Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Review Article Volume 5 Issue 5

Adaptive human-like control system design of a lower limb robot using minimum inertial parameters

Junfeng Zhang,1 Xia Wu,1 Aihui Wang,2 Xiaoyu Chen,2 Yan Wang1

1Department of Electromechanical and Information Engineering, Henan Vocational College of Water Conservancy and Environment, China
2School of Electric and Information Engineering, Zhongyuan University of Technology, China

Correspondence: Aihui Wang, School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

Received: October 24, 2019 | Published: October 31, 2019

Citation: Zhang J, Wu X, Wang A, et al. Adaptive human-like control system design of a lower limb robot using minimum inertial parameters. Int Rob Auto J .2019;5(5):179-184 DOI: 10.15406/iratj.2019.05.00192

Download PDF

Abstract

In this paper, aiming at the comfort problem of wearing rehabilitation training robot for different patients with lower extremity dyskinesia, the real human gait data as the reference control input is proposed, and a human-like control method based on the minimum inertia parameter with the comfort of a human wearable robot as the objective function is designed. To realize the real-time tracking of the reference trajectory by the robot trajectory of lower limb rehabilitation training, the NOKOV motion capture system is used to collect human gait data. The Lagrange method is used to establish the dynamics model of the single leg of the lower limb rehabilitation training robot. Based on the minimum inertia parameters, the adaptive controller with comfort as the objective function is designed. Finally, the effectiveness of this method is verified by simulation based on experimental data.

Keyword: gait data analysis, comfortable function, minimum inertia, adapt tracking control

Introduction

Medical studies have shown that appropriate repetitive rehabilitation exercise training can help them realize the recombination of brain nerve function while patients receive drug therapy, so that patients can gradually recover the ability to walk independently,1–2 which not only improves the quality of life of patients but also greatly reduces family and social pressure. Traditional rehabilitation therapists mainly rely on clinical experience to conduct a gait analysis of patients. Although the method is simple, it can only do rough qualitative analysis. Due to lack the accurate, quantitative and controllable data support, it is difficult to ensure the scientificity and effectiveness of patients' rehabilitation training.

Lower limb rehabilitation robot has been a research hotspot in the world in recent years and is recognized as one of the better rehabilitation equipment. Whether the rehabilitation robot can achieve the goal of rehabilitation, the control strategy of the robot plays a crucial role,3 which is based on position control to achieve trajectory tracking.4 Therefore, the comfort of the lower limb rehabilitation training robot must be considered when designing the controller, which has certain social and scientific significance for the robot.

The geometrical parameters of the robot system are known or can be accurately measured, while many inertial parameters of the robot system are often imprecise or completely unknown. It is required to develop advanced controllers that can achieve the desired tracking accuracy of the robot even if the variations of robot inertia parameters. And the lower limb rehabilitation robot is a complex robot system with multi-input, multi-output, nonlinear, coupling and uncertain factors. The system needs to face different patients, each patient has different individual parameters and with external interference. Therefore, the control system should be robust and adaptive. At this point, the adaptive control scheme is a usually used approach, the system controller can adapt to the changes of the controlled object and external disturbance by modifying the parameters of the controller, so guarantee the robot tracking accuracy online real-time.5–8 In this way, the lower limbs of patients are ensured to move smoothly and comfortably, speed mutation is avoided, and control accuracy is improved, so that patients can complete rehabilitation training safely and comfortably.

Many methods have been used to control the robot system. For example, the simplest control is designed by the Proportional Derivative (PD) control,9–10 although this method has been widely used in a robot control system, the performance of solving complex problems with uncertain parameters is not good. Yi G, et al11 proposed a trajectory tracking adaptive control method for lower limb rehabilitation robot with an uncertain model, however, it did not consider human comfort in human-computer interaction. Liu Y and Zhang X12 analyzed the mechanical structure design principle and requirements of flexible joints from the perspective of anthropomorphism. Yang F and Yuan X133 proposed a human motion control algorithm based on comfort maximization. Tang A and Cao Q14 examined the requirements for comfortable walking and outlined the design of a motion control algorithm for a walking assistant robot based on comfort. The above research has not conducted in-depth research on the comfort level of human-computer interaction in the lower limb rehabilitation robot control system under minimum inertia parameters.

In most human gait acquisition devices, optical motion capture is preferred because it can accurately measure small reflective markers attached to some relevant body landmarks. Therefore, in this paper, the NOKOV 3d infrared passive optical motion capture system is used to collect human movement gait data as input data of exoskeleton robot controller, and then proposes a human body comfort function based on human-computer interaction, in the case of uncertain model parameter, an adaptive controller is designed for lower limb rehabilitation robot trajectory tracking control to realize more comfortable natural gait trajectory and improve the efficiency of rehabilitation. Finally, the simulation experiment and lower limb exoskeleton rehabilitation training robot experiments verify the feasibility and effectiveness of the proposed method.

System introduction and human walking data acquisition and pre processing

NOKOV 3d motion capture system is a passive optical motion capture system (Figure 1), which mainly consists of a host server, 6 optical cameras, reflective markers, T-shaped calibration bar, L-shaped calibration bar, controller and so on. The optical camera records the spatial coordinates of all the markers with a resolution of 2 million pixels and a capture frequency of 60HZ, thereby obtaining a moving trajectory of the human body with the capture accuracy up to 1mm. The system is mainly decorated by using 3 points of six optical cameras around each of two columns to capture the 15 reflective markers on human body, and as long as the reflective marker can be seen by the two cameras at the same time, the specific position of the point in the space can be determined according to the images taken by the two cameras simultaneously and the camera's own parameters.

Figure 1 Human body capture scene.

In this paper, motion capture equipment is used to capture the trajectory of human joints. Since the capture system can only be attached to the outside of human joints, and optical motion capture equipment can only get the coordinates of the outside of human lower limb joints, it is necessary to calculate the central position of each joint of human lower limbs according to mathematical formulas. In this paper, the human body experience formula is used to calculate the central position of each joint. In the process of capture, the captured data needs to be filtered according to the error of the capture system itself, the stray point error in the space and the external factors such as the jitter in the process of human walking. The commonly used filtering methods mainly include least square filtering, wavelet filtering, Kalman filtering and so on. In this paper, the data from the hip joint, the knee joint and the ankle joint of the left leg are processed by using a least square filter and wavelet filter with better effect. After treatment, the Angle of the hip joint and knee joint was calculated, as shown in Figure 2.

Figure 2 The angle of the hip and knee joint.

In order to protect the lower limb rehabilitation robot, the joint angle cannot be directly applied to the lower limb rehabilitation robot, so curve fitting should be carried out to ensure a smooth joint angle curve. The common curve fitting forms are Fourier function, Gaussian function and Sum of Sine function. By comparing the fitting coefficients and root mean square error of the three, the gaussian function with a good fitting term of 8 was selected in this paper.

The lower limb robot dynamics

This paper considers the low limbs dynamic equations based on the two-link rigid robot model (Figure 3). It can be generally modelled by the following second-order nonlinear differential equation:

D(q) q ¨ +C(q, q ˙ ) q ˙ +G(q)=τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykaiqadghagaWaaiabgUcaRiaadoeacaGGOaGa amyCaiaacYcaceWGXbGbaiaacaGGPaGabmyCayaacaGaey4kaSIaam 4raiaacIcacaWGXbGaaiykaiabg2da9iabes8a0baa@4A4A@     (1)

Figure 3 The structure of two-link robot low limb.

where, q= [ q 1 q 2 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghacqGH9a qpdaWadaqaauaabeqabiaaaeaacaWGXbWaaSbaaSqaaiaaigdaaeqa aaGcbaGaamyCamaaBaaaleaacaaIYaaabeaaaaaakiaawUfacaGLDb aadaahaaWcbeqaaiaadsfaaaaaaa@3FDE@ , and q 1 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaaGymaaqabaGccaGGOaGaamiDaiaacMcaaaa@3B47@ is the joint angle of the hip, q 2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaaGOmaaqabaGccaGGOaGaamiDaiaacMcaaaa@3B48@ is the joint angle of the knee. q= [ q ˙ 1 q ˙ 2 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCai abg2da9maadmaabaqbaeqabeGaaaqaaiqadghagaGaamaaBaaaleaa caaIXaaabeaaaOqaaiqadghagaGaamaaBaaaleaacaaIYaaabeaaaa aakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@41A5@ , q ˙ 1 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCay aacaWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadshacaGGPaaaaa@3D05@ is the joint velocity of the hip, q ˙ 2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCay aacaWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaadshacaGGPaaaaa@3D06@ is the joint velocity of the knee. q= [ q ¨ 1 q ¨ 2 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCai abg2da9maadmaabaqbaeqabeGaaaqaaiqadghagaWaamaaBaaaleaa caaIXaaabeaaaOqaaiqadghagaWaamaaBaaaleaacaaIYaaabeaaaa aakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@41A7@ , q ¨ 1 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCay aadaWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadshacaGGPaaaaa@3D06@ is the joint accelerate of the hip, q ¨ 2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCay aadaWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaadshacaGGPaaaaa@3D07@ is the joint accelerate of the knee. τ= [ τ c1 + τ h1 τ c2 + τ h2 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jabg2 da9maadmaabaqbaeqabeGaaaqaaiabes8a0naaBaaaleaacaWGJbGa aGymaaqabaGccqGHRaWkcqaHepaDdaWgaaWcbaGaamiAaiaaigdaae qaaaGcbaGaeqiXdq3aaSbaaSqaaiaadogacaaIYaaabeaakiabgUca Riabes8a0naaBaaaleaacaWGObGaaGOmaaqabaaaaaGccaGLBbGaay zxaaWaaWbaaSqabeaacaWGubaaaaaa@4D26@ , τ c1 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGJbGaaGymaaqabaGccaGGOaGaamiDaiaacMcaaaa@3CFE@ and τ c2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGJbGaaGOmaaqabaGccaGGOaGaamiDaiaacMcaaaa@3CFF@ are the input torque of link knee from the actuator and the human, respectively. D(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamyCaiaacMcaaaa@3A26@ and C(q, q ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qai aacIcacaWGXbGaaiilaiqadghagaGaaiaacMcaaaa@3D89@ denote the inertial matrix and Coriolis-Centrifugal force vector, respectively. G(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4rai aacIcacaWGXbGaaiykaaaa@3BDE@ denote the Gravity matrix.

where,

D(q)=[ m 1 d 1 2 + m 2 l 1 2 + m 1 d 2 2 +2 m 1 l 1 d 2 cos q 2 ( m 2 d 2 2 + m 1 l 1 d 2 cos q 2 )( m 2 d 2 2 + m 1 l 1 d 2 cos q 2 ) m 2 d 2 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamyCaiaacMcacqGH9aqpdaWadaqaaiaad2gadaWgaaWcbaGaaGym aaqabaGccaWGKbWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadYga daWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamizamaaBaaaleaacaaI YaaabeaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGTb WaaSbaaSqaaiaaigdaaeqaaOGaamiBamaaBaaaleaacaaIXaaabeaa kiaadsgadaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4Baiaacohaca WGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaaiikaiaad2gadaWg aaWcbaGaaGOmaaqabaGccaWGKbWaaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaaIXaaa beaakiaadYgadaWgaaWcbaGaaGymaaqabaGccaWGKbWaaSbaaSqaai aaikdaaeqaaOGaci4yaiaac+gacaGGZbGaamyCamaaBaaaleaacaaI YaaabeaakiaacMcacqGHsislcaGGOaGaamyBamaaBaaaleaacaaIYa aabeaakiaadsgadaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamiBam aaBaaaleaacaaIXaaabeaakiaadsgadaWgaaWcbaGaaGOmaaqabaGc ciGGJbGaai4BaiaacohacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaai ykaiaad2gadaWgaaWcbaGaaGOmaaqabaGccaWGKbWaaSbaaSqaaiaa ikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaaaaa@8211@ C(q, q ˙ )=[ 2 m 1 l 1 d 2 q ˙ 2 sin q 2 m 1 l 1 d 2 q ˙ 2 sin q 2 m 1 l 1 d 2 q ˙ 1 sin q 2 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qai aacIcacaWGXbGaaiilaiqadghagaGaaiaacMcacqGH9aqpdaWadaqa auaabeqaciaaaeaacqGHsislcaaIYaGaamyBamaaBaaaleaacaaIXa aabeaakiaadYgadaWgaaWcbaGaaGymaaqabaGccaWGKbWaaSbaaSqa aiaaikdaaeqaaOGabmyCayaacaWaaSbaaSqaaiaaikdaaeqaaOGaci 4CaiaacMgacaGGUbGaamyCamaaBaaaleaacaaIYaaabeaaaOqaaiaa d2gadaWgaaWcbaGaaGymaaqabaGccaWGSbWaaSbaaSqaaiaaigdaae qaaOGaamizamaaBaaaleaacaaIYaaabeaakiqadghagaGaamaaBaaa leaacaaIYaaabeaakiGacohacaGGPbGaaiOBaiaadghadaWgaaWcba GaaGOmaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamiB amaaBaaaleaacaaIXaaabeaakiaadsgadaWgaaWcbaGaaGOmaaqaba GcceWGXbGbaiaadaWgaaWcbaGaaGymaaqabaGcciGGZbGaaiyAaiaa c6gacaWGXbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaaaaiaawU facaGLDbaaaaa@67E6@ G(q)=[ ( m 1 d 1 + m 2 l 1 )gsin q 1 m 2 d 2 gsin( q 1 q 2 ) m 2 d 2 gsin( q 1 q 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacaGGOa GaamyCaiaacMcacqGH9aqpdaWadaqaaiabgkHiTiaacIcacaWGTbWa aSbaaSqaaiaaigdaaeqaaOGaamizamaaBaaaleaacaaIXaaabeaaki abgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaGccaWGSbWaaSbaaSqa aiaaigdaaeqaaOGaaiykaiaadEgaciGGZbGaaiyAaiaac6gacaWGXb WaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyBamaaBaaaleaacaaI YaaabeaakiaadsgadaWgaaWcbaGaaGOmaaqabaGccaWGNbGaci4Cai aacMgacaGGUbGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccqGH sislcaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaad2gadaWgaa WcbaGaaGOmaaqabaGccaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaam4z aiGacohacaGGPbGaaiOBaiaacIcacaWGXbWaaSbaaSqaaiaaigdaae qaaOGaeyOeI0IaamyCamaaBaaaleaacaaIYaaabeaakiaacMcaaiaa wUfacaGLDbaaaaa@6994@

where, and are the quality of robot thigh bar and robot calf rod, and are the length of robot thigh and robot calf, denotes the distance between the joint hip and to the centre of mass of link hip, d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaaGOmaaqabaaaaa@38DF@ denotes the distance between the joint knee and to the centre of mass of link knee.

According to the dynamic characteristics of the robot system, there is a parameter vector that depends on the lower limb parameters of the robot, so that D(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamyCaiaacMcaaaa@3A26@ , C(q, q ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qai aacIcacaWGXbGaaiilaiqadghagaGaaiaacMcaaaa@3D89@ , G(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4rai aacIcacaWGXbGaaiykaaaa@3BDE@ satisfy the following linear relationship,

D(q)ϑ+C(q, q ˙ )ρ+G(q)=Φ(q, q ˙ ,ϑ,ρ)P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykaiabeg9akjabgUcaRiaadoeacaGGOaGaamyC aiaacYcaceWGXbGbaiaacaGGPaGaeqyWdiNaey4kaSIaam4raiaacI cacaWGXbGaaiykaiabg2da9iabfA6agjaacIcacaWGXbGaaiilaiqa dghagaGaaiaacYcacqaHrpGscaGGSaGaeqyWdiNaaiykaiaadcfaaa a@5503@     (2)

where, Φ(q, q ˙ ,ϑ,ρ) R 2×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy KaaiikaiaadghacaGGSaGabmyCayaacaGaaiilaiabeg9akjaacYca cqaHbpGCcaGGPaGaeyicI4SaamOuamaaCaaaleqabaGaaGOmaiabgE na0kaaiodaaaaaaa@491B@ is the regression matrix of functions of known joint variables, which is the known function matrix of generalized coordinates of the robot and its reciprocal of each order, P R 3×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGHii IZcaWGsbWaaWbaaSqabeaacaaIZaGaey41aqRaaGymaaaaaaa@3DFA@ is an unknown time-invariant system describing the mass characteristics of the robot.

Lower limb robot control system

The designed lower limb rehabilitation robot control system is shown in Figure 4. In the control system, including the NOKOV 3D infrared passive optical motion capture system to obtain the desired trajectory of the human, the human comfort function to compensate the interaction force between the human and the robot, the controller is designed for comfort. The sum of the outputs of the controller and human comfort function is fed to the robot leg as the control input signal, namely τ= τ c + τ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq Naeyypa0JaeqiXdq3aaSbaaSqaaiaadogaaeqaaOGaey4kaSIaeqiX dq3aaSbaaSqaaiaadIgaaeqaaaaa@4232@ .

Figure 4 The designed lower limb rehabilitation robot control system.

The comfort function

The comfort level of the human body wearing rehabilitation training robot greatly determines the rehabilitation efficiency, so this paper proposes a comfort function,

τ h =a e ˙ (t)+be(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq 3aaSbaaSqaaiaadIgaaeqaaOGaeyypa0JaamyyaiqadwgagaGaaiaa cIcacaWG0bGaaiykaiabgUcaRiaadkgacaWGLbGaaiikaiaadshaca GGPaaaaa@45E1@     (3)

where, a and b are positive quantities, e ˙ = q ˙ d q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzay aacaGaeyypa0JabmyCayaacaWaaSbaaSqaaiaadsgaaeqaaOGaeyOe I0IabmyCayaacaaaaa@3EC6@ , e= q d q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzai abg2da9iaadghadaWgaaWcbaGaamizaaqabaGccqGHsislcaWGXbaa aa@3EAB@ , q d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCam aaBaaaleaacaWGKbaabeaaaaa@3ACE@ and q ˙ d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCay aacaWaaSbaaSqaaiaadsgaaeqaaaaa@3AD7@ denote angle and angular velocity of the human trajectory, respectively, q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghaaaa@3804@ and q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCay aacaaaaa@39C2@ are the actual angel position and angular velocity, respectively.

Control system design

According to the second type Lagrange equation, the dynamic model of two link series manipulator can be described by the following equation,

D(q) q ¨ +C(q, q ˙ ) q ˙ +G(q)= τ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamyCaiaacMcaceWGXbGbamaacqGHRaWkcaWGdbGaaiikaiaadgha caGGSaGabmyCayaacaGaaiykaiqadghagaGaaiabgUcaRiaadEeaca GGOaGaamyCaiaacMcacqGH9aqpcqaHepaDdaWgaaWcbaGaam4yaaqa baaaaa@49A9@     (4)

Introduce filter error r(t),

r(t)=m e ˙ (t)+ne(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaGGOa GaamiDaiaacMcacqGH9aqpcaWGTbGabmyzayaacaGaaiikaiaadsha caGGPaGaey4kaSIaamOBaiaadwgacaGGOaGaamiDaiaacMcaaaa@44A5@     (5)

then,

r ˙ (t)=m e ¨ (t)+n e ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkhagaGaai aacIcacaWG0bGaaiykaiabg2da9iaad2gaceWGLbGbamaacaGGOaGa amiDaiaacMcacqGHRaWkcaWGUbGabmyzayaacaGaaiikaiaadshaca GGPaaaaa@44B8@     (6)

In the formula, m, n are positive filter gain. The formula (5) and (6) can also be expressed as

q ˙ (t)= q ˙ d (t)+ 1 m [ne(t)r(t)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCay aacaGaaiikaiaadshacaGGPaGaeyypa0JabmyCayaacaWaaSbaaSqa aiaadsgaaeqaaOGaaiikaiaadshacaGGPaGaey4kaSYaaSaaaeaaca aIXaaabaGaamyBaaaacaGGBbGaamOBaiaadwgacaGGOaGaamiDaiaa cMcacqGHsislcaWGYbGaaiikaiaadshacaGGPaGaaiyxaaaa@4E4E@     (7)

q ¨ (t)= q ¨ d (t)+ 1 m [n e ˙ (t) r ˙ (t)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadghagaWaai aacIcacaWG0bGaaiykaiabg2da9iqadghagaWaamaaBaaaleaacaWG KbaabeaakiaacIcacaWG0bGaaiykaiabgUcaRmaalaaabaGaaGymaa qaaiaad2gaaaGaai4waiaad6gaceWGLbGbaiaacaGGOaGaamiDaiaa cMcacqGHsislceWGYbGbaiaacaGGOaGaamiDaiaacMcacaGGDbaaaa@4CAD@     (8)

Substituting the above two formulas into the control system's dynamic model (4)

D(q) q ¨ +C(q, q ˙ ) q ˙ +G(q)=D(q){ q ¨ d (t)+ 1 m [n e ˙ (t) r ˙ (t)]}+C(q, q ˙ ){ q ˙ d (t)+ 1 m [ne(t)r(t)]}+G(q)= τ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykaiqadghagaWaaiabgUcaRiaadoeacaGGOaGa amyCaiaacYcaceWGXbGbaiaacaGGPaGabmyCayaacaGaey4kaSIaam 4raiaacIcacaWGXbGaaiykaiabg2da9iaadseacaGGOaGaamyCaiaa cMcacaGG7bGabmyCayaadaWaaSbaaSqaaiaadsgaaeqaaOGaaiikai aadshacaGGPaGaey4kaSYaaSaaaeaacaaIXaaabaGaamyBaaaacaGG BbGaamOBaiqadwgagaGaaiaacIcacaWG0bGaaiykaiabgkHiTiqadk hagaGaaiaacIcacaWG0bGaaiykaiaac2facaGG9bGaey4kaSIaam4q aiaacIcacaWGXbGaaiilaiqadghagaGaaiaacMcacaGG7bGabmyCay aacaWaaSbaaSqaaiaadsgaaeqaaOGaaiikaiaadshacaGGPaGaey4k aSYaaSaaaeaacaaIXaaabaGaamyBaaaacaGGBbGaamOBaiaadwgaca GGOaGaamiDaiaacMcacqGHsislcaWGYbGaaiikaiaadshacaGGPaGa aiyxaiaac2hacqGHRaWkcaWGhbGaaiikaiaadghacaGGPaGaeyypa0 JaeqiXdq3aaSbaaSqaaiaadogaaeqaaaaa@7F9C@     (9)

To simplify the formula (9),

D(q) 1 m r ˙ (t)+C(q, q ˙ ) 1 m r(t)+ τ c =D(q)[ q ¨ d (t)+ 1 m n e ˙ (t)]+C(q, q ˙ )[ q ˙ d (t)+ 1 m ne(t)]+G(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykamaalaaabaGaaGymaaqaaiaad2gaaaGabmOC ayaacaGaaiikaiaadshacaGGPaGaey4kaSIaam4qaiaacIcacaWGXb GaaiilaiqadghagaGaaiaacMcadaWcaaqaaiaaigdaaeaacaWGTbaa aiaadkhacaGGOaGaamiDaiaacMcacqGHRaWkcqaHepaDdaWgaaWcba Gaam4yaaqabaGccqGH9aqpcaWGebGaaiikaiaadghacaGGPaGaai4w aiqadghagaWaamaaBaaaleaacaWGKbaabeaakiaacIcacaWG0bGaai ykaiabgUcaRmaalaaabaGaaGymaaqaaiaad2gaaaGaamOBaiqadwga gaGaaiaacIcacaWG0bGaaiykaiaac2facqGHRaWkcaWGdbGaaiikai aadghacaGGSaGabmyCayaacaGaaiykaiaacUfaceWGXbGbaiaadaWg aaWcbaGaamizaaqabaGccaGGOaGaamiDaiaacMcacqGHRaWkdaWcaa qaaiaaigdaaeaacaWGTbaaaiaad6gacaWGLbGaaiikaiaadshacaGG PaGaaiyxaiabgUcaRiaadEeacaGGOaGaamyCaiaacMcaaaa@7726@     (10)

From the formula (2), order,

ϑ= q ¨ d + 1 m n e ˙ =[ q ¨ d1 + 1 m n e ˙ 1 q ¨ d2 + 1 m n e ˙ 2 ]=[ ϑ(1) ϑ(2) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy0dO Kaeyypa0JabmyCayaadaWaaSbaaSqaaiaadsgaaeqaaOGaey4kaSYa aSaaaeaacaaIXaaabaGaamyBaaaacaWGUbGabmyzayaacaGaeyypa0 ZaamWaaeaafaqabeGabaaabaGabmyCayaadaWaaSbaaSqaaiaadsga caaIXaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaad2gaaaGaam OBaiqadwgagaGaamaaBaaaleaacaaIXaaabeaaaOqaaiqadghagaWa amaaBaaaleaacaWGKbGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaaig daaeaacaWGTbaaaiaad6gaceWGLbGbaiaadaWgaaWcbaGaaGOmaaqa baaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGabaaaba Gaeqy0dOKaaiikaiaaigdacaGGPaaabaGaeqy0dOKaaiikaiaaikda caGGPaaaaaGaay5waiaaw2faaaaa@603A@ ρ= q ˙ d + 1 m ne=[ q ˙ d1 + 1 m n e 1 q ˙ d2 + 1 m n e 2 ]=[ ρ(1) ρ(2) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi Naeyypa0JabmyCayaacaWaaSbaaSqaaiaadsgaaeqaaOGaey4kaSYa aSaaaeaacaaIXaaabaGaamyBaaaacaWGUbGaamyzaiabg2da9maadm aabaqbaeqabiqaaaqaaiqadghagaGaamaaBaaaleaacaWGKbGaaGym aaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbaaaiaad6gaca WGLbWaaSbaaSqaaiaaigdaaeqaaaGcbaGabmyCayaacaWaaSbaaSqa aiaadsgacaaIYaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaad2 gaaaGaamOBaiaadwgadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLBbGa ayzxaaGaeyypa0ZaamWaaeaafaqabeGabaaabaGaeqyWdiNaaiikai aaigdacaGGPaaabaGaeqyWdiNaaiikaiaaikdacaGGPaaaaaGaay5w aiaaw2faaaaa@6064@ ,

Substituting the above formula into equation (2),

D(q)( q ¨ d + 1 m n e ˙ )+C(q, q ˙ )( q ˙ d + 1 m ne)+G(q)=Φ(q, q ˙ ,ϑ,ρ)P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykaiaacIcaceWGXbGbamaadaWgaaWcbaGaamiz aaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbaaaiaad6gace WGLbGbaiaacaGGPaGaey4kaSIaam4qaiaacIcacaWGXbGaaiilaiqa dghagaGaaiaacMcacaGGOaGabmyCayaacaWaaSbaaSqaaiaadsgaae qaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamyBaaaacaWGUbGaamyz aiaacMcacqGHRaWkcaWGhbGaaiikaiaadghacaGGPaGaeyypa0Jaeu OPdyKaaiikaiaadghacaGGSaGabmyCayaacaGaaiilaiabeg9akjaa cYcacqaHbpGCcaGGPaGaamiuaaaa@618B@     (11)

make μ= g l 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9maalaaabaGaam4zaaqaaiaadYgadaWgaaWcbaGaaGymaaqabaaa aaaa@3C9E@ ,then

D(q)ϑ+C(q, q ˙ )ρ+G(q)=[ Φ 11 Φ 12 Φ 13 Φ 21 Φ 22 Φ 23 ][ P 1 P 2 P 3 ]=Φ(q, q ˙ ,ϑ,ρ)P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykaiabeg9akjabgUcaRiaadoeacaGGOaGaamyC aiaacYcaceWGXbGbaiaacaGGPaGaeqyWdiNaey4kaSIaam4raiaacI cacaWGXbGaaiykaiabg2da9maadmaabaqbaeqabiWaaaqaaiabfA6a gnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqqHMoGrdaWgaaWcba GaaGymaiaaikdaaeqaaaGcbaGaeuOPdy0aaSbaaSqaaiaaigdacaaI ZaaabeaaaOqaaiabfA6agnaaBaaaleaacaaIYaGaaGymaaqabaaake aacqqHMoGrdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeuOPdy0a aSbaaSqaaiaaikdacaaIZaaabeaaaaaakiaawUfacaGLDbaadaWada qaauaabeqadeaaaeaacaWGqbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa amiuamaaBaaaleaacaaIYaaabeaaaOqaaiaadcfadaWgaaWcbaGaaG 4maaqabaaaaaGccaGLBbGaayzxaaGaeyypa0JaeuOPdyKaaiikaiaa dghacaGGSaGabmyCayaacaGaaiilaiabeg9akjaacYcacqaHbpGCca GGPaGaamiuaaaa@7251@     (12)

where,

Φ 11 =ϑ(1)+μsin q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaaBa aaleaacaaIXaGaaGymaaqabaGccqGH9aqpcqaHrpGscaGGOaGaaGym aiaacMcacqGHRaWkcqaH8oqBciGGZbGaaiyAaiaac6gacaWGXbWaaS baaSqaaiaaikdaaeqaaaaa@4644@ Φ 12 =(2ϑ(1)ϑ(2))cos q 2 (2ρ(1)ρ(2)) q ˙ 2 sin q 2 μsin( q 1 q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy 0aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iaacIcacaaIYaGa eqy0dOKaaiikaiaaigdacaGGPaGaeyOeI0Iaeqy0dOKaaiikaiaaik dacaGGPaGaaiykaiGacogacaGGVbGaai4CaiaadghadaWgaaWcbaGa aGOmaaqabaGccqGHsislcaGGOaGaaGOmaiabeg8aYjaacIcacaaIXa GaaiykaiabgkHiTiabeg8aYjaacIcacaaIYaGaaiykaiaacMcaceWG XbGbaiaadaWgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gaca WGXbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqiVd0Maci4Caiaa cMgacaGGUbGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@69FF@ Φ 13 =ϑ(1)ϑ(2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaaBa aaleaacaaIXaGaaG4maaqabaGccqGH9aqpcqaHrpGscaGGOaGaaGym aiaacMcacqGHsislcqaHrpGscaGGOaGaaGOmaiaacMcaaaa@43A2@ Φ 21 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaaBa aaleaacaaIYaGaaGymaaqabaGccqGH9aqpcaaIWaaaaa@3BF5@ Φ 22 =ϑ(1)cos q 2 ρ(1) q ˙ 1 sin q 2 +μsin( q 1 q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy 0aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabgkHiTiabeg9a kjaacIcacaaIXaGaaiykaiGacogacaGGVbGaai4CaiaadghadaWgaa WcbaGaaGOmaaqabaGccqGHsislcqaHbpGCcaGGOaGaaGymaiaacMca ceWGXbGbaiaadaWgaaWcbaGaaGymaaqabaGcciGGZbGaaiyAaiaac6 gacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqiVd0Maci4C aiaacMgacaGGUbGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccq GHsislcaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@5D4B@ Φ 23 =ϑ(2)ϑ(1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaaBa aaleaacaaIYaGaaG4maaqabaGccqGH9aqpcqaHrpGscaGGOaGaaGOm aiaacMcacqGHsislcqaHrpGscaGGOaGaaGymaiaacMcaaaa@43A3@

Substituting equation (11) into (10), the open-loop error system equation can be obtained,

D(q) 1 m r ˙ (t)+C(q, q ˙ ) 1 m r(t)=Φ(q, q ˙ ,ϑ,ρ)P τ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykamaalaaabaGaaGymaaqaaiaad2gaaaGabmOC ayaacaGaaiikaiaadshacaGGPaGaey4kaSIaam4qaiaacIcacaWGXb GaaiilaiqadghagaGaaiaacMcadaWcaaqaaiaaigdaaeaacaWGTbaa aiaadkhacaGGOaGaamiDaiaacMcacqGH9aqpcqqHMoGrcaGGOaGaam yCaiaacYcaceWGXbGbaiaacaGGSaGaeqy0dOKaaiilaiabeg8aYjaa cMcacaWGqbGaeyOeI0IaeqiXdq3aaSbaaSqaaiaadogaaeqaaaaa@5B79@     (13)

where, P R 3×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGHii IZcaWGsbWaaWbaaSqabeaacaaIZaGaey41aqRaaGymaaaaaaa@3DFA@ is the minimum inertia parameter of the lower limb robot system, which can be identified by the adaptive law. The following controller is designed for the open-loop error system,

τ c =Φ(q, q ˙ ,ϑ,ρ) P ^ (t)+βr(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq 3aaSbaaSqaaiaadogaaeqaaOGaeyypa0JaeuOPdyKaaiikaiaadgha caGGSaGabmyCayaacaGaaiilaiabeg9akjaacYcacqaHbpGCcaGGPa GabmiuayaajaGaaiikaiaadshacaGGPaGaey4kaSIaeqOSdiMaamOC aiaacIcacaWG0bGaaiykaaaa@4FEF@     (14)

where, β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ is the positive control gain, P ^ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadcfagaqcai aacIcacaWG0bGaaiykaaaa@3A45@ is the inertia parameter estimation vector of low limb robot, which is also identified by the adaptive law.

Then the closed-loop control system can be obtained

D(q) 1 m r ˙ (t)+C(q, q ˙ ) 1 m r(t)=Φ(q, q ˙ ,ϑ,ρ) P ˜ (t)βr(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykamaalaaabaGaaGymaaqaaiaad2gaaaGabmOC ayaacaGaaiikaiaadshacaGGPaGaey4kaSIaam4qaiaacIcacaWGXb GaaiilaiqadghagaGaaiaacMcadaWcaaqaaiaaigdaaeaacaWGTbaa aiaadkhacaGGOaGaamiDaiaacMcacqGH9aqpcqqHMoGrcaGGOaGaam yCaiaacYcaceWGXbGbaiaacaGGSaGaeqy0dOKaaiilaiabeg8aYjaa cMcaceWGqbGbaGaacaGGOaGaamiDaiaacMcacqGHsislcqaHYoGyca WGYbGaaiikaiaadshacaGGPaaaaa@5FEB@     (15)

where, P ˜ (t)=P(t) P ^ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuay aaiaGaaiikaiaadshacaGGPaGaeyypa0JaamiuaiaacIcacaWG0bGa aiykaiabgkHiTiqadcfagaqcaiaacIcacaWG0bGaaiykaaaa@444A@ is the estimation vector of the uncertain inertial parameter. In this case, the parameter estimation rate was taken for

P ^ ˙ (t)=Γ Φ T (q, q ˙ ,ϑ,ρ)r(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuay aajyaacaGaaiikaiaadshacaGGPaGaeyypa0Jaeu4KdCKaeuOPdy0a aWbaaSqabeaacaWGubaaaOGaaiikaiaadghacaGGSaGabmyCayaaca Gaaiilaiabeg9akjaacYcacqaHbpGCcaGGPaGaamOCaiaacIcacaWG 0bGaaiykaaaa@4D09@     (16)

where, Γ R 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahjabgI GiolaadkfadaahaaWcbeqaaiaaiodacqGHxdaTcaaIZaaaaaaa@3E8F@ is the positive definite matrix. Take the Lyapunov function of the closed-loop system as

V(t)= 1 2 r T 1 m D(q)r(t)+ 1 2 P ˜ T Γ 1 P ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvai aacIcacaWG0bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaikda aaGaamOCamaaCaaaleqabaGaamivaaaakmaalaaabaGaaGymaaqaai aad2gaaaGaamiraiaacIcacaWGXbGaaiykaiaadkhacaGGOaGaamiD aiaacMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiqadcfaga acamaaCaaaleqabaGaamivaaaakiabfo5ahnaaCaaaleqabaGaeyOe I0IaaGymaaaakiqadcfagaacaaaa@512A@     (17)

Since D(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamyCaiaacMcaaaa@3A26@ and Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahbaa@3876@ are positive definite, so V(t)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacaGGOa GaamiDaiaacMcacqGHLjYScaaIWaaaaa@3CBB@ . Then

V ˙ (t)= r T 1 m D(q) r ˙ + 1 2 r T 1 m D ˙ (q)+ P ˜ T Γ 1 P ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvay aacaGaaiikaiaadshacaGGPaGaeyypa0JaamOCamaaCaaaleqabaGa amivaaaakmaalaaabaGaaGymaaqaaiaad2gaaaGaamiraiaacIcaca WGXbGaaiykaiqadkhagaGaaiabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaGaamOCamaaCaaaleqabaGaamivaaaakmaalaaabaGaaGymaa qaaiaad2gaaaGabmirayaacaGaaiikaiaadghacaGGPaGaey4kaSIa bmiuayaaiaWaaWbaaSqabeaacaWGubaaaOGaeu4KdC0aaWbaaSqabe aacqGHsislcaaIXaaaaOGabmiuayaaiaaaaa@552A@     (18)

The following equation can be expressed from the equation (16)

P ˜ ˙ (t)= P ˙ (t) P ^ ˙ (t)= P ^ ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuay aaiyaacaGaaiikaiaadshacaGGPaGaeyypa0JabmiuayaacaGaaiik aiaadshacaGGPaGaeyOeI0IabmiuayaajyaacaGaaiikaiaadshaca GGPaGaeyypa0JaeyOeI0IabmiuayaajyaacaGaaiikaiaadshacaGG Paaaaa@4995@     (19)

Substituting the equation (15) and (19) into the equation (18) can be obtained

V ˙ (t)= 1 m r T (Cr+mΦ P ˜ mβr)+ 1 2 r T 1 m D ˙ (q)r+ P ˜ T Γ 1 (Γ Φ T r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvay aacaGaaiikaiaadshacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGa amyBaaaacaWGYbWaaWbaaSqabeaacaWGubaaaOGaaiikaiabgkHiTi aadoeacaWGYbGaey4kaSIaamyBaiabfA6agjqadcfagaacaiabgkHi Tiaad2gacqaHYoGycaWGYbGaaiykaiabgUcaRmaalaaabaGaaGymaa qaaiaaikdaaaGaamOCamaaCaaaleqabaGaamivaaaakmaalaaabaGa aGymaaqaaiaad2gaaaGabmirayaacaGaaiikaiaadghacaGGPaGaam OCaiabgUcaRiqadcfagaacamaaCaaaleqabaGaamivaaaakiabfo5a hnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacqGHsislcqqHto WrcqqHMoGrdaahaaWcbeqaaiaadsfaaaGccaWGYbGaaiykaaaa@6502@     (20)

= 1 m r T [ 1 2 D(q)C(q, q ˙ )]rβ r T r+[ r T Φ P ˜ P ˜ T Φ T r] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0 ZaaSaaaeaacaaIXaaabaGaamyBaaaacaWGYbWaaWbaaSqabeaacaWG ubaaaOGaai4wamaalaaabaGaaGymaaqaaiaaikdaaaGaamiraiaacI cacaWGXbGaaiykaiabgkHiTiaadoeacaGGOaGaamyCaiaacYcaceWG XbGbaiaacaGGPaGaaiyxaiaadkhacqGHsislcqaHYoGycaWGYbWaaW baaSqabeaacaWGubaaaOGaamOCaiabgUcaRiaacUfacaWGYbWaaWba aSqabeaacaWGubaaaOGaeuOPdyKabmiuayaaiaGaeyOeI0Iabmiuay aaiaWaaWbaaSqabeaacaWGubaaaOGaeuOPdy0aaWbaaSqabeaacaWG ubaaaOGaamOCaiaac2faaaa@5D8B@

According to the dynamic characteristics of the Coriolis force matrix, D(q)2C(q, q ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamirai aacIcacaWGXbGaaiykaiabgkHiTiaaikdacaWGdbGaaiikaiaadgha caGGSaGabmyCayaacaGaaiykaaaa@424A@ is a skew symmetry matrix, so r T ( 1 2 D ˙ (q)C(q, q ˙ )) r ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaahaa WcbeqaaiaadsfaaaGccaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaaaa ceWGebGbaiaacaGGOaGaamyCaiaacMcacqGHsislcaWGdbGaaiikai aadghacaGGSaGabmyCayaacaGaaiykaiaacMcaceWGYbGbaiaacqGH 9aqpcaaIWaaaaa@4789@ . Because r T Φ P ˜ R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCam aaCaaaleqabaGaamivaaaakiabfA6agjqadcfagaacaiabgIGiolaa dkfaaaa@3F83@ , so r T Φ P ˜ = P ˜ T Φ T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCam aaCaaaleqabaGaamivaaaakiabfA6agjqadcfagaacaiabg2da9iqa dcfagaacamaaCaaaleqabaGaamivaaaakiabfA6agnaaCaaaleqaba Gaamivaaaakiaadkhaaaa@43A3@ . Then the equation (20) can be simplified as

V ˙ (t)=β r T r=β r 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvay aacaGaaiikaiaadshacaGGPaGaeyypa0JaeyOeI0IaeqOSdiMaamOC amaaCaaaleqabaGaamivaaaakiaadkhacqGH9aqpcqGHsislcqaHYo GydaqbdaqaaiaadkhaaiaawMa7caGLkWoadaahaaWcbeqaaiaaikda aaGccqGHKjYOcaaIWaaaaa@4D9F@     (21)

So the closed-loop control system is globally stable. V( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaqadaqaa8qacaWG0baapaGaayjkaiaawMcaaaaa@3AB9@ decays exponentially with time because of V(t)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvai aacIcacaWG0bGaaiykaiabgwMiZkaaicdaaaa@3E70@ and its derivative V ˙ (t)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvay aacaGaaiikaiaadshacaGGPaGaeyizImQaaGimaaaa@3E68@ . Then V(t) L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacaGGOa GaamiDaiaacMcacqGHiiIZcaWGmbWaaSbaaSqaaiabg6HiLcqabaaa aa@3E2D@ and its derivative MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIu kaaa@3A34@ - norm is bounded. Therefore r(t) L L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCai aacIcacaWG0bGaaiykaiabgIGiolaadYeadaWgaaWcbaGaeyOhIuka beaakiablMIijjaadYeadaWgaaWcbaGaaGOmaaqabaaaaa@42E6@ , r ˙ (t) L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOCay aacaGaaiikaiaadshacaGGPaGaeyicI4SaamitamaaBaaaleaacqGH EisPaeqaaaaa@4007@ can be obtained from P ˜ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuay aaiaGaaiikaiaadshacaGGPaaaaa@3BF9@ , P ˜ ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuay aaiyaacaGaaiikaiaadshacaGGPaaaaa@3C01@ , τ c (t) L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq 3aaSbaaSqaaiaadogaaeqaaOGaaiikaiaadshacaGGPaGaeyicI4Sa amitamaaBaaaleaacqGHEisPaeqaaaaa@41EA@ . From Barbalat theorem, lim t r(t)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG0bGaeyOKH4QaeyOhIukabeaakiaa dkhacaGGOaGaamiDaiaacMcacqGH9aqpcaaIWaaaaa@4381@ . According to the properties of the first order linear filter, e(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaGGOa GaamiDaiaacMcaaaa@3A4A@ and e ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwgagaGaai aacIcacaWG0bGaaiykaaaa@3A53@ will decay to zero in the same way. So as to achieve the goal of tracking control whenever the initial position of the system.

From equation (29), we can know that r(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaGGOa GaamiDaiaacMcaaaa@3A57@ converges exponentially to zero, according to the nature of the filter variable r(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaGGOa GaamiDaiaacMcaaaa@3A57@ , e(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaGGOa GaamiDaiaacMcaaaa@3A4A@ and e ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwgagaGaai aacIcacaWG0bGaaiykaaaa@3A53@ will decay to zero in the same way. So as to achieve the goal of tracking control whenever the initial position of the system.

Simulation-based experimental data

In this paper, the subject is a healthy woman, whose height is 165cm and weight is 52kg. During the experiment, the subject wore black leggings, whose hands on chest and their feet walking parallel to each other naturally. From section 2, the hip joint  and knee joint  can be obtained, which as the desired track of the controller,

q hd = a 0  + a 1 *cos( ω*t ) + b 1 *sin( ω*t )  +  a 2 *cos( 2*ω*t )+ b 2 *sin( 2*ω*t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCamaaBaaaleaacaWGObGaamizaaqabaGccqGH9aqpcaWGHbWa aSbaaSqaaiaaicdaaeqaaOGaaeiiaiabgUcaRiaadggadaWgaaWcba GaaGymaaqabaGccaGGQaGaam4yaiaad+gacaWGZbWdamaabmaabaWd biabeM8a3jaacQcacaWG0baapaGaayjkaiaawMcaa8qacaqGGaGaey 4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaacQcacaWGZbGaamyA aiaad6gapaWaaeWaaeaapeGaeqyYdCNaaiOkaiaadshaa8aacaGLOa GaayzkaaWdbiaacckacaGGGcGaey4kaSIaaiiOaiaadggadaWgaaWc baGaaGOmaaqabaGccaGGQaGaam4yaiaad+gacaWGZbWdamaabmaaba WdbiaaikdacaGGQaGaeqyYdCNaaiOkaiaadshaa8aacaGLOaGaayzk aaWdbiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaGGQaGaam 4CaiaadMgacaWGUbWdamaabmaabaWdbiaaikdacaGGQaGaeqyYdCNa aiOkaiaadshaa8aacaGLOaGaayzkaaaaaa@7268@ +  a 3 *cos( 3*ω*t ) +  b 3 *sin( 3*ω*t )+ a 4 *cos( 4*ω*t ) + b 4 *sin( 4*ω*t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaaiiOaiaadggadaWgaaWcbaGaaG4maaqabaGccaGGQaGa am4yaiaad+gacaWGZbWdamaabmaabaWdbiaaiodacaGGQaGaeqyYdC NaaiOkaiaadshaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaqG GaGaamOyamaaBaaaleaacaaIZaaabeaakiaacQcacaWGZbGaamyAai aad6gapaWaaeWaaeaapeGaaG4maiaacQcacqaHjpWDcaGGQaGaamiD aaWdaiaawIcacaGLPaaapeGaey4kaSIaamyyamaaBaaaleaacaaI0a aabeaakiaacQcacaWGJbGaam4BaiaadohapaWaaeWaaeaapeGaaGin aiaacQcacqaHjpWDcaGGQaGaamiDaaWdaiaawIcacaGLPaaapeGaae iiaiabgUcaRiaadkgadaWgaaWcbaGaaGinaaqabaGccaGGQaGaam4C aiaadMgacaWGUbWdamaabmaabaWdbiaaisdacaGGQaGaeqyYdCNaai Okaiaadshaa8aacaGLOaGaayzkaaaaaa@6DC7@ + a 5 *cos( 5*ω*t ) + b 5 *sin( 5*ω*t )+ a 6 *cos( 6*ω*t ) + b 6 *sin( 6*ω*t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaamyyamaaBaaaleaacaaI1aaabeaakiaacQcacaWGJbGa am4BaiaadohapaWaaeWaaeaapeGaaGynaiaacQcacqaHjpWDcaGGQa GaamiDaaWdaiaawIcacaGLPaaapeGaaeiiaiabgUcaRiaadkgadaWg aaWcbaGaaGynaaqabaGccaGGQaGaam4CaiaadMgacaWGUbWdamaabm aabaWdbiaaiwdacaGGQaGaeqyYdCNaaiOkaiaadshaa8aacaGLOaGa ayzkaaWdbiabgUcaRiaadggadaWgaaWcbaGaaGOnaaqabaGccaGGQa Gaam4yaiaad+gacaWGZbWdamaabmaabaWdbiaaiAdacaGGQaGaeqyY dCNaaiOkaiaadshaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkca WGIbWaaSbaaSqaaiaaiAdaaeqaaOGaaiOkaiaadohacaWGPbGaamOB a8aadaqadaqaa8qacaaI2aGaaiOkaiabeM8a3jaacQcacaWG0baapa GaayjkaiaawMcaaaaa@6C10@  + a 7 *cos( 7*ω*t ) + b 7 *sin( 7*ω*t )+ a 8 *cos( 8*ω*t ) +  b 8 *sin( 8*ω*t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiabgUcaRiaadggadaWgaaWcbaGaaG4naaqabaGccaGGQaGa am4yaiaad+gacaWGZbWdamaabmaabaWdbiaaiEdacaGGQaGaeqyYdC NaaiOkaiaadshaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaWG IbWaaSbaaSqaaiaaiEdaaeqaaOGaaiOkaiaadohacaWGPbGaamOBa8 aadaqadaqaa8qacaaI3aGaaiOkaiabeM8a3jaacQcacaWG0baapaGa ayjkaiaawMcaa8qacqGHRaWkcaWGHbWaaSbaaSqaaiaaiIdaaeqaaO GaaiOkaiaadogacaWGVbGaam4Ca8aadaqadaqaa8qacaaI4aGaaiOk aiabeM8a3jaacQcacaWG0baapaGaayjkaiaawMcaa8qacaqGGaGaey 4kaSIaaeiiaiaadkgadaWgaaWcbaGaaGioaaqabaGccaGGQaGaam4C aiaadMgacaWGUbWdamaabmaabaWdbiaaiIdacaGGQaGaeqyYdCNaai Okaiaadshaa8aacaGLOaGaayzkaaaaaa@6DE7@ q kd = c 0  + c 1 *cos( ϖ*t ) + d 1 *sin( ϖ*t ) +  c 2 *cos( 2*ϖ*t )+ d 2 *sin( 2*ϖ*t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCamaaBaaaleaacaWGRbGaamizaaqabaGccqGH9aqpcaWGJbWa aSbaaSqaaiaaicdaaeqaaOGaaeiiaiabgUcaRiaadogadaWgaaWcba GaaGymaaqabaGccaGGQaGaam4yaiaad+gacaWGZbWdamaabmaabaWd biabeA9a2jaacQcacaWG0baapaGaayjkaiaawMcaa8qacaqGGaGaey 4kaSIaamizamaaBaaaleaacaaIXaaabeaakiaacQcacaWGZbGaamyA aiaad6gapaWaaeWaaeaapeGaeqO1dyNaaiOkaiaadshaa8aacaGLOa GaayzkaaWdbiaacckacqGHRaWkcaGGGcGaam4yamaaBaaaleaacaaI YaaabeaakiaacQcacaWGJbGaam4BaiaadohapaWaaeWaaeaapeGaaG OmaiaacQcacqaHwpGDcaGGQaGaamiDaaWdaiaawIcacaGLPaaapeGa ey4kaSIaamizamaaBaaaleaacaaIYaaabeaakiaacQcacaWGZbGaam yAaiaad6gapaWaaeWaaeaapeGaaGOmaiaacQcacqaHwpGDcaGGQaGa amiDaaWdaiaawIcacaGLPaaaaaa@7181@ +  c 3 *cos( 3*ϖ*t ) +  d 3 *sin( 3*ϖ*t ) + c 4 *cos( 4*ϖ*t ) + d 4 *sin( 4*ϖ*t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaaiiOaiaadogadaWgaaWcbaGaaG4maaqabaGccaGGQaGa am4yaiaad+gacaWGZbWdamaabmaabaWdbiaaiodacaGGQaGaeqO1dy NaaiOkaiaadshaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaqG GaGaamizamaaBaaaleaacaaIZaaabeaakiaacQcacaWGZbGaamyAai aad6gapaWaaeWaaeaapeGaaG4maiaacQcacqaHwpGDcaGGQaGaamiD aaWdaiaawIcacaGLPaaapeGaaiiOaiabgUcaRiaadogadaWgaaWcba GaaGinaaqabaGccaGGQaGaam4yaiaad+gacaWGZbWdamaabmaabaWd biaaisdacaGGQaGaeqO1dyNaaiOkaiaadshaa8aacaGLOaGaayzkaa WdbiaabccacqGHRaWkcaWGKbWaaSbaaSqaaiaaisdaaeqaaOGaaiOk aiaadohacaWGPbGaamOBa8aadaqadaqaa8qacaaI0aGaaiOkaiabeA 9a2jaacQcacaWG0baapaGaayjkaiaawMcaaaaa@6F23@  + c 5 *cos( 5*ϖ*t ) + d 5 *sin( 5*ϖ*t )+ c 6 *cos( 6*ϖ*t ) + d 6 *sin( 6*ϖ*t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiabgUcaRiaadogadaWgaaWcbaGaaGynaaqabaGccaGGQaGa am4yaiaad+gacaWGZbWdamaabmaabaWdbiaaiwdacaGGQaGaeqO1dy NaaiOkaiaadshaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaWG KbWaaSbaaSqaaiaaiwdaaeqaaOGaaiOkaiaadohacaWGPbGaamOBa8 aadaqadaqaa8qacaaI1aGaaiOkaiabeA9a2jaacQcacaWG0baapaGa ayjkaiaawMcaa8qacqGHRaWkcaWGJbWaaSbaaSqaaiaaiAdaaeqaaO GaaiOkaiaadogacaWGVbGaam4Ca8aadaqadaqaa8qacaaI2aGaaiOk aiabeA9a2jaacQcacaWG0baapaGaayjkaiaawMcaa8qacaqGGaGaey 4kaSIaamizamaaBaaaleaacaaI2aaabeaakiaacQcacaWGZbGaamyA aiaad6gapaWaaeWaaeaapeGaaGOnaiaacQcacqaHwpGDcaGGQaGaam iDaaWdaiaawIcacaGLPaaaaaa@6D6C@  + c 7 *cos( 7*ϖ*t ) + d 7 *sin( 7*ϖ*t ) + c 8 *cos( 8*ϖ*t ) +  d 8 *sin( 8*ϖ*t )

 

The specific parameters of the q hd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCamaaBaaaleaacaWGObGaamizaaqabaaaaa@3A26@ and q kd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCamaaBaaaleaacaWGRbGaamizaaqabaaaaa@3A29@ are shown in Table 1,

parameter   numerical          parameter numerical

           0.2275/0.7813        1.51/1.071
           -0.05504/-0.04065  0.4156/-0.2492
          0.05041/0.08886    0.2622/-0.4546
          -0.07493/0.1694     -0.1651/-0.01536
          0.07383/ -0.06247 -0.2246/-0.06722
         -0.09099/ 0.1132     -0.1654/0.0392

Table 1 The parameters of joint angle desired trajectory

The structural parameters of the lower limb rehabilitation training robot are: m 1 =4kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaaI0aGaam4AaiaadEgaaaa@3C91@ , l 1 =0.5m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaiwdacaWGTbaa aa@3D13@ , d 1 =0.25m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaikdacaaI1aGa amyBaaaa@3DC7@ , m 2 =3.1kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaaIZaGaaiOlaiaaigdacaWGRbGa am4zaaaa@3DFE@ , l 2 =0.4m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaisdacaWGTbaa aa@3D13@ , d 1 =0.2m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaikdacaWGTbaa aa@3D08@ . And the gravitational acceleration is 9.8m/s. Thus p 1 =1.149 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaCcGaamiCam aaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacaGGUaGaaGymaiaa isdacaaI5aaaaa@3E42@ , p 2 =0.124 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaigdacaaIYaGa aGinaaaa@3D9C@ , p 3 =0.31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaG4maaqabaGccqGH9aqpcaaIWaGaaiOlaiaaiodacaaIXaaa aa@3CE0@ , p 4 =24.99 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGinaaqabaGccqGH9aqpcqGHsislcaaIYaGaaGinaiaac6ca caaI5aGaaGyoaaaa@3E9C@ , p 5 =6.076 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGynaaqabaGccqGH9aqpcaaI2aGaaiOlaiaaicdacaaI3aGa aGOnaaaa@3DAB@ . The comfort function coefficient is: a=0.8 and b=0.1. The linear filter gain is: m=200 and n=25. The gain of the control law is: β=40. And the gain update matrix take Γ=diag[ 3 3 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC Kaeyypa0JaamizaiaadMgacaWGHbGaam4zamaadmaabaqbaeqabeWa aaqaaiaaiodaaeaacaaIZaaabaGaaG4maaaaaiaawUfacaGLDbaaaa a@4312@ . Initial states of the hip and knee joints of the lower limb rehabilitation training robot were taken ( q hd , q kd )=(0,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadghadaWgaaWcbaGaamiAaiaadsgaaeqaaOGaaiilaiaa dghadaWgaaWcbaGaam4AaiaadsgaaeqaaOGaaiykaiabg2da9iaacI cacaaIWaGaaiilaiaaicdacaGGPaaaaa@43C1@ and ( q ˙ hd , q ˙ kd )=(0,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaGGOaGabmyCayaacaWaaSbaaSqaaiaadIgacaWGKbaabeaa kiaacYcaceWGXbGbaiaadaWgaaWcbaGaam4AaiaadsgaaeqaaOGaai ykaiabg2da9iaacIcacaaIWaGaaiilaiaaicdacaGGPaaaaa@4588@ . The simulation results are shown in the Figures 5–10.

Figure 5 The position tracing and velocity tracking of link 1.

Figure 6 The position tracing and velocity tracking of link 2.

Figure 7 The position tracing error and velocity tracking error of link 1.

Figure 8 The position tracking error and velocity tracking error of link.

Figure 9 The input torque of link 1 and link 2.

Figure 10 Inertia parameter estimated.

As can be seen from the simulation results, the trajectory of the hip joint and the knee joint quickly tracks to the desired trajectory while the inertial parameters keep changing, and the tracking trajectory error quickly converges to zero. The velocity of the joint trajectory can also track the velocity change of the desired trajectory rapidly and the control input is relatively stable. Thus, the effectiveness of the control method designed in this paper is verified, and the prototype worn by the subject is comfortable, so as to verify the scientificity of the research based on comfort function in this paper.

Conclusion

In this paper, an adaptive control study is designed based on the comfort level of the wearable lower limb rehabilitation robot in the case of uncertain inertial parameters. In the case of minimum inertial parameters, the controller is designed with comfort level as the objective function to ensure the safety and comfort of patients for rehabilitation training. Through the simulation experiment, the results show that the controller can track the desired trajectory very well, and there is no speed mutation in the tracking process. The control precision is high, and the subject is comfortable to wear, which verifies the feasibility and effectiveness of the method proposed.

Funding

The authors would like to thank the Young Backbone Teacher Training Program of Henan Province's Higher Education (2017GGJS117), and National Natural Science Foundation (U1813201) for their support of this work.

Acknowledgments

None.

Conflicts of interest

The author declares there are no conflicts of interest.

References

  1. Chen X. Data from the second national sample survey of disabled persons. CJH. 2008;19(68):1–3.
  2. Xie C, Xu G, Liu X. Research progress of early rehabilitation after stroke. Rehabilitation theory and practice in China. 2009;15(10):908–912.
  3. Woldag H, Hummelsheim H. Evidence–based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol. 2002;249(5):518–528.
  4. Li  F. The research of lower limb rehabilitation training robot active control. Shanghai university. 2014;4–15.
  5. Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot–assisted lower limb rehabilitation. Mechatronics. 2015;31:132–145.
  6. Yan T, Cempini M, Oddo CM, et al. Review of assistive strategies in powered lower–limb orthoses and exoskeletons. Robotics and Autonomous Systems. 2015;64:120–136.
  7. Kim CS, Mo EJ, Han SM, et a1. Robust visual servo control of robot manipulators with uncertain dynamics and camera parameters. International Journal of Control, Automation and Systems. 2010;8(2):308–313.
  8. Urrea C, José P. Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Computer & Electrical Engineering. 2018;67:791–806.
  9. Yang C, Ganesh G, Haddadin S, et al. Human–Like Adaptation of Force and Impedance in Stable and Unstable Interactions. Ieee Transactions On Robotics. 2011;27(5):918–930.
  10. De Luca A, Siciliano B, Zollo L. PD control with on–line gravity compensation for robots with elastic joints: Theory and experiments. Automatica. 2005;41(10):1809–1819.
  11. Zollo L, Siciliano B, De Luca A, et al. PD Control with On–line Gravity Compensation for Robots with Flexible Links. European Control Conference (ECC). 2007;4365–4370.
  12. Tang A, Cao Q. Motion control of walking assistant robot based on comfort. Industrial Robot. 2012;39(6):546–579.
  13. Yang F, Yuan X G. Human motion control based on maximum comfort. JCADP. 2015;17(2):267–272.
  14. Liu Y, Zhang XD. Analysis and research on comfort of rehabilitation robot flexible joint. MRA. 2015;4:9–11.
Creative Commons Attribution License

©2019 Zhang, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.