Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 4 Issue 5

Analysis of motion for a rolling disc on the flat surface

Ryspek subamatov

Department of Automation& Robotics, Kyrgyz State Technical University, Kyrgyzstan

Correspondence: Ryspek Usubamatov, Department of Automation& Robotics, Kyrgyz State Technical University, , 66 Aitmatov Avenue, KSTU, 720044 Bishkek, Kyrgyzstan, Tel +996 312 545125

Received: May 16, 2018 | Published: October 15, 2018

Citation: Usubamatov R. Analysis of motion for a rolling disc on the flat surface. Int Rob Auto J. 2018;4(5):329-332. DOI: 10.15406/iratj.2018.04.00145

Download PDF

Abstrat

Background: Recent investigations in gyroscopic effects have demonstrated that their origin has more complex nature that represented in known publications. Actually, on a gyroscope are acting simultaneously and interdependently eight inertial torques around two axes. This torques is generated by the centrifugal, common inertial and Coriolis forces as well as the change in the angular momentum of the masses of the spinning rotor. The action of these forces manifests in the form of the inertial resistance and precession torques of gyroscopic devices. New mathematical models for the inertial torques acting on the spinning rotor demonstrate fundamentally different approaches and results of solving the problems of gyroscopic devices.The tendency in contemporary engineering is expressed by the increasing of a velocity of rotating objectslike turbines, rotors, discs and othersthat lead to the proportional increase of the magnitudes of inertial forces forming their motions. This work considers a typical example for computing of the inertial torques acting on the free rolling disc, which can be a bicycle wheel, rims, hoops, discs, and similar designs that express the gyroscopiceffects.

Keywords: gyroscope theory, torques, motions, forces

Nomenclature

mMass of a disc

g – Gravity acceleration

i - Index for axis ox or oy

J - Mass moment of inertia of a disc

Ji- Mass moment of inertia of a disc around axis i

lRadius of the disc rolling along the curvilinear path

R - Radius of a disc

T - Load torque

Tam.i, Tcti, Tcr.i, Tin.i- Torque generated by the change in the angular momentum, centrifugal, Coriolis and common inertial forces respectively, and acting around axis i

Tr.i,Tpi – Resistance and precession torque respectively acting around axis i

t -Time

γ - Angle of inclination of a disc

η – Coefficient of correction

ω - Angular velocity of a disc

ωi- Angular velocity of precession around axis i

Introduction

Most of the textbooks of machine dynamics and publications that dedicated to gyroscope theory content the typical examples with solving of gyroscopic effects by defined analytical approaches.1−3 However, the practice demonstrates that the known mathematical models for acting forces on the gyroscopic devices do not match their actual forces and motions.4,5 Recent investigations in the area of the physical principles of gyroscopic effects have presented the new mathematical models of forces acting on a gyroscope.68 It is defined that the action of the external load on a gyroscope generates several inertial resistance and precession torques based on the action of the rotating mass elements of the spinning rotor. The resistance torque is generated by the action of the centrifugal and Coriolis forces of the gyroscope’s mass elements. The precession torque is generated by the action of the common inertial forces of the gyroscope’s mass elements and by the change in the angular momentum of the spinning rotor. These torqueses are acting simultaneously, interdependently and strictly perpendicular to each other around their axes. Equations of inertial torques are represented in Table 1.6 Table 1 contains the following symbols and components of the equations that marked by subscript signs indicating the axis of action:  is the rotor’s mass moment of inertia around the spinning axle; m is the mass of the rotor; R is the external radius of the rotor;  is the angular velocity of a rotor around axis i and  is the angular velocity of a spinning rotor; Tr.x is the resistance torque acting around axis oxTpy is the precession torque acting around axis oy;Tct.i, Tin.i,Tcr.i and Tam.i is the torque acting around axis i that generated by the centrifugal, common inertial forces, Coriolisforces and the angular momentum respectively. This work presents the mathematical model for the free motion of the tilted rolling disc on the flat surface under the action of the eight inertial torques around two axes. Practically, the design of the disc can be the wheels, rims, hoops, discs, and similar designs that possess gyroscopic properties.

Type of torque generated by

Equation

Centrifugal forces, Tct.i

T ct.i = T in.i =2 ( π 3 ) 2 Jω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaKqbGeaacaWGJbGaamiDaiaac6cacaWGPbaa juaGbeaacqGH9aqpcaWGubWaaSbaaKqbGeaacaWGPbGaamOBaiaac6 cacaWGPbaajuaGbeaacqGH9aqpcaaIYaWaaeWaaeaadaWcaaqaaiab ec8aWbqaaiaaiodaaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaG OmaaaajuaGcaWGkbGaeqyYdCNaeqyYdC3aaSbaaKqbGeaacaWGPbaa beaaaaa@4F2D@

Common inertial forces, Tin.i

Coriolis forces, Tcr.i

T cr =( 8/9 )Jω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaKqbGeaacaWGJbGaamOCaaqcfayabaGaeyyp a0ZaaeWaaeaacaaI4aGaai4laiaaiMdaaiaawIcacaGLPaaacaWGkb GaeqyYdCNaeqyYdC3aaSbaaKqbGeaacaWGPbaabeaaaaa@44A6@

Change in angular momentum, Tam.i

T am.i =Jω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaKqbGeaacaWGHbGaamyBaiaac6cacaGGPbaa juaGbeaacqGH9aqpcaWGkbGaeqyYdCNaeqyYdC3aaSbaaKqbGeaaca WGPbaabeaaaaa@427D@

Resistance torque Tr.i = Tct.i + Tcr.i

T r.i =[ 2 ( π 3 ) 2 + 8 9 ]Jω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaKqbGeaacaWGYbGaaiOlaiaadMgaaKqbagqa aiabg2da9maadmaabaGaaGOmamaabmaabaWaaSaaaeaacqaHapaCae aacaaIZaaaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaikdaaaqc faOaey4kaSYaaSaaaeaacaaI4aaabaGaaGyoaaaaaiaawUfacaGLDb aacaWGkbGaeqyYdCNaeqyYdC3aaSbaaKqbGeaacaWGPbaabeaaaaa@4C6F@

Precession torque Tp.i = Tin.i + Tam.i

T ρ.i =[ 2 ( π 3 ) 2 +1 ]Jω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaSbaaKqbGeaacqaHbpGCcaGGUaGaamyAaaqcfaya baGaeyypa0ZaamWaaeaacaaIYaWaaeWaaeaadaWcaaqaaiabec8aWb qaaiaaiodaaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaa juaGcqGHRaWkcaaIXaaacaGLBbGaayzxaaGaamOsaiabeM8a3jabeM 8a3naaBaaajuaibaGaamyAaaqabaaaaa@4C5E@

Ratio of the angular velocities
of precesions around two axes

ω 2 = ( 4 π 2 + 17 ) ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDpaWaaSbaaKqbGeaapeGaaGOmaaqcfa4daeqaa8qa cqGH9aqpcaqGGaWdamaabmaabaWdbiaaisdacqaHapaCpaWaaWbaaK qbGeqabaWdbiaaikdaaaqcfaOaey4kaSIaaeiiaiaaigdacaaI3aaa paGaayjkaiaawMcaa8qacqaHjpWDpaWaaSbaaKqbGeaapeGaaGymaa Wdaeqaaaaa@47F2@

Table 1 Equations of the gyroscope’s inertial torques

Methods

The simple design of the wheel or thin disc is unstable on the vertical plane, but a rolling motion demonstrates its stability and steering itself in case of the disc tilts. This tilts leads to the turn of the rolling disc to the direction of its fall. This motion of the inclined thin disc is the demonstration of the gyroscopic effects, which presented by the action of centrifugal, common inertial, and Coriolis forces and the rate change of the angular momentum. The action of these forces enablesfor bringingback of the rolling disc to a vertical location and allowskeeps its right way rolling.The study of the action of the inertial forces and motion of a rolling thin disc on the flat surface is assumed that the thin disc rolls with the constant angular velocity. Figure 1 represents the rolling disc that slightly tilted on the flat surface. This tilt causes its variable travel on a curved path. The inclination of the rolling disc produces the torque generatedby the gyroscope weight. In turn, the action of this torque produces the following inertial torques (Table 1):

  1. The resistance torques based on the action of the centrifugal Tx and Coriolis forces Tcr.x acting around axis ox.
  2. The precession torques based on the action of the change in the angular momentum Tx of the rolling disc and the inertial forces Tin.x acting around axis oy.
  3. The action of the precession torques Tx and Tin.x generates the resistance torques based on the action of the centrifugal Tct.y and Coriolis forces Tcr.y acting around axis oy.
  4. The combined torques acting around axis oy generate the precession torques based on the action of the change in the angular momentum Ty and the inertial forces Tin.y that acting around axis ox and adding to the action of the resistance torques Tct.x and Tcr.x.
  5. The precession torques acting around axis oy turn the rolling disc to the direction of the tilting and the disc rolls by the curve path with the variable radius l. The curvilinear motion of the disc generates the action of the centrifugal force of the disc’s centre mass that acting horizontally and creating the torqueabout the contact point of the disc with the surface. This torque acts in the same direction as the combined resistance torques around axis ox that altogether bring the disc to a vertical location. 

Figure 1 The torques acting on the free rolling disc on a flat surface.

Figure 1 demonstrates the action of the external and inertial torques on the rolling disc that moves on the flat surface. The mathematical models for the motions of the rolling disc are similar to the models presented.7 The action of torques mentioned above around axes ox and oy and represented by the following equations in Euler’s form:

T ct.my ( T ct.x + T cr.x + T in.y cosγ+ T am.y cosγ)η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaam4yaiaadshacaGGUaGaamyBaiaadMhaaeqaaKqb akabgkHiTiaacIcacaWGubWaaSbaaKqbGeaacaWGJbGaamiDaiaac6 cacaWG4baajuaGbeaacqGHRaWkcaWGubWaaSbaaKqbGeaacaWGJbGa amOCaiaac6cacaWG4baajuaGbeaacqGHRaWkcaWGubWaaSbaaKqbGe aacaWGPbGaamOBaiaac6cacaWG5baajuaGbeaaciGGJbGaai4Baiaa cohacqaHZoWzcqGHRaWkcaWGubWaaSbaaKqbGeaacaWGHbGaamyBai aac6cacaWG5baajuaGbeaaciGGJbGaai4BaiaacohacqaHZoWzcaGG PaGaeq4TdGgaaa@6158@     (1)

J x d ω x dt =Tcosγ J y d ω y dt = T in.x cosγ+ T am.x cosγ T ct.y cosγ T cr.y cosγ T cr.my MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaamiEaaqcfayabaWaaSaaaeaacaWGKbGaeqyYdC3a aSbaaKqbGeaacaWG4baajuaGbeaaaeaacaWGKbGaamiDaaaacqGH9a qpcaWGubGaci4yaiaac+gacaGGZbGaeq4SdCMaeyOeI0IaamOsamaa BaaajuaibaGaamyEaaqcfayabaWaaSaaaeaacaWGKbGaeqyYdC3aaS baaKqbGeaacaWG5baajuaGbeaaaeaacaWGKbGaamiDaaaacqGH9aqp caWGubWaaSbaaKqbGeaacaWGPbGaamOBaiaac6cacaWG4baajuaGbe aaciGGJbGaai4BaiaacohacqaHZoWzcqGHRaWkcaWGubWaaSbaaKqb GeaacaWGHbGaamyBaiaac6cacaWG4baajuaGbeaaciGGJbGaai4Bai aacohacqaHZoWzcqGHsislcaWGubWaaSbaaKqbGeaacaWGJbGaamiD aiaac6cacaWG5baajuaGbeaaciGGJbGaai4BaiaacohacqaHZoWzcq GHsislcaWGubWaaSbaaKqbGeaacaWGJbGaamOCaiaac6cacaWG5baa juaGbeaaciGGJbGaai4BaiaacohacqaHZoWzcqGHsislcaWGubWaaS baaKqbGeaacaWGJbGaamOCaiaac6cacaWGTbGaamyEaaqabaaaaa@8171@     (2)

ω y =(4π+17) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWG5baabeaajuaGcqGH9aqpcaGGOaGaaGinaiab ec8aWjabgUcaRiaaigdacaaI3aGaaiykaiabeM8a3naaBaaajuaiba GaamiEaaqcfayabaaaaa@450B@     (3)

where J x = J y =m R 2 /4 +m R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaamiEaaqabaqcfaOaeyypa0JaamOsamaaBaaajuai baGaamyEaaqcfayabaGaeyypa0JaamyBamaalyaabaGaamOuamaaCa aabeqcfasaaiaaikdaaaaajuaGbaGaaGinaaaacqGHRaWkcaWGTbGa amOuamaaCaaajuaibeqaaiaaikdaaaaaaa@45D1@ is the mass moment of the disc inertia around axis ox and oy respectively that calculated by the parallel axis theorem; ωx and ωy is the angular velocity of precession around axis ox and oy respectively; is the torque generated by the disc weight around axis ox;Tct,my is the torque generated by the centrifugal forces of the centre-mass of the rolling disc around axis oy. Tct.x and Tct.y is the resistance torque generated by centrifugal forces of the disc mass elements around axes ox and oy respectively; Tin.x and Tin.y is the precession torque generated by inertial forces around axes ox and oy respectively; Tcr.x and Tcr.y is the resistance torque generated by Coriolis forces around axes ox and oy respectively; Tam.x and Tam.y is the precession torque generated by the change in the angular momentum of the spinning rotor around axes ox and oy respectively; Tcr,my is the torque generated by Coriolis force of the rotating gyroscope centre-mass around axes ox and oy; η is the correction coefficient. The torque generated by the centrifugal force of the centre-mass of the rolling disc around axis oy* defined by the following equation:

T ct,my = F ct.my Rcosγ=mω ω x ( 4π +17 ) ( Rcosγ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaajuaibaWdbiaadogacaWG0bGaaiilaiaa d2gacaWG5baapaqabaqcfa4dbiabg2da9iaadAeapaWaaSbaaKqbGe aapeGaam4yaiaadshacaGGUaGaamyBaiaadMhaaKqba+aabeaapeGa amOuaiaadogacaWGVbGaam4Caiabeo7aNjabg2da9iaad2gacqaHjp WDcqaHjpWDpaWaaSbaaKqbGeaapeGaamiEaaqcfa4daeqaamaabmaa baWdbiaaisdacqaHapaCcaqGGaGaey4kaSIaaGymaiaaiEdaa8aaca GLOaGaayzkaaWaaeWaaeaapeGaamOuaiaadogacaWGVbGaam4Caiab eo7aNbWdaiaawIcacaGLPaaadaahaaqabKqbGeaapeGaaGOmaaaaaa a@60AE@     (4)

Where F ct.my =mlcosγ ( V/l ) 2 =mcosγ ( ωR ) 2 /l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGgbWdamaaBaaajuaibaWdbiaadogacaWG0bGaaiOlaiaa d2gacaWG5baajuaGpaqabaWdbiabg2da9iaad2gacaWGSbGaam4yai aad+gacaWGZbGaeq4SdCMaeyyXIC9damaabmaabaWdbiaadAfacaGG VaGaamiBaaWdaiaawIcacaGLPaaadaahaaqabKqbGeaapeGaaGOmaa aajuaGcqGH9aqpcaWGTbGaam4yaiaad+gacaWGZbGaeq4SdC2damaa bmaabaWdbiabeM8a3jaadkfaa8aacaGLOaGaayzkaaWaaWbaaeqaju aibaWdbiaaikdaaaqcfaOaai4laiaadYgaaaa@5AB7@ is the centrifugal force of the disc centre-mass rotating around axis oy*, m is the disc mass.The variable radius l of the disc rolling around axis oy* is defined from the expressions ωR= ω y l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcaWGsbGaeyypa0JaeqyYdC3damaaBaaajuaibaWd biaadMhaaKqba+aabeaapeGaamiBaaaa@3F25@ and ω y = ( 4π+17 ) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDpaWaaSbaaKqbGeaapeGaamyEaaWdaeqaaKqba+qa cqGH9aqpcaqGGaWdamaabmaabaWdbiaaisdacqaHapaCcqGHRaWkca aIXaGaaG4naaWdaiaawIcacaGLPaaapeGaeqyYdC3damaaBaaajuai baWdbiaadIhaa8aabeaaaaa@461A@ , then, l=ωR/[ ( 4π+17 ) ω x ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGSbGaeyypa0JaeqyYdCNaamOuaiaac+capaWaamWaaeaa daqadaqaa8qacaaI0aGaeqiWdaNaey4kaSIaaGymaiaaiEdaa8aaca GLOaGaayzkaaWdbiabeM8a39aadaWgaaqcfasaa8qacaWG4baajuaG paqabaaacaGLBbGaayzxaaaaaa@4859@ ; other components are as specified above. The torque generated by Coriolis force of the centre-mass of the rolling disc around axis oy* and the motion along the axis oz in the negative direction defined by the following equation:

T cr,my = F cr.my lcosγ=ml ω x sinγ( ωR/l )lcosγ =m ( ωR ) 2 cosγsinγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaajuaibaWdbiaadogacaWGYbGaaiilaiaa d2gacaWG5baajuaGpaqabaWdbiabg2da9iaadAeapaWaaSbaaKqbGe aapeGaam4yaiaadkhacaGGUaGaamyBaiaadMhaaKqba+aabeaacqGH flY1peGaamiBaiaadogacaWGVbGaam4Caiabeo7aNjabg2da9iaad2 gacaWGSbGaeqyYdC3damaaBaaajuaibaWdbiaadIhaaKqba+aabeaa peGaam4CaiaadMgacaWGUbGaeq4SdCMaeyyXIC9damaabmaabaWdbi abeM8a3jaadkfacaGGVaGaamiBaaWdaiaawIcacaGLPaaacqGHflY1 peGaamiBaiaadogacaWGVbGaam4Caiabeo7aNjaabccacqGH9aqpca WGTbWdamaabmaabaWdbiabeM8a3jaadkfaa8aacaGLOaGaayzkaaWa aWbaaKqbGeqabaWdbiaaikdaaaqcfaOaam4yaiaad+gacaWGZbGaeq 4SdCMaam4CaiaadMgacaWGUbGaeq4SdCgaaa@7932@     (5)

where F cr.my =ml ω x sinγ( ωR/l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGgbWdamaaBaaajuaibaWdbiaadogacaWGYbGaaiOlaiaa d2gacaWG5baapaqabaqcfa4dbiabg2da9iaad2gacaWGSbGaeqyYdC 3damaaBaaajuaibaWdbiaadIhaaKqba+aabeaapeGaam4CaiaadMga caWGUbGaeq4SdCMaeyyXIC9damaabmaabaWdbiabeM8a3jaadkfaca GGVaGaamiBaaWdaiaawIcacaGLPaaaaaa@50A2@ is Coriolis force of the disc centre-mass rotating around axes ox and oy*, V x =l ω x sinγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWdamaaBaaajuaibaWdbiaadIhaaKqba+aabeaapeGa eyypa0JaamiBaiabeM8a39aadaWgaaqcfasaa8qacaWG4baapaqaba qcfa4dbiaadohacaWGPbGaamOBaiabeo7aNbaa@43F3@ is the tangential velocity of the disc centre-mass around axis ox; ω m =ωR/l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGVbGaamiEaiaacUdacqaHjpWDpaWaaSbaaKqbGeaapeGa amyBaaqcfa4daeqaa8qacqGH9aqpcqaHjpWDcaWGsbGaai4laiaadY gaaaa@427C@ is the angular velocity of the disc centre-mass around axis oy*; and ωx and ωy is the angular velocity of the precession of the disc around axes ox and oy respectively; other components are as specified above. The action of the Coriolis torque around axes oy decreases the magnitude of the combinedinertial torquesacting around axis oy. Hence, the magnitude of the inertial torques acting around axis ox also is decreased proportionally due to their interdependency. The changes in values of inertial torques acting around two axes are equal because the inertial torques are expressed by the inertial kinetic energies of the rolling disc that are equal along axes. Then, the mathematical model for the correction coefficient η is represented by the following equation:

η= ( T in.x + T am.x )cosγ  T cr.my ( T in.x + T am.x )cosγ =1 T cr.my ( T in.x + T am.x )cosγ =1 mω R 2 sinγ [ 2 ( π 3 ) 2 +1 ]J ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG Maeyypa0ZaaSaaaeaacaGGOaGaamivamaaBaaajuaibaGaamyAaiaa d6gacaWGUaGaamiEaaqcfayabaGaamiiaiaadUcacaWGGaGaamivam aaBaaajuaibaGaamyyaiaad2gacaWGUaGaamiEaaqabaqcfaOaamii aiaacMcaciGGJbGaai4BaiaacohacqaHZoWzcaqGGaGaeyOeI0Iaam ivamaaBaaajuaibaGaam4yaiaadkhacaGGUaGaamyBaiaadMhaaeqa aaqcfayaaiaacIcacaWGubWaaSbaaKqbGeaacaWGPbGaamOBaiaad6 cacaWG4baabeaajuaGcaWGGaGaam4kaiaadccacaWGubWaaSbaaKqb GeaacaWGHbGaamyBaiaad6cacaWG4baajuaGbeaacaWGGaGaaiykai GacogacaGGVbGaai4Caiabeo7aNbaacqGH9aqpcaaIXaGaeyOeI0Ya aSaaaeaacaWGubWaaSbaaKqbGeaacaWGJbGaamOCaiaac6cacaWGTb GaamyEaaqabaaajuaGbaGaaiikaiaadsfadaWgaaqcfasaaiaadMga caWGUbGaamOlaiaadIhaaKqbagqaaiaadccacaWGRaGaamiiaiaads fadaWgaaqcfasaaiaadggacaWGTbGaamOlaiaadIhaaKqbagqaaiaa cMcaciGGJbGaai4BaiaacohacqaHZoWzaaGaeyypa0JaaGymaiabgk HiTmaalaaabaGaamyBaiabeM8a3jaadkfadaahaaqcfasabeaacaaI YaaaaKqbakGacohacaGGPbGaaiOBaiabeo7aNbqaamaadmaabaGaaG OmamaabmaabaWaaSaaaeaacqaHapaCaeaacaaIZaaaaaGaayjkaiaa wMcaamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSIaaGymaaGaay 5waiaaw2faaiaadQeacqaHjpWDdaWgaaqcfasaaiaadIhaaKqbagqa aaaaaaa@9D1D@     (6)

Substituting defined parameters (Eqs. (4) - (6)) and equations of the torques (Table 1) into Eqs. (1) and (2) and transformation yields the following system of differential equations:

Jxdωxdt=mgRsinγmωωx(4π+17) R cos γ2[2(π3)2Jωωx89JωωxJωωycosγ]×{1mωR2sinγ[2(π3)2+1]Jωx}(7)

Analysis of Eq. (7) demonstrates the similarity to the equations of the gyroscope motions suspended from the flexible cord.7 Hence, the solution of Eq. (7) is the same. Then, the equation for the angular velocity of the disc around axis ox is represented by the following expression:

Jxdωxdt=mgRsinγmωωx(4π2+17) R cos γ2[2(π3)2+89+4π2+17]Jωωx{1mωR2sinγ[2(π3)2+1]Jωx}(8)

where all parameters are as specified above.

Solving Eq. (8) enables for computing the angular velocity of the precession around axis oxand around axis oy (Table 1) for the rolling disc on the flat surface. Additionally, the numerical solution of the right side of Eq. (8) will show that inertial torques of the rolling disc always turn up the inclined rolling disc to the vertical location.

Working example

The mathematical model for the motion of the rolling discon the flat surface is considered with the following example whose data is presented in Table 2. The acting external and internal torques on the disc presented in Figure 1. The spinning disc initially possesses an inclined axle.It is necessary to find the magnitudes of the internal torques exerted on the rolling disc and its precessions.

Parameter

 

Data

Angular velocity, ω

2.0rad/s

Radius of the disc, R

0.2m

Angle of tilt, γ

10.0o

Weight, m

0.5kg

Mass moment

Around axis oz, J = mR2/2

0.01

of

Around axes ox and oy of the centre mass,

0.005

inertia, kgm2

J = mR2/4

 

Around axes ox and oy at the point of support, Jx = Jy = mR2/4 + mR2

0.015

Table 2 Technical data of the thin disc

 Equation (8) is transformed and simplified that yields the following expression:

J x d ω x dt =msinγ[ gR+( 38 π 2 +161 2 π 2 +9 ) (ωR) 2 ] [ m(4 π 2 +17) (Rcosγ) 2 +( 38 π 2 +161 9 )J ]ω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGkbWaaSbaaKqbGeaacaWG4baabeaajuaGdaWcaaqaaiaadsgacqaH jpWDdaWgaaqcfasaaiaadIhaaeqaaaqcfayaaiaadsgacaWG0baaai abg2da9iaad2gaciGGZbGaaiyAaiaac6gacqaHZoWzdaWadaqaaiaa dEgacaWGsbGaey4kaSYaaeWaaeaadaWcaaqaaiaaiodacaaI4aGaeq iWda3aaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaaIXaGaaGOn aiaaigdaaeaacaaIYaGaeqiWda3aaWbaaKqbGeqabaGaaGOmaaaaju aGcqGHRaWkcaaI5aaaaaGaayjkaiaawMcaaiaacIcacqaHjpWDcaWG sbGaaiykamaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLBbGaayzxaa GaeyOeI0cabaWaamWaaeaacaWGTbGaaiikaiaaisdacqaHapaCdaah aaqcfasabeaacaaIYaaaaKqbakabgUcaRiaaigdacaaI3aGaaiykai aacIcacaWGsbGaci4yaiaac+gacaGGZbGaeq4SdCMaaiykamaaCaaa juaibeqaaiaaikdaaaqcfaOaey4kaSYaaeWaaeaadaWcaaqaaiaaio dacaaI4aGaeqiWda3aaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWk caaIXaGaaGOnaiaaigdaaeaacaaI5aaaaaGaayjkaiaawMcaaiaadQ eaaiaawUfacaGLDbaacqaHjpWDcqaHjpWDdaWgaaqcfasaaiaadIha aKqbagqaaaaaaa@84EA@     (9)

Substituting given data into Eq. (9) yields the following:

0.015 d ω x dt =0.5×sin 10 o ×[ 9.81×0.2+( 38 π 2 +161 2 π 2 +9 )× (2.0×0.2) 2 ] [ 0.5×(4 π 2 +17)× (0.2×cos 10 o ) 2 +( 38 π 2 +161 9 )×0.01 ]×2.0 ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca aIWaGaamOlaiaaicdacaaIXaGaaGynamaalaaabaGaamizaiabeM8a 3naaBaaajuaibaGaamiEaaqabaaajuaGbaGaamizaiaadshaaaGaey ypa0JaaGimaiaac6cacaaI1aGaey41aqRaci4CaiaacMgacaGGUbGa aGymaiaaicdadaahaaqabKqbGeaacaWGVbaaaKqbakabgEna0oaadm aabaGaaGyoaiaac6cacaaI4aGaaGymaiabgEna0kaaicdacaGGUaGa aGOmaiabgUcaRmaabmaabaWaaSaaaeaacaaIZaGaaGioaiabec8aWn aaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSIaaGymaiaaiAdacaaI XaaabaGaaGOmaiabec8aWnaaCaaajuaibeqaaiaaikdaaaqcfaOaey 4kaSIaaGyoaaaaaiaawIcacaGLPaaacqGHxdaTcaGGOaGaaGOmaiaa c6cacaaIWaGaey41aqRaaGimaiaac6cacaaIYaGaaiykamaaCaaaju aibeqaaiaaikdaaaaajuaGcaGLBbGaayzxaaGaeyOeI0cabaWaamWa aeaacaaIWaGaaiOlaiaaiwdacqGHxdaTcaGGOaGaaGinaiabec8aWn aaCaaabeqaaiaaikdaaaGaey4kaSIaaGymaiaaiEdacaGGPaGaey41 aqRaaiikaiaaicdacaGGUaGaaGOmaiabgEna0kGacogacaGGVbGaai 4CaiaaigdacaaIWaWaaWbaaeqajuaibaGaam4BaaaajuaGcaGGPaWa aWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaqadaqaamaalaaaba GaaG4maiaaiIdacqaHapaCdaahaaqabKqbGeaacaaIYaaaaKqbakab gUcaRiaaigdacaaI2aGaaGymaaqaaiaaiMdaaaaacaGLOaGaayzkaa Gaey41aqRaaGimaiaac6cacaaIWaGaaGymaaGaay5waiaaw2faaiab gEna0kaaikdacaGGUaGaaGimaiabeM8a3naaBaaajuaibaGaamiEaa qabaaaaaa@A7F1@     (10)

Separating variables and presenting in the integral form gives the following:

0 ω x d ω x 0.126975628895 ω x =225.481762368666 0 t dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCae aadaWcaaqaaiaadsgacaWGjpWaaSbaaKqbGeaacaWG4baajuaGbeaa aeaacaaIWaGaaiOlaiaaigdacaaIYaGaaGOnaiaaiMdacaaI3aGaaG ynaiaaiAdacaaIYaGaaGioaiaaiIdacaaI5aGaaGynaiabgkHiTiaa dM8adaWgaaqcfasaaiaadIhaaKqbagqaaaaaaeaacaaIWaaabaGaam yYdmaaBaaajuaibaGaamiEaaqcfayabaaacqGHRiI8aiabg2da9iaa ikdacaaIYaGaaGynaiaac6cacaaI0aGaaGioaiaaigdacaaI3aGaaG OnaiaaikdacaaIZaGaaGOnaiaaiIdacaaI2aGaaGOnaiaaiAdadaWd XbqaaiaadsgacaWG0baabaGaaGimaaqaaiaadshaaiabgUIiYdaaaa@622A@     (11)

Solving the integral equations yields the following equation:

ln(0.126975628895 ω x )| 0 ω x =225.481762t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiBai aac6gacaGGOaGaaGimaiaac6cacaaIXaGaaGOmaiaaiAdacaaI5aGa aG4naiaaiwdacaaI2aGaaGOmaiaaiIdacaaI4aGaaGyoaiaaiwdacq GHsislcaWGjpWaaSbaaKqbGeaacaWG4baabeaajuaGcaGGPaWaaqqa aeaadaqhaaqaaiaaicdaaeaacaWGjpWaaSbaaKqbGeaacaWG4baabe aaaaaajuaGcaGLhWoacqGH9aqpcqGHsislcaaIYaGaaGOmaiaaiwda caGGUaGaaGinaiaaiIdacaaIXaGaaG4naiaaiAdacaaIYaGaamiDaa aa@5829@

Giving rise to the following result:

ln( 0.126975628895 ω x 0.126975628895 )=225.481762t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiBai aac6gadaqadaqaamaalaaabaGaaGimaiaac6cacaaIXaGaaGOmaiaa iAdacaaI5aGaaG4naiaaiwdacaaI2aGaaGOmaiaaiIdacaaI4aGaaG yoaiaaiwdacqGHsislcaWGjpWaaSbaaKqbGeaacaWG4baajuaGbeaa aeaacaaIWaGaaiOlaiaaigdacaaIYaGaaGOnaiaaiMdacaaI3aGaaG ynaiaaiAdacaaIYaGaaGioaiaaiIdacaaI5aGaaGynaaaaaiaawIca caGLPaaacqGH9aqpcqGHsislcaaIYaGaaGOmaiaaiwdacaGGUaGaaG inaiaaiIdacaaIXaGaaG4naiaaiAdacaaIYaGaamiDaaaa@5D36@ or

ω x =0.126975628895(1 e 225.481762t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyYdm aaBaaajuaibaGaamiEaaqcfayabaGaeyypa0JaaGimaiaac6cacaaI XaGaaGOmaiaaiAdacaaI5aGaaG4naiaaiwdacaaI2aGaaGOmaiaaiI dacaaI4aGaaGyoaiaaiwdacaGGOaGaaGymaiabgkHiTiaadwgadaah aaqabKqbGeaacqGHsislcaaIYaGaaGOmaiaaiwdacaGGUaGaaGinai aaiIdacaaIXaGaaG4naiaaiAdacaaIYaGaamiDaaaajuaGcaGGPaaa aa@532D@     (12)

Where the expression e 225.481762t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaajuaibeqaaiabgkHiTiaaikdacaaIYaGaaGynaiaac6cacaaI 0aGaaGioaiaaigdacaaI3aGaaGOnaiaaikdacaWG0baaaKqbakabgI Ki7kaaicdaaaa@43FE@ and can be neglected.

Then the angular velocities of precession for the rolling disc are as follows:

ω x =0.126975628rad/s ω y =(4 π 2 +17) ω x =7.171382594rad/s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGjpWaaSbaaeaacaWG4baabeaacqGH9aqpcaaIWaGaaiOlaiaaigda caaIYaGaaGOnaiaaiMdacaaI3aGaaGynaiaaiAdacaaIYaGaaGioai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGYbGa amyyaiaadsgacaGGVaGaam4CaaqaaiaadM8adaWgaaqcfasaaiaadM haaKqbagqaaiabg2da9iaacIcacaaI0aGaeqiWda3aaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaaIXaGaaG4naiaacMcacaWGjpWaaS baaKqbGeaacaWG4baabeaajuaGcqGH9aqpcaaI3aGaaiOlaiaaigda caaI3aGaaGymaiaaiodacaaI4aGaaGOmaiaaiwdacaaI5aGaaGinai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGYbGa amyyaiaadsgacaGGVaGaam4Caaaaaa@78F4@     (13)

The angular velocity of the rolling disc around axis oy leads to the turn of the disc to the side of its tilting and decreasing of this angle. The presented data of a tilted rolling disc allow considering the magnitudes of the acting torques. Computing the right side of Eq. (8) demonstrates that the value of the inertial torques (second component) is always bigger than the first one and presented by the followingresult:

0.429460328682<0.429460328696 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai aac6cacaaI0aGaaGOmaiaaiMdacaaI0aGaaGOnaiaaicdacaaIZaGa aGOmaiaaiIdacaaI2aGaaGioaiaaikdacqGH8aapcaaIWaGaaiOlai aaisdacaaIYaGaaGyoaiaaisdacaaI2aGaaGimaiaaiodacaaIYaGa aGioaiaaiAdacaaI5aGaaGOnaaaa@4C41@     (14)

This result is the validation that the inertial torques of the rolling disc turns up the disc until the vertical location.

Results and discussion

New analytical approach to the inertial forces acting on the gyroscopic devices enables for developing the equations of the torques and motionsof any rotating objects moving in the space. The mathematical models derived for the motionof the rolling disc on the flat surface based on the action of the centrifugal, common inertial and Coriolis forces, as well as the change in the angular momentum. The new analytical approach to the gyroscope problems demonstrates and explains the physical principles of acting forces on a rolling disc and its motions. The mathematical model for the motion of the rolling disc on the flat surface confirms the gyroscope properties by the practical observation and represents a good example of the educational process. 

Conclusion

In the area of publications of gyroscopic effects, the motion of the rolling disc is one of the most complex and intricate in terms of analytical solutions. Known mathematical models for the rolling disc motions are accepted with simplifications and do not adequately express a real picture of its behaviour. The new mathematical models for gyroscope torques consider the simultaneous and interdependent action of several inertial forces generated by the rotating mass elements and centre mass of the spinning rotor. As a practical application, these new physical principles for gyroscope motions were used for modelling of the free rolling motion of the inclined disc. This mathematical model is distinguished from the well-known publications, which are solving by the numerical modelling that does not interpret the physical origin of gyroscopic effects. The application of new mathematical models for the free rolling of the inclined disc on the flat surface clearly demonstrates physical principles of acting forces.

Acknowledgements

None.

Conflict of interest

The author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Usubamatov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.