Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 7 Issue 2

Chance-constrained Path Planning in Narrow Spaces for a Dubins Vehicle

Rachit Aggarwal,1 Mrinal Kumar,1 Rachel E Keil,2 Anil V Rao2

1Department of Mechanical and Aerospace Engineering, The Ohio State University, USA
2Department of Mechanical and Aerospace Engineering, University of Florida, USA

Correspondence:

Received: April 07, 2021 | Published: July 23, 2021

Citation: Aggarwal R, Kumar M, Keil RE, et al. Chance-constrained Path Planning in Narrow Spaces for a Dubins Vehicle. Int Rob Auto J. 2021;7(2):46-61 DOI: 10.15406/iratj.2021.07.00277

Download PDF

Abstract

The problem of optimal path planning through narrow spaces in an unstructured environment is considered. The optimal path planning problem for a Dubins agent is formulated as a chance-constrained optimal control problem (CCOCP), wherein the uncertainty in obstacle boundaries is modelled using standard probability distributions. The chance constraints are transformed to deterministic equivalents using the inverse cumulative distribution function and subsequently incorporated into a deterministic optimal control problem. Due to multiple convex sub-regions introduced by the obstacles, the initial guess provided to optimal control solver is crucial for computation time and optimality of the solution. A constrained Delaunay triangulation mesh based approach is developed that ensures the initial guess to lie in the optimal sub-convex region. Finally, off-the-shelf software is used to transcribe the optimal control problem to a nonlinear program (NLP) using Gaussian quadrature orthogonal collocation and solved to obtain an optimal path that conforms to system dynamics. By varying the upper bound on probability of obstacle collision, a family of solutions is generated, parameterized by the risk associated with each solution. This approach enables discovery of special “keyhole trajectories” that can provide significant cost savings in a tightly-spaced obstacle field. Merits of this approach are illustrated by comparing it with the traditional bounded uncertainty approach.

Keywords: chance-constrained programming, path planning, collision avoidance, narrow spaces, triangulation

Introduction

Path planning

In the present context, the objective of path planning is to determine a collision-free strategy from the initial state to a desired final state. The problem is often extended by introducing additional constraints such as agent dynamics with the aim to optimize a desired performance index. The application of this concept can be commonly found in numerous uses such as industrial robotic manipulators, mobile robotics, inventory scheduling, flight planning and is now emerging in self-driving cars and aerial robotics. The popular path planning techniques can be broadly classified into three categories: (i) combinatorial planning, (ii) sampling- based planning, and (iii) potential field methods.1–4 Combinatorial planning methods employ decomposition techniques5 like trapezoidal decomposition,6 visibility graphs7,8 and Voronoi diagrams9,10 to capture the connectivity of locations in the search space. An optimal solution on the graph is then obtained using graph-search algorithms such as the Dijsktra algorithm11 and the A* algorithm.12 These methods are resolution complete, meaning that they always yield a solution if it exists. However, they are often sensitive to discretization and degrade in performance for higher dimensions. Sampling-based planning methods, such as probabilistic road maps (PRM)13,14 and rapidly exploring random trees (RRT)15 search for a path in the collision-free space determined by incrementally sampling the domain space and simultaneously checking for collisions with obstacles. Unlike their combinatorial counterparts, the sampling- based planning methods are probabilistically complete, i.e. the probability of arriving at a solution, if it exists, tends to unity.16,17 In other words, these methods will converge to a solution if allowed to sample indefinitely. On the other hand, the potential field methods employ artificial potential field functions to attract an agent towards the final goal and repel it away from the obstacles18–23 These methods are suited for path planning in the continuous domain for both static and time varying systems, but the presence of local minima pose a challenge to convergence.24 In addition, cumbersome tuning of the potential fields may be required to prevent oscillatory behaviour in unstable potential fields near obstacles or passage through tight spaces between the obstacles.24 Optimal control based planning methods offer an alternative to the aforementioned approaches by using an explicit formulation of the cost function with various system and environmental constraints. We adopt this framework in the present paper.

Chances-constrained path planning

The presence of exogenous disturbances and/or modelling errors results in uncertainty in the agent’s state. Likewise, unmodeled or inadequately modelled processes in the environment (e.g. wind) and/or measurement errors can cause uncertainty in characterization of the obstacles’ shape, size and location. In a deterministic framework, obstacles can be modelled as deterministic entities using conservative approximations, thereby introducing a margin of safety, e.g. corresponding to the worst case realization of obstacle uncertainty. This approach invariably causes the domain of solutions to shrink, potentially accompanied by significant loss of optimality (increase in cost). In fact, it is not difficult to envision a scenario in which overlap among conservatively modelled obstacles causes the solution space to become disconnected, rendering the planning problem infeasible. An alternative to the deterministic approach is to allow the obstacles to retain their uncertain character by modelling their perimeter as a random variable (or a stochastic process for time varying obstacles), parameterized in terms of appropriately chosen probability distribution functions. The obstacle avoidance constraint can then be formulated as the probability of collision (agent infringing the obstacle’s probabilistic perimeter), stipulated to stay under a sufficiently low threshold, decided by the decision maker(autonomous agent or human operator) given its propensity for risk-taking (“appetite for risk”) and/or exigency of a given mission profile. Such a constraint is referred to as a probabilitistic constraint, or a chance-constraint. Alternatively, the probability of collision can be included additively in the cost function, to be minimized alongside other performance metrics (e.g. travel time) with an appropriate weight selected to penalize higher numerical values of the probability function. However, there usually exist no systematic methods to tune the weights in such a multi-objective cost function comprising of quantities with disparate physical meaning, e.g. travel time and probability of collision. The chance-constrained approach is preferred because it offers the decision making agent (a human operator or the autonomous agent) the opportunity to prescribe an explicit threshold of risk appropriate for the perceived level of uncertainty in the environment, along with the exigency of the mission profile, potentially modelled as elements of the overall mission cost. In other words, the chance-constrained planning framework creates an explicit portrait of risk-versus-reward tradeoffs that can aid decision making agency.

The literature on risk-aware planning spans a wide spectrum of application domains. This literature exists in primarily two contexts: (1) min-risk problems, with many employing prior models to assess risk, followed by a solution using search algorithms25,26 and (2) min-energy or min-time problems, in which the uncertainty in the system is posed as so-called chance-constraints. In the present paper, we are concerned with the latter categories of problems.

In the past, chance-constraints (CC) have been used for path planning by Marti27 and Blackmore and Ono.28 In,27 chance constraints, posed on the state and control variables, were translated to equivalent deterministic constraints using stochastic optimization and resulting problem was solved using deterministic dynamic programming. Blackmore and Ono28 formulated the obstacle avoidance problem in presence of polytopes with Gaussian uncertainty and introduced the concept of stochastic robustness, defined as “probability of state constraint violation set to be below a prescribed value”, which is the basis of recent chance-constrained optimal control problem formulations. Blackmore et al.29–31 presented different approaches for the evaluation of chance constraints in optimal control problems, where, unlike Robust Model Predictive Control (RMPC), the control was implemented for a finite planning horizon. A computationally intensive sampling-based particle technique for non-convex constraints with arbitrary uncertainty distributions was presented.29 Our prior work,32 proposed the “split-Bernstein” approach33 for evaluation of the chance-constraints by constructing their conservative deterministic approximations. A major challenge in obstacle avoidance problems is the presence of multiple convex sub-regions especially in presence of multiple obstacles. In an effort to address it,30,31 approximate the path planning problem for linear-Gaussian systems as a disjunctive convex program via the Booles inequality, which places an analytic bound on the probability of collision. Along similar lines, Arantes et al.34 and Okamoto et al.35 adopted mixed integer linear programming (MILP) approach to decompose the chance-constrained non-convex path planning problem into collision-free convex sub problems. Unfortunately, such decomposition-based convexification approaches invariably result in an exponential growth in computational complexity. Computational efficiency can be improved to an extent by employing heuristics which typically comprise of combinatorial or sampling-based methods.36–38 For example, the disjunctive convex programs30,31 are solved for global optimality using branch and bound techniques and the MILP34 is simplified by generating the enumeration sequence using Dijkstra’s algorithm. To compensate for computational complexity of MILP, Okamoto et al.35 employed a computationally fast approach exploiting the feedback control loop to “steer” the covariance for agent’s passage through narrow regions. Chance-constrained path was searched using RRT which is prone to miss paths through narrow spaces.38 The quest for suitable decomposition techniques still remains a common theme in obstacle avoidance problems. These techniques also aid in generating initial guess and yield “almost optimal” (without guarantee) solutions. In absence of decomposition techniques, the non-convex path planning problem can be solved directly and more efficiently but requires discretization and an initial guess in the feasible space, which offers no guarantee of global optimum. Such a guess is often provided manually or generated using heuristics.

In this work, we formulate path planning as a constrained optimal control problem with nonlinear dynamics and obstacle avoidance chance-constraints. We are especially concerned with scenarios in which obstacles appear in close proximity, such that the “worst-case”, bounded uncertainty approach to modelling their boundaries results in overlap among their extended perimeters. We assume that the uncertainty in obstacles arises due to additive uncertainty in the obstacle boundaries. Then, chance-constraints represent the probability of failure to avoid obstacles within a prescribed threshold of risk. The problem is transformed to an equivalent deterministic optimal control problem and solved using the Gaussian quadrature orthogonal collocation method. The problem of multiple convex sub-regions introduced by obstacles, particularly the narrow spaces between the obstacles, is addressed by unsupervised generation of an initial guess in the local convex domain containing the global optimum. This is achieved through triangular meshing and graph search algorithms to obtain a shortest path in the discretizes domain. By varying the upper bound on the probability of violation of obstacle boundaries, a family of paths is generated eliciting the optimal cost and risk of failure associated with each member solution. The merits of this framework are twofold: (1) the triangular meshing approach provides a guess that is closer to the global optimal. (2) it provides a direct approach of embedding the uncertainty in the chance-constraints and controlling the effective boundary inflation with an easily tunable risk parameter. The latter also empowers the decision making agent to evaluate and select the path that matches its risk appetite and/or perceived mission urgency. This technique is particularly useful in determining “keyhole” trajectories, i.e. paths through narrow regions in a cluttered environment.

The rest of the paper is organized as follows: Section 2 presents strategies for evaluation of chance-constraints. The optimal path planning problem with deterministic dynamics in an environment containing obstacles with perimeter uncertainty is presented in Section 3. Two paradigms for obstacle avoidance, namely bounded-uncertainty (robust obstacle avoidance) and chance-constraints are discussed. A special case in which obstacle uncertainty appears in a separable form in considered, leading to construction of equivalent deterministic constraints through the use of the cumulative distribution function of the obstacle boundary. Section 4 outlines the Gaussian quadrature orthogonal collocation method that is employed for solving the resulting deterministic optimal control problem. Further, as an extension to39 an improved initial guess generation procedure is described which employs graph search in a discretizes space to obtain a shortest path. This path serves as the initial guess for the optimal control problem. Section 5 presents studies to delineate the merits of the chance-constrained approach compared to the conventional approach. The comparison shows that chance-constraints provide a more explicit framework to model the perceived uncertainty to obtain optimal solutions as a function of safety margin characterized by risk. A discussion on inclusion of process noise in collision avoidance constraint is also presented in this study. Finally, the article concludes with a summary and directions for future work, laid out in Section 6.

Chance-constrained optimal control problem

Consider the following generalized form of a chance-constrained optimal control problem (CCOCP):

min uυ Ε[ J( x . ,x,w,u,ξ,t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfqa GcbaqcLbsaciGGTbGaaiyAaiaac6gaaSqaaKqzadGaamyDaiabgIGi olabew8a1bWcbeaajugibiabfw5afLqbaoaadmaakeaajugibiaadQ eajuaGdaqadaGcbaqcfa4aaCbiaOqaaKqzGeGaamiEaaWcbeqaaKqz adGaaiOlaaaajugibiaacYcacaWG4bGaaiilaiaadEhacaGGSaGaam yDaiaacYcacqaH+oaEcaGGSaGaamiDaaGccaGLOaGaayzkaaaacaGL BbGaayzxaaaaaa@58E2@   (1a)

subjected to:

f( x . ,x,w,u,t )=0,x( t=0 ) H 0 ( x ),w( t ) W t ( w ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA gajuaGdaqadaGcbaqcfa4aaCbiaOqaaKqzGeGaamiEaaWcbeqaaKqz GeGaaiOlaaaacaGGSaGaamiEaiaacYcacaWG3bGaaiilaiaadwhaca GGSaGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiil aiaadIhajuaGdaqadaGcbaqcLbsacaWG0bGaeyypa0JaaGimaaGcca GLOaGaayzkaaqcLbsacaWGibqcfa4aaSbaaSqaaKqzadGaaGimaaWc beaajuaGdaqadaGcbaqcLbsacaWG4baakiaawIcacaGLPaaajugibi aacYcacaWG3bqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzk aaqcLbsacqWI8iIocaWGxbWcdaWgaaqaaKqzadGaamiDaaWcbeaaju aGdaqadaGcbaqcLbsacaWG3baakiaawIcacaGLPaaaaaa@66F1@   (1b)

G i ( x . ,x,u,t ) ϕ i ,i=1,2,..., N d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGPbaaleqaaKqbaoaabmaakeaajuaGdGaG 0DbiaOqaiaiDjugibiacas3G4baaleqcasxaiaiDjugWaiacasNGUa aaaKqzGeGaaiilaiaadIhacaGGSaGaamyDaiaacYcacaWG0baakiaa wIcacaGLPaaajugibiabgIGiolabew9aMTWaaSbaaeaajugWaiaadM gaaSqabaqcLbsacaGGSaGaaiyAaiabg2da9iaaigdacaGGSaGaaGOm aiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaaiOtaSWaaSbaaeaaju gWaiaadsgaaSqabaaaaa@60E7@   (1c)

P[ j=1 N c { F j ( x,x,u,ξ,t ) ψ j } ]ξ V t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacqGHQicYjuaGdaqhaaWcbaqcLbmacaWG QbGaeyypa0JaaGymaaWcbaqcLbmacaWGobWcdaWgaaadbaqcLbmaca WGJbaameqaaaaajuaGdaGadaGcbaqcLbsacaWGgbqcfa4aaSbaaSqa aKqzGeGaamOAaaWcbeaajuaGdaqadaGcbaqcLbsacaWG4bGaaiilai aadIhacaGGSaGaamyDaiaacYcacqaH+oaEcaGGSaGaamiDaaGccaGL OaGaayzkaaqcLbsacqaHipqEjuaGdaWgaaWcbaqcLbmacaWGQbaale qaaaGccaGL7bGaayzFaaaacaGLBbGaayzxaaqcLbsacqGHKjYOcqaH +oaEcqWI8iIocaWGwbWcdaWgaaqaaKqzadGaamiDaaWcbeaaaaa@678B@   (1d)

Where, Ε[ . ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfw 5afLqbaoaadmaakeaajugibiaac6caaOGaay5waiaaw2faaaaa@3EF9@  is the expectation operator and P[ . ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacaGGUaaakiaawUfacaGLDbaaaaa@3E66@  is the probability function. In Eq. (1b), f( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA gajuaGdaqadaGcbaqcLbsacaGGUaaakiaawIcacaGLPaaaaaa@3E13@  characterizes the time evolution of the stochastic process x( t ) n x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiab gIGiolabl2riHUWaaWbaaeqabaqcLbmacaWGUbWcdaWgaaadbaqcLb macaWG4baameqaaaaaaaa@46AC@  in presence of process noise w( t ) n w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE hajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiab gIGiolabl2riHUWaaWbaaeqabaqcLbmacaWGUbWcdaWgaaadbaqcLb macaWG3baameqaaaaaaaa@46AA@  and control input u( t ) n u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadw hajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiab gIGiolabl2riHMqbaoaaCaaaleqabaqcLbmacaWGUbWcdaWgaaadba qcLbmacaWG1baameqaaaaaaaa@4734@ . The initial condition uncertainty in the stochastic process x( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaaaaa@3E6C@  is given by the pdf H 0 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI eajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqbaoaabmaakeaajugi biaadIhaaOGaayjkaiaawMcaaaaa@40ED@ . In Eq. (1c), G i ( . ),i=1,2,...., N d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGPbaaleqaaKqbaoaabmaakeaajugibiaa c6caaOGaayjkaiaawMcaaKqzGeGaaiilaiaadMgacqGH9aqpcaaIXa GaaiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaacYca caWGobqcfa4aaSbaaSqaaKqzadGaamizaaWcbeaaaaa@4D78@  are deterministic constraints involving state and control variables. Note that such constraints can only be enforced when the dependent variables are deterministic in nature, i.e., when process noise w( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE hajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaaaaa@3E6B@  and initial uncertainty H 0 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI eajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqbaoaabmaakeaajugi biaadIhaaOGaayjkaiaawMcaaaaa@40ED@  are absent. Equation (1d) represents a generalized joint probabilistic (or chance) constraint for failure events. Here, the vector random variable ξ n ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4jabgIGiolabl2riHMqbaoaaCaaaleqabaqcLbsacaWGUbWcdaWg aaadbaqcLbmacqaH+oaEaWqabaaaaaaa@43E5@  represents uncertainty in the environment, e.g. uncertainty in obstacles’ locations and boundaries. Each individual function F j ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaBaaabaqcLbmacaWGQbaaleqaaKqbaoaabmaakeaajugibiaa c6caaOGaayjkaiaawMcaaaaa@4047@  represents a failure mode and ψ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI 8a5TWaaSbaaeaajugWaiaadQgaaSqabaaaaa@3DDE@  represents the set of failure conditions, e.g. in a collision with an obstacle whose uncertain perimeter is denoted by h( ξ ),F( x,x,u,ξ,t )xh( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI gajuaGdaqadaGcbaqcLbsacqaH+oaEaOGaayjkaiaawMcaaKqzGeGa aiilaiaadAeajuaGdaqadaGcbaqcLbsacaWG4bGaaiilaiaadIhaca GGSaGaamyDaiaacYcacqaH+oaEcaGGSaGaamiDaaGccaGLOaGaayzk aaqcLbsacqWI8iIocqWILicucaWG4bGaeyOeI0IaamiAaKqbaoaabm aakeaajugibiabe67a4bGccaGLOaGaayzkaaqcLbsacqWILicuaaa@5845@  and ψ( ,0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI 8a5jablYJi6Kqbaoaajadakeaajugibiabg6HiLkaacYcacaaIWaaa kiaawIcacaGLDbaaaaa@42B1@ . Then, P[ j=1 N c { F j ( x . ,x,u,ξ,t ) ψ j } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacqGHQicYlmaaDaaabaqcLbmacaWGQbGa eyypa0JaaGymaaWcbaqcLbmacaWGobWcdaWgaaadbaqcLbmacaWGJb aameqaaaaajuaGdaGadaGcbaqcLbsacaWGgbqcfa4aaSbaaSqaaKqz adGaamOAaaWcbeaajuaGdaqadaGcbaqcfa4aaCbiaOqaaKqzGeGaam iEaaWcbeqaaKqzadGaaiOlaaaajugibiaacYcacaWG4bGaaiilaiaa dwhacaGGSaGaeqOVdGNaaiilaiaadshaaOGaayjkaiaawMcaaKqzGe GaeyicI4SaeqiYdKxcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGa ay5Eaiaaw2haaaGaay5waiaaw2faaaaa@6407@  is the probability of union of such events with an upper bound, ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLbaa@3B63@ , also known as risk, with ε[ 0,0.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabgIGioNqbaoaajibabaqcLbsacaaIWaGaaiilaiaaicdacaGG UaGaaGynaaqcfaOaay5waiaawMcaaaaa@43FA@ . Alternatively, Eq. (1d) can be expressed in terms of success event as

P[ j=1 N c { F j ( x . ,x,u,ξ,t ) ψ j } ]1ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacqGHPiYXlmaaDaaabaqcLbmacaWGQbGa eyypa0JaaGymaaWcbaqcLbmacaWGobWcdaWgaaadbaqcLbmacaWGJb aameqaaaaajuaGdaGadaGcbaqcLbsacaWGgbWcdaWgaaqaaKqzadGa amOAaaWcbeaajuaGdaqadaGcbaqcfa4aaCbiaOqaaKqzGeGaamiEaa WcbeqaaKqzadGaaiOlaaaajugibiaacYcacaWG4bGaaiilaiaadwha caGGSaGaeqOVdGNaaiilaiaadshaaOGaayjkaiaawMcaaKqzGeGaey ycI8SaeqiYdK3cdaWgaaqaaKqzadGaamOAaaWcbeaaaOGaay5Eaiaa w2haaaGaay5waiaaw2faaKqzGeGaeyyzImRaaGymaiabgkHiTiabew 7aLbaa@688F@   (2)

where the lower bound ( 1ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaaIXaGaeyOeI0IaeqyTdugakiaawIcacaGLPaaaaaa@3F36@  is referred to as reliability and ( 1ε )[ 0.5,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaaIXaGaeyOeI0IaeqyTdugakiaawIcacaGLPaaajugi biabgIGioNqbaoaadmaakeaajugibiaaicdacaGGUaGaaGynaiaacY cacaaIXaaakiaawUfacaGLDbaaaaa@4802@ . In some circumstances, chance- constraints can occur as a collection of separate, individual chance-constraints, i.e. P[ F i ( x,x,u,ξ,t ) ψ i ]< ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacaWGgbWcdaWgaaqaaKqzadGaamyAaaWc beaajuaGdaqadaGcbaqcLbsacaWG4bGaaiilaiaadIhacaGGSaGaam yDaiaacYcacqaH+oaEcaGGSaGaamiDaaGccaGLOaGaayzkaaqcLbsa cqGHiiIZcqaHipqEjuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaaGcca GLBbGaayzxaaqcLbsacqGH8aapcqaH1oqzlmaaBaaabaqcLbmacaWG Pbaaleqaaaaa@584B@ , for i=1,...., N c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaac6cacaGG SaGaamOtaKqbaoaaBaaaleaajugWaiaadogaaSqabaaaaa@4441@ , as opposed to the single joint constraint shown in Eq. (1d). The key advantage of chance- constraints is that they allow accurate and faithful embodiment of uncertainty, especially environmental uncertainty in the formulation of constraints in an optimal control problem. The tradeoff is that the evaluation of the probability function, P[ F( . )ψ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacaWGgbqcfa4aaeWaaOqaaKqzGeGaaiOl aaGccaGLOaGaayzkaaqcLbsacqGHiiIZcqaHipqEaOGaay5waiaaw2 faaaaa@45CC@ , especially with joint chance-constraints, poses difficulties. Note that joint chance-constraints can be approximately decomposed into a collection of individual chance constraints as shown in the Section. 2.1. Later in Section. 2.2, an evaluation strategy is presented for the special case of individual chance-constraints with “separable uncertainty.”

Decomposition of chance constraints (CC)

When formulating a chance-constraint in an optimal control problem, it is preferable to express the feasibility of the path (rather than infeasibility or failure) in the available free space. Consider a set of conditions denoting path feasibility g i ( x,ξ )[ g i,min , g i,max ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE galmaaBaaabaqcLbmacaWGPbaaleqaaKqbaoaabmaakeaajugibiaa dIhacaGGSaGaeqOVdGhakiaawIcacaGLPaaajugibiabgIGioNqbao aadmaakeaajugibiaadEgalmaaBaaabaqcLbmacaWGPbGaaiilaiGa c2gacaGGPbGaaiOBaaWcbeaajugibiaacYcacaWGNbqcfa4aaSbaaS qaaKqzadGaamyAaiaacYcaciGGTbGaaiyyaiaacIhaaSqabaaakiaa wUfacaGLDbaaaaa@57AC@ , i=1,...., N c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaac6cacaGG SaGaamOtaKqbaoaaBaaaleaajugWaiaadogaaSqabaaaaa@4441@ , where x n x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hacqGHiiIZcqWIDesOjuaGdaahaaWcbeqaaKqzadGaamOBaSWaaSba aWqaaKqzadGaamiEaaadbeaaaaaaaa@42F8@  the state variable and ξ n ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4jabgIGiolabl2riHUWaaWbaaeqabaqcLbmacaWGUbWcdaWgaaad baqcLbmacqaH+oaEaWqabaaaaaaa@43F6@  is the random variable denoting uncertainty. . Using the template in Eq. (2), successful collision avoidance above a reliability threshold can be written as the following chance-constraint

P[ i=1 N c ( g i,min g i ( x,ξ ) g i,max ) ]1ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacqGHPiYXlmaaDaaabaqcLbmacaWGPbGa eyypa0JaaGymaaWcbaqcLbmacaWGobWcdaWgaaadbaqcLbmacaWGJb aameqaaaaajuaGdaqadaGcbaqcLbsacaWGNbWcdaWgaaqaaKqzadGa amyAaiaacYcaciGGTbGaaiyAaiaac6gaaSqabaqcLbsacqGHKjYOca WGNbWcdaWgaaqaaKqzadGaamyAaaWcbeaajuaGdaqadaGcbaqcLbsa caWG4bGaaiilaiabe67a4bGccaGLOaGaayzkaaqcLbsacqGHKjYOca WGNbWcdaWgaaqaaKqzadGaamyAaiaacYcaciGGTbGaaiyyaiaacIha aSqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaajugibiabgwMiZk aaigdacqGHsislcqaH1oqzaaa@6B8B@   (3)

where ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLbaa@3B63@ denotes the risk parameter with ε[ 0,0.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabgIGioNqbaoaajibabaqcLbsacaaIWaGaaiilaiaaicdacaGG UaGaaGynaaqcfaOaay5waiaawMcaaaaa@43FA@ . Separating the upper and lower thresholds in the above constraint, we get the following equivalent form33,39

P[ i=1 N c ( ( g i ( x,ξ ) g i,min )( g i ( x,ξ ) g i,max ) ) ]1ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacqGHPiYXlmaaDaaabaqcLbmacaWGPbGa eyypa0JaaGymaaWcbaqcLbmacaWGobWcdaWgaaadbaqcLbmacaWGJb aameqaaaaajuaGdaqadaGcbaqcfa4aaeWaaOqaaKqzGeGaam4zaSWa aSbaaeaajugWaiaadMgaaSqabaqcfa4aaeWaaOqaaKqzGeGaamiEai aacYcacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaeyyzImRaam4zaKqb aoaaBaaaleaajugWaiaadMgacaGGSaGaciyBaiaacMgacaGGUbaale qaaaGccaGLOaGaayzkaaqcLbsacqGHPiYXjuaGdaqadaGcbaqcLbsa caWGNbWcdaWgaaqaaKqzadGaamyAaaWcbeaajuaGdaqadaGcbaqcLb sacaWG4bGaaiilaiabe67a4bGccaGLOaGaayzkaaqcLbsacqGHKjYO caWGNbqcfa4aaSbaaSqaaKqzadGaamyAaiaacYcaciGGTbGaaiyyai aacIhaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUfa caGLDbaajugibiabgwMiZkaaigdacqGHsislcqaH1oqzaaa@7D29@   (4)

Now De-Morgan’s law can be employed to formulate the chance-constraints in terms of the failure event. This results in set union form as shown below:

P[ i=1 N c ( ( g i ( x,ξ )< g i,min )( g i,min )( g i ( x,ξ )> g i,max ) ) ]<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacqGHQicYlmaaDaaabaqcLbmacaWGPbGa eyypa0JaaGymaaWcbaqcLbmacaWGobWcdaWgaaadbaqcLbmacaWGJb aameqaaaaajuaGdaqadaGcbaqcfa4aaeWaaOqaaKqzGeGaam4zaSWa aSbaaeaajugWaiaadMgaaSqabaqcfa4aaeWaaOqaaKqzGeGaamiEai aacYcacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaeyipaWJaam4zaKqb aoaaBaaaleaajugWaiaadMgacaGGSaGaciyBaiaacMgacaGGUbaale qaaaGccaGLOaGaayzkaaqcLbsacqGHQicYjuaGdaqadaGcbaqcLbsa caWGNbqcfa4aaSbaaSqaaKqzadGaamyAaiaacYcaciGGTbGaaiyAai aac6gaaSqabaaakiaawIcacaGLPaaajugibiabgQIiiNqbaoaabmaa keaajugibiaadEgalmaaBaaabaqcLbmacaWGPbaaleqaaKqbaoaabm aakeaajugibiaadIhacaGGSaGaeqOVdGhakiaawIcacaGLPaaajugi biabg6da+iaadEgalmaaBaaabaqcLbmacaWGPbGaaiilaiGac2gaca GGHbGaaiiEaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaGa ay5waiaaw2faaKqzGeGaeyipaWJaeqyTdugaaa@84FE@   (5)

Booles inequality (sub-additivity of the probability measure) provides sufficient condition to show that if the sum of all individual CCs is less than the prescribed risk, then it is guaranteed that the union of all CCs is also less than the prescribed risk30,33,39 Therefore, Eq. (5) results in

i=1 N c ( P[ g i ( x,ξ )< g i,min ]+P[ g i ( x,ξ )> g i,max ] ) <ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaaeWb Gcbaqcfa4aaeWaaOqaaKqzGeGaamiuaKqbaoaadmaakeaajugibiaa dEgajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqbaoaabmaakeaaju gibiaadIhacaGGSaGaeqOVdGhakiaawIcacaGLPaaajugibiabgYda 8iaadEgalmaaBaaabaqcLbmacaWGPbGaaiilaiGac2gacaGGPbGaai OBaaWcbeaaaOGaay5waiaaw2faaKqzGeGaey4kaSIaamiuaKqbaoaa dmaakeaajugibiaadEgalmaaBaaabaqcLbmacaWGPbaaleqaaKqbao aabmaakeaajugibiaadIhacaGGSaGaeqOVdGhakiaawIcacaGLPaaa jugibiabg6da+iaadEgajuaGdaWgaaWcbaqcLbmacaWGPbGaaiilai Gac2gacaGGHbGaaiiEaaWcbeaaaOGaay5waiaaw2faaaGaayjkaiaa wMcaaaWcbaqcLbmacaWGPbGaeyypa0JaaGymaaWcbaqcLbmacaWGob WcdaWgaaadbaqcLbmacaWGJbaameqaaaqcLbsacqGHris5aiabgYda 8iabew7aLbaa@7824@   (6)

We are thus led to a conservative approximation where each chance-constraint is assigned an allocated risk parameter, ε n,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLTWaaSbaaeaajugWaiaad6gacaGGSaGaaGymaaWcbeaaaaa@3F26@  and ε n,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLTWaaSbaaeaajugWaiaad6gacaGGSaGaaGOmaaWcbeaaaaa@3F27@ . Finally, the decomposed chance-constraints can be written as:

Upper Bounds: P( g i ( x,ξ )> g i,max ) ε i,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaqadaGcbaqcLbsacaWGNbWcdaWgaaqaaKqzadGaamyAaaWc beaajuaGdaqadaGcbaqcLbsacaWG4bGaaiilaiabe67a4bGccaGLOa GaayzkaaqcLbsacqGH+aGpcaWGNbqcfa4aaSbaaSqaaKqzadGaamyA aiaacYcaciGGTbGaaiyyaiaacIhaaSqabaaakiaawIcacaGLPaaaju gibiabgsMiJkabew7aLTWaaSbaaeaajugWaiaadMgacaGGSaGaaGym aaWcbeaaaaa@5745@   (7a)

Lower Bounds: P( g i,min > g i ( x,ξ ) ) ε i,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaqadaGcbaqcLbsacaWGNbqcfa4aaSbaaSqaaKqzadGaamyA aiaacYcaciGGTbGaaiyAaiaac6gaaSqabaqcLbsacqGH+aGpcaWGNb WcdaWgaaqaaKqzadGaamyAaaWcbeaajuaGdaqadaGcbaqcLbsacaWG 4bGaaiilaiabe67a4bGccaGLOaGaayzkaaaacaGLOaGaayzkaaqcLb sacqGHKjYOcqaH1oqzlmaaBaaabaqcLbmacaWGPbGaaiilaiaaikda aSqabaaaaa@573A@   (7b)

where,   i=1,...., N c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaac6cacaGG SaGaamOtaSWaaSbaaeaajugWaiaadogaaSqabaaaaa@43B3@

and   i=1 N c ( ε i,1 + ε i,2 ) ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaaeWb Gcbaqcfa4aaeWaaOqaaKqzGeGaeqyTdu2cdaWgaaqaaKqzadGaamyA aiaacYcacaaIXaaaleqaaKqzGeGaey4kaSIaeqyTduwcfa4aaSbaaS qaaKqzadGaamyAaiaacYcacaaIYaaaleqaaaGccaGLOaGaayzkaaaa leaajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaad6ealmaaBa aameaajugWaiaadogaaWqabaaajugibiabggHiLdGaeyizImQaeqyT dugaaa@57AC@   (7c)

It is important to note that the above decomposition not only introduces conservatism, but also requires determination of allocated risk parameters, ε i,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLTWaaSbaaeaajugWaiaadMgacaGGSaGaaGymaaWcbeaaaaa@3F21@  and ε i,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLTWaaSbaaeaajugWaiaadMgacaGGSaGaaGOmaaWcbeaaaaa@3F22@ . However, the decomposition does reduce the joint constraint, which is hard to work with, into a set of individual of chance-constraints.

Deterministic transformation for separable chance-constraints

Chance-constraints, whether in joint form or separated as shown above, present the challenge of evaluation of the probability function, P[ . ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacaGGUaaakiaawUfacaGLDbaaaaa@3E66@ . Let us consider an individual chance-constraint from Eq.7b with g min =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gajuaGdaWgaaWcbaqcLbmaciGGTbGaaiyAaiaac6gaaSqabaqcLbsa cqGH9aqpcaaIWaaaaa@41BC@  implying that

P[ g( x,ξ )<0 ]εP[ g( x,ξ )0 ]>1ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacaWGNbqcfa4aaeWaaOqaaKqzGeGaamiE aiaacYcacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaeyipaWJaaGimaa GccaGLBbGaayzxaaqcLbsacqGHKjYOcqaH1oqzcqGHuhY2caWGqbqc fa4aamWaaOqaaKqzGeGaam4zaKqbaoaabmaakeaajugibiaadIhaca GGSaGaeqOVdGhakiaawIcacaGLPaaajugibiabgwMiZkaaicdaaOGa ay5waiaaw2faaKqzGeGaeyOpa4JaaGymaiabgkHiTiabew7aLbaa@6061@   (8)

Then P[ g( x,ξ )0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacaWGNbqcfa4aaeWaaOqaaKqzGeGaamiE aiaacYcacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaeyyzImRaaGimaa GccaGLBbGaayzxaaaaaa@47D9@ can be evaluated using the following expression.

P[ g( x,ξ )0 ]=Ε[ I ( 0, ] g( x,ξ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaGcbaqcLbsacaWGNbqcfa4aaeWaaOqaaKqzGeGaamiE aiaacYcacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaeyyzImRaaGimaa GccaGLBbGaayzxaaqcLbsacqGH9aqpcqqHvoqrjuaGdaWadaGcbaqc LbsacaWGjbqcfa4aaSbaaSqaamaajadabaqcLbmacaaIWaGaaiilai abg6HiLcWccaGLOaGaayzxaaaabeaajugibiaadEgajuaGdaqadaGc baqcLbsacaWG4bGaaiilaiabe67a4bGccaGLOaGaayzkaaaacaGLBb Gaayzxaaaaaa@5D22@   (9a)

= ξΩ|g( x,ξ )0 ϕ( ξ )dξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabg2 da9iabgUIiYNqbaoaaBaaaleaajugWaiabe67a4jabgIGiolabfM6a xjaacYhacaWGNbWcdaqadaqaaKqzadGaamiEaiaacYcacqaH+oaEaS GaayjkaiaawMcaaKqzGeGaeyyzImRaaGimaaWcbeaajugibiabew9a MLqbaoaabmaakeaajugibiabe67a4bGccaGLOaGaayzkaaqcLbsaca WGKbGaeqOVdGhaaa@589C@   (9b)

where ϕ( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 9aMLqbaoaabmaakeaajugibiabe67a4bGccaGLOaGaayzkaaaaaa@4001@  is the probability density function of the vector random variable ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4baa@3B7F@ . Generally, it is difficult to evaluate Eq. (9b) and obtain analytic closed-form expressions.40 However, if we consider a separable form, g( x,ξ ):=g( x ) c T ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gajuaGdaqadaqaaKqzGeGaamiEaiaacYcacqaH+oaEaKqbakaawIca caGLPaaajugibiaacQdacqGH9aqpcaWGNbqcfa4aaeWaaeaajugibi aadIhaaKqbakaawIcacaGLPaaajugibiabgkHiTiaadogalmaaCaaa juaGbeqaaKqzadGaamivaaaajugibiabe67a4baa@5034@ , then:

P[ g( x,ξ )0 ]=P[ g( x ) c T ξ0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaqaaKqzGeGaam4zaKqbaoaabmaabaqcLbsacaWG4bGa aiilaiabe67a4bqcfaOaayjkaiaawMcaaKqzGeGaeyyzImRaaGimaa qcfaOaay5waiaaw2faaKqzGeGaeyypa0JaamiuaKqbaoaadmaabaqc LbsacaWGNbqcfa4aaeWaaeaajugibiaadIhaaKqbakaawIcacaGLPa aajugibiabgkHiTiaadogajuaGdaahaaqabeaajugWaiaadsfaaaqc LbsacqaH+oaEcqGHLjYScaaIWaaajuaGcaGLBbGaayzxaaaaaa@5DDE@   (10a)

=P[ c T ξg( x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabg2 da9iaadcfajuaGdaWadaGcbaqcLbsacaWGJbWcdaahaaqabeaajugW aiaadsfaaaqcLbsacqaH+oaEcqGHKjYOcaWGNbqcfa4aaeWaaOqaaK qzGeGaamiEaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4A76@   (10b)

For the special case when ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4baa@3B7F@  is scalar we have the following inversion

P[ g( x,ξ )0 ]=P[ ξg( x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugWaiaadc falmaadmaakeaajugWaiaadEgalmaabmaakeaajugWaiaadIhacaGG SaGaeqOVdGhakiaawIcacaGLPaaajugWaiabgwMiZkaaicdaaOGaay 5waiaaw2faaKqzadGaeyypa0JaamiuaSWaamWaaOqaaKqzadGaeqOV dGNaeyizImQaam4zaSWaaeWaaOqaaKqzadGaamiEaaGccaGLOaGaay zkaaaacaGLBbGaayzxaaaaaa@57C4@   (11a)

= F ξ ( g( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabg2 da9iaadAeajuaGdaWgaaWcbaqcLbsacqaH+oaEaSqabaqcfa4aaeWa aOqaaKqzGeGaam4zaKqbaoaabmaakeaajugibiaadIhaaOGaayjkai aawMcaaaGaayjkaiaawMcaaaaa@45F7@   (11b)

Where, F ξ ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaBaaabaqcLbmacqaH+oaEaSqabaqcfa4aaeWaaOqaaKqzGeGa aiOlaaGccaGLOaGaayzkaaaaaa@411B@  is the CDF of random variable ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4baa@3B7F@ . Finally, we obtain

P[ g( x,ξ )0 ]>1ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc fajuaGdaWadaqaaKqzGeGaam4zaKqbaoaabmaabaqcLbsacaWG4bGa aiilaiabe67a4bqcfaOaayjkaiaawMcaaKqzGeGaeyyzImRaaGimaa qcfaOaay5waiaaw2faaKqzGeGaeyOpa4JaaGymaiabgkHiTiabew7a Lbaa@4DB3@   (12a)

F ξ ( g( x ) )>1ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgs DiBlaadAealmaaBaaabaqcLbmacqaH+oaEaSqabaqcfa4aaeWaaOqa aKqzGeGaam4zaKqbaoaabmaakeaajugibiaadIhaaOGaayjkaiaawM caaaGaayjkaiaawMcaaKqzGeGaeyOpa4JaaGymaiabgkHiTiabew7a Lbaa@4C44@   (12b)

g( x )> F ξ 1 ( 1ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgk DiElaadEgajuaGdaqadaGcbaqcLbsacaWG4baakiaawIcacaGLPaaa jugibiabg6da+iaadAealmaaDaaabaqcLbmacqaH+oaEaSqaaKqzad GaeyOeI0IaaGymaaaajuaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0Ia eqyTdugakiaawIcacaGLPaaaaaa@4F26@   (12c)

For Gaussian distribution, F ξ 1 ( 1ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaDaaabaqcLbmacqaH+oaEaSqaaKqzadGaeyOeI0IaaGymaaaa juaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0IaeqyTdugakiaawIcaca GLPaaaaaa@468F@  can be replaced using exact analytical expression Φ 1 ( 1ε )=μ+ 2σer f 1 ( 12ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfA 6agTWaaWbaaeqabaqcLbmacqGHsislcaaIXaaaaKqbaoaabmaakeaa jugibiaaigdacqGHsislcqaH1oqzaOGaayjkaiaawMcaaKqzGeGaey ypa0JaeqiVd0Maey4kaSscfa4aaOaaaOqaaKqzGeGaaGOmaiabeo8a ZjaadwgacaWGYbGaamOzaSWaaWbaaeqabaqcLbmacqGHsislcaaIXa aaaaWcbeaajuaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0IaaGOmaiab ew7aLbGccaGLOaGaayzkaaaaaa@58C4@  for ξN( μ,σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4jablYJi6iaad6eajuaGdaqadaGcbaqcLbsacqaH8oqBcaGGSaGa eq4WdmhakiaawIcacaGLPaaaaaa@445E@ .30 For non-Gaussian 1-D distributions, F ξ 1 ( 1ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaDaaabaqcLbmacqaH+oaEaSqaaKqzadGaeyOeI0IaaGymaaaa juaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0IaeqyTdugakiaawIcaca GLPaaaaaa@468F@ can be computed numerically when F ξ ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaBaaabaqcLbmacqaH+oaEaSqabaqcfa4aaeWaaOqaaKqzGeGa aiOlaaGccaGLOaGaayzkaaaaaa@411B@  is a monotonically increasing function. A similar procedure can be adopted for evaluating decomposed separable chance-constraints. For this study, it is sufficient to consider only separable chance-constraints because the uncertainty in the obstacle perimeter (Section. 3.2) is adequately modeled as a one-dimensional random variable that is coupled additively with the obstacle's perimeter.

Problem statement

Optimal path planning problem

We consider the Dubins vehicle model to represent kinematic motion of the agent. This model is often used as a surrogate for path planning of fixed winged aircraft in constant altitude, as well as automobiles. In effect, the Dubins vehicle model is a reduced order model representing constant longitudinal speed with yaw control for lateral motion. The problem of optimal path planning while avoiding obstacles is formulated as a minimum time problem subject to the constraints as shown below:

min t f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGac2 gacaGGPbGaaiOBaiaadshalmaaBaaabaqcLbmacaWGMbaaleqaaaaa @3FD7@   (13a)

subject to dynamic constraints:

x . ( t )=Vcosθ( t ) y . t =Vsinθ( t ) θ . ( t )=u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqbao aaxacakeaajugibiaadIhaaSqabeaajugWaiaac6caaaqcfa4aaeWa aOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGwb Gaci4yaiaac+gacaGGZbGaeqiUdexcfa4aaeWaaOqaaKqzGeGaamiD aaGccaGLOaGaayzkaaaabaqcfa4aaCbiaeaacaWG5baabeqaaKqzad GaaiOlaaaalmaaBaaabaqcLbmacaWG0baaleqaaKqzGeGaeyypa0Ja amOvaiGacohacaGGPbGaaiOBaiabeI7aXLqbaoaabmaakeaajugibi aadshaaOGaayjkaiaawMcaaaqaaKqbaoaaxacakeaajugibiabeI7a XbWcbeqaaKqzadGaaiOlaaaajuaGdaqadaGcbaqcLbsacaWG0baaki aawIcacaGLPaaajugibiabg2da9iaadwhaaaaa@67E2@   (13b)

terminal conditions:

{ x( 0 ),y( 0 ) }={ x 0 , y 0 },{ x( t f ),y( t f ) }={ x f , y f } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGada GcbaqcLbsacaWG4bqcfa4aaeWaaOqaaKqzGeGaaGimaaGccaGLOaGa ayzkaaqcLbsacaGGSaGaamyEaKqbaoaabmaakeaajugibiaaicdaaO GaayjkaiaawMcaaaGaay5Eaiaaw2haaKqzGeGaeyypa0tcfa4aaiWa aOqaaKqzGeGaamiEaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLb sacaGGSaGaamyEaKqbaoaaBaaaleaajugWaiaaicdaaSqabaaakiaa wUhacaGL9baajugibiaacYcajuaGdaGadaGcbaqcLbsacaWG4bqcfa 4aaeWaaOqaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaadAgaaSqa baaakiaawIcacaGLPaaajugibiaacYcacaWG5bqcfa4aaeWaaOqaaK qzGeGaamiDaKqbaoaaBaaaleaajugWaiaadAgaaSqabaaakiaawIca caGLPaaaaiaawUhacaGL9baajugibiabg2da9Kqbaoaacmaakeaaju gibiaadIhajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaKqzGeGaaiil aiaadMhajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaaGccaGL7bGaay zFaaaaaa@7712@   (13c)

boundary conditions:

| u |( V r min ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaabda GcbaqcLbsacaWG1baakiaawEa7caGLiWoajugibiabgsMiJMqbaoaa bmaakeaajuaGdaWcaaGcbaqcLbsacaWGwbaakeaajugibiaadkhaju aGdaWgaaWcbaqcLbmaciGGTbGaaiyAaiaac6gaaSqabaaaaaGccaGL OaGaayzkaaaaaa@4B50@   (13d)

x min x( t ) x max , y min y( t ) y max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGe GaamiEaSWaaSbaaeaajugWaiGac2gacaGGPbGaaiOBaaWcbeaajugi biabgsMiJkaadIhajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcaca GLPaaajugibiabgsMiJkaadIhalmaaBaaabaqcLbmaciGGTbGaaiyy aiaacIhaaSqabaGaaiilaaGcbaqcLbsacaWG5bqcfa4aaSbaaSqaaK qzadGaciyBaiaacMgacaGGUbaaleqaaKqzGeGaeyizImQaamyEaKqb aoaabmaakeaajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaeyizIm QaamyEaSWaaSbaaeaajugWaiGac2gacaGGHbGaaiiEaaWcbeaaaaaa @62E1@   (13e)

Here, the agent dynamics are assumed to be deterministic. Note that since the cost function is the final time ( t f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaWG0bqcfa4aaSbaaSqaaKqzadGaamOzaaWcbeaaaOGa ayjkaiaawMcaaaaa@3FBE@ , which is deterministic, the expectation operator is dropped compare Eqs.(13a) and (1a). In a deterministic framework where the location and size of obstacles are known precisely, collision-avoidance for circular and polygonal obstacles can be posed as the following path constraints.39

circular obstacles:

i=1 L ( x x c,i ) 2 + ( y y c,i ) 2 > r i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamyAaiabg2da9iaaigdaaSqa aKqzadGaamitaaaajuaGdaqadaGcbaqcLbsacaWG4bGaeyOeI0Iaam iEaKqbaoaaBaaaleaajugWaiaadogacaGGSaGaamyAaaWcbeaaaOGa ayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaey 4kaSscfa4aaeWaaOqaaKqzGeGaamyEaiabgkHiTiaadMhalmaaBaaa baqcLbmacaWGJbGaaiilaiaadMgaaSqabaaakiaawIcacaGLPaaalm aaCaaabeqaaKqzadGaaGOmaaaajugibiabg6da+iaadkhalmaaDaaa baqcLbmacaWGPbaaleaajugWaiaaikdaaaaaaa@6259@   (14a)

polygonal obstacles:

j=1 N ( k=1 M j a j,k x+ b j,k y> c j,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamOAaiabg2da9iaaigdaaSqa aKqzadGaamOtaaaajuaGdaqadaGcbaqcfa4aaCbmaOqaaKqzGeGaeS OkIufaleaajugWaiaadUgacqGH9aqpcaaIXaaaleaajugWaiaad2ea lmaaBaaameaajugWaiaadQgaaWqabaaaaKqzGeGaamyyaKqbaoaaBa aaleaajugWaiaadQgacaGGSaGaam4AaaWcbeaajugibiaadIhacqGH RaWkcaWGIbqcfa4aaSbaaSqaaKqzadGaamOAaiaacYcacaWGRbaale qaaKqzGeGaamyEaiabg6da+iaadogajuaGdaWgaaWcbaqcLbmacaWG QbGaaiilaiaadUgaaSqabaaakiaawIcacaGLPaaaaaa@64AF@   (14b)

where ( x c,i , y c,i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaWG4bWcdaWgaaqaaKqzadGaam4yaiaacYcacaWGPbaa leqaaKqzGeGaaiilaiaadMhalmaaBaaabaqcLbmacaWGJbGaaiilai aadMgaaSqabaaakiaawIcacaGLPaaaaaa@46F7@ and r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadk halmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3D06@  is the centre and radius of the ith circular obstacle, respectively, and a j,k x+ b j,k y= c j,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadg gajuaGdaWgaaWcbaqcLbmacaWGQbGaaiilaiaadUgaaSqabaqcLbsa caWG4bGaey4kaSIaamOyaSWaaSbaaeaajugWaiaadQgacaGGSaGaam 4AaaWcbeaajugibiaadMhacqGH9aqpcaWGJbWcdaWgaaqaaKqzadGa amOAaiaacYcacaWGRbaaleqaaaaa@4DDC@  denotes the kth edge of the jth polygon. Equation (14b) represents the exterior of a convex polygon, characterized as the union of exterior half-planes formed by the edges. Non-convex polygonal obstacles can be accommodated by partitioning such shapes into convex polygons. In this work, the agent is assumed to be a particle of zero dimensions. For an agent of non-zero size, the above path constraints can be modified by adding a buffer equal to the distance of the farthest point on the agent’s body from the body centre.

Obstacle avoidance using chance constraints

In practice, precise obstacle information is not available due to mapping errors. An agent operating in a new, uncertain environment may only have rough estimates of obstacles’ characteristics. A common approach is to include a margin of safety through inflation of each obstacle’s perimeter. This causes the free space available for planning to shrink and often results in sub-optimal paths with significantly longer travel times. In a cluttered environment, boundary inflation can even cause the obstacles to overlap, thus rendering the solution space disconnected and therefore, infeasible. In reality, there may exist paths through the narrow spaces between obstacles, offering potentially significant travel time savings. We are thus motivated to control the free space through an appropriate safety margin that emerges from uncertainty in the knowledge about the obstacle. Typically, uncertainty in the obstacle location and/or size is modelled in two ways (a) through bounded uncertainty, (b) as a probability distribution.

Obstacle characterization via bounded uncertainty

In this approach, the upper and lower bounds on the obstacle boundaries are identified. These serve as the worst case depiction of the obstacle, leading to a conservative safety margin. Collision avoidance can now be expressed as shown below, circular obstacles:

i=1 L ( x x c,i ) 2 + ( y y c,i ) 2 > ( r i + δ r i ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfWaqaai ablMIijbWcbaqcLbmacaWGPbGaeyypa0JaaGymaaWcbaqcLbmacaWG mbaaaOWaaeWaaeaacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaWGJb GaaiilaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaajugW aiaaikdaaaGccqGHRaWkdaqadaqaaiaadMhacqGHsislcaWG5bWaaS baaSqaaiaadogacaGGSaGaamyAaaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaKqzadGaaGOmaaaakiabg6da+maabmaabaGaamOCamaaBa aaleaajugWaiaadMgaaSqabaqcLbsacqGHRaWkkmaaCeaaleqabaqc LbmacaWGYbaaaOGaeqiTdq2cdaWgaaqaaKqzadGaamyAaaWcbeaaaO GaayjkaiaawMcaaSWaaWbaaeqabaqcLbmacaaIYaaaaaaa@63E5@   (15a)

polygonal obstacles

j=1 N ( k=1 M j a j,k x+ b j,k y> c j,k + δ p j,k a j,k 2 + b j,k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamOAaiabg2da9iaaigdaaSqa aKqzadGaamOtaaaajuaGdaqadaGcbaqcfa4aaCbmaOqaaKqzGeGaeS OkIufaleaajugWaiaadUgacqGH9aqpcaaIXaaaleaajugWaiaad2ea lmaaBaaameaajugWaiaadQgaaWqabaaaaKqzGeGaamyyaKqbaoaaBa aaleaajugWaiaadQgacaGGSaGaam4AaaWcbeaajugibiaadIhacqGH RaWkcaWGIbWcdaWgaaqaaKqzadGaamOAaiaacYcacaWGRbaaleqaaK qzGeGaamyEaiabg6da+iaadogalmaaBaaabaqcLbmacaWGQbGaaiil aiaadUgaaSqabaqcLbsacqGHRaWklmaaCeaabeqaaKqzadGaamiCaa aajugibiabes7aKLqbaoaaBaaaleaajugWaiaadQgacaGGSaGaam4A aaWcbeaajuaGdaGcaaGcbaqcLbsacaWGHbWcdaqhaaqaaKqzadGaam OAaiaacYcacaWGRbaaleaajugWaiaaikdaaaqcLbsacqGHRaWkcaWG IbWcdaqhaaqaaKqzadGaamOAaiaacYcacaWGRbaaleaajugWaiaaik daaaaaleqaaaGccaGLOaGaayzkaaaaaa@7E49@   (15b)

Here, δ r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaahaa qabeaalmaaCeaajuaGbeqaaKqzadGaamOCaaaajuaGcqaH0oazdaWg aaqaaKqzadGaamyAaaqcfayabaaaaaaa@41BC@  and δ p j,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaalmaaCeaabe qaaKqzadGaamiCaaaajugibiabes7aKTWaaSbaaeaajugWaiaadQga caGGSaGaam4AaaWcbeaaaaa@41A6@  are safety margins corresponding to the worst case scenario for circular and polygonal obstacles, respectively. This is referred to as the robust approach in the remainder of this paper. As stated above, conservative safety margins can lead to a disconnected and consequently, infeasible solution space. While this occurrence can potentially be overcome by relaxing the safety margins, there exist no methodical tuning guidelines for determining the margins for each uncertain obstacle.

Characterization via a probability distribution

A natural extension of the bounded uncertainty approach is to characterize an uncertain obstacle’s perimeter using a probability distribution. Collision avoidance is then formulated as a chance-constraint, where the probability of successful obstacle avoidance is stipulated to be higher than a prescribed threshold:

circular obstacles:

i=1 L P( ( x x c,i ) 2 + ( y y c,i ) 2 > ( r μ,i + ξ i ) 2 )>1 ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamyAaiabg2da9iaaigdaaSqa aKqzadGaamitaaaajugibiaadcfajuaGdaqadaGcbaqcfa4aaeWaaO qaaKqzGeGaamiEaiabgkHiTiaadIhajuaGdaWgaaWcbaqcLbmacaWG JbGaaiilaiaadMgaaSqabaaakiaawIcacaGLPaaajuaGdaahaaWcbe qaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaabmaakeaajugibiaa dMhacqGHsislcaWG5bqcfa4aaSbaaSqaaKqzadGaam4yaiaacYcaca WGPbaaleqaaaGccaGLOaGaayzkaaWcdaahaaqabeaajugWaiaaikda aaqcLbsacqGH+aGpjuaGdaqadaGcbaqcLbsacaWGYbWcdaWgaaqaaK qzadGaeqiVd0MaaiilaiaadMgaaSqabaqcLbsacqGHRaWkcqaH+oaE lmaaBaaabaqcLbmacaWGPbaaleqaaaGccaGLOaGaayzkaaWcdaahaa qabeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiabg6da+iaa igdacqGHsislcqaH1oqzlmaaBaaabaqcLbmacaWGPbaaleqaaaaa@7882@   (16a)

polygonal obstacles:

j=1 N ( k=1 M j P( a j,k x+ b j,k y( c μ,j,k + ζ j,k a j,k 2 + b j,k 2 ) )>1 ε j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamOAaiabg2da9iaaigdaaSqa aKqzadGaamOtaaaajuaGdaqadaGcbaqcfa4aaCbmaOqaaKqzGeGaeS OkIufaleaajugWaiaadUgacqGH9aqpcaaIXaaaleaajugWaiaad2ea lmaaBaaameaajugWaiaadQgaaWqabaaaaKqzGeGaamiuaKqbaoaabm aakeaajugibiaadggalmaaBaaabaqcLbmacaWGQbGaaiilaiaadUga aSqabaqcLbsacaWG4bGaey4kaSIaamOyaKqbaoaaBaaaleaajugWai aadQgacaGGSaGaam4AaaWcbeaajugibiaadMhajuaGdaqadaGcbaqc LbsacaWGJbqcfa4aaSbaaSqaaKqzadGaeqiVd0MaaiilaiaadQgaca GGSaGaam4AaaWcbeaajugibiabgUcaRiabeA7a6LqbaoaaBaaaleaa jugWaiaadQgacaGGSaGaam4AaaWcbeaajuaGdaGcaaGcbaqcLbsaca WGHbWcdaqhaaqaaKqzadGaamOAaiaacYcacaWGRbaaleaajugWaiaa ikdaaaqcLbsacqGHRaWkcaWGIbWcdaqhaaqaaKqzadGaamOAaiaacY cacaWGRbaaleaajugWaiaaikdaaaaaleqaaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaqcLbsacqGH+aGpcaaIXaGaeyOeI0IaeqyTdu2cda WgaaqaaKqzadGaamOAaaWcbeaaaOGaayjkaiaawMcaaaaa@8AE6@   (16b)

Here, r μ,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadk halmaaBaaabaqcLbmacqaH8oqBcaGGSaGaamyAaaWcbeaaaaa@3F6C@  and c μ,j,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado galmaaBaaabaqcLbmacqaH8oqBcaGGSaGaamOAaiaacYcacaWGRbaa leqaaaaa@40FE@  are mean values of boundary parameters of the keep out zones. ( 1 ε j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaaIXaGaeyOeI0IaeqyTduwcfa4aaSbaaSqaaKqzadGa amOAaaWcbeaaaOGaayjkaiaawMcaaaaa@4218@  are the lower bounds on successful avoidance of obstacle j. Conversely, ε j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLTWaaSbaaKqbagaajugWaiaadQgaaKqbagqaaaaa@3EC8@  is interpreted as the risk of collision threshold for obstacle j. Parameters ξ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4TWaaSbaaKqbagaajugWaiaadMgaaKqbagqaaaaa@3EE3@  and ζ j,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6TWaaSbaaeaajugWaiaadQgacaGGSaGaam4AaaWcbeaaaaa@3F6D@  are random variables with zero mean representing the uncertainty in respective boundary parameters. It is important to understand that a chance-constraint does not guarantee collision avoidance in the deterministic sense. Its proper interpretation is that in a sufficiently large number of trials, the optimal path would violate the obstacle boundaries in less than ε ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLTWaaSbaaeaadaqadaqaaKqzadGaaiOlaaWccaGLOaGaayzkaaaa beaaaaa@3F03@  fraction of trials. Moreover, such obstacle avoidance is performed in the path-planning stage. It is assumed that as a safety measure, the agent is equipped with reactive decision making capabilities to prevent collisions while tracking the optimal path should the true obstacle boundary exceed the one corresponding to the prescribed risk. This approach allows the decision maker to explore paths while being aware of the risks associated with them.

As mentioned in Section. 2, evaluation of the probability function in a chance-constraint poses the main operational challenge. However, the formulation shown in Eqs.(16a) and (16b) follows the “separable” structure discussed in Section.2.2 and thus can be transformed to an equivalent deterministic form via Eq. (12c), as follows

circular obstacles:

i=1 L ( x x c,i ) 2 + ( y y c,i ) 2 > ( r μ,i + F ξi 1 ( 1 ε i ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamyAaiabg2da9iaaigdaaSqa aKqzadGaamitaaaajuaGdaqadaGcbaqcLbsacaWG4bGaeyOeI0Iaam iEaSWaaSbaaeaajugWaiaadogacaGGSaGaamyAaaWcbeaaaOGaayjk aiaawMcaaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaey4kaS scfa4aaeWaaOqaaKqzGeGaamyEaiabgkHiTiaadMhajuaGdaWgaaWc baqcLbmacaWGJbGaaiilaiaadMgaaSqabaaakiaawIcacaGLPaaalm aaCaaabeqaaKqzadGaaGOmaaaajugibiabg6da+Kqbaoaabmaakeaa jugibiaadkhajuaGdaWgaaWcbaqcLbmacqaH8oqBcaGGSaGaamyAaa WcbeaajugibiabgUcaRiaadAealmaaDaaabaqcLbmacqaH+oaEcaWG PbaaleaajugWaiabgkHiTiaaigdaaaqcfa4aaeWaaOqaaKqzGeGaaG ymaiabgkHiTiabew7aLLqbaoaaBaaaleaajugWaiaadMgaaSqabaaa kiaawIcacaGLPaaaaiaawIcacaGLPaaalmaaCaaabeqaaKqzadGaaG Omaaaaaaa@7A3C@   (17a)

polygonal obstacles:

j=1 N ( k=1 M j a j,k x+ b j,k y> c μ,j,k + F ζ j,k 1 ( 1 ε j ) a j,k 2 + b j,k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamOAaiabg2da9iaaigdaaSqa aKqzadGaamOtaaaajuaGdaqadaGcbaqcfa4aaCbmaOqaaKqzGeGaeS OkIufaleaajugWaiaadUgacqGH9aqpcaaIXaaaleaajugWaiaad2ea lmaaBaaameaajugWaiaadQgaaWqabaaaaKqzGeGaamyyaKqbaoaaBa aaleaajugWaiaadQgacaGGSaGaam4AaaWcbeaajugibiaadIhacqGH RaWkcaWGIbWcdaWgaaqaaKqzadGaamOAaiaacYcacaWGRbaaleqaaK qzGeGaamyEaiabg6da+iaadogalmaaBaaabaqcLbmacqaH8oqBcaGG SaGaamOAaiaacYcacaWGRbaaleqaaKqzGeGaey4kaSIaamOraSWaa0 baaeaajugWaiabeA7a6TWaaSbaaWqaaKqzadGaamOAaiaacYcacaWG RbaameqaaaWcbaqcLbmacqGHsislcaaIXaaaaKqbaoaabmaakeaaju gibiaaigdacqGHsislcqaH1oqzlmaaBaaabaqcLbmacaWGQbaaleqa aaGccaGLOaGaayzkaaqcfa4aaOaaaOqaaKqzGeGaamyyaSWaa0baae aajugWaiaadQgacaGGSaGaam4AaaWcbaqcLbmacaaIYaaaaKqzGeGa ey4kaSIaamOyaSWaa0baaeaajugWaiaadQgacaGGSaGaam4AaaWcba qcLbmacaaIYaaaaaWcbeaaaOGaayjkaiaawMcaaaaa@8ACA@   (17b)

Here, F ξ i 1 ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaDaaabaqcLbmacqaH+oaElmaaBaaameaajugWaiaadMgaaWqa baaaleaajugWaiabgkHiTiaaigdaaaqcfa4aaeWaaOqaaKqzGeGaai OlaaGccaGLOaGaayzkaaaaaa@4652@  and F ζ j,k 1 ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaDaaabaqcLbmacqaH2oGElmaaBaaameaajugWaiaadQgacaGG SaGaam4AaaadbeaaaSqaaKqzadGaeyOeI0IaaGymaaaajuaGdaqada GcbaqcLbsacaGGUaaakiaawIcacaGLPaaaaaa@47ED@  are the inverse CDFs of the random variables ξ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4TWaaSbaaeaajugWaiaadMgaaSqabaaaaa@3DD2@  and ζ j,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6TWaaSbaaeaajugWaiaadQgacaGGSaGaam4AaaWcbeaaaaa@3F6D@  respectively. Although these deterministic equivalent constraints have the form similar to Eqs.(15), they should not be confused with conventional inflation of obstacle perimeters in the sense of bounded uncertainty. The terms F ξ i 1 ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaDaaabaqcLbmacqaH+oaElmaaBaaameaajugWaiaadMgaaWqa baaaleaajugWaiabgkHiTiaaigdaaaqcfa4aaeWaaOqaaKqzGeGaai OlaaGccaGLOaGaayzkaaaaaa@4652@  and F ζ j,k 1 ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA ealmaaDaaabaqcLbmacqaH2oGElmaaBaaameaajugWaiaadQgacaGG SaGaam4AaaadbeaaaSqaaKqzadGaeyOeI0IaaGymaaaajuaGdaqada GcbaqcLbsacaGGUaaakiaawIcacaGLPaaaaaa@47ED@  provide a direct approach to first capture probabilistic variability in the perimeter and then tune the safety margin by choosing an appropriate risk. This formulation now allows us to use the existing deterministic optimal control problem framework discussed in the next section.

Solution of the optimal control problem

This sections outlines the steps required to solve an optimal control problem with deterministic dynamics and constraints. First, the Gaussian quadrature orthogonal collocation method is described, which transcribes the optimal control problem into a nonlinear program. Next, an approach for generating a suitable initial guess to help improve the convergence to the optimal path is presented.

hp-adaptive Gaussian quadrature orthogonal collocation method

Due to nonlinearities in the dynamics and constraints (Eq. (13) and (17)), it is generally not possible to obtain an analytical solution to the optimal control problem, hence numerical methods are used. In this work, we employ the Gaussian quadrature orthogonal collocation method. In this method, the state is approximated using a basis of global polynomials and is discretizes at Legendre Gauss Radau (LGR) collocation points. Despite the accuracy of the quadrature rules, non-smoothness due to discretization in the optimal solution leads to inaccurate solutions. This can be rectified by using a high-degree polynomial approximation, but when used with smaller intervals they may lead to longer computation times. Therefore, an hp-adaptive method is used which simultaneously varies the number of intervals (h method) and polynomial degree (p method) per interval, thereby allowing us to exploit the high efficiency of the collocation method as well as the smoothness of polynomials.41–43

The procedure for solving the optimal control problem using LGR collocation points is as follows. Consider the optimal control problem in Bolza form (Eq. (18)) defined on the time domain t[ t 0 , t f ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHiiIZjuaGdaWadaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzadGa aGimaaWcbeaajugibiaacYcacaWG0bWcdaWgaaqaaKqzadGaamOzaa WcbeaaaOGaay5waiaaw2faaaaa@46FC@ , to find the state x( τ ) n x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeGa eyicI4SaeSyhHeAcfa4aaWbaaSqabeaajugWaiaad6galmaaBaaame aajugWaiaadIhaaWqabaaaaaaa@4806@  and the control u( τ ) n u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadw hajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeGa eyicI4SaeSyhHeAcfa4aaWbaaSqabeaajugWaiaad6galmaaBaaame aajugWaiaadwhaaWqabaaaaaaa@4800@ , initial time, t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads halmaaBaaabaqcLbmacaaIWaaaleqaaaaa@3CD4@ , and the final time, t f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads halmaaBaaabaqcLbmacaWGMbaaleqaaaaa@3D05@ , that minimize the cost functional

min u J= M( x( t 0 ), t 0 ,x( t f ), t f ) Terminal Cost + t 0 t f L( x( t ),u( t ),t )dt Path Cost MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfqa GcbaqcLbsaciGGTbGaaiyAaiaac6gaaSqaaKqzadGaamyDaaWcbeaa jugibiaadQeacqGH9aqpjuaGdaagaaGcbaqcLbsacaWGnbqcfa4aae WaaOqaaKqzGeGaamiEaKqbaoaabmaakeaajugibiaadshajuaGdaWg aaWcbaqcLbmacaaIWaaaleqaaaGccaGLOaGaayzkaaqcLbsacaGGSa GaamiDaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaGGSaGa amiEaKqbaoaabmaakeaajugibiaadshajuaGdaWgaaWcbaqcLbmaca WGMbaaleqaaaGccaGLOaGaayzkaaqcLbsacaGGSaGaamiDaKqbaoaa BaaaleaajugWaiaadAgaaSqabaaakiaawIcacaGLPaaaaSqaaKqzGe aeaaaaaaaaa8qacaWGubGaamyzaiaadkhacaWGTbGaamyAaiaad6ga caWGHbGaamiBaiaabccacaWGdbGaam4BaiaadohacaWG0baak8aaca GL44pajugibiabgUcaRKqbaoaayaaakeaajugibiabgUIiYNqbaoaa DaaaleaajugWaiaadshalmaaBaaameaajugWaiaaicdaaWqabaaale aajugWaiaadshalmaaBaaameaajugWaiaadAgaaWqabaaaaKqzGeGa amitaKqbaoaabmaakeaajugibiaadIhajuaGdaqadaGcbaqcLbsaca WG0baakiaawIcacaGLPaaajugibiaacYcacaWG1bqcfa4aaeWaaOqa aKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacaGGSaGaamiDaaGcca GLOaGaayzkaaqcLbsacaWGKbGaamiDaaWcbaqcLbsapeGaamiuaiaa dggacaWG0bGaamiAaiaabccacaWGdbGaam4BaiaadohacaWG0baak8 aacaGL44paaaa@9B3E@   (18a)

subject to  { x . a( x( t ),u( t ),t )=0 c min c( x( t ),u( t ),t ) c max b min b( x( t 0 ), t 0 ,x( t f ), t f ) b max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGaba GcbaqcLbsafaqabeWabaaakeaajuaGdaWfGaqaaKqzGeGaamiEaaqc fayabeaajugibiaac6caaaGaeyOeI0IaamyyaKqbaoaabmaakeaaju gibiaadIhajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaa jugibiaacYcacaWG1bqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOa GaayzkaaqcLbsacaGGSaGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpcaaIWaaakeaajugibiaadogajuaGdaWgaaWcbaqcLbmaciGGTb GaaiyAaiaac6gaaSqabaqcLbsacqGHKjYOcaWGJbqcfa4aaeWaaOqa aKqzGeGaamiEaKqbaoaabmaakeaajugibiaadshaaOGaayjkaiaawM caaKqzGeGaaiilaiaadwhajuaGdaqadaGcbaqcLbsacaWG0baakiaa wIcacaGLPaaajugibiaacYcacaWG0baakiaawIcacaGLPaaajugibi abgsMiJkaadogalmaaBaaabaqcLbmaciGGTbGaaiyyaiaacIhaaSqa baaakeaajugibiaadkgajuaGdaWgaaWcbaqcLbmaciGGTbGaaiyAai aac6gaaSqabaqcLbsacqGHKjYOcaWGIbqcfa4aaeWaaOqaaKqzGeGa amiEaKqbaoaabmaakeaajugibiaadshalmaaBaaabaqcLbmacaaIWa aaleqaaaGccaGLOaGaayzkaaqcLbsacaGGSaGaamiDaSWaaSbaaeaa jugWaiaaicdaaSqabaqcLbsacaGGSaGaamiEaKqbaoaabmaakeaaju gibiaadshajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaaGccaGLOaGa ayzkaaqcLbsacaGGSaGaamiDaSWaaSbaaeaajugWaiaadAgaaSqaba aakiaawIcacaGLPaaajugibiabgsMiJkaadkgalmaaBaaabaqcLbma ciGGTbGaaiyyaiaacIhaaSqabaaaaaGccaGL7baaaaa@9FD6@   (18b)

The time domain t[ t 0 , t f ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHiiIZjuaGdaWadaqaaKqzGeGaamiDaKqbaoaaBaaabaqcLbma caaIWaaajuaGbeaajugibiaacYcacaWG0bqcfa4aaSbaaeaajugWai aadAgaaKqbagqaaaGaay5waiaaw2faaaaa@48F4@  is normalized to the time domain τ[ 1,+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 8a0jabgIGioNqbaoaadmaakeaajugibiabgkHiTiaaigdacaGGSaGa ey4kaSIaaGymaaGccaGLBbGaayzxaaaaaa@441D@  via the following affine transformation

tt(τ, t 0 , t f )= t f t 0 2 τ+ t f + t 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshacqGHHjIUcaWG0bWdaiaacIcapeGaeqiXdqNaaiil aiaadshalmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaaiilaiaads hajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaKqzGeWdaiaacMcapeGa eyypa0tcfa4aaSaaaOqaaKqzGeGaamiDaKqbaoaaBaaaleaajugWai aadAgaaSqabaqcLbsacqGHsislcaWG0bqcfa4aaSbaaSqaaKqzadGa aGimaaWcbeaaaOqaaKqzGeGaaGOmaaaacqaHepaDcqGHRaWkjuaGda WcaaGcbaqcLbsacaWG0bqcfa4aaSbaaSqaaKqzadGaamOzaaWcbeaa jugibiabgUcaRiaadshajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaa GcbaqcLbsacaaIYaaaaaaa@61D5@   (19)

In the hp method, the domain τ[ 1,+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 8a0jabgIGioNqbaoaadmaakeaajugibiabgkHiTiaaigdacaGGSaGa ey4kaSIaaGymaaGccaGLBbGaayzxaaaaaa@441D@ is further partitioned into K intervals such that S k =[ T k1 , T k ],k=1,.....K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado fajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaeyypa0tcfa4a amWaaOqaaKqzGeGaamivaSWaaSbaaeaajugWaiaadUgacqGHsislca aIXaaaleqaaKqzGeGaaiilaiaadsfajuaGdaWgaaWcbaqcLbmacaWG RbaaleqaaaGccaGLBbGaayzxaaqcLbsacaGGSaGaai4Aaiabg2da9i aaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGlbaa aa@54E8@ , where 1= T 0 < T 1 <...< T k =+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgk HiTiaaigdacqGH9aqpcaWGubqcfa4aaSbaaSqaaKqzadGaaGimaaWc beaajugibiabgYda8iaadsfalmaaBaaabaqcLbmacaaIXaaaleqaaK qzGeGaeyipaWJaaiOlaiaac6cacaGGUaGaeyipaWJaamivaSWaaSba aeaajugWaiaadUgaaSqabaqcLbsacqGH9aqpcqGHRaWkcaaIXaaaaa@4F89@ . Using the transformation in Eq. (19), the Bolza optimal control problem Eqs. (18a)-(18b) can then be reformulated as follows.3,32

min x,u J=M( x ( 1 ) ( 1 ), t 0 , x ( k ) ( +1 ), t f ) + t f t 0 2 k=1 k T k1 T k L( x ( k ) ( τ ), u ( k ) ( τ ),t )dτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqbao aaxabakeaajugibiGac2gacaGGPbGaaiOBaaWcbaqcLbmacaWG4bGa aiilaiaadwhaaSqabaqcLbsacaWGkbGaeyypa0JaamytaKqbaoaabm aakeaajugibiaadIhajuaGdaahaaWcbeqaamaabmaabaqcLbmacaaI XaaaliaawIcacaGLPaaaaaqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaG ymaaGccaGLOaGaayzkaaqcLbsacaGGSaGaamiDaKqbaoaaBaaaleaa jugWaiaaicdaaSqabaqcLbsacaGGSaGaamiEaSWaaWbaaeqabaWaae WaaeaajugWaiaadUgaaSGaayjkaiaawMcaaaaajuaGdaqadaGcbaqc LbsacqGHRaWkcaaIXaaakiaawIcacaGLPaaajugibiaacYcacaWG0b WcdaWgaaqaaKqzadGaamOzaaWcbeaaaOGaayjkaiaawMcaaaqaaKqz GeGaey4kaSscfa4aaSaaaOqaaKqzGeGaamiDaSWaaSbaaeaajugWai aadAgaaSqabaqcLbsacqGHsislcaWG0bWcdaWgaaqaaKqzadGaaGim aaWcbeaaaOqaaKqzGeGaaGOmaaaajuaGdaaeWbGcbaqcfa4aaCbmaO qaaKqzGeGaey4kIipaleaajugWaiaadsfalmaaBaaameaajugWaiaa dUgacqGHsislcaaIXaaameqaaaWcbaqcLbmacaWGubWcdaWgaaadba qcLbmacaWGRbaameqaaaaaaSqaaKqzadGaam4Aaiabg2da9iaaigda aSqaaKqzadGaam4AaaqcLbsacqGHris5aiaadYeajuaGdaqadaGcba qcLbsacaWG4bWcdaahaaqabeaadaqadaqaaKqzadGaam4AaaWccaGL OaGaayzkaaaaaKqbaoaabmaakeaajugibiabes8a0bGccaGLOaGaay zkaaqcLbsacaGGSaGaamyDaKqbaoaaCaaaleqabaWaaeWaaeaajugW aiaadUgaaSGaayjkaiaawMcaaaaajuaGdaqadaGcbaqcLbsacqaHep aDaOGaayjkaiaawMcaaKqzGeGaaiilaiaadshaaOGaayjkaiaawMca aKqzGeGaamizaiabes8a0baaaa@A539@   (20a)

subjected to

d x ( k ) ( τ ) dτ t f t 0 2 a( x ( k ) ( τ ), u ( k ) ( τ ),t )=0, (k= 1, . . . , K) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaWGKbGaamiEaSWaaWbaaeqabaWaaeWaaeaajugW aiaadUgaaSGaayjkaiaawMcaaaaajuaGdaqadaGcbaqcLbsacqaHep aDaOGaayjkaiaawMcaaaqaaKqzGeGaamizaiabes8a0baacqGHsisl juaGdaWcaaGcbaqcLbsacaWG0bqcfa4aaSbaaSqaaKqzadGaamOzaa WcbeaajugibiabgkHiTiaadshalmaaBaaabaqcLbmacaaIWaaaleqa aaGcbaqcLbsacaaIYaaaaiaadggajuaGdaqadaGcbaqcLbsacaWG4b qcfa4aaWbaaSqabeaadaqadaqaaKqzadGaam4AaaWccaGLOaGaayzk aaaaaKqbaoaabmaakeaajugibiabes8a0bGccaGLOaGaayzkaaqcLb sacaGGSaGaamyDaSWaaWbaaeqabaWaaeWaaeaajugWaiaadUgaaSGa ayjkaiaawMcaaaaajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkai aawMcaaKqzGeGaaiilaiaacshaaOGaayjkaiaawMcaaKqzGeGaeyyp a0JaaGimaiaacYcaaOqaaKqzGeGaaiikaabaaaaaaaaapeGaam4Aai abg2da9iaabccacaaIXaGaaiilaiaabccacaGGUaGaaeiiaiaac6ca caqGGaGaaiOlaiaabccacaGGSaGaaeiiaiaadUeapaGaaiykaaaaaa@7AD9@   (20b)

c min c( x ( k ) ( τ ), u ( k ) ( τ ),t ) c max , (k= 1, . . . , K) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGe Gaam4yaSWaaSbaaeaajugWaiGac2gacaGGPbGaaiOBaaWcbeaajugi biabgsMiJkaadogajuaGdaqadaGcbaqcLbsacaWG4bWcdaahaaqabe aadaqadaqaaKqzadGaam4AaaWccaGLOaGaayzkaaaaaKqbaoaabmaa keaajugibiabes8a0bGccaGLOaGaayzkaaqcLbsacaGGSaGaamyDaK qbaoaaCaaaleqabaWaaeWaaeaajugWaiaadUgaaSGaayjkaiaawMca aaaajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGe GaaiilaiaadshaaOGaayjkaiaawMcaaKqzGeGaeyizImQaam4yaSWa aSbaaeaajugWaiGac2gacaGGHbGaaiiEaaWcbeaacaGGSaaakeaaju gibiaacIcaqaaaaaaaaaWdbiaadUgacqGH9aqpcaqGGaGaaGymaiaa cYcacaqGGaGaaiOlaiaabccacaGGUaGaaeiiaiaac6cacaqGGaGaai ilaiaabccacaWGlbWdaiaacMcaaaaa@707F@   (20c)

b min b( x ( 1 ) ( 1 ), t 0 , x ( k ) ( +1 ), t f ) b max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadk gajuaGdaWgaaWcbaqcLbmaciGGTbGaaiyAaiaac6gaaSqabaqcLbsa cqGHKjYOcaWGIbqcfa4aaeWaaOqaaKqzGeGaamiEaSWaaWbaaeqaba WaaeWaaeaajugWaiaaigdaaSGaayjkaiaawMcaaaaajuaGdaqadaGc baqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaacYcaca WG0bWcdaWgaaqaaKqzadGaaGimaaWcbeaajugibiaacYcacaWG4bWc daahaaqabeaadaqadaqaaKqzadGaam4AaaWccaGLOaGaayzkaaaaaK qbaoaabmaakeaajugibiabgUcaRiaaigdaaOGaayjkaiaawMcaaKqz GeGaaiilaiaadshajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaaGcca GLOaGaayzkaaqcLbsacqGHKjYOcaWGIbWcdaWgaaqaaKqzadGaciyB aiaacggacaGG4baaleqaaaaa@6999@   (20d)

The state must be continuous at each interior mesh point, i.e. x( T k )=x( T k + ),k=1,....,K1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hajuaGdaqadaGcbaqcLbsacaWGubWcdaqhaaqaaKqzadGaam4AaaWc baqcLbmacqGHsislaaaakiaawIcacaGLPaaajugibiabg2da9iaadI hajuaGdaqadaGcbaqcLbsacaWGubWcdaqhaaqaaKqzadGaam4AaaWc baqcLbmacqGHRaWkaaaakiaawIcacaGLPaaajugibiaacYcacaGGRb Gaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiil aiaadUeacqGHsislcaaIXaaaaa@57D7@ , must be satisfied at the interior mesh points ( T 1 ,.... T K1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaWGubqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugi biaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaamivaSWaaSbaaeaaju gWaiaadUeacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaaaaa@478C@ . The next step is to discretizes Eqs. (20a)-(20d) using a set of N k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOtaKqbaoaaBaaaleaajugWaiaadUgaaSqabaaaaa@3D92@  LGR points ( τ 1 ( k ) ,...., τ N k ( k ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqaaaaa aaaaWdbmaabmaakeaajugibiabes8a0TWaa0baaeaajugWaiaaigda aSqaamaabmaabaqcLbmacaWGRbaaliaawIcacaGLPaaaaaqcLbsaca GGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaacYcacqaHepaDlmaaDaaa baqcLbmacaWGobWcdaWgaaadbaqcLbmacaWGRbaameqaaaWcbaWaae WaaeaajugWaiaadUgaaSGaayjkaiaawMcaaaaaaOGaayjkaiaawMca aaaa@5268@  in each interval S k =[ T k1 , T k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado fajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaeyypa0tcfa4a aKGeaeaacaWGubWaaSbaaeaacaWGRbGaeyOeI0IaaGymaaqabaGaai ilaiaadsfadaWgaaqaaiaadUgaaeqaaaGaay5waiaawMcaaaaa@4799@ .32,39,41–43 Thus the state is approximate as

x ( k ) ( τ ) X ( k ) ( τ )= j=1 N k +1 X j ( k ) l j ( k ) ( τ ), l j ( k ) ( τ )= l=1 lj N k +1 τ τ l ( k ) τ j ( k ) τ l ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadIhajuaGdaahaaWcbeqaamaabmaabaqcLbmacaWGRbaaliaawIca caGLPaaaaaqcfa4aaeWaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPa aajugibiabgIKi7kaadIfalmaaCaaabeqaamaabmaabaqcLbmacaWG RbaaliaawIcacaGLPaaaaaqcfa4aaeWaaOqaaKqzGeGaeqiXdqhaki aawIcacaGLPaaajugibiabg2da9KqbaoaaqahakeaajugibiaadIfa lmaaDaaabaqcLbmacaWGQbaaleaadaqadaqaaKqzadGaam4AaaWcca GLOaGaayzkaaaaaaqaaKqzadGaamOAaiabg2da9iaaigdaaSqaaKqz adGaamOtaSWaaSbaaWqaaKqzadGaam4AaaadbeaajugWaiabgUcaRi aaigdaaKqzGeGaeyyeIuoacqWItecBlmaaDaaabaqcLbmacaWGQbaa leaadaqadaqaaKqzadGaam4AaaWccaGLOaGaayzkaaaaaKqbaoaabm aakeaajugibiabes8a0bGccaGLOaGaayzkaaqcfaOaaiilaaGcbaqc LbsacqWItecBlmaaDaaabaqcLbmacaWGQbaaleaadaqadaqaaKqzad Gaam4AaaWccaGLOaGaayzkaaaaaKqbaoaabmaakeaajugibiabes8a 0bGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaqeWbGcbaqcfa4aaS aaaOqaaKqzGeGaeqiXdqNaeyOeI0IaeqiXdq3cdaqhaaqaaKqzadGa amiBaaWcbaWaaeWaaeaajugWaiaadUgaaSGaayjkaiaawMcaaaaaaO qaaKqzGeGaeqiXdq3cdaqhaaqaaKqzadGaamOAaaWcbaWaaeWaaeaa jugWaiaadUgaaSGaayjkaiaawMcaaaaajugibiabgkHiTiabes8a0T Waa0baaeaajugWaiaadYgaaSqaamaabmaabaqcLbmacaWGRbaaliaa wIcacaGLPaaaaaaaaaabaeqabaqcLbmacaWGSbGaeyypa0JaaGymaa WcbaqcLbmacaWGSbGaeyiyIKRaamOAaaaaleaajugWaiaad6ealmaa BaaameaajugWaiaadUgaaWqabaqcLbmacqGHRaWkcaaIXaaajugibi abg+Givdaaaaa@AEE0@   (21)

where τ[ 1,+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcqGHiiIZjuaGdaWadaGcbaqcLbsacqGHsislcaaIXaGaaiilaiab gUcaRiaaigdaaOGaay5waiaaw2faaaaa@40E6@ , and l j ( k ) ( τ ),j=1,....., N k +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqWIte cBlmaaDaaabaqcLbmacaWGQbaaleaadaqadaqaaKqzadGaam4AaaWc caGLOaGaayzkaaaaaKqbaoaabmaakeaajugibiabes8a0bGccaGLOa GaayzkaaqcLbsacaGGSaGaamOAaiabg2da9iaaigdacaGGSaGaaiOl aiaac6cacaGGUaGaaiOlaiaac6cacaGGSaGaamOtaKqbaoaaBaaale aajugWaiaadUgaaSqabaqcLbsacqGHRaWkcaaIXaaaaa@50E7@ , is a basis of Lagrange polynomials.41 Differentiating X ( k ) ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb qcfa4aaWbaaSqabeaadaqadaqaaKqzadGaam4AaaWccaGLOaGaayzk aaaaaKqbaoaabmaakeaajugibiabes8a0bGccaGLOaGaayzkaaaaaa@404E@  in Eq. (21) with respect to τ and substituting it in the dynamics gives

j=1 N k +1 D ij ( k ) Χ j ( k ) t f t 0 2 a( Χ i ( k ) , U i ( k ) , t i ( k ) )=0 (i= 1, . . . ,  N k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda aeWbGcbaqcLbsacaWGebWcdaqhaaqaaKqzadGaamyAaiaadQgaaSqa amaabmaabaqcLbmacaWGRbaaliaawIcacaGLPaaaaaaabaqcLbmaca WGQbGaeyypa0JaaGymaaWcbaqcLbmacaWGobWcdaWgaaadbaqcLbma caWGRbaameqaaKqzadGaey4kaSIaaGymaaqcLbsacqGHris5aiabfE 6adTWaa0baaeaajugWaiaadQgaaSqaamaabmaabaqcLbmacaWGRbaa liaawIcacaGLPaaaaaqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsaca WG0bWcdaWgaaqaaKqzadGaamOzaaWcbeaajugibiabgkHiTiaadsha juaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaGcbaqcLbsacaaIYaaaai aadggajuaGdaqadaGcbaqcLbsacqqHNoWqlmaaDaaabaqcLbmacaWG PbaaleaadaqadaqaaKqzadGaam4AaaWccaGLOaGaayzkaaaaaKqzGe GaaiilaiaadwfalmaaDaaabaqcLbmacaWGPbaaleaadaqadaqaaKqz adGaam4AaaWccaGLOaGaayzkaaaaaKqzGeGaaiilaiaadshalmaaDa aabaqcLbmacaWGPbaaleaadaqadaqaaKqzadGaam4AaaWccaGLOaGa ayzkaaaaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaaakeaaju gibiaacIcaqaaaaaaaaaWdbiaadMgacqGH9aqpcaqGGaGaaGymaiaa cYcacaqGGaGaaiOlaiaabccacaGGUaGaaeiiaiaac6cacaqGGaGaai ilaiaabccacaWGobWcpaWaaSbaaeaajugWa8qacaWGRbaal8aabeaa jugibiaacMcaaaaa@8E5C@   (22)

where D ij ( k ) =d l j ( k ) ( τ i ( k ) )/dτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb WcdaqhaaqaaKqzadGaamyAaiaadQgaaSqaamaabmaabaqcLbmacaWG RbaaliaawIcacaGLPaaaaaqcLbsacqGH9aqpcaWGKbGaeS4eHW2cda qhaaqaaKqzadGaamOAaaWcbaWaaeWaaeaajugWaiaadUgaaSGaayjk aiaawMcaaaaajuaGdaqadaGcbaqcLbsacqaHepaDlmaaDaaabaqcLb macaWGPbaaleaadaqadaqaaKqzadGaam4AaaWccaGLOaGaayzkaaaa aaGccaGLOaGaayzkaaqcLbsacaGGVaGaamizaiabes8a0baa@566E@ , (i= 1, . . . ,  N k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacaWGPbGaeyypa0JaaeiiaiaaigdacaGGSaGaaeii aiaac6cacaqGGaGaaiOlaiaabccacaGGUaGaaeiiaiaacYcacaqGGa GaamOtaKqba+aadaWgaaWcbaqcLbmapeGaam4AaaWcpaqabaqcLbsa caGGPaaaaa@4668@ , ( j=1,...., N k +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamOAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGG UaGaaiOlaiaacYcacaWGobWcdaWgaaqaaKqzadGaam4AaaWcbeaaju gibiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaa@44DC@ are the elements of the N k ×( N k +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob qcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiabgEna0Mqbaoaa bmaakeaajugibiaad6ealmaaBaaabaqcLbmacaWGRbaaleqaaKqzGe Gaey4kaSIaaGymaaGccaGLOaGaayzkaaaaaa@44EF@ Legendre-Gauss-Radau differentiation matrix.41 This leads to the following nonlinear program (NLP).

min X,U JM( Χ 1 ( 1 ) , t 0 , Χ N k +1 ( k ) , t f ) + k=1 k j=1 N k t f t 0 2 w j ( k ) L( Χ j ( k ) , U j ( k ) , t j ( k ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WfqaGcbaqcLbsaciGGTbGaaiyAaiaac6gaaSqaaKqzadGaamiwaiaa cYcacaWGvbaaleqaaKqzGeGaamOsaiabgIKi7kaad2eajuaGdaqada GcbaqcLbsacqqHNoWqlmaaDaaabaqcLbmacaaIXaaaleaadaqadaqa aKqzadGaaGymaaWccaGLOaGaayzkaaaaaKqzGeGaaiilaiaadshaju aGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaaiilaiabfE6adTWa a0baaeaajugWaiaad6ealmaaBaaameaajugWaiaadUgaaWqabaqcLb macqGHRaWkcaaIXaaaleaadaqadaqaaKqzadGaam4AaaWccaGLOaGa ayzkaaaaaKqzGeGaaiilaiaadshajuaGdaWgaaWcbaqcLbmacaWGMb aaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqGHRaWkjuaGdaaeWbGc baqcfa4aaabCaOqaaKqbaoaalaaakeaajugibiaadshajuaGdaWgaa WcbaqcLbmacaWGMbaaleqaaKqzGeGaeyOeI0IaamiDaSWaaSbaaeaa jugWaiaaicdaaSqabaaakeaajugibiaaikdaaaaaleaajugWaiaadQ gacqGH9aqpcaaIXaaaleaajugWaiaad6ealmaaBaaameaajugWaiaa dUgaaWqabaaajugibiabggHiLdaaleaajugWaiaadUgacqGH9aqpca aIXaaaleaajugWaiaadUgaaKqzGeGaeyyeIuoacaWG3bWcdaqhaaqa aKqzadGaamOAaaWcbaWaaeWaaeaajugWaiaadUgaaSGaayjkaiaawM caaaaajugibiaadYeajuaGdaqadaGcbaqcLbsacqqHNoWqlmaaDaaa baqcLbmacaWGQbaaleaadaqadaqaaKqzadGaam4AaaWccaGLOaGaay zkaaaaaKqzGeGaaiilaiaadwfalmaaDaaabaqcLbmacaWGQbaaleaa daqadaqaaKqzadGaam4AaaWccaGLOaGaayzkaaaaaKqzGeGaaiilai aadshalmaaDaaabaqcLbmacaWGQbaaleaadaqadaqaaKqzadGaam4A aaWccaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaaaaa@A7B9@   (23a)

subject to the constraints

j=1 N k +1 D ij ( k ) Χ j ( k ) t f t 0 2 a( Χ i ( k ) , U i ( k ) , t i ( k ) )=0, (i= 1, . . . ,  N k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqbao aaqahakeaajugibiaadsealmaaDaaabaqcLbmacaWGPbGaamOAaaWc baWaaeWaaeaajugWaiaadUgaaSGaayjkaiaawMcaaaaaaeaajugWai aadQgacqGH9aqpcaaIXaaaleaajugWaiaad6ealmaaBaaameaajugW aiaadUgaaWqabaqcLbmacqGHRaWkcaaIXaaajugibiabggHiLdGaeu 4Pdm0cdaqhaaqaaKqzadGaamOAaaWcbaWaaeWaaeaajugWaiaadUga aSGaayjkaiaawMcaaaaajugibiabgkHiTKqbaoaalaaakeaajugibi aadshajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaKqzGeGaeyOeI0Ia amiDaKqbaoaaBaaaleaajugWaiaaicdaaSqabaaakeaajugibiaaik daaaGaamyyaKqbaoaabmaakeaajugibiabfE6adTWaa0baaeaajugW aiaadMgaaSqaamaabmaabaqcLbmacaWGRbaaliaawIcacaGLPaaaaa qcLbsacaGGSaGaamyvaSWaa0baaeaajugWaiaadMgaaSqaamaabmaa baqcLbmacaWGRbaaliaawIcacaGLPaaaaaqcLbsacaGGSaGaamiDaS Waa0baaeaajugWaiaadMgaaSqaamaabmaabaqcLbmacaWGRbaaliaa wIcacaGLPaaaaaaakiaawIcacaGLPaaajugibiabg2da9iaaicdaca GGSaaakeaajugibiaacIcaqaaaaaaaaaWdbiaadMgacqGH9aqpcaqG GaGaaGymaiaacYcacaqGGaGaaiOlaiaabccacaGGUaGaaeiiaiaac6 cacaqGGaGaaiilaiaabccacaWGobqcfa4damaaBaaaleaajugWa8qa caWGRbaal8aabeaajugibiaacMcaaaaa@935F@   (23b)

c min c( Χ i ( k ) , U i ( k ) , t i ( k ) ) c max , (i= 1, . . . ,  N k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadogalmaaBaaabaqcLbmaciGGTbGaaiyAaiaac6gaaSqabaqcLbsa cqGHKjYOcaWGJbqcfa4aaeWaaOqaaKqzGeGaeu4Pdm0cdaqhaaqaaK qzadGaamyAaaWcbaWaaeWaaeaajugWaiaadUgaaSGaayjkaiaawMca aaaajugibiaacYcacaWGvbWcdaqhaaqaaKqzadGaamyAaaWcbaWaae WaaeaajugWaiaadUgaaSGaayjkaiaawMcaaaaajugibiaacYcacaWG 0bWcdaqhaaqaaKqzadGaamyAaaWcbaWaaeWaaeaajugWaiaadUgaaS GaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaKqzGeGaeyizImQaam4y aSWaaSbaaeaajugWaiGac2gacaGGHbGaaiiEaaWcbeaacaGGSaaake aajugibiaacIcaqaaaaaaaaaWdbiaadMgacqGH9aqpcaqGGaGaaGym aiaacYcacaqGGaGaaiOlaiaabccacaGGUaGaaeiiaiaac6cacaqGGa GaaiilaiaabccacaWGobqcfa4damaaBaaaleaajugWa8qacaWGRbaa l8aabeaajugibiaacMcaaaaa@71FD@   (23c)

b min b( Χ 1 ( 1 ) , t 0 , Χ N k +1 ( k ) , t f ) b max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb WcdaWgaaqaaKqzadGaciyBaiaacMgacaGGUbaaleqaaKqzGeGaeyiz ImQaamOyaKqbaoaabmaakeaajugibiabfE6adTWaa0baaeaajugWai aaigdaaSqaamaabmaabaqcLbmacaaIXaaaliaawIcacaGLPaaaaaqc LbsacaGGSaGaamiDaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLb sacaGGSaGaeu4Pdm0cdaqhaaqaaKqzadGaamOtaSWaaSbaaWqaaKqz adGaam4AaaadbeaajugWaiabgUcaRiaaigdaaSqaamaabmaabaqcLb macaWGRbaaliaawIcacaGLPaaaaaqcLbsacaGGSaGaamiDaSWaaSba aeaajugWaiaadAgaaSqabaaakiaawIcacaGLPaaajugibiabgsMiJk aadkgalmaaBaaabaqcLbmaciGGTbGaaiyyaiaacIhaaSqabaaaaa@673E@   (23d)

Χ N k +1 ( k ) = Χ 1 ( k+1 ) ,(k=1,...,K1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfE6adTWaa0baaeaajugWaiaad6ealmaaBaaameaajugW aiaadUgaaWqabaqcLbmacqGHRaWkcaaIXaaaleaadaqadaqaaKqzad Gaam4AaaWccaGLOaGaayzkaaaaaKqzGeGaeyypa0Jaeu4Pdm0cdaqh aaqaaKqzadGaaGymaaWcbaWaaeWaaeaajugWaiaadUgacqGHRaWkca aIXaaaliaawIcacaGLPaaaaaGaaiilaKqzGeWdaiaacIcapeGaam4A aiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadU eacqGHsislcaaIXaWdaiaacMcaaaa@5917@   (23e)

where N= k=1 k N k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob Gaeyypa0JaeyyeIu+cdaqhaaqaaKqzadGaam4Aaiabg2da9iaaigda aSqaaKqzadGaam4Aaaaajugibiaad6ealmaaBaaabaqcLbmacaWGRb aaleqaaaaa@43EE@ is the total number of LGR points and (23e) is the continuity condition on the state and is enforced at the interior mesh points ( T 1 ,........., T K1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamivaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsa caGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlai aac6cacaGGUaGaaiilaiaadsfajuaGdaWgaaWcbaqcLbmacaWGlbGa eyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaaaa@49AC@ . This transcribed NLP problem can now be solved using off-the-shelf NLP solvers. A software package GPOPS–II44 is used which transcribes the optimal control problem using LGR collocation method and invokes the embedded NLP solver – IPOPT.45

Initial guess generation

Most numerical optimization solvers require an initial guess for their iterative optimization algorithms. In path-planning problems with a convex cost function, the presence of obstacle avoidance constraints generates multiple locally convex domains, each with corresponding locally optimal feasible paths. To obtain globally optimal solutions, one could use branch and bound techniques46,47 but they usually entail high computational cost. It is desirable to provide an initial guess that lies in the feasible convex region that also contains the global optimal solution. Without prior mapping of the cost function for the complete domain, identification of such a local convex region poses a challenge.

This work presents a two-step approach for the generation of a suitable initial guess that is inspired by recent developments in the computer graphics community.48 The first step involves discretization of the feasible space using simple shapes, such as triangles or squares. This discretization is represented as a mesh which is used to create a graph on the available free space for trajectory generation. It is also advantageous to use a triangular mesh to discretizes the free space with narrow regions, unlike the more commonly used “square grid” based methods which suffer from resolution tuning to capture narrow channels, in particular the ones that are not axis-aligned. The second step involves the execution of a graph search algorithm on the graph obtained in the first step, leading to a guess path that circumvents all present obstacles. Recall that at this point, all probabilistically defined obstacles have been converted to their deterministic equivalents using CDF inversion, as described in Section. 2.2. Therefore, the outlined two-step process is applied to the free-space generated by the equivalent deterministic obstacles. Also important to note is that this approach does not take into account dynamic constraints (vehicular motion constraints). These are to be dealt with in the next stage, i.e. during the iterative solution of the optimal control problem, starting from the initial guess generated here.

Discretization of space via delaunay and constrained delaunay triangulation

Since the simplest closed shape in two dimensions is a triangle, triangulation techniques are common for generation of a discretization mesh and its associated graph on the feasible search space. One such common triangulation is the Delaunay Triangulation. Recall, for a given set of points (vertices), a Delaunay Triangulation (DT) is a mesh such that for any three vertices that form a triangle, no other point from the set lies inside the circumcircle of the triangle. A DT does, however, disregard obstacle boundaries, e.g. see Figure 1a. It can be seen that some of the DT edges do not align with the boundaries of the obstacles (shown in gray). Before a DT can be used as a mesh, circular obstacles (if any) must be approximated using higher order polygons. To address the concern of exclusion of obstacle boundaries in DT, we use Constrained Delaunay triangulation (CDT), an extension of DT that forces prespecified edges, called constrained edges, to be included in the triangulation mesh.49 CDT provides a valid discretization of the free search space, over which a graph search can be performed to determine a suitable guess path. See Figure 1b for an example: note that by constraining the edges of the obstacles (in gray), it provides a discretization of the free search space. Subsequently, a dual graph of the CDT is generated by connecting the incenters of the triangles, and is popularly known as the Voronoi diagram. The Voronoi diagram is modified such that the incenters are replaced by the start and end points of the trajectory for the triangles in which they are contained. Now, each edge in the Voronoi diagram is provided a ‘edge-weight’ by computing the Euclidean distance between its nodes. The resulting weighted graph is now ready to be solved using a graph search method.

Figure 1 Discretization via delaunay and constrained delaunay triangulation.

Graph search

The weighted Voronoi graph is searched for the shortest path connecting the start and final points using the A* algorithm12. Although CDT provides an efficient means to discretize the domain, it often contains sliver triangles (sharp triangles with large obtuse angle) that result in sharp and very long Voronoi edges. Such long Voronoi edges can adversely affect the quality of the initial guess path. To illustrate the effect of sliver triangles, consider the example in Figure 2. In this figure, the “optimal path” (dashed blue) indicates the path obtained through iterative optimization (Section. 4.1) starting with the shown initial guess path (green). The optimal path in Figure 2a has a length of 15.76 units and is not globally optimal. For this obstacle map, the global optimum (length 13.67 units) is shown in Figure 2b as the dashed blue trajectory. The corresponding guess path expected in its corresponding local convex domain from the Voronoi diagram is shown in green. The long Voronoi edges resulting from the sliver triangles in the lower region of the domain are the cause for the A* algorithm to disregard the path.

Figure 2 Potential issues with CDT due to sliver triangles.
(a) Locally optimal path (not global optimum) obtained using the shortest guess path
(b) Desired optimal path (global optimum) and its corresponding guess path (not the shortest guess path)

Methodology for generating initial guess path

In view of the discussion above, it is desired that triangulation (1) can be used to discretize a feasible free search space by honouring all obstacle avoidance constraints, and (2) should not contain sliver triangles. The former can be accomplished using CDT. For the latter, Delaunay refinement techniques can be implemented. A popular method called Chew’s second algorithm50 refines a DT (including CDT) and eliminates sliver triangles by enforcing the “circumcenter inside the triangle” condition. This is achieved by bisecting the edges that cause the circumcenter to be on its opposite side. This process is repeated until there are no sliver triangles in the mesh. To generate such a refined CDT, we employ the MATLAB based mesh-generator tool called MESH2D51 which utilizes the Delaunay refinement strategy see Figure 3a. The remainder of the method - i.e. generation of the Voronoi diagram, its modification using the start and end points, computation of edge weights and computation of shortest path- remains the same. Figure 3 summarizes the steps for generation of the initial guess. Note that in Figure 3c, the resulting shortest path is irregular (contains jagged edges). This irregularity can cause large variations in the yaw control, leading to poor convergence of optimization. This is overcome by ‘straightening’ the path. By iterating over each individual point in the irregular path, the longest edge from the start point that does not violate the obstacle boundaries is found. The end point of this edge is now fixed as the start point and the process is repeated until the final point is reached. This straightening process is summarized in Algorithm 1. The straightened guess path, shown in Figure 3d, is close to the global optimal path Figure 2b, thereby validating the merits of the mesh-refinement approach. The steps for complete initial guess generation method, including the path straightening, is summarized in the Algorithm 2.

Figure 3 Initial guess generation: (a) Refined constrained delaunay triangulation mesh using MESH2D, (b) Voronoi diagram - dual graph, (c) Shortest path using A* algorithm (d) Straightened initial guess path (arrows indicate heading angle θ).

Algorithm 1 path-straightening method

Require: Polygon obstacle nodes, edges

Require: Irregular Path ( xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaeyOeI0IaamyEaaaa@396D@ coordinates): P irr = { ( x i ,  y i )|i= 1, ...,N } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfal8aadaWgaaqaaKqzadWdbiaadMgacaWGYbGaamOC aaWcpaqabaqcLbsapeGaeyypa0JaaeiiaKqba+aadaGadaGcbaqcfa 4aaeWaaOqaaKqzGeWdbiaadIhal8aadaWgaaqaaKqzadWdbiaadMga aSWdaeqaaKqzGeWdbiaacYcacaqGGaGaamyEaSWdamaaBaaabaqcLb mapeGaamyAaaWcpaqabaaakiaawIcacaGLPaaajugibiaacYhapeGa amyAaiabg2da9iaabccacaaIXaGaaiilaiaabccacaGGUaGaaiOlai aac6cacaGGSaGaamOtaaGcpaGaay5Eaiaaw2haaaaa@56B8@

Reduce irregularity

1: Initialize  j=1, s 1 =1, t 1 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacQgacqGH9aqpcaaIXaGaaiilaiaadohalmaaBaaajuaG baqcLbmacaaIXaaajuaGbeaajugibiabg2da9iaaigdacaGGSaGaam iDaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaaIYaaa aa@4697@

2: while t j <N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshalmaaBaaabaqcLbmacaWGQbaaleqaaKqzGeGaeyip aWJaamOtaaaa@3C58@ do

3: Edge E=( x sj , y sj , x tj , y tj ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweacqGH9aqpjuaGdaqadaGcbaqcLbsacaWG4bqcfa4a aSbaaSqaaKqzadGaam4CaiaadQgaaSqabaqcLbsacaGGSaGaamyEaS WaaSbaaeaajugWaiaadohacaWGQbaaleqaaKqzGeGaaiilaiaadIha juaGdaWgaaWcbaqcLbmacaWG0bGaamOAaaWcbeaajugibiaacYcaca GG5bWcdaWgaaqcfayaaKqzadGaamiDaiaadQgaaKqbagqaaaGccaGL OaGaayzkaaaaaa@5240@

4: if E crosses any polygon then

5: t j   t j  1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshajuaGpaWaaSbaaSqaaKqzadWdbiaadQgaaSWdaeqa aKqzGeWdbiabgcziSkaabccacaWG0bqcfa4damaaBaaaleaajugWa8 qacaWGQbaal8aabeaajugib8qacaGGtaIaaeiiaiaaigdaaaa@4496@

6: if s j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb WcdaWgaaqaaKqzadGaamOAaaWcbeaaaaa@39D1@ equals t j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaaa@3A60@ then

7: s j+1 s j +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb qcfa4aaSbaaSqaaKqzadGaamOAaiabgUcaRiaaigdaaSqabaqcLbsa cqGHqgcRcaWGZbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaajugibi abgUcaRiaaigdaaaa@447A@

8: else

9: s j+1   s j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadohal8aadaWgaaqaaKqzadWdbiaadQgacqGHRaWkcaaI Xaaal8aabeaajugib8qacqGHqgcRcaqGGaGaam4CaSWdamaaBaaaba qcLbmapeGaamOAaaWcpaqabaaaaa@4261@

10: end if

11: t j+1 t j +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshalmaaBaaajuaGbaqcLbmacaWGQbGaey4kaSIaaGym aaqcfayabaqcLbsacqGHqgcRcaWG0bWcdaWgaaqcfayaaKqzadGaam OAaaqcfayabaqcLbsacqGHRaWkcaaIXaaaaa@45A2@

12:  jj + 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaWGQbGaeyiKHWQaamOAaiaabccacqGHRaWkcaqG GaGaaGymaaaa@3E73@

13: else

14: t j t j + 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshajuaGpaWaaSbaaSqaaKqzadWdbiaadQgaaSWdaeqa aKqzGeWdbiabgcziSkaadshajuaGpaWaaSbaaSqaaKqzadWdbiaadQ gaaSWdaeqaaKqzGeWdbiabgUcaRiaabccacaaIXaaaaa@441E@

15: end if

16: end while

17: Straightened Path ( xy ):  P str ={( x pk ,  y pk )| p k { s 1 ,  s 2 , ...,  s last ,  t last },( x pk ,  y pk ) P irr ,k=1,....., N str }  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWG4bGaeyOeI0IaamyEaaGcpaGaayjk aiaawMcaaKqzGeWdbiaacQdacaqGGaGaamiuaSWdamaaBaaabaqcLb mapeGaam4CaiaadshacaWGYbaal8aabeaajugib8qacqGH9aqppaGa ai4EaKqbaoaabmaakeaajugib8qacaWG4bWcpaWaaSbaaeaajugWa8 qacaWGWbGaam4AaaWcpaqabaqcLbsapeGaaiilaiaabccacaWG5bWc paWaaSbaaeaajugWa8qacaWGWbGaam4AaaWcpaqabaaakiaawIcaca GLPaaajugibiaacYhapeGaamiCaSWdamaaBaaabaqcLbmapeGaam4A aaWcpaqabaqcLbsapeGaeyicI4Ccfa4damaacmaakeaajugib8qaca WGZbqcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaajugib8qa caGGSaGaaeiiaiaadohajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaS WdaeqaaKqzGeWdbiaacYcacaqGGaGaaiOlaiaac6cacaGGUaGaaiil aiaabccacaWGZbqcfa4damaaBaaaleaajugWa8qacaWGSbGaamyyai aadohacaWG0baal8aabeaajugib8qacaGGSaGaaeiiaiaadshajuaG paWaaSbaaSqaaKqzadWdbiaadYgacaWGHbGaam4CaiaadshaaSWdae qaaaGccaGL7bGaayzFaaqcLbsapeGaaiilaKqba+aadaqadaGcbaqc LbsapeGaamiEaSWdamaaBaaabaqcLbmapeGaamiCaiaadUgaaSWdae qaaKqzGeWdbiaacYcacaqGGaGaamyEaSWdamaaBaaabaqcLbmapeGa amiCaiaadUgaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaeyicI4 SaamiuaSWdamaaBaaabaqcLbmapeGaamyAaiaadkhacaWGYbaal8aa beaajugib8qacaGGSaGaam4Aaiabg2da9iaaigdacaGGSaGaaiOlai aac6cacaGGUaGaaiOlaiaac6cacaGGSaGaamOtaSWdamaaBaaabaqc LbmapeGaam4CaiaadshacaWGYbaal8aabeaajugibiaac2hapeGaai iOaaaa@A42F@

Compute heading angles

18: θ p1  atan2( y p2 y p1 ,  x p2 y p1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeI7aXLqba+aadaWgaaWcbaqcLbmapeGaamiCaiaaigda aSWdaeqaaKqzGeWdbiabgcziSkaabccacaWGHbGaamiDaiaadggaca WGUbGaaGOmaKqba+aadaqadaGcbaqcLbsacaWG5bWcdaWgaaqaaKqz adGaamiCaiaaikdaaSqabaqcLbsacqGHsislcaWG5bWcdaWgaaqaaK qzadGaamiCaiaaigdaaSqabaqcLbsapeGaaiilaiaabccapaGaamiE aSWaaSbaaeaajugWaiaadchacaaIYaaaleqaaKqzGeGaeyOeI0Iaam yEaKqbaoaaBaaaleaajugWaiaadchacaaIXaaaleqaaaGccaGLOaGa ayzkaaaaaa@5C68@

19: for k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH9aqpcaaIXaaaaa@3956@ to N str MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6eal8aadaWgaaqaaKqzadWdbiaadohacaWG0bGaamOC aaWcpaqabaaaaa@3BF3@ do

20: if  i< N str   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaWGPbGaeyipaWJaamOtaSWdamaaBaaabaqcLbma peGaam4CaiaadshacaWGYbaal8aabeaajugib8qacaGGGcaaaa@40CC@ then

21:   u=( x k x k1 ) i +( y k y k1 ) j ,v=( x k+1 x k ) i +( y k+1 y k ) j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b Gaeyypa0tcfa4aaeWaaOqaaKqzGeGaamiEaKqbaoaaBaaaleaajugW aiaadUgaaSqabaqcLbsacqGHsislcaWG4bWcdaWgaaqaaKqzadGaam 4AaiabgkHiTiaaigdaaSqabaaakiaawIcacaGLPaaajuaGdaWfGaGc baqcLbsacaWGPbaaleqabaqcLbmacqGHNis2aaqcLbsacqGHRaWkju aGdaqadaGcbaqcLbsacaWG5bWcdaWgaaqaaKqzadGaam4AaaWcbeaa jugibiabgkHiTiaadMhalmaaBaaabaqcLbmacaWGRbGaeyOeI0IaaG ymaaWcbeaaaOGaayjkaiaawMcaaKqbaoaaxacakeaajugibiaadQga aSqabeaajugWaiabgEIizdaajugibiaacYcacaWG2bGaeyypa0tcfa 4aaeWaaOqaaKqzGeGaamiEaKqbaoaaBaaaleaajugWaiaadUgacqGH RaWkcaaIXaaaleqaaKqzGeGaeyOeI0IaamiEaSWaaSbaaeaajugWai aadUgaaSqabaaakiaawIcacaGLPaaajuaGdaWfGaGcbaqcLbsacaWG PbaaleqabaqcLbmacqGHNis2aaqcLbsacqGHRaWkjuaGdaqadaGcba qcLbsacaWG5bWcdaWgaaqaaKqzadGaam4AaiabgUcaRiaaigdaaSqa baqcLbsacqGHsislcaWG5bqcfa4aaSbaaSqaaKqzadGaam4AaaWcbe aaaOGaayjkaiaawMcaaKqbaoaaxacakeaajugibiaadQgaaSqabeaa jugWaiabgEIizdaaaaa@8731@

22:  Δ θ p k  atan2((u×v)· k ,u·v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejabeI7aXLqba+aadaWgaaWcbaqcLbsapeGaamiC aaWcpaqabaqcLbsapeGaam4AaiaacckacaGGGcGaeyiKHWQaamyyai aadshacaWGHbGaamOBaiaaikdapaGaaiikaiaacIcapeGaaCyDaiab gEna0kaahAhapaGaaiyka8qacaGG3cqcfa4aaCbiaOqaaKqzGeGaaC 4AaaWcbeqaaKqzadGaey4jIKnaaKqzGeGaaiilaiaahwhacaGG3cGa aCODa8aacaGGPaaaaa@5871@

23: else

24:  Δ θ p k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejabeI7aXLqba+aadaWgaaWcbaqcLbmapeGaamiC aaWcpaqabaqcLbsapeGaam4AaiaacckacqGHqgcRcaaIWaaaaa@422D@

25: end if

26:  θ pk θ pk1  + θ pk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeI7aXTWdamaaBaaabaqcLbmapeGaamiCaiaadUgaaSWd aeqaaKqzGeWdbiabgcziSkabeI7aXTWdamaaBaaabaqcLbmapeGaam iCaiaadUgacqGHsislcaaIXaaal8aabeaajugib8qacaGGGcGaey4k aSIaeqiUde3cpaWaaSbaaeaajugWa8qacaWGWbGaam4AaaWcpaqaba aaaa@4D04@

27: end for

28: Straightened Path (full-state):

P sp ={ ( x pk , y pk , θ pk )|pk={ s 1 ,...., s last , t last },( x pk , y pk ) P irr ,k=1,....., N str } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc falmaaBaaabaqcLbmacaWGZbGaamiCaaWcbeaajugibiabg2da9Kqb aoaacmaakeaajuaGdaqadaGcbaqcLbsacaWG4bWcdaWgaaqaaKqzad GaamiCaiaadUgaaSqabaqcLbsacaGGSaGaamyEaKqbaoaaBaaaleaa jugWaiaadchacaWGRbaaleqaaKqzGeGaaiilaiabeI7aXLqbaoaaBa aaleaajugWaiaadchacaWGRbaaleqaaaGccaGLOaGaayzkaaqcLbsa caGG8bGaamiCaiaadUgacqGH9aqpjuaGdaGadaGcbaqcLbsacaWGZb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaacYcacaGGUaGaaiOl aiaac6cacaGGUaGaaiilaiaadohajuaGdaWgaaWcbaqcLbmacaWGSb GaamyyaiaadohacaWG0baaleqaaKqzGeGaaiilaiaadshalmaaBaaa baqcLbmacaWGSbGaamyyaiaadohacaWG0baaleqaaaGccaGL7bGaay zFaaqcLbsacaGGSaqcfa4aaeWaaOqaaKqzGeGaamiEaKqbaoaaBaaa leaajugWaiaadchacaWGRbaaleqaaKqzGeGaaiilaiaadMhajuaGda WgaaWcbaqcLbmacaWGWbGaam4AaaWcbeaaaOGaayjkaiaawMcaaKqz GeGaeyicI4SaamiuaSWaaSbaaeaajugWaiaadMgacaWGYbGaamOCaa WcbeaajugibiaacYcacaWGRbGaeyypa0JaaGymaiaacYcacaGGUaGa aiOlaiaac6cacaGGUaGaaiOlaiaacYcacaWGobqcfa4aaSbaaSqaaK qzadGaam4CaiaadshacaWGYbaaleqaaaGccaGL7bGaayzFaaaaaa@9875@

Algorithm 2 Initial Guess Path Generation

Require: Polygon nodes, edges, start point { x 0 , y 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaamiEaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsa caGGSaGaamyEaKqbaoaaBaaaleaajugWaiaaicdaaSqabaaakiaawU hacaGL9baaaaa@41EC@ and final point { x f , y f } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaamiEaKqbaoaaBaaaleaajugWaiaadAgaaSqabaqcLbsa caGGSaGaamyEaKqbaoaaBaaaleaajugWaiaadAgaaSqabaaakiaawU hacaGL9baaaaa@424E@

1: Obtain CDT using MESH2D

2: Obtain Voronoi diagram: dual graph of the triangulation mesh by connecting the incenters of the triangles

3: Update Voronoi diagram: replace incenters with { x 0 , y 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaamiEaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsa caGGSaGaamyEaKqbaoaaBaaaleaajugWaiaaicdaaSqabaaakiaawU hacaGL9baaaaa@41EC@ and { x f , y f } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeGaamiEaKqbaoaaBaaaleaajugWaiaadAgaaSqabaqcLbsa caGGSaGaamyEaKqbaoaaBaaaleaajugWaiaadAgaaSqabaaakiaawU hacaGL9baaaaa@424E@ in the triangles containing them.

4: Determine the shortest path using A algorithm:  P irr ={( x i , y i )|i=1,...,N} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfal8aadaWgaaqaaKqzadWdbiaadMgacaWGYbGaamOC aaWcpaqabaqcLbsapeGaeyypa0ZdaiaacUhacaGGOaWdbiaadIhal8 aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiaacYcacaWG 5bWcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaajugibiaacMcaca GG8bWdbiaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOl aiaacYcacaWGobWdaiaac2haaaa@51F8@

5: Straighten Path (full-state): P sp ={ ( x i , y j , θ j )|j=1,..., N str } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaSqaaKqzadGaam4CaiaadchaaSqabaqcLbsacqGH9aqp juaGdaGadaGcbaqcfa4aaeWaaOqaaKqzGeGaamiEaSWaaSbaaeaaju gWaiaadMgaaSqabaqcLbsacaGGSaGaaiyEaKqbaoaaBaaaleaajugW aiaadQgaaSqabaqcLbsacaGGSaGaeqiUdexcfa4aaSbaaSqaaKqzad GaamOAaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaiiFaiaadQgacqGH 9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaGGobWcda WgaaqaaKqzadGaam4CaiaadshacaWGYbaaleqaaaGccaGL7bGaayzF aaaaaa@5D75@  (using Algorithm 1)

Numerical case studies

In this section, the merits of chance-constrained path-planning in obstacle fields with narrow spaces are presented. Results are compared with the robust (worst-case) approach.

Path-planning scenario 1: problem setup

The mean obstacle boundaries are shown in Figure 4a. Agent speed is set to V = 10 length-units/s and r min =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkhal8aadaWgaaqaaKqzadWdbiaad2gacaWGPbGaamOB aaWcpaqabaqcLbsapeGaeyypa0JaaGymaaaa@3E62@ length-units. Boundary uncertainty (attributed to perception/measurement errors or a low-resolution mathematical model) is captured using a discrete random variable ζ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6baa@3B79@ , where ζ[ 2.1,2.1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6jabgIGioNqbaoaadmaakeaajugibiabgkHiTiaaikdacaGGUaGa aGymaiaacYcacaaIYaGaaiOlaiaaigdaaOGaay5waiaaw2faaaaa@460F@ length-units. The robust (worst case) scenario results in inflated boundaries with ζ worst :=max( ζ )=2.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6LqbaoaaBaaaleaajugWaiaadEhacaWGVbGaamOCaiaadohacaWG 0baaleqaaKqzGeGaaiOoaiabg2da9iGac2gacaGGHbGaaiiEaKqbao aabmaakeaajugibiabeA7a6bGccaGLOaGaayzkaaqcLbsacqGH9aqp caaIYaGaaiOlaiaaigdaaaa@4FA0@  shown in red in Figure 4c, which indicates overlap among obstacles. Assuming that ζ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6baa@3B79@  follows a probability distribution given by the histogram in Figure 4b, a continuous distribution that represents the probabilistic character of the uncertainty in the boundaries is obtained by fitting a Gaussian density function, ζN( μ=0,σ=0.79 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6jablYJi6iaad6eajuaGdaqadaGcbaqcLbsacqaH8oqBcqGH9aqp caaIWaGaaiilaiabeo8aZjabg2da9iaaicdacaGGUaGaaG4naiaaiM daaOGaayjkaiaawMcaaaaa@4A0E@ , shown in red in Figure 4b. In order to employ the chance-constrained formalism described in this paper, we use this density function and the resulting probabilistic boundaries shown in Figure 4d. Comparative results of optimal path-planning for the robust model Figure 4c and chance-constrained model Figure 4d are discussed in the following sections.

Figure 4 (a) Obstacle map with mean boundaries, (b) Distribution of uncertainty in the boundaries, (c) Robust scenario - inflated obstacles, (d) Chance-constrained scenario - probabilistic boundaries.

Scenario 1: Robust planning (bounded uncertainty)

As described above, obstacle boundaries are inflated in size by a safety margin corresponding to the worst case realization of the parameter . As shown in Figure 4c, this causes overlap among obstacles and the resultant closure of the narrow channel between them. It thus leaves two possible locally optimal paths; curving around either side of the obstacles, such that each is locally optimal in its local convex domain. Moreover, one of the two paths could be the global optimal path. If the narrow space between the obstacles was not closed off, the path through that space could be the global optimal path. Selection of a local convex domain containing the global optimal path is in essence addressed through the selection of the initial guess path, as described in Algorithm 2. The discretization of the feasible region with refined CDT is shown in Figure 5a. The shortest path on the Voronoi graph and the straightened initial guess path are shown in Figures 5b & 5c. Subsequently, the optimal path subject to vehicular dynamic constraints (Eq. 13b) is determined by transcribing the optimal control problem to an NLP using the Gaussian quadrature orthogonal collocation method and then solving the NLP. The software package is used to transcribe the optimal control problem to an NLP using LGR collocation and then invoke the embedded NLP solver - IPOPT to solve the NLP. It takes about 3 seconds to complete both the initial guess generation and path optimization using on a laptop with Intel® Core i7 2.8 GHz processor. The resultant optimal path is shown in Figure 5d.

Figure 5 Robust Scenario (a) Refined constrained delaunay triangulation mesh (b) Shortest path in voronoi diagram using A* algorithm (c) Straightened initial guess path (d) Optimal path.

Scenario 1: Chance constrained planning

For the case of chance constrained planning, each obstacle boundary is modeled as a probability distribution. Subsequently, for each prescribed risk of violation, , the chance-constraints (CCs) are transformed to equivalent deterministic constraints using Eq. (17b). The method of initial guess generation remains the same. By varying the magnitude of risk, a family of optimal paths can be obtained, that are parameterized by the risk factor. For the range ε[ 0.010,0.060 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabgIGioNqbaoaadmaabaqcLbsacaaIWaGaaiOl aiaaicdacaaIXaGaaGimaiaacYcacaaIWaGaaiOlaiaaicdacaaI2a GaaGimaaqcfaOaay5waiaaw2faaaaa@4558@ , the family of optimal paths is shown in Figure 6a, where the risk parameter is increased in increments of 0.005. Select few optimal costs (travel times) and the associated risk are also listed in Table 1. The effect of inflation of boundaries (relative to the mean) decreases with an increase in the risk parameter. This results in paths that are closer to the mean boundaries and incur less cost. Beyond a certain risk value (in this case , i.e. a 3% risk of collision), the shrinkage in boundaries causes the opening of the narrow region (a “keyhole”) between the obstacles, thus allowing a path through the keyhole that is significantly shorter than paths around the obstacles. In general, it is possible to have a new family of solutions emerge when the risk parameter is increased above a certain threshold. Given a pair of starting and destination locations, and the arrangement of obstacles on the map, it appears to be a reasonable strategy to construct a family of solutions up to the maximum risk that is acceptable. Selection of mission trajectory is made by weighing the reward (less travel time) versus assumed risk (collision with obstacles) along each path in the family of solutions. For instance, in the present example, the keyhole emerges when the assumed risk of collision is increased from ε=0.03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabg2da9iaaicdacaGGUaGaaGimaiaaiodaaaa@3C35@  (3%) to  (3.5%), leading to a 30% reduction in cost Figure 6a. Given the exigency of the mission, this may be an acceptable increase in mission risk for the stated increase in reward.

Figure 6 Chance-constrained Scenario: (a) Optimal path (zoomed path inset), (b) Violation rate for CC with risk ε=0.03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabg2da9iaaicdacaGGUaGaaGimaiaaiodaaaa@3F4C@ (c) Violation rate for CC with risk ε=0.045 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabg2da9iaaicdacaGGUaGaaGimaiaaisdacaaI1aaaaa@400C@ (d) Comparison of discretization-coarse used in transcription, finer used for verification.

Risk Value

Travel Time (sec)

0.02

20.51

0.025

20.5

0.03

20.47

0.035

14.32

0.04

14.32

0.045

14.31

Table 1 Variation of optimal travel time as a function of risk

Special optimal paths passing through narrow regions between closely situated uncertain obstacles are henceforth referred to as keyhole trajectories in this work. Their emergence is due to the chance-constrained formulation of path planning in a cluttered environment especially with tightly spaced obstacles. It presents the decisions making agent a relatively simple and methodical framework for modelling uncertainty in obstacle perimeters and then selecting the “most optimal path” from a family of paths parameterized by the easily tunable risk of collision with such obstacles. In particular, this approach presents an attractive alternative to the previously presented robust (worst-case) planning method, which in reality, reflects a design cantered around a statistically insignificant realization of the obstacles’ perimeters.

It is important to reiterate that chance-constrained path planning does not guarantee avoidance of obstacles. Instead, it provides “probabilistic” assurance that for a sufficiently large number of obstacle encounters, the agent will avoid ( 1ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaaIXaGaeyOeI0IaeqyTdugakiaawIcacaGLPaaaaaa@3F36@ fraction of such encounters. For any path obtained via the CC approach, it can be verified through simulation that the actual violation rate is less than the prescribed risk threshold imposed during trajectory design. As an example, Figure 6b shows the empirically determined violation rate for the path corresponding to when checked for collision in 100,000 trials. The presence of peaks that exceed the prescribed risk is a figment of numerics and attributed to the violation of obstacle boundaries around the corners due to finer discretization of time (and resulting vehicular locations along the path derived from interpolation) used in the verification step, compared to the discretization of time performed by the hp-adaptive Gaussian quadrature orthogonal collocation method during solution of the optimal control problem. This is confirmed in Figure 6d, which shows the comparative time-discretization used for optimization (coarse) versus verification (fine). This anomaly does not discount the merits of the chance-constraint approach and can be resolved by changing how the corner points are handled in the transcription method. Outside of these peaks, the violation rate is verified to remain less than the prescribed risk value. In accordance with the law of large numbers, it was observed that verification results converge when using 100,000 sample of ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4baa@3B7F@  i.e. the uncertainty in obstacle boundaries. Figure 6c shows another case ( ε=0.045 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacqaH1oqzcqGH9aqpcaaIWaGaaiOlaiaaicdacaaI0aGa aGynaaGccaGLOaGaayzkaaaaaa@4237@ that emanates a keyhole trajectory. Once again, due to the numerical issues described above, two peaks are observed because this path encounters only two corners (pink trajectory in Figure 6a). Note that the compliance of one of the peaks (on the left) with the prescribed violation rate is a coincidence.

Scenario 1: Chance-constrained planning in the presence of process noise

In the path planning problem posed above, the agent dynamics were assumed to be deterministic in nature. However, in practice, there is uncertainty in the agent’s state due to input disturbances or model errors which can be included in the agent’s motion model as process noise. Such motion models are expressed using stochastic differential equations (SDEs). Generally, SDEs require a different optimization framework which is computationally more intensive than their deterministic counterparts.52

In this section, the chance-constrained optimal path planning problem with process noise in the agent dynamics is transformed to an optimal control problem with deterministic agent dynamics. We consider the special case of noise only in the steering dynamics ( θ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa GcbaqcLbsacqaH4oqCaSqabeaajugWaiaac6caaaaaaa@3E33@  equation in Eq. (13b)), allowing us to include the noise in the obstacle- avoidance chance-constraints.

Effect of noise on agent’s position

In the presence of additive noise in the steering input, the equations of motion (Eq. (13b)) can be re-written in Langevin form as follows:

x . ( t )=Vcosθ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa GcbaqcLbsacaWG4baaleqabaqcLbmacaGGUaaaaKqbaoaabmaakeaa jugibiaadshaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaamOvaiGaco gacaGGVbGaai4CaiabeI7aXLqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaaaa@4BD9@   (24a)

y . ( t )=Vsinθ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa qaaKqzGeGaamyEaaqcfayabeaajugWaiaac6caaaqcfa4aaeWaaOqa aKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGwbGaci 4CaiaacMgacaGGUbGaeqiUdeNaaiikaiaacshacaGGPaaaaa@4AF6@   (24b)

θ . ( t )=u+ σ u η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa qaaKqzGeGaeqiUdehajuaGbeqaaKqzadGaaiOlaaaajuaGdaqadaGc baqcLbsacaWG0baakiaawIcacaGLPaaajugibiabg2da9iaadwhacq GHRaWkcqaHdpWClmaaBaaabaqcLbmacaWG1baaleqaaKqzGeGaeq4T dGgaaa@4C2D@   (24c)

where η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeE 7aObaa@3B68@  is the formal derivative of Brownian motion and σ u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo 8aZLqbaoaaBaaabaqcLbmacaWG1baajuaGbeaaaaa@3EE4@  is a scaling factor. In discrete-time, the equations of motions (Eq.24)) can be expressed as:

x k = x k1 +Vcos θ k Δ t k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaeyypa0JaamiE aKqbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGe Gaey4kaSIaamOvaiGacogacaGGVbGaai4CaiabeI7aXLqbaoaaBaaa leaajugWaiaadUgaaSqabaqcLbsacqqHuoarcaWG0bWcdaWgaaqaaK qzadGaam4AaaWcbeaaaaa@53B4@   (25a)

y k = y k1 +Vsin θ k Δ t k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM hajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaeyypa0JaamyE aKqbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGe Gaey4kaSIaamOvaiGacohacaGGPbGaaiOBaiabeI7aXLqbaoaaBaaa leaajugWaiaadUgaaSqabaqcLbsacqqHuoarcaWG0bWcdaWgaaqaaK qzadGaam4AaaWcbeaaaaa@53BB@   (25b)

θ k = θ k1 + u k Δ t k + σ u Δ B k , Δ B k N( 0, Δ t k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGe GaeqiUdexcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiabg2da 9iabeI7aXLqbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaale qaaKqzGeGaey4kaSIaamyDaKqbaoaaBaaaleaajugWaiaadUgaaSqa baqcLbsacqqHuoarcaWG0bqcfa4aaSbaaSqaaKqzadGaam4AaaWcbe aajugibiabgUcaRiabeo8aZTWaaSbaaeaajugWaiaadwhaaSqabaqc LbsacqqHuoarcaWGcbqcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaaju aGcaGGSaaakeaajugibiabfs5aejaadkeajuaGdaWgaaWcbaqcLbma caWGRbaaleqaaKqzGeGaeSipIOJaamOtaKqbaoaabmaakeaajugibi aaicdacaGGSaqcfa4aaOaaaOqaaKqzGeGaeuiLdqKaamiDaKqbaoaa BaaaleaajugWaiaadUgaaSqabaaabeaaaOGaayjkaiaawMcaaaaaaa@7092@   (25c)

where Δ t k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadshalmaaBaaabaqcLbmacaWGRbaaleqaaaaa@3E70@ is the time-step and Δ B k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadkeajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaaa@3ECC@ is the increment of the Brownian motion process. To characterize the effect of noise in steering input on an agent’s position, we consider a mean state trajectory and control policy obtained from a previously solved path planning problem and generates an interpolated sequence of states and control policy with a fixed time-step size Δ t k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadshajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaaa@3EFE@ . By substituting the mean states { x k1 , y k1 , θ k1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGada GcbaqcLbsacaWG4bWcdaWgaaqaaKqzadGaam4AaiabgkHiTiaaigda aSqabaqcLbsacaGGSaGaamyEaSWaaSbaaeaajugWaiaadUgacqGHsi slcaaIXaaaleqaaKqzGeGaaiilaiabeI7aXLqbaoaaBaaaleaajugW aiaadUgacqGHsislcaaIXaaaleqaaaGccaGL7bGaayzFaaaaaa@4F43@ and control policy u k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadw halmaaBaaabaqcLbmacaWGRbaaleqaaaaa@3D0B@  from the interpolated sequence, and Brownian increments sampled from in Eq. (25), a perturbed trajectory of states can be obtained. At each time step, k, it is found that the agent’s position deviates in the direction perpendicular to the mean trajectory by δ k =VΔ t k sin( σ u Δ B k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKLqbaoaaBaaabaqcLbmacaWGRbaajuaGbeaajugibiabg2da9iaa dAfacqqHuoarcaWG0bqcfa4aaSbaaeaajugWaiaadUgaaKqbagqaaK qzGeGaci4CaiaacMgacaGGUbqcfa4aaeWaaeaajugibiabeo8aZLqb aoaaBaaabaqcLbmacaWG1baajuaGbeaajugibiabfs5aejaadkeaju aGdaWgaaqaaKqzadGaam4AaaqcfayabaaacaGLOaGaayzkaaaaaa@5832@ as shown in Figure 7a. This non-affine transformation of Δ B k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadkealmaaBaaabaqcLbmacaWGRbaaleqaaaaa@3E3E@ to δ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKLqbaoaaBaaaleaajugWaiaadUgaaSqabaaaaa@3E44@  results in a non–Gaussian distribution for the perturbation δ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKTWaaSbaaeaajugWaiaadUgaaSqabaaaaa@3DB6@ . However, for small values of σ u Δ B k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo 8aZTWaaSbaaeaajugWaiaadwhaaSqabaqcLbsacqqHuoarcaWGcbWc daWgaaqaaKqzadGaam4AaaWcbeaaaaa@42EF@ or 3 σ u Δ t k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaio dacqaHdpWCjuaGdaWgaaWcbaqcLbmacaWG1baaleqaaKqbaoaakaaa keaajugibiabfs5aejaadshajuaGdaWgaaWcbaqcLbmacaWGRbaale qaaaqabaaaaa@45A2@ , the deviation may be approximated as δ k VΔ t k Δ B k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKLqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacqGHijYUcaWG wbGaeuiLdqKaamiDaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLb sacqqHuoarcaWGcbqcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaaaaa@4C40@ , such that it has a roughly Gaussian distribution given as δ k N( 0,V σ u Δ t k Δ t k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKLqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacqWI8iIocaWG obqcfa4aaeWaaOqaaKqzGeGaaGimaiaacYcacaWGwbGaeq4Wdm3cda WgaaqaaKqzadGaamyDaaWcbeaajugibiabfs5aejaadshajuaGdaWg aaWcbaqcLbmacaWGRbaaleqaaKqbaoaakaaakeaajugibiabfs5aej aadshajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaqabaaakiaawIca caGLPaaaaaa@563A@ . For instance, if we select the steering update interval as Δ t k =0.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadshalmaaBaaabaqcLbmacaWGRbaaleqaaKqzGeGaeyypa0Ja aGimaiaac6cacaaI0aaaaa@422F@ and steering input noise scaling factor σ u =0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo 8aZTWaaSbaaeaajugWaiaadwhaaSqabaqcLbsacqGH9aqpcaaIWaGa aiOlaiaaikdaaaa@419B@ , then sin( 3 σ u Δ t k )3 σ u Δ t k δ k N( 0,0.506 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGaco hacaGGPbGaaiOBaKqbaoaabmaakeaajugibiaaiodacqaHdpWCjuaG daWgaaWcbaqcLbmacaWG1baaleqaaKqbaoaakaaakeaajugibiabfs 5aejaadshalmaaBaaabaqcLbmacaWGRbaaleqaaaqabaaakiaawIca caGLPaaajugibiabgIKi7kaaiodacqaHdpWClmaaBaaabaqcLbmaca WG1baaleqaaKqbaoaakaaakeaajugibiabfs5aejaadshalmaaBaaa baqcLbmacaWGRbaaleqaaaqabaqcLbsacqGHshI3cqaH0oazlmaaBa aabaqcLbmacaWGRbaaleqaaKqzGeGaeSipIOJaamOtaKqbaoaabmaa keaajugibiaaicdacaGGSaGaaGimaiaac6cacaaI1aGaaGimaiaaiA daaOGaayjkaiaawMcaaaaa@68EA@ . Alternatively, for some k (say k = 10 ), 10, 000 samples of Δ B k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadkealmaaBaaabaqcLbmacaWGRbaaleqaaaaa@3E3E@ are drawn to obtain a histogram of δ k =VΔ t k sin( σ u Δ B k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKTWaaSbaaeaajugWaiaadUgaaSqabaqcLbsacqGH9aqpcaWGwbGa euiLdqKaamiDaSWaaSbaaeaajugWaiaadUgaaSqabaqcLbsaciGGZb GaaiyAaiaac6gajuaGdaqadaGcbaqcLbsacqaHdpWCjuaGdaWgaaWc baqcLbmacaWG1baaleqaaKqzGeGaeuiLdqKaamOqaKqbaoaaBaaale aajugWaiaadUgaaSqabaaakiaawIcacaGLPaaaaaa@554A@ as shown in Figure 7b. In this case, the empirically obtained distribution fits the normal distribution N( 0.012,0.504 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6 eajuaGdaqadaGcbaqcLbsacqGHsislcaaIWaGaaiOlaiaaicdacaaI XaGaaGOmaiaacYcacaaIWaGaaiOlaiaaiwdacaaIWaGaaGinaaGcca GLOaGaayzkaaaaaa@4626@ whose standard deviation is close to the analytically obtained value within 0.4% error. Note that for fixed Δ t k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadshajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaaa@3EFE@ and σ u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo 8aZLqbaoaaBaaaleaajugWaiaadwhaaSqabaaaaa@3E6C@ , the deviation δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKbaa@3B61@  from the mean path follows a normal distribution that is invariant along the complete path. This uncertainty in the agent’s path, represented by δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKbaa@3B61@ , can now be incorporated in the obstacle avoidance chance-constraints as described in the next step.

Figure 7 Uncertainty in agent’s position due to noise in steering input.

Inclusion of path uncertainty in chance-constraints

Recall the obstacle avoidance chance-constraints expressed in Eq.(16). As the distribution of δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes 7aKbaa@3B61@  is invariant along the system trajectory, the uncertainty in the direction perpendicular to the mean path can be additively combined with the uncertainty in the obstacles boundaries as shown below.

circular obstacles: i=1 L P( ( x x c,i ) 2 + ( y y c,i ) 2 ( r μ,i +( ξ i +δ ) ) 2 )1 ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamyAaiabg2da9iaaigdaaSqa aKqzadGaamitaaaajugibiaadcfajuaGdaqadaqaamaabmaabaqcLb sacaWG4bGaeyOeI0IaamiEaKqbaoaaBaaabaqcLbmacaWGJbGaaiil aiaadMgaaKqbagqaaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaaG OmaaaajugibiabgUcaRKqbaoaabmaabaqcLbsacaWG5bGaeyOeI0Ia amyEaKqbaoaaBaaabaqcLbmacaWGJbGaaiilaiaadMgaaKqbagqaaa GaayjkaiaawMcaamaaCaaabeqaaKqzadGaaGOmaaaajuaGdaqadaqa aKqzGeGaamOCaKqbaoaaBaaabaqcLbmacqaH8oqBcaGGSaGaamyAaa qcfayabaqcLbsacqGHRaWkjuaGdaqadaqaaKqzGeGaeqOVdGxcfa4a aSbaaeaajugWaiaadMgaaKqbagqaaKqzGeGaey4kaSIaeqiTdqgaju aGcaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaeqabaqcLbmacaaI YaaaaaqcfaOaayjkaiaawMcaaKqzGeGaeyyzImRaaGymaiabgkHiTi abew7aLTWaaSbaaKqbagaajugWaiaadMgaaKqbagqaaaaa@8101@   (26a)

polygonal obstacle: j=1 N ( k=1 M j P( a j,k x+ b j,k y( c μ,j,k +( ζ j,k +δ a j,k 2 + b j,k 2 ) )1 ε j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfWa GcbaqcLbsacqWIPissaSqaaKqzadGaamOAaiabg2da9iaaigdaaSqa aKqzadGaamOtaaaajuaGdaqadaGcbaqcfa4aaCbmaOqaaKqzGeGaeS OkIufaleaajugWaiaadUgacqGH9aqpcaaIXaaaleaajugWaiaad2ea lmaaBaaameaajugWaiaadQgaaWqabaaaaKqzGeGaamiuaKqbaoaabm aakeaajugibiaadggajuaGdaWgaaWcbaqcLbmacaWGQbGaaiilaiaa dUgaaSqabaqcLbsacaWG4bGaey4kaSIaamOyaKqbaoaaBaaaleaaju gWaiaadQgacaGGSaGaam4AaaWcbeaajugibiaadMhajuaGdaqabaGc baqcLbsacaWGJbWcdaWgaaqaaKqzadGaeqiVd0MaaiilaiaadQgaca GGSaGaam4AaaWcbeaaaOGaayjkaaqcLbsacqGHRaWkjuaGdaqadaGc baqcLbsacqaH2oGEjuaGdaWgaaWcbaqcLbmacaWGQbGaaiilaiaadU gaaSqabaqcLbsacqGHRaWkcqaH0oazjuaGdaGcaaGcbaqcLbsacaWG HbWcdaqhaaqaaKqzadGaamOAaiaacYcacaWGRbaaleaajugWaiaaik daaaqcLbsacqGHRaWkcaWGIbWcdaqhaaqaaKqzadGaamOAaiaacYca caWGRbaaleaajugWaiaaikdaaaaaleqaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaqcLbsacqGHLjYScaaIXaGaeyOeI0IaeqyTduwcfa4a aSbaaSqaaKqzadGaamOAaaWcbeaaaOGaayjkaiaawMcaaaaa@913F@   (26b)

Since the random variables representing uncertainty in the obstacle boundaries ξ i , ζ j,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe6 7a4TWaaSbaaeaajugWaiaadMgaaSqabaqcLbsacaGGSaGaeqOTdO3c daWgaaqaaKqzadGaamOAaiaacYcacaWGRbaaleqaaaaa@44C2@  and uncertainty in the path δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKbaa@384A@  are independent and Gaussian, ( ξ i +δ )N( 0, σ ξ i 2 + V 2 ( Δ t k ) 3 σ u 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacqaH+oaElmaaBaaabaqcLbmacaWGPbaaleqaaKqzGeGa ey4kaSIaeqiTdqgakiaawIcacaGLPaaajugibiabgYJi+jaad6eaju aGdaqadaGcbaqcLbsacaaIWaGaaiilaKqbaoaakaaakeaajugibiab eo8aZTWaa0baaeaajugWaiabe67a4TWaaSbaaKqbagaajugWaiaadM gaaKqbagqaaaWcbaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOvaSWa aWbaaeqabaqcLbmacaaIYaaaaKqbaoaabmaakeaajugibiabfs5aej aadshajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaGccaGLOaGaayzk aaWcdaahaaqabeaajugWaiaaiodaaaqcLbsacqaHdpWClmaaDaaaju aGbaqcLbmacaWG1baajuaGbaqcLbmacaaIYaaaaaWcbeaaaOGaayjk aiaawMcaaaaa@6BA1@ and ( ζ j,k +δ )N( 0, σ ζ j,k 2 + V 2 ( Δ t k ) 3 σ u 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacqaH2oGElmaaBaaabaqcLbmacaWGQbGaaiilaiaadUga aSqabaqcLbsacqGHRaWkcqaH0oazaOGaayjkaiaawMcaaKqzGeGaey ipI4NaamOtaKqbaoaabmaakeaajugibiaaicdacaGGSaqcfa4aaOaa aOqaaKqzGeGaeq4Wdmxcfa4aa0baaSqaaKqzadGaeqOTdO3cdaWgaa adbaqcLbmacaWGQbGaaiilaiaadUgaaWqabaaaleaajugWaiaaikda aaqcLbsacqGHRaWkcaWGwbWcdaahaaqabeaajugWaiaaikdaaaqcfa 4aaeWaaOqaaKqzGeGaeuiLdqKaamiDaKqbaoaaBaaaleaajugWaiaa dUgaaSqabaaakiaawIcacaGLPaaalmaaCaaabeqaaKqzadGaaG4maa aajugibiabeo8aZTWaa0baaKqbagaajugWaiaadwhaaKqbagaajugW aiaaikdaaaaaleqaaaGccaGLOaGaayzkaaaaaa@6E61@ . Now, using Eqs. (12c), (26a) and (26b), the obstacles can be transformed to their equivalent deterministic form as shown below,

circular obstacles:

i=1 L ( x x c,i ) 2 + ( y y c,i ) 2 > ( r μ,i + Φ ξ i +δ 1 ( 1 ε i ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbmaO qaaKqzGeGaeSykIKealeaajugWaiaadMgacqGH9aqpcaaIXaaaleaa jugWaiaadYeaaaqcfa4aaeWaaOqaaKqzGeGaamiEaiabgkHiTiaadI halmaaBaaabaqcLbmacaWGJbGaaiilaiaadMgaaSqabaaakiaawIca caGLPaaalmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRKqbao aabmaakeaajugibiaadMhacqGHsislcaWG5bqcfa4aaSbaaSqaaKqz adGaam4yaiaacYcacaWGPbaaleqaaaGccaGLOaGaayzkaaWcdaahaa qabeaajugWaiaaikdaaaqcLbsacqGH+aGpjuaGdaqadaGcbaqcLbsa caWGYbWcdaWgaaqaaKqzadGaeqiVd0MaaiilaiaadMgaaSqabaqcLb sacqGHRaWkcqqHMoGrlmaaDaaabaqcLbmaqaaaaaaaaaWdbiabe67a 4TWdamaaBaaameaajugWa8qacaWGPbaam8aabeaajugWa8qacqGHRa WkcqaH0oazaSWdaeaajugWaiabgkHiTiaaigdaaaqcfa4aaeWaaOqa aKqzGeGaaGymaiabgkHiTiabew7aLLqbaoaaBaaaleaajugWaiaadM gaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaajuaGdaahaaWc beqaaKqzadGaaGOmaaaaaaa@7CBA@   (27a)

polygonal obstacles:

j=1 N ( k=1 M j a x j,k + b j,k y> c μ,j,k + Φ ζ φ,κ+δ 1 ( 1 ε j ) a j,k 2 + b j,k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbmaO qaaKqzGeGaeSykIKealeaajugWaiaadQgacqGH9aqpcaaIXaaaleaa jugWaiaad6eaaaqcfa4aaeWaaOqaaKqbaoaaxadakeaajugibiablQ IivbWcbaqcLbmacaWGRbGaeyypa0JaaGymaaWcbaqcLbmacaWGnbWc daWgaaadbaqcLbmacaWGQbaameqaaaaajugibiaadggalmaaBeaaba qcLbmacaWGQbGaaiilaiaadUgaaSqabaqcLbsacaWG4bGaey4kaSIa amOyaKqbaoaaBaaaleaajugWaiaadQgacaGGSaGaam4AaaWcbeaaju gibiaadMhacqGH+aGpcaWGJbqcfa4aaSbaaSqaaKqzadGaeqiVd0Ma aiilaiaadQgacaGGSaGaam4AaaWcbeaajugibiabgUcaRiabfA6agT Waa0baaeaajugWaiabeA7a6TWaaSbaaWqaaKqzadGaeqOXdOMaeyil aWIaeqOUdSMaey4kaSIaeqiTdqgameqaaaWcbaqcLbmacqGHsislca aIXaaaaKqbaoaabmaakeaajugibiaaigdacqGHsislcqaH1oqzlmaa BaaabaqcLbmacaWGQbaaleqaaaGccaGLOaGaayzkaaqcfa4aaOaaaO qaaKqzGeGaamyyaSWaa0baaeaajugWaiaadQgacaGGSaGaam4AaaWc baqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOyaSWaa0baaeaajugWai aadQgacaGGSaGaam4AaaWcbaqcLbmacaaIYaaaaaWcbeaaaOGaayjk aiaawMcaaaaa@8D1C@   (27b)

Where Φ ξ i +δ 1 (.) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrlmaaDaaabaqcLbmaqaaaaaaaaaWdbiabe67a4TWdamaaBaaameaa jugWa8qacaWGPbaam8aabeaajugWa8qacqGHRaWkcqaH0oazaSWdae aajugWaiabgkHiTiaaigdaaaqcLbsacaGGOaGaaiOlaiaacMcaaaa@471A@ and Φ ζ j,k +δ 1 (.) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrlmaaDaaabaqcLbmaqaaaaaaaaaWdbiabeA7a6TWdamaaBaaameaa jugWa8qacaWGQbGaaiilaiaadUgaaWWdaeqaaKqzadWdbiabgUcaRi abes7aKbWcpaqaaKqzadGaeyOeI0IaaGymaaaajugibiaacIcacaGG UaGaaiykaaaa@48B5@ are the inverse CDFs of ( ξ i +δ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaH+oaEl8aadaWgaaqaaKqzadWdbiaadMgaaSWd aeqaaKqzGeWdbiabgUcaRiabes7aK9aacaGGPaaaaa@3F77@ and ( ζ j,k +δ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacqaH2oGEl8aadaWgaaqaaKqzadWdbiaadQgacaGG SaGaam4AaaWcpaqabaqcLbsapeGaey4kaSIaeqiTdqMaaiykaaaa@4103@  Eqs. (13) and (27) represents an equivalent path planning problem with no process noise and can now be solved using the procedure described in Section. 4. As before, a family of paths is obtained by parameterizing the risk parameter. Recall that in the deterministic dynamics case, a prescribed risk of s = 0.035 resulted in a keyhole. For noise-perturbed dynamics, this is no longer the case, as the solution tends to weave around the obstacles from the right. The mean path is shown in Figure 8a. The risk must be stepped up to ε=0.065 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabg2da9iaaicdacaGGUaGaaGimaiaaiAdacaaI1aaaaa@400E@  (= 6.5% collision risk) and beyond in order for a keyhole to reappear. The solution for s = 0.065 is shown in Figure 8c. Validation of collision avoidance risk is shown in Figures 8b & 8d using 100,000 trials to achieve convergence in the empirically computed probabilities of collision along the system path.

Figure 8 Chance-constraint scenario with process noise (a) Optimal Mean Path with risk ε=0.035 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabg2da9iaaicdacaGGUaGaaGimaiaaiodacaaI1aaaaa@400B@ , (b) Violation Rate for path with ε=0.035 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabg2da9iaaicdacaGGUaGaaGimaiaaiodacaaI1aaaaa@400B@ , (c) Optimal Mean Path with risk s = 0.065, (d) Violation Rate for path with ε=0.065 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 7aLjabg2da9iaaicdacaGGUaGaaGimaiaaiAdacaaI1aaaaa@400E@ .

Scenario 2: Chance-constrained planning

Consider the obstacle map shown in Figure 9b, where the closed shapes denoted in black represent mean obstacle boundaries. The uncertainty in the boundaries is ζ[3, 3] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeA7a6jabgIGio=aacaGGBbGaeyOeI0IaaG4ma8qacaGG SaGaaeiiaiaabodacaGGDbaaaa@3F78@  length-units, and the corresponding robust scenario (inflated boundaries) is shown in red in Figure 9b. For chance-constraints, the uncertainty is characterized using a Gaussian density function ζΝ( μ = 0, σ = 1.17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH2o GEcqWI8iIocqqHDoGtjuaGdaqadaGcbaqcLbsaqaaaaaaaaaWdbiab eY7aTjaabccacqGH9aqpcaqGGaGaaGimaiaacYcacaqGGaGaeq4Wdm Naaeiiaiabg2da9iaabccacaaIXaGaaiOlaiaaigdacaaI3aaak8aa caGLOaGaayzkaaaaaa@4AD4@ as shown in Figure 9a, resulting in probabilistic boundaries represented in Figure 9c. Clearly, it can be seen that the obstacle boundaries overlap in the robust scenario. The resulting optimal path finds its way around the obstacles on the left. However when the chance-constrained approach is followed, Figure 9c and Table 2 illustrate a family of solutions for a range of risk values ε[0.005, 0.055] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabgIGio=aacaGGBbWdbiaaicdacaGGUaGaaGim aiaaicdacaaI1aGaaiilaiaabccacaaIWaGaaiOlaiaaicdacaaI1a GaaGynaiaac2faaaa@4445@ . In this example, relaxing the risk beyond ε>0.020 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabg6da+iaaicdacaGGUaGaaGimaiaaikdacaaI Waaaaa@3CF0@  (2% collision risk) leads to emergence of keyholes. Here, relaxing the risk from ε=0.020 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabg2da9iaaicdacaGGUaGaaGimaiaaikdacaaI Waaaaa@3CEE@  to ε=0.025 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabg2da9iaaicdacaGGUaGaaGimaiaaikdacaaI 1aaaaa@3CF3@ , leads to 4.99% shorter path that passes through the space between the obstacles.

Figure 9 Scenario 2: (a) Distribution of uncertainty in the boundaries (b) Optimal Path in Robust scenario (c) Family of optimal Paths in Chance-constrained scenario (zoomed path inset).

Risk Value

Travel Time (sec)

0.01

18.17

0.015

18.09

0.02

18.04

0.025

17.14

0.03

17.07

0.035

17.07

0.04

17.01

0.045

16.97

0.05

16.95

Table 2 Variation of optimal travel time as a function of risk for Scenario 2

Scenario 3: Chance-constrained planning

In this example, we consider a more cluttered environment shown in Figure 10, where the fuzzy orange boundaries represent obstacle uncertainty due to measurement error in remote sensing maps. This example is representative of a map with narrow spaces in a novel, cluttered environment. Even though a city-map setup has been used, the approach employed to ascribe perimeter uncertainty to the obstacles in general. We assume that a small unmanned aerial vehicle (UAV) flying through the urban canyon at a fixed altitude can be simplified as a Dubins vehicle for this path-planning problem. This is usually a good initial design for UAVs because it accounts for kinematic constraints. Considering the speed of V = 10m/s with r min = 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkhal8aadaWgaaqaaKqzadWdbiaad2gacaWGPbGaamOB aaWcpaqabaqcLbsapeGaeyypa0Jaaeiiaiaaikdaaaa@3F06@  and the boundary uncertainty represented using Gaussian density function ζN( μ=0,σ=0.78 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA 7a6jablYJi6iaad6eajuaGdaqadaGcbaqcLbsacqaH8oqBcqGH9aqp caaIWaGaaiilaiabeo8aZjabg2da9iaaicdacaGGUaGaaG4naiaaiI daaOGaayjkaiaawMcaaaaa@4A0D@ , a family of solutions is obtained. Figure 10 shows the optimal paths for two specific risk values. It was found that for ε>0.030 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabg6da+iaaicdacaGGUaGaaGimaiaaiodacaaI Waaaaa@3CF1@ , a keyhole trajectory (shown in blue) emerges which is 4.05% shorter than the path corresponding to ε=0.030 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabg2da9iaaicdacaGGUaGaaGimaiaaiodacaaI Waaaaa@3CEF@ .

Figure 10 Scenario 3: Optimal Paths in the Chance-Constrained Scenario for ε={0.030, 0.035} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aL9aacqGH9aqpcaGG7bGaaeimaiaab6cacaqGWaGa ae4maiaabcdacaqGSaGaaeiiaiaabcdacaqGUaGaaeimaiaabodaca qG1aGaaeyFaaaa@43B7@ .

Conclusion

In this paper, the framework of chance-constrained optimal control to optimal path planning in unstructured environments where the uncertainty in the obstacles can be modelled using probability distributions is studied. The occurrence of the random variable in separable form is leveraged to transform the chance-constraints to equivalent deterministic forms, thereby allowing the use of time-tested Gaussian quadrature orthogonal collocation methods to solve the resulting deterministic optimal control problem using an off-the-shelf NLP solver. Additionally, the problem of generating an initial guess when there are multiple convex obstacles in the path planning problem is addressed by developing an initial guess generation method. This method ensures that the initial guess created lies in the local convex domain that contains the global optimum. Furthermore, this initial guess aids the optimization solver in determining an optimal path that is subject to system dynamic constraints.

The chance-constrained approach in this paper was then compared with the traditional method of accounting for uncertainty in the obstacles by using safety margins that often correspond to worst case scenarios. Numerical results showed that the chance-constrained approach better enabled the decision maker to determine the optimal path as compared to the traditional approach. For the chance constrained approach, the optimal path was obtained by tuning the risk and analysing the reward-vs-risk trade-off. This approach is useful in the planning stages of determining optimal paths in unstructured environments. Furthermore, using the keyhole paths could result in significant reward (improvement in optimum) that outweighs the higher risk associated with traveling these paths. For example, an unmanned aerial vehicle (UAV) with limited flight range operating in hazardous environments could plan shorter paths while being aware of the associated risk. Needless to say, it is assumed that the agent is capable of performing reactive maneuvers in the event of impending collision.

As discussed in Section. 5.1, the chance-constrained path planning framework described in this paper can be refined by including non-convex obstacles and improved constraint compliance around the obstacles corners. Ongoing efforts show promising results. One such effort is applying the triangulation mesh navigation technique used in Triplanner toolkit.48 It discretizes the free search space into a series of adjacent non-overlapping convex domains and will be considered in detail in a future publication. An extension of this work to path planning in the presence of dynamic obstacles will also be explored in a future work.

Acknowledgments

The authors acknowledge support for this research from the U.S. National Science Foundation under grant CMMI-1563225.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding

None.

References

  1. Howie M Choset. Principles of robot motion: theory: algorithms, and implementation. Intelligent Robotics and Autonomous Agents. Cambridge, Mass: MIT Press; 2005.
  2. Steven M LaValle. Planning algorithms. Cambridge: Cambridge University Press; 2006.
  3. Steven M LaValle. Motion planning. IEEE Robotics & Automation Magazine. 2011;18(1):79–89.
  4. Navid Dadkhah, Bérénice Mettler. Survey of motion planning literature in the presence of uncertainty: considerations for UAV guidance. Journal of Intelligent & Robotic Systems. 2012;65(1–4):233–246.
  5. Rodney A Brooks, Tomas Lozano-Perez. A subdivision algorithm in configuration space for findpath with rotation. IEEE Transactions on Systems, Man, and Cybernetics, SMC. 1985;15(2):224–233.
  6. Franco P Preparata, Michael Ian Shamos. Computational geometry. Springer New York, New York, NY, 1985:p198–257.
  7. Takao Asano, Tetsuo Asano, Leonidas Guibas, et al. Visibility–polygon search and euclidean shortest paths. 26th Annual Symposium on Foundations of Computer Science. IEEE. Portland or USA. 1985:155–164.
  8. C Alexopoulos, PM Griffin. Path planning for a mobile robot. IEEE Transactions on Systems Man and Cybernetics. 1992;22(2):318–322.
  9. J Canny. A Voronoi method for the piano–movers problem. Proceedings 1985 IEEE International Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers. St. Louis, USA. 1985:530–535.
  10. O Takahashi, RJ Schilling. Motion planning in a plane using generalized Voronoi diagrams. IEEE Transactions on Robotics and Automation. 19895;(2):143–150.
  11. Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik.1959;1(1):269–271.
  12. Peter Hart, Nils Nilsson, Bertram Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics. 1968;4(2):100–107.
  13. Kavraki LE, Svestka P, CLatombe J, et al. Probabilistic roadmaps for path planning in high–dimensional configuration spaces. IEEE Transactions on Robotics and Automation.1996;12(4):566–580.
  14. Amato NM, Wu Y. A randomized roadmap method for path and manipulation planning. Proceedings of IEEE International Conference on Robotics and Automation. IEEE. Minneapolis, MN, USA.1996;1:113–120,
  15. Steven M La Valle. Rapidly–exploring random trees: a new tool for path planning. Technical report, 1998.
  16. Jerome Barraquand, Lydia Kavraki, Jean–Claude Latombe. A random sampling scheme for path planning. In: Georges Giralt, editor. Robotics Research, London: Springer London;1996:249–264.
  17. Steven M La Valle, James J Kuffner. Randomized kinodynamic planning. The International Journal of Robotics Research. 2001;20(5):378–400.
  18. Oussama Khatib. Real–time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research. 1986;5(1):90–98.
  19. Rimon E, E Koditschek D. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation. 1992;8(5):501–518.
  20. Barraquand J, Langlois B, Latombe JC. Numerical potential field techniques for robot path planning. In Fifth International Conference on Advanced Robotics Robots in Unstructured Environments. IEEE. Pisa, Italy.1991;2:1012–1017.
  21. Jay Wilhelm, Garrett Clem, David Casbeer. Circumnavigation and obstacle avoidance guidance for uavs using gradient vector fields. AIAA Scitech 2019 Forum.2019:1791p.
  22. Jay P Wilhelm, Garrett Clem. Vector field uav guidance for path following and obstacle avoidance with minimal deviation. Journal of Guidance Control and Dynamics. 2019:1–9.
  23. Yaohong Qu, Yintao Zhang, Youmin Zhang. A global path planning algorithm for fixed–wing UAVs. Journal of Intelligent &Robotic Systems. 2018;91(3–4):691–707.
  24. Koren Y, Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings. 1991 IEEE International Conference on Robotics and Automation. Sacramento, CA, USA: IEEE Comput. Soc. Press;1991:1398–1404.
  25. Stefano Primatesta, Giorgio Guglieri, Alessandro Rizzo. A risk–aware path planning strategy for UAVs in urban environments. Journal of Intelligent & Robotic Systems.2019;95(2):629–643.
  26. Bin Zhang, Liang Tang, Michael Roemer. Probabilistic weather forecasting analysis for unmanned aerial vehicle path planning. Journal of Guidance Control and Dynamics.2014;37(1):309–312.
  27. K Marti. Path planning for robots under stochastic uncertainty. Optimization. 1999;45(1–4):163–195.
  28. Lars Blackmore, Masahiro Ono. Convex chance constrained predictive control without sampling. AIAA Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics. Chicago, Illinois. 2009.
  29.  Lars Blackmore, Masahiro Ono, Askar Bektassov, et al. A Probabilistic particle– control approximation of chance–constrained stochastic predictive control. IEEE Transactions on Robotics. 2010;26(3):502–517.
  30. Lars Blackmore, Masahiro Ono, Brian C. Williams. Chance–constrained optimal path planning with obstacles. IEEE Transactions on Robotics. 2011;27(6):1080–1094.
  31. Ono M, Blackmore L, Williams BC. Chance constrained finite horizon optimal control with nonconvex constraints. In Proceedings of the 2010 American Control Conference, IEEE. Baltimore, MD; 2010:1145–1152.
  32. Rachel Keil, Rachit Aggarwal, Mrinal Kumar, et al. Application of chance–constrained optimal control to optimal obstacle avoidance. San Diego CA: AIAA Scitech 2019 Forum. 2019;0647:7–11.
  33. Zinan Zhao, Mrinal Kumar. Split–bernstein approach to chance–constrained optimal control. Journal of Guidance, Control, and Dynamics. 2017;40(11):2782–2795.
  34. Marcio da Silva Arantes, Claudio Fabiano Motta Toledo, Brian Charles Williams, et al. Collision–free encoding for chance–constrained nonconvex path planning. IEEE Transactions on Robotics.2019;35(2):433–448.
  35. Kazuhide Okamoto, Panagiotis Tsiotras. Optimal stochastic vehicle path planning using covariance steering. IEEE Robotics and Automation Letters. 2019;4(3):2276–2281.
  36. Christodoulos A Floudas. Nonlinear and mixed integer optimization: fundamentals and applications. Topics in Chemical Engineering. New York: Oxford Univ. Press;1995.
  37. Pietro Belotti, Christian Kirches, Sven Leyffer, et al. Mixed–integer nonlinear optimization. Acta Numerica. 2013;22:1–131.
  38. Mangal Kothari, Ian Postlethwaite. A probabilistically robust path planning algorithm for UAVs using rapidly–exploring random trees. Journal of Intelligent & Robotic Systems. 2013;71(2):231–253.
  39. Rachit Aggarwal, Mrinal Kumar. Chance–constrained approach to optimal path planning for urban UAS. Orlando, FL: AIAA Scitech 2020 Forum. 2020:6–10.
  40. Abebe Geletu, Michael Klöppel , Armin Hoffmann, et al. A tractable approximation of non–convex chance constrained optimization with non–Gaussian uncertainties. Engineering Optimization. 2015:47(4):495–520.
  41. Divya Garg, Michael A Patterson, Camila Francolin, et al. Direct trajectory optimization and costate estimation of infinitehorizon and infinitehorizon optimal control problems using a radau pseudospectral method. Computational Optimization and Applications. 2011;49(2):335–358.
  42. Divya Garg, Michael Patterson, William W Hager, et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica. 2010;46(11):1843–1851.
  43. Michael A Patterson, William W Hager, Anil V Rao. A ph mesh refinement method for optimal control. Optimal Control Applications and Methods. 2015;36(4):398–421.
  44. Michael A Patterson, Anil V Rao. GPOPS–II: A MATLAB software for solving multiple–phase optimal control problems using hp–adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software. 2014:41(1):1–37.
  45. Andreas Wächter, Lorenz T Biegler. On the implementation of an interior–point filter line–search algorithm for large–scale nonlinear programming. Mathematical programming. 2006;106(1):25–57.
  46. EL Lawler, DE Wood. Branch–and–bound methods: a survey. Operations Research. 1966;14(4):699–719.
  47. Alison Eele, Arthur Richards. Path–planning with avoidance using nonlinear branch–and–bound optimization. Journal of Guidance, Control, and Dynamics. 2009;32(2):384–394.
  48. Marcelo Kallmann. Dynamic and robust local clearance triangulations. ACM Transactions on Graphics. 2014:33(5).
  49. L Paul Chew. Constrained delaunay triangulations. Algorithmica. 1989;4(1–4):97–108.
  50. L Paul Chew. Guaranteed–quality mesh generation for curved surfaces. Proceedings of the ninth annual symposium on Computational geometry. 1993;274–280.
  51. Darren Engwirda. Locally optimal delaunay–refinement and optimisation–based mesh generation. 2014.
  52. Andrzej Ruszczyński, Alexander Shapiro. Stochastic programming models. Handbooks in Operations Research and Management Science. Elsevier. 2003;10:1–64.
Creative Commons Attribution License

©2021 Aggarwal, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.