcaGG8bGaaiiFaiaacIcacaGG8b GaaiiFaiaadYeacaWGWbWaaSbaaKqbGeaacaWGPbaajuaGbeaacaGG 8bGaaiiFaiaaysW7cqGHsislcaaMe8UaaiiFaiaacYhacaWG1bWaa0 baaKqbGeaacaWGLbaabaGaamyAaaaajuaGcaGG8bGaaiiFaiaacMca aaa@6717@ (34)

As a result,

V ˙ ( p i , p j )<= i=1 n ϕ {u,e} (i,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOvay aacaGaaiikaiaadchadaWgaaqcfasaaiaadMgaaKqbagqaaiaacYca caGGWbWaaSbaaKqbGeaacaWGQbaajuaGbeaacaGGPaGaeyipaWJaey ypa0ZaaabCaeaacqaHvpGzdaWgaaqcfasaaiaacUhacaGG1bGaaiil aiaacwgacaGG9baabeaajuaGcaGGOaGaamyAaiaacYcacaWG0bGaai ykaaqcfasaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqcfaOaeyye Iuoaaaa@52AA@ (35)

As indicated, the external control term μ e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2aa0baaKqbGeaacaWGLbaabaGaamyAaaaaaaa@3A62@ is bounded, let the maximum magnitude of μ e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 2aa0baaKqbGeaacaWGLbaabaGaamyAaaaaaaa@3A62@ be σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaae aacqaHdpWCaaaaaa@3858@ , then we have σ ¯ < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaae aacqaHdpWCaaGaeyipaWJaeyOhIukaaa@3ACD@ , which means that ϕ {u,e} (i,t)<2 σ ¯ 2 ,i{1,...,n} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaGG7bGaaiyDaiaacYcacaGGLbGaaiyFaaqabaqc faOaaiikaiaadMgacaGGSaGaamiDaiaacMcacqGH8aapcaaIYaWaa0 aaaeaacqaHdpWCaaWaaWbaaeqajuaibaGaaGOmaaaajuaGcaGGSaGa aiyAaiabgIGiolaacUhacaaIXaGaaiilaiaac6cacaGGUaGaaiOlai aacYcacaGGUbGaaiyFaaaa@511D@ as time t approaches to infinity. According to the Lyapunov stability theory, one gets

{ V( p i , p j )>=0; V ˙ ( p i , p j )<=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbaoaaceaaeaqabeaacaWGwbGaaGPaVlaacIcacaWGWbWaaSba aKqbGeaacaWGPbaabeaajuaGcaGGSaGaamiCamaaBaaajuaibaGaam OAaaqcfayabaGaaiykaiaaysW7caaMe8UaeyOpa4Jaeyypa0JaaGjb VlaaicdacaGG7aaabaGabmOvayaacaGaaGPaVlaacIcacaWGWbWaaS baaKqbGeaacaWGPbaajuaGbeaacaGGSaGaamiCamaaBaaajuaibaGa amOAaaqcfayabaGaaiykaiaaysW7caaMe8UaeyipaWJaeyypa0JaaG jbVlaaicdacaGGUaaaaiaawUhaaaaa@6004@ (36)

implying that L p i (t) > σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWGmbGaamiCamaaBaaajuaibaGaamyAaaqcfayabaGaaiikaiaa dshacaGGPaaacaGLjWUaayPcSdGaeyOpa4Zaa0aaaeaacqaHdpWCaa aaaa@426A@ for any i = {1,2,…,n}, therefore, ϕ {u,e} (i,t)<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaKqbGeaacaGG7bGaaiyDaiaacYcacaGGLbGaaiyFaaqabaqc faOaaiikaiaadMgacaGGSaGaamiDaiaacMcacqGH8aapcaaIWaaaaa@4369@ .

Suppose the graph is connected, which means that the second smallest eigenvalue is bigger than zero, i.e., . Moreover, the quantity λL depends on the states of the agents, specifically, which is a non-decreasing function of the edge weights. We then have

L p i >= λ 2 (L) p X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWGmbGaamiCamaaBaaajuaibaGaamyAaaqabaaajuaGcaGLjWUa ayPcSdGaeyOpa4Jaeyypa0Jaeq4UdW2aaSbaaKqbGeaacaaIYaaaju aGbeaacaGGOaGaaiitaiaacMcadaqbdaqaaiaadchadaahaaqabKqb GeaacaWGybaaaaqcfaOaayzcSlaawQa7aaaa@4A97@ (37)

where p is any vector, and X is a matrix such that 1 n T X=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymam aaDaaajuaibaGaamOBaaqaaiaadsfaaaqcfaOaamiwaiabg2da9iaa icdaaaa@3C86@ and X T X= 1 n1 .L R n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwam aaCaaabeqcfasaaiaadsfaaaqcfaOaamiwaiabg2da9iaaigdadaWg aaqcfasaaiaad6gacqGHsislcaaIXaaabeaacaGGUaqcfaOaaiitai abgIGiolaackfadaahaaqcfasabeaacaWGUbGaey41aqRaamOBaaaa aaa@4757@ is the symmetric graph Laplacian matrix.

Since the sensing distance for each agent t is limited, we have that d ij d max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizam aaBaaajuaibaGaamyAaiaadQgaaeqaaKqbakabgkziUkaadsgadaWg aaqcfasaaiGac2gacaGGHbGaaiiEaaqabaaaaa@4020@ as t tends to the instant t*, i.e., tt*, which means that each agent i can converge to the specified position, denoted by pipid. See [5] for more detail treatment.

Using above results, the extension to the consensus control of multi-agent systems is also discussed here. In this setting, the external control for each agent is neglected, and the initial positions of agents are generated randomly, in particular, which characterizes the stable equilibrium of a team of agents. As a consequence, the overall control law for the system is given as

u o = V o ( p i p j ),j N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadwhadaWgaaqcfasaaiaad+gaaKqbagqaaiaaysW7cqGH 9aqpcaaMe8UaeyOeI0Iaey4bIeTaamOvamaaBaaajuaibaGaam4Baa qcfayabaGaaGjbVlaacIcacaWGWbWaaSbaaKqbGeaacaWGPbaajuaG beaacaaMe8UaeyOeI0IaaGjbVlaadchadaWgaaqcfasaaiaadQgaaK qbagqaaiaacMcacaGGSaGaaGjbVlaadQgacaaMe8UaeyicI4SaaGjb Vlaad6eadaWgaaqcfasaaiaadMgaaKqbagqaaaaa@5D8F@ (38)

where Vo is a Lyapunov candidate function V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe TaamOvamaaBaaajuaibaGaaGimaaqabaaaaa@39EE@ ,is the gradient of Vo.

Simulation results

In this section, several simulation results are provided to validate the obtained theoretical results. Consider the multi-agent system consists of 7 agents, and suppose no any control law that imposed on the seventh agent, then the agent 7move freely with any given arbitrary trajectory, that is

u i,e ={ (1+i*Inc)*cos(t); (1+i*Inc)*sin(t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaKqbakaadwhadaWgaaqcfasaaiaadMgacaGGSaGaamyzaaqcfaya baGaaGjbVlabg2da9iaaysW7daGabaabaeqabaGaaiikaiaaigdacq GHRaWkcaWGPbGaaGjbVNqbGiaacQcajuaGcaaMe8Uaamysaiaad6ga caWGJbGaaiykaiaaysW7juaicaGGQaqcfaOaaGjbVlGacogacaGGVb Gaai4CaiaaykW7caGGOaGaamiDaiaacMcacaGG7aaabaGaaiikaiaa igdacqGHRaWkcaWGPbGaaGjbVNqbGiaacQcajuaGcaaMe8Uaamysai aad6gacaWGJbGaaiykaiaaysW7juaicaGGQaqcfaOaaGjbVlaacoha caWGPbGaamOBaiaaykW7caGGOaGaamiDaiaacMcacaGGUaaaaiaawU haaaaa@724F@ (39)

where Inc is an increment quantity, we select Inc=0.25, for all i = [1, 2, 3, 4, 5, 6, 7].

To implement the control law for each agent, the initial positions is first given randomly as follows:

P i (0)={ p 1 (0) = [-2.50; 0.58] p 2 (0) = [1.35; 0.78] p 3 (0) = [-1.50;-2.90] p 4 (0) = [0.15;-0.48] p 5 (0) = [-2:60; 5.60] p 6 (0) = [5.70;-2.30] p 7 (0) = [0.80;-3.12] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuam aaBaaajuaibaGaamyAaaqcfayabaGaaiikaiaaicdacaGGPaGaeyyp a0ZaaiqaaqaabeqaaiaabchadaWgaaqaaKqbGiaabgdaaKqbagqaai aabIcacaqGWaGaaeykaiaabccacaqG9aGaaeiiaiaabUfacaqGTaGa aeOmaiaab6cacaqG1aGaaeimaiaabUdacaqGGaGaaeimaiaab6caca qG1aGaaeioaiaab2faaeaacaqGWbWaaSbaaeaajuaicaqGYaaajuaG beaacaqGOaGaaeimaiaabMcacaqGGaGaaeypaiaabccacaqGBbGaae ymaiaab6cacaqGZaGaaeynaiaabUdacaqGGaGaaeimaiaab6cacaqG 3aGaaeioaiaab2faaeaacaqGWbWaaSbaaeaajuaicaqGZaaajuaGbe aacaqGOaGaaeimaiaabMcacaqGGaGaaeypaiaabccacaqGBbGaaeyl aiaabgdacaqGUaGaaeynaiaabcdacaqG7aGaaeylaiaabkdacaqGUa GaaeyoaiaabcdacaqGDbaabaGaaeiCamaaBaaajuaibaGaaeinaaqc fayabaGaaeikaiaabcdacaqGPaGaaeiiaiaab2dacaqGGaGaae4wai aabcdacaqGUaGaaeymaiaabwdacaqG7aGaaeylaiaabcdacaqGUaGa aeinaiaabIdacaqGDbaabaGaaeiCamaaBaaabaqcfaIaaeynaaqcfa yabaGaaeikaiaabcdacaqGPaGaaeiiaiaab2dacaqGGaGaae4waiaa b2cacaqGYaGaaeOoaiaabAdacaqGWaGaae4oaiaabccacaqG1aGaae OlaiaabAdacaqGWaGaaeyxaaqaaiaabchadaWgaaqaaKqbGiaabAda aKqbagqaaiaabIcacaqGWaGaaeykaiaabccacaqG9aGaaeiiaiaabU facaqG1aGaaeOlaiaabEdacaqGWaGaae4oaiaab2cacaqGYaGaaeOl aiaabodacaqGWaGaaeyxaaqaaiaabchadaWgaaqaaKqbGiaabEdaaK qbagqaaiaabIcacaqGWaGaaeykaiaabccacaqG9aGaaeiiaiaabUfa caqGWaGaaeOlaiaabIdacaqGWaGaae4oaiaab2cacaqGZaGaaeOlai aabgdacaqGYaGaaeyxaaaacaGL7baaaaa@AB3A@ (40)

which is shown in Figure 5.

Figure 5 The initial positions for the agents.

From Figure 6, except the seventh agent, other agents can converge to stable point under the control laws. Any two agents in six agents can be connected with each other, while the seventh agent does not have any connection with other agents if only external control is considered. To achieve the overall connectivity maintenance, it is necessary to show that the control law is needed, which is illustrated in Figure 7. The application to formation control problem is also considered, where the proposed control law depends on the local measurements, which is illustrated in Figure 8, which shows that all agents can converge to the stable equilibrium under the proposed control law, i.e., the desired formation control is achieved.

Figure 6 Trajectories of seven agents in the plane. Assume no controller is designed only for the seventh agent, while other agents move under the proposed control law, i.e., the seventh agent have no any interaction from the other agents, thus the connectivity is not maintained, which is illustrated by two red curves.

Figure 7 Connectivity maintenance is achieved for the seven agents in the plane.

Figure 8 Formation control with seven agents, the connectivity is maintained.

In general, the algebraic connectivity can be viewed as the second largest eigenvalue of Laplacian matrix λ2(L), and λ2(L) is a continuously differentiable function, which consists of all information states of all agents, though the knowledge of λ2(L) is not computed directly by each agent, λ2(L) can be calculated by using the optimization algorithm for each agent. In addition, the time-varying weight ω ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3B0B@ that imposed on each edge eij E between any two agents i and j is defined as a piecewise function under the proximity graph mentioned above. Based on above results, we conclude that the algebraic connectivity can be maintained by implementing the proposed control law.

Conclusion

In this paper, we investigate the connectivity maintenance problem for multi-agent system; each agent is described with a single integrator. Using local and limited communication information, we first establish the Lyapunov function, then the decentralized control is derived. To achieve the group objective, each information state must be provided and a common control protocol should be obeyed, which implies that each agent must communicate with the rest of agents as time evolves, then the connectivity can be maintained and connected network of a team of agents can be established.

Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant No.61402540, No.60903222, No.61672538, and No.61272024, Hunan Provincial Science and Technology Foundation No. 2014GK3049.

Conflicts of interest

We declare that there is no conflicts of interest.

References

  1. Lorenzo Sabattini, Cristian Secchi, Matteo Cocetti, et al. Implementation of coordinated complex dynamic behaviors in multirobot systems. IEEE Transactions on Robotics. 2015;31(4):1018–1032.
  2. Donato Di Paola, Andrea Gasparri, David Naso, et al. Decentralized dynamic task planning for heterogeneous robotic networks. Autonomous Robots. 2015;38(1):31–48.
  3. Derya Aksaray A, Yasin Yazıcıoglu, Eric Feron, et al. Message-passing strategy for decentralized connectivity maintenance in multiagent surveillance. Journal of Guidance Control, and Dynamics. 2015.
  4. Hasan Poonawala A, Aykut Satici C, Hazen Eckert, et al. Collision-free formation control with decentralized connectivity preservation for nonholonomic-wheeled mobile robots. IEEE Transactions on control of Network Systems. 2015;2(2):122–130.
  5. Hasan A Poonawala, Mark W Spong. Preserving Strong Connectivity in Directed Proximity Graphs. IEEE Transactions on Automatic Control. 2017.
  6. Zhihua Qu, Chaoyong Li, Frank Lewis. Cooperative control with distributed gain adaptation and connectivity estimation for directed networks. International Journal of Robust and Nonlinear Control. 2014;24(3):450–476.
  7. Angelia Nedic, Alex Olshevsky. Distributed optimization over time-varying directed graphs. IEEE Transactions on Automatic Control. 2015;60(3):601–615.
  8. Paolo Di Lorenzo, Sergio Barbarossa. Distributed estimation and control of algebraic connectivity over random graphs. IEEE Transactions on Signal Processing. 2014;62(21):5615–5628.
  9. Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal. 1973;23(2):298–305.
  10. Maria Carmela De Gennaro, Ali Jadbabaie. Decentralized control of connectivity for multi-agent systems. Decision and Control, 2006 45th IEEE Conference. 2006;3628–3633.
  11. Florian Knorn, Rade Stanojevic, M Corless, Robert Shorten. A framework for decentralised feedback connectivity control with application to sensor networks. International Journal of Control. 2009;82(11):2095–2114.
  12. Kunal Srivastava, Angelia Nedic. Distributed asynchronous constrained stochastic optimization. IEEE Journal of Selected Topics in Signal Processing. 2011;5(4):772–790.
  13. Jorge Cortes, Sonia Martinez, Francesco Bullo. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control. 2006;51(8):1289–1298.
  14. Cosimo Federico Ardito, Donato Di Paola, Andrea Gasparri. Decentralized estimation of the minimum strongly connected subdigraph for robotic networks with limited field of view. Decision and Control (CDC), 2012 IEEE 51st Annual Conference. 2012;5304–5309.
  15. Mengmeng Xu, Qinghai Yang, Kyung Sup Kwak. Algebraic connectivity aided energy-efficient topology control in selfish ad hoc networks. Wireless Networks. 2017;23(5):1331–1341.
  16. Michael M Zavlanos, Magnus B Egerstedt, George J Pappas. Graph-theoretic connectivity control of mobile robot networks. Proceedings of the IEEE. 2011;99(9):1525–1540.
  17. Dimos V Dimarogonas, Karl H Johansson. Bounded control of network connectivity in multi-agent systems. IET control theory & applications. 2010;4(8):1330–1338.
  18. Fabio Morbidi, Antonio Giannitrapani, Domenico Prattichizzo. Maintaining connectivity among multiple agents in cyclic pursuit: A geometric approach. Decision and Control (CDC), 2010 49th IEEE Conference. 2010;7461–7466.
  19. Lorenzo Sabattini, Nikhil Chopra, Cristian Secchi. Decentralized connectivity maintenance for cooperative control of mobile robotic systems. The International Journal of Robotics Research. 2013;32(12):1411–1423.
  20. Andrea Gasparri, Lorenzo Sabattini, Giovanni Ulivi. Bounded Control Law for Global Connectivity Maintenance in Cooperative Multirobot Systems. IEEE Transactions on Robotics. 2017;33(3):700–717.
  21. Minh Hoang Trinh, Kwang-Kyo Oh, Kyungmin Jeong, Hyo-Sung Ahn. Bearing-only control of leader first follower formations. IFAC-PapersOnLine. 2016;49(4):7–12.
  22. Paolo Robuffo Giordano, Antonio Franchi, Cristian Secchi, Heinrich H Bulthoff. A passivity-based decentralized strategy for generalized connectivity maintenance. The International Journal of Robotics Research. 2013;32(3):299–323.
  23. Lorenzo Sabattini, Cristian Secchi, Nikhil Chopra. Decentralized control for maintenance of strong connectivity for directed graphs. Control & Automation (MED), 2013 21st Mediterranean Conference. 2013;978–986.
  24. Ali Jadbabaie, Nader Motee, Mauricio Barahona. On the stability of the Kuramoto model of coupled nonlinear oscillators. American Control Conference, 2004. Proceedings. 2004;5:4296–4301.
  25. Peng Yang, Randy A Freeman, Geoffrey J Gordon, et al. Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica. 2010;46(2):390–396.
Creative Commons Attribution License

©2019 Yang, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.