Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 8 Issue 3

Adaptive control of AUV trajectory tracking in the presence of disturbance

Mostafa Jalalnezhada

Mechanical Engineering, Kharazmi University of Tehran, Republic of Iran

Correspondence: Mostafa Jalalnezhada, Mechanical Engineering, Kharazmi University of Tehran, Republic of Iran, Tel +98 9171436228

Received: September 16, 2022 | Published: December 6, 2022

Citation: Jalalnezhada M. Adaptive control of AUV trajectory tracking in the presence of disturbance. Int Rob Auto J. 2022;8(3):94-101 DOI: 10.15406/iratj.2022.08.00251

Download PDF

Abstract

In the method used in this article, the control objectives are achieved by using the adaptive controller and based on the first-order sliding mode method, assuming that the disturbance and its derivative are bounded with an indeterminate boundary, in a way that is resistant to uncertainty and disturbance caused by ocean waves. be This method is based on the law of two-layer adaptation, which works without the need of knowledge of the boundary values of disturbance and its derivative. The stability of the proposed robust-adaptive control law is proved using Lyapunov theory and the performance of the designed controller is verified using simulation results. The performance of the proposed controller is evaluated in terms of error and control effort by comparing the simulation results of the proposed control and conventional sliding mode control. According to the results of comparison and investigation in different disturbance scenarios, the tracking error in the proposed control is much less than the tracking error of the conventional sliding mode control, and also, the range of control effort in the conventional sliding mode control is greater and is associated with chattering, if it is in the case of the robust control. - Charting’s proposed adaptation is not observed.

Keywords: AUV, trajectory tracking, sliding mode control, adaptive control

Introduction

The tracking control of the AUV trajectory with three degrees of freedom in the horizontal plane is investigated. Due to the presence of turbulence in the sea and ocean environment as well as uncertainty in AUV parameters, robust control is used to control AUV.1 Conventional sliding mode control as a robust and nonlinear control method is one of the widely used methods for AUVs. But, it leads to the phenomenon of chattering, which is an undesirable phenomenon for the driver circuit and AUV motors.2 The cause of chattering is the range of the switching part of the control signal in the sliding mode control, which is selected according to the disturbance range. The higher the switching control gain, the lower the tracking error and chattering occurs instead. Therefore, a compromise must be made between chattering and tracking error. The combination of adaptive control methods and sliding mode control is effective in reducing chattering while increasing consistency against disturbance. In this way, the disturbance is estimated using adaptive control.3 Using the estimation information, the control effort is calculated and applied to the control system. Therefore, chattering is reduced and consistency against turbulence is also enhanced.4

By using optimal control, it is possible to reduce the range of control effort and improve energy, which is an important issue in controlling AUVs. It is also possible to improve the sliding mode control performance by optimizing the sliding surface.5

In,6 an attempt was made to improve energy damping by combining sliding mode control and optimization. In this way, by using LQR, a sub-optimal control is produced in the neighborhood of the output of the sliding mode control, and it leads to the reduction of the range of control effort and error, in other words, the minimum point is obtained. In,7,8 the sliding control surface of the sliding model was calculated using optimization and with quadratic target warping and used for AUV depth control. In,9 using the PSO optimization method, the sliding surface coefficients were optimized and used to control the depth of AUV.

In,10 using the genetic algorithm, the sliding mode controller coefficients were adjusted to control the depth of AUV.

Due to the weakness of sliding mode control in some cases of chattering phenomenon, it is recommended to use it in combination with other controllers. In some articles, the coefficient of the switching section is estimated using adaptive control, and in some articles, the disturbance is estimated. This greatly helps to reduce chattering phenomenon. In,11 using adaptive control, the parameters in the sliding mode control were estimated and AUV depth control was performed. In,12 using sliding mode control and adaptive control, a control consisting of two loops was designed for AUV. In this way, the time was controlled in the outer ring and a virtual speed was created for the inner ring to control the speeds to reach the desired time. In this article, using single-layer adaptive control, the switching part of sliding mode control was estimated to reduce chattering and to estimate uncertain parameters and disturbances. In,13 a controller was designed using high order and counter-adaptive sliding mode control to control AUV in the horizontal plane and the disturbances were estimated using the adaptive law. According to the comparison results of this controller and high order sliding mode control, the proposed controller has no chattering while the high order sliding mode control has chattering. In,14 the orientation of the AUV is controlled using adaptive-sliding mode control. In which adaptive control is used to estimate the uncertainties of the system and disturbance, and the emphasis is on reducing chattering by using the disturbance estimator.

System modeling

To describe the location and orientation of the AUV in the three-dimensional space to six variables including; Y,XandZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacaGGSa GaaGPaVlaadIfacaaMc8Uaamyyaiaad6gacaWGKbGaaGPaVlaadQfa aaa@41BC@  and their derivatives are needed to describe position and linear velocity along the lines of illustrations Y,XandZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacaGGSa GaaGPaVlaadIfacaaMc8Uaamyyaiaad6gacaWGKbGaaGPaVlaadQfa aaa@41BC@ and three other variables θ, ϕ and ψ and their derivatives are needed to describe orientation and angular velocity. As shown in Figure 1, AUV movement elements are defined as pitch, roll, heave, sway, surge and yaw, respectively. Figure 1 notation used in this thesis in Table 1 is shown. In order to determine the equations of motion of the AUV, two frames of motion and rigid body are used.

Figure 1 Describe the position and orientation of the AUV.

Marg frame: It is a fixed frame which is considered as Marg and may be matched with the frame of the object in the initial conditions. The position and direction of AUV is expressed in this framework and it is denoted by { E } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaGaam yraaGaay5Eaiaaw2haaaaa@3A0A@ . Body frame: This frame is shown as { B } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7daGada qaaiaadkeaaiaawUhacaGL9baaaaa@3B92@  and is a rigid frame that is fixed on the AUV. AUV's linear and angular velocities are described in this framework.15 The detailed orientation of these two frameworks is shown in Figure 1.

Based on Table 1, we define the following vectors

η= [ η 1 η 2 ] T η1 = [ xyz ] T η 2 = [ ϕθψ ] T v= [ v 1 v 2 ] T v 1 = [ uvw ] T τ= [ τ 1 τ 2 ] T τ 1 = [ XYZ ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq aH3oaAcqGH9aqpkmaadmaabaqcLbsacqaH3oaAlmaaBaaabaqcLbma caaIXaGaaGPaVdWcbeaajugibiabeE7aOTWaaSbaaeaajugWaiaaik daaSqabaaakiaawUfacaGLDbaadaWgaaWcbaWaaWbaaWqabeaadaah aaqabeaadaahaaqabeaadaahaaqabeaajugWaiaadsfaaaaaaKqzGe Gaeq4TdGgdcaaIXaaaaaaaaSqabaqcLbsacqGH9aqpkmaadmaabaqc LbsacaWG4bGaaGPaVlaadMhacaaMc8UaamOEaaGccaGLBbGaayzxaa WcdaahaaqabeaajugWaiaadsfaaaqcLbsacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabeE7aOTWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacqGH9a qpkmaadmaabaqcLbsacqaHvpGzcaaMc8UaaGPaVlabeI7aXjaaykW7 caaMc8UaeqiYdKhakiaawUfacaGLDbaalmaaCaaabeqaaKqzadGaam ivaaaaaOqaaKqzGeGaamODaiabg2da9OWaamWaaeaajugibiaadAha kmaaBaaaleaacaaIXaaabeaajugibiaadAhakmaaBaaaleaacaaIYa aabeaaaOGaay5waiaaw2faaSWaaWbaaeqabaqcLbmacaWGubGaaGPa VdaacaaMc8EcLbsacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaamODaOWaaSbaaSqaaiaaigdaaeqaaKqzGe Gaeyypa0JcdaWadaqaaKqzGeGaamyDaiaadAhacaWG3baakiaawUfa caGLDbaalmaaCaaabeqaaKqzadGaamivaaaaaOqaaKqzGeGaeqiXdq Naeyypa0JcdaWadaqaaKqzGeGaeqiXdqNcdaWgaaWcbaGaaGymaaqa baqcLbsacqaHepaDkmaaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2 faaSWaaWbaaeqabaqcLbmacaWGubaaaKqzGeGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabes8a0TWaaSbaaeaajugWaiaaig daaSqabaqcLbsacqGH9aqpkmaadmaabaqcLbsacaWGybGaamywaiaa dQfaaOGaay5waiaaw2faaSWaaWbaaeqabaqcLbmacaWGubaaaaaaaa@64A7@   (1)

where, η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG gaaa@3949@ is the position and direction vector in the frame of Marg, v is the vector of linear and angular velocities in the body frame and τ is the forces and torques applied to the AUV in the body frame. AUV motion equations are divided into two categories.

Euler's angles

Linear and angular velocities

Force and torque

 

𝑥

𝑢

𝑋

Surge, x

𝑦

𝑣

𝑌

Sway, y

𝑧

𝑤

𝑍

Heave, z

𝜙

𝑝

𝐾

Roll, x

𝜃

𝑞

𝑀

Pitch, y

𝜓

𝑟

𝑁

Yaw, z

Table 1 Marking related to AUV

Kinematic equations

These equations deal with the geometric aspect of movement, that is, time and orientation.16

- Dynamic equations: these equations describe the forces that lead to movement.

Each of these equations is described in the following sections.

The science of kinematics, apart from examining the forces and torques of the moving agent, models the positional relationship and jump of the AUV with linear and angular velocities. The first derivative of the time vector η1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG MaaGymaaaa@3A04@ is related to the linear velocity vector v1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamODai aaigdaaaa@3953@ through relation (2).

η ˙ 1 = J 1 ( η 2 ) v 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafq4TdG MbaiaakmaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaWG kbGcdaWgaaWcbaWaaSbaaWqaaKqzadGaaGymaaadbeaaaSqabaGcda qadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbmacaaIYaaaleqaaaGc caGLOaGaayzkaaqcLbsacaWG2bWcdaWgaaqaaKqzadGaaGymaaWcbe aaaaa@49F0@   (2)

J1( η 2 )=[ J 11 J 12 J 13 J 21 J 22 J 23 J 31 J 32 J 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOsaK qzadGaaGymaOWaaeWaaeaajugibiabeE7aOTWaaSbaaeaajugWaiaa ikdaaSqabaaakiaawIcacaGLPaaajugibiabg2da9OWaamWaaeaaju gibuaabeqadeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaiaaigdacaaI XaGaaGPaVlaaykW7aeqaaKqzGeGaamOsaOWaaSbaaSqaaKqzadGaaG ymaiaaikdacaaMc8oaleqaaKqzGeGaamOsaOWaaSbaaSqaaKqzadGa aGymaiaaiodaaSqabaaakeaajugibiaadQeakmaaBaaaleaajugWai aaikdacaaIXaaaleqaaKqzGeGaaGPaVlaadQeakmaaBaaaleaajugW aiaaikdacaaIYaGaaGPaVdWcbeaajugibiaadQealmaaBaaameaaca aIYaGaaG4maaqabaaakeaajugibiaadQeakmaaBaaaleaajugWaiaa iodacaaIXaaaleqaaKqzGeGaaGzaVlaaykW7caaMc8UaamOsaOWaaS baaSqaaKqzadGaaG4maiaaikdaaSqabaqcLbsacaaMc8UaamOsaOWa aSbaaSqaaKqzadGaaG4maiaaiodaaSqabaaaaaGccaGLBbGaayzxaa aaaa@7684@   (3)

Where in;

J 11 =cos( ψ )cos( θ ) J 12 =sin( ψ )cos( ϕ )+sin( ϕ )sin( θ )cos( ψ ) J 13 =sin( ψ )sin( ϕ )+sin( θ )cos( ψ )cos( ϕ ) J 21 =sin( ψ )cos( θ ) J 22 =cos( ψ )cos( ϕ )+sin( ϕ )sin( θ )sin( ψ ) J 23 =cos( ψ )sin( ϕ )+sin( θ )sin( ψ )cos( ϕ ) J 31 =sin( θ ) J 32 =sin( ϕ )cos( θ ) J 33 =cos( ϕ )cos( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGkbGcdaWgaaWcbaGaaGymaiaaigdacaaMc8UaaGPaVdqabaGccqGH 9aqpjugibiGacogacaGGVbGaai4CaOWaaeWaaeaajugibiabeI8a5b GccaGLOaGaayzkaaGaaGPaVlaaykW7ciGGJbGaai4Baiaacohadaqa daqaaKqzGeGaeqiUdehakiaawIcacaGLPaaaaeaajugibiaadQeakm aaBaaaleaajugWaiaaigdacaaIYaGaaGPaVdWcbeaakiabg2da9iGa cohacaGGPbGaaiOBamaabmaabaqcLbsacqaHipqEaOGaayjkaiaawM caaiaaykW7caaMc8UaaGPaVlGacogacaGGVbGaai4Camaabmaabaqc LbsacqaHvpGzaOGaayjkaiaawMcaaiabgUcaRiGacohacaGGPbGaai OBamaabmaabaqcLbsacqaHvpGzaOGaayjkaiaawMcaaiaaykW7caaM c8Uaci4CaiaacMgacaGGUbWaaeWaaeaajugibiabeI7aXbGccaGLOa GaayzkaaGaaGPaVNqzGeGaci4yaiaac+gacaGGZbGcdaqadaqaaKqz GeGaeqiYdKhakiaawIcacaGLPaaaaeaajugibiaadQeakmaaBaaale aajugWaiaaigdacaaIZaaaleqaaOGaeyypa0Jaci4CaiaacMgacaGG UbWaaeWaaeaajugibiabeI8a5bGccaGLOaGaayzkaaGaaGPaVlaayk W7ciGGZbGaaiyAaiaac6gadaqadaqaaKqzGeGaeqy1dygakiaawIca caGLPaaacaaMc8Uaey4kaSIaaGPaVlGacohacaGGPbGaaiOBamaabm aabaqcLbsacqaH4oqCaOGaayjkaiaawMcaaiaaykW7caaMc8EcLbsa ciGGJbGaai4BaiaacohakmaabmaabaqcLbsacqaHipqEaOGaayjkai aawMcaaiaaykW7caaMc8UaaGPaVlGacogacaGGVbGaai4Camaabmaa baqcLbsacqaHvpGzaOGaayjkaiaawMcaaaqaaKqzGeGaamOsaOWaaS baaSqaaKqzadGaaGOmaiaaigdaaSqabaqcLbsacaaMc8Uaeyypa0Jc ciGGZbGaaiyAaiaac6gadaqadaqaaKqzGeGaeqiYdKhakiaawIcaca GLPaaacaaMc8UaaGPaVlaaykW7ciGGJbGaai4Baiaacohadaqadaqa aKqzGeGaeqiUdehakiaawIcacaGLPaaaaeaajugibiaadQeakmaaBa aaleaajugWaiaaikdacaaIYaGaaGPaVdWcbeaakiabg2da9KqzGeGa ci4yaiaac+gacaGGZbGcdaqadaqaaKqzGeGaeqiYdKhakiaawIcaca GLPaaacaaMc8Uaci4yaiaac+gacaGGZbWaaeWaaeaajugibiabew9a MbGccaGLOaGaayzkaaGaaGPaVlaaykW7cqGHRaWkciGGZbGaaiyAai aac6gadaqadaqaaKqzGeGaeqy1dygakiaawIcacaGLPaaacaaMc8Ua aGPaVlGacohacaGGPbGaaiOBamaabmaabaqcLbsacqaH4oqCaOGaay jkaiaawMcaaiaaykW7caaMc8UaaGPaVlGacohacaGGPbGaaiOBamaa bmaabaqcLbsacqaHipqEaOGaayjkaiaawMcaaaqaaKqzGeGaamOsaS WaaSbaaWqaaiaaikdacaaIZaaabeaaliabg2da9KqzGeGaci4yaiaa c+gacaGGZbGcdaqadaqaaKqzGeGaeqiYdKhakiaawIcacaGLPaaaca aMc8UaaGPaVlGacohacaGGPbGaaiOBamaabmaabaqcLbsacqaHvpGz aOGaayjkaiaawMcaaiabgUcaRiGacohacaGGPbGaaiOBamaabmaaba qcLbsacqaH4oqCaOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaa ykW7ciGGZbGaaiyAaiaac6gadaqadaqaaKqzGeGaeqiYdKhakiaawI cacaGLPaaacaaMc8UaaGPaVlGacogacaGGVbGaai4Camaabmaabaqc LbsacqaHvpGzaOGaayjkaiaawMcaaaqaaKqzGeGaamOsaOWaaSbaaS qaaKqzadGaaG4maiaaigdaaSqabaGccqGH9aqpciGGZbGaaiyAaiaa c6gadaqadaqaaKqzGeGaeqiUdehakiaawIcacaGLPaaaaeaajugibi aadQeakmaaBaaaleaajugWaiaaiodacaaIYaaaleqaaOGaeyypa0Ja ci4CaiaacMgacaGGUbWaaeWaaeaajugibiabew9aMbGccaGLOaGaay zkaaGaaGPaVlaaykW7ciGGJbGaai4BaiaacohadaqadaqaaKqzGeGa eqiUdehakiaawIcacaGLPaaaaeaajugibiaadQeakmaaBaaaleaaju gWaiaaiodacaaIZaaaleqaaOGaeyypa0Jaci4yaiaac+gacaGGZbWa aeWaaeaajugibiabew9aMbGccaGLOaGaayzkaaGaaGPaVlaaykW7ci GGJbGaai4BaiaacohadaqadaqaaKqzGeGaeqiUdehakiaawIcacaGL Paaaaaaa@747B@   (4)

((η2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacqaH3oaAcaaIYaGaaiykaaaa@3C0A@ is invertible because: (J1(η2)=JT1(η2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aadQeacaaIXaGaeyOeI0IaaiikaiabeE7aOjaaikdacaGGPaGaeyyp a0JaamOsaiaadsfacaaIXaGaaiikaiabeE7aOjaaikdacaGGPaaaaa@45AB@ . The first derivative of the time vector η2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG MaaGOmaaaa@3A05@  is related to the linear velocity vector v2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamODai aaikdaaaa@3954@ through equation 5.

η ˙ 2 = J 2 ( η 2 ) v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafq4TdG MbaiaalmaaBaaameaacaaIYaaabeaajugibiabg2da9iaadQeakmaa BaaaleaajugWaiaaikdaaSqabaqcLbsacaGGOaGaeq4TdG2cdaWgaa qaaKqzadGaaGOmaaWcbeaajugibiaacMcacaWG2bGcdaWgaaWcbaqc LbmacaaIYaaaleqaaaaa@483F@   (5)

In which, ((η2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacqaH3oaAcaaIYaGaaiykaaaa@3C0A@ is described as (6):

J 2 ( η 2 )=[ 1sin(ϕ)tan(θ) 0cos(ϕ)sin(ϕ) 0sin(ϕ)/cos(θ)cos(ϕ)/cos(θ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOsaO WaaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaacIcacqaH3oaAlmaa BaaabaqcLbmacaaIYaaaleqaaKqzGeGaaiykaiabg2da9OWaamWaae aafaqabeWabaaabaGaaGymaiaaykW7caaMc8UaaGPaVlGacohacaGG PbGaaiOBaiaacIcacaaMc8Uaeqy1dyMaaiykaiaaykW7ciGG0bGaai yyaiaac6gacaGGOaGaeqiUdeNaaiykaaqaaiaaicdacaaMc8UaaGPa VlaaykW7ciGGJbGaai4BaiaacohacaGGOaGaaGPaVlabew9aMjaacM cacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTiaayk W7ciGGZbGaaiyAaiaac6gacaGGOaGaaGPaVlabew9aMjaacMcaaeaa caaIWaGaaGPaVlGacohacaGGPbGaaiOBaiaacIcacaaMc8Uaeqy1dy Maaiykaiaac+caciGGJbGaai4BaiaacohacaGGOaGaeqiUdeNaaiyk aiaaykW7caaMc8UaaGPaVlGacogacaGGVbGaai4CaiaacIcacaaMc8 Uaeqy1dyMaaiykaiaaykW7caGGVaGaaGPaVlGacogacaGGVbGaai4C aiaacIcacqaH4oqCcaGGPaGaaGPaVlaaykW7caaMc8oaaaGaay5wai aaw2faaaaa@AF71@   (6)

By combining the relation (2) and (5), the kinematic equations of AUV are obtained as (7):

[ η ˙ 1 η ˙ 2 ]=[ J ( η 2 ) 1 0 3×3 0 3×3 J 2 ( η 2 ) ][ v 1 v 2 ] η ˙ =J(η)v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabiqaaaqaaKqzGeGafq4TdGMbaiaakmaaBaaaleaacaaIXaaabeaa aOqaaKqzGeGafq4TdGMbaiaalmaaBaaameaacaaIYaaabeaaaaaaki aawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqaceaaaeaajugibiaa dQeakmaaBeaaleaacaaIXaaabeaajugibiaacIcacqaH3oaAlmaaBa aabaqcLbmacaaIYaaaleqaaKqzGeGaaiykaiaaykW7caaMc8UaaGPa VlaaykW7kiaaicdadaWgaaWcbaGaaG4maiabgEna0kaaiodaaeqaaa GcbaGaaGimamaaBaaaleaacaaIZaGaey41aqRaaG4maiaaykW7caaM c8UaaGPaVlaaykW7jugibiaadQeakmaaBaaameaajugibiaaikdaaW qabaqcLbsacaGGOaGaeq4TdGMcdaWgaaadbaqcLbsacaaIYaaameqa aKqzGeGaaiykaaWcbeaaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVp aadmaabaqbaeqabiqaaaqaaiaadAhadaWgaaWcbaGaaGymaaqabaaa keaacaWG2bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faai abgsDiBNqzGeGaaGPaVlqbeE7aOzaacaGaeyypa0JaamOsaiaacIca cqaH3oaAcaGGPaGaamODaaaa@7E21@   (7)

Dynamic Equations

At first, the vectors representing forces, torques, linear and angular velocities are defined as follows:

f0b=[ XYZ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaicdacaWGIbGaeyypa0JcdaWadaqaaKqzGeGaamiwaiaadMfacaWG AbaakiaawUfacaGLDbaaaaa@405E@ force distributed in the body frame.

The moment analyzed in the frame of the body.

Linearized velocities decomposed in the frame of the object.

Angular velocities decomposed in the frame of the object relative to the reference frame of the vector from to the center of gravity decomposed in the frame of the object can be seen with data display. Using the Newton-Euler formulation for a rigid body with mass, the relationship between forces and moments is written as (8):

m[ v ˙ ob + ω ˙ E ob × r ob + ω E ob × v ob + ω E ob ×( ω E ob r ob ) ]= f ob MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaaMc8 +aamWaaeaacaaMc8UabmODayaacaWaaSbaaSqaaiaad+gacaWGIbaa beaakiabgUcaRiqbeM8a3zaacaWaaWbaaSqabeaacaWGfbaaaOWaaS baaSqaaiaad+gacaWGIbaabeaakiabgEna0kaadkhadaWgaaWcbaGa am4BaiaadkgaaeqaaOGaey4kaSIaeqyYdC3aaWbaaSqabeaacaWGfb aaaOWaaSbaaSqaaiaad+gacaWGIbaabeaakiabgEna0kaadAhadaWg aaWcbaGaam4BaiaadkgaaeqaaOGaey4kaSIaeqyYdC3aaWbaaSqabe aacaWGfbaaaOWaaSbaaSqaaiaad+gacaWGIbaabeaakiabgEna0oaa bmaabaGaeqyYdC3aaWbaaSqabeaacaWGfbaaaOWaaSbaaSqaaiaad+ gacaWGIbaabeaakiaaykW7caaMc8UaamOCamaaBaaaleaacaWGVbGa amOyaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpca WGMbWaaSbaaSqaaiaad+gacaWGIbaabeaaaaa@6E40@   (8)

I ω ˙ E ob + ω E ob ×I ω E ob +m r ob ×( v ˙ ob + ω E ob × v ob )= m ob MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacuaHjp WDgaGaamaaCaaaleqabaGaamyraaaakmaaBaaaleaacaWGVbGaamOy aaqabaGccqGHRaWkcqaHjpWDdaahaaWcbeqaaiaadweaaaGcdaWgaa WcbaGaam4BaiaadkgaaeqaaOGaey41aqRaamysaiabeM8a3naaCaaa leqabaGaamyraaaakmaaBaaaleaacaWGVbGaamOyaaqabaGccqGHRa WkcaWGTbGaamOCamaaBaaaleaacaWGVbGaamOyaaqabaGccqGHxdaT daqadaqaaiqadAhagaGaamaaBaaaleaacaWGVbGaamOyaaqabaGccq GHRaWkcqaHjpWDdaahaaWcbeqaaiaadweaaaGcdaWgaaWcbaGaam4B aiaadkgaaeqaaOGaey41aqRaamODamaaBaaaleaacaWGVbGaamOyaa qabaaakiaawIcacaGLPaaacqGH9aqpcaWGTbWaaSbaaSqaaiaad+ga caWGIbaabeaaaaa@64BD@

where the inertia matrix I o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaam4Baaqabaaaaa@38FC@  around o b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+gadaWgaa WcbaGaamOyaaqabaaaaa@3915@  is expressed as (9):

I o =[ IxIxIxz IyxIyIyz IzxIzyIz ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaam4BaaqabaGccaaMc8Uaeyypa0ZaamWaaeaafaqabeWabaaa baGaamysaiaadIhacaaMc8UaaGPaVlabgkHiTiaadMeacaWG4bGaaG PaVlaaykW7caaMc8UaeyOeI0IaamysaiaadIhacaWG6bGaaGPaVlaa ykW7caaMc8UaaGPaVdqaaiabgkHiTiaadMeacaWG5bGaamiEaiaayk W7caaMc8UaaGPaVlaadMeacaWG5bGaaGPaVlaaykW7caaMc8UaeyOe I0IaamysaiaadMhacaWG6baabaGaamysaiaadQhacaWG4bGaaGPaVl aaykW7caaMc8UaaGPaVlabgkHiTiaadMeacaWG6bGaamyEaiaaykW7 caaMc8UaamysaiaadQhaaaaacaGLBbGaayzxaaGaaGPaVdaa@794D@   (9)

In relation (8), the motion equation of the rigid body gives the following result:

M RB v ˙ + C RB v(v)= τ RB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamOuaiaadkeaaeqaaOGabmODayaacaGaey4kaSIaam4qamaa BaaaleaacaWGsbGaamOqaaqabaGccaWG2bGaaiikaiaadAhacaGGPa Gaeyypa0JaeqiXdq3aaSbaaSqaaiaackfacaGGcbaabeaaaaa@4618@   (10)

where the general velocity vector described in the frame of the body is the general vector of external forces and torques. The inertia matrix of the rigid body system is expressed as (11):

M RB =[ m000m z g m y g 0m0m z g 0m x g 00mm y g m x g 0 0m z g m y g I x I xy I xz mzg0m x g I yx I y I yz m y g m x g 0 I zx I zy I z ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaqcLbmacaWGsbGaamOqaaWcbeaakiabg2da9maadmaabaqbaeqa byqaaaaabaGaamyBaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaM c8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7caWGTbGaamOEamaaBa aaleaacaWGNbaabeaakiaaykW7caWGTbGaamyEamaaBaaaleaacaWG NbaabeaakiaaykW7aeaacaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVl aad2gacaaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7cqGHsisl caaMc8UaamyBaiaadQhadaWgaaWcbaGaam4zaaqabaGccaaMc8UaaG PaVlaaicdacaaMc8UaaGPaVlaad2gacaWG4bWaaSbaaSqaaiaadEga aeqaaaGcbaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaG PaVlaaykW7caaMc8UaamyBaiaaykW7caaMc8UaaGPaVlaad2gacaWG 5bWaaSbaaSqaaiaadEgaaeqaaOGaaGPaVlabgkHiTiaad2gacaWG4b WaaSbaaSqaaiaadEgaaeqaaOGaaGPaVlaaykW7caaMc8UaaGimaaqa aiaaicdacaaMc8UaaGPaVlaad2gacaWG6bWaaSbaaSqaaiaadEgaae qaaOGaaGPaVlaad2gacaWG5bWaaSbaaSqaaiaadEgaaeqaaOGaaGPa VlaaykW7caWGjbWaaSbaaSqaaiaadIhaaeqaaOGaaGPaVlaaykW7cq GHsislcaWGjbWaaSbaaSqaaiaadIhacaWG5baabeaakiaaykW7caaM c8UaeyOeI0IaamysamaaBaaaleaacaWG4bGaamOEaaqabaGccaaMc8 UaaGPaVlaaykW7aeaacaWGTbGaamOEaiaadEgacaaMc8UaaGPaVlaa icdacaaMc8UaaGPaVlabgkHiTiaad2gacaWG4bWaaSbaaSqaaiaadE gaaeqaaOGaaGPaVlaaykW7cqGHsislcaWGjbWaaSbaaSqaaiaadMha caWG4baabeaakiaaykW7caaMc8UaamysamaaBaaaleaacaWG5baabe aakiaaykW7caaMc8UaeyOeI0IaamysamaaBaaaleaacaWG5bGaamOE aaqabaaakeaacqGHsislcaWGTbGaamyEamaaBaaaleaacaWGNbaabe aakiaaykW7caaMc8UaamyBaiaadIhadaWgaaWcbaGaam4zaaqabaGc caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7cqGHsislcaWGjb WaaSbaaSqaaiaadQhacaWG4baabeaakiaaykW7cqGHsislcaWGjbWa aSbaaSqaaiaadQhacaWG5baabeaakiaaykW7caaMc8UaamysamaaBa aaleaacaWG6baabeaakiaaykW7caaMc8oaaaGaay5waiaaw2faaaaa @0AE2@   (11)

C RB (v)=[ C RB1 C RB2 C RB3 C RB4 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaWaaSbaaWqaaiaadkfacaWGcbaabeaaaSqabaGccaGGOaGaamOD aiaacMcacqGH9aqpdaWadaqaauaabeqaceaaaeaacaWGdbWaaSbaaS qaamaaBaaameaacaWGsbGaamOqaiaaigdaaeqaaaWcbeaakiaaykW7 caaMc8UaaGPaVlaadoeadaWgaaWcbaWaaSbaaWqaaiaadkfacaWGcb GaaGOmaaqabaaaleqaaaGcbaGaam4qamaaBaaaleaadaWgaaadbaGa amOuaiaadkeacaaIZaaabeaaaSqabaGccaaMc8UaaGPaVlaaykW7ca WGdbWaaSbaaSqaamaaBaaameaacaWGsbGaamOqaiaaisdaaeqaaaWc beaaaaaakiaawUfacaGLDbaaaaa@56BF@  and the Coriolis matrix of the rigid body  , is presented as (12)):

C RB1 =[ 0 0 0 0 0 0 0 0 0 ] C RB2 =[ m( y g q+ z g r) m( x g qw) m( x g r+v) m( y g p+w) m( z g r+ x g p) m( y g ru) m( z g pv) m( z g q+u) m( x g p+ y g q) ] C RB3 =[ m( y g q+ z g r) m( y g p+w) m( z g pv) m( x g qw) m( z g r+ x g p) m( z g q+u) m( x g r+v) m( y g ru) m( x g p+ y g q) ] C RB4 =[ 0 I yz q I xz p+ I z r I yz r+ I xy p I y q I yz q I xz p+ I z r 0 I xz r I xy q+ I x p I yz r+ I xy p I y q I xz r I xy q+ I x p 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4qaS WaaSbaaWqaaiaadkfacaWGcbGaaGymaaqabaGccqGH9aqpdaWadaqa aKqzGeqbaeqabmWaaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaO qaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqa aKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaK qzGeGaaGimaaaaaOGaay5waiaaw2faaaqaaKqzGeGaam4qaOWaaSba aSqaamaaBaaameaajugWaiaadkfacaWGcbGaaGOmaaadbeaaaSqaba qcLbsacqGH9aqpkmaadmaabaqcLbsafaqabeWadaaabaGaamyBaiaa cIcacaWG5bGcdaWgaaWcbaGaam4zaaqabaqcLbsacaWGXbGaey4kaS IaamOEaOWaaSbaaSqaaiaadEgaaeqaaKqzGeGaamOCaiaacMcaaeaa cqGHsislcaWGTbGaaiikaiaadIhakmaaBaaaleaacaWGNbaabeaaju gibiaadghacqGHsislcaWG3bGaaiykaaqaaiabgkHiTiaad2gacaGG OaGaamiEaOWaaSbaaSqaaiaadEgaaeqaaKqzGeGaamOCaiabgUcaRi aadAhacaGGPaaabaGaeyOeI0IaamyBaiaacIcacaWG5bGcdaWgaaWc baGaam4zaaqabaqcLbsacaWGWbGaey4kaSIaam4DaiaacMcaaeaaca WGTbGaaiikaiaadQhakmaaBaaaleaacaWGNbaabeaajugibiaadkha cqGHRaWkcaWG4bGcdaWgaaWcbaqcLbmacaWGNbaaleqaaKqzGeGaam iCaiaacMcaaeaacqGHsislcaWGTbGaaiikaiaadMhakmaaBaaaleaa caWGNbaabeaajugibiaadkhacqGHsislcaWG1bGaaiykaaqaaiabgk HiTiaad2gacaGGOaGaamOEaOWaaSbaaSqaaiaadEgaaeqaaKqzGeGa amiCaiabgkHiTiaadAhacaGGPaaabaGaeyOeI0IaamyBaiaacIcaca WG6bGcdaWgaaWcbaGaam4zaaqabaqcLbsacaWGXbGaey4kaSIaamyD aiaacMcaaeaacaWGTbGaaiikaiaadIhakmaaBaaaleaacaWGNbaabe aajugibiaadchacqGHRaWkcaWG5bGcdaWgaaWcbaGaam4zaaqabaqc LbsacaWGXbGaaiykaaaaaOGaay5waiaaw2faaaqaaiaadoeadaWgaa WcbaqcLbmacaWGsbGaamOqaiaaiodaaSqabaGccqGH9aqpdaWadaqa auaabeqadmaaaeaacqGHsislcaWGTbGaaiikaiaadMhadaWgaaWcba Gaam4zaaqabaGccaWGXbGaey4kaSIaamOEamaaBaaaleaacaWGNbaa beaakiaadkhacaGGPaaabaGaamyBaiaacIcacaWG5bWcdaWgaaadba Gaam4zaaqabaGccaWGWbGaey4kaSIaam4DaiaacMcaaeaacaWGTbGa aiikaiaadQhadaWgaaWcbaGaam4zaaqabaGccaWGWbGaeyOeI0Iaam ODaiaacMcaaeaacaWGTbGaaiikaiaadIhadaWgaaWcbaGaam4zaaqa baGccaWGXbGaeyOeI0Iaam4DaiaacMcaaeaacqGHsislcaWGTbGaai ikaiaadQhadaWgaaWcbaGaam4zaaqabaGccaWGYbGaey4kaSIaamiE amaaBaaaleaacaWGNbaabeaakiaadchacaGGPaaabaGaamyBaiaacI cacaWG6bWaaSbaaSqaaiaadEgaaeqaaOGaamyCaiabgUcaRiaadwha caGGPaaabaGaamyBaiaacIcacaWG4bWaaSbaaSqaaiaadEgaaeqaaO GaamOCaiabgUcaRiaadAhacaGGPaaabaGaamyBaiaacIcacaWG5bWa aSbaaSqaaiaadEgaaeqaaOGaamOCaiabgkHiTiaadwhacaGGPaaaba GaeyOeI0IaamyBaiaacIcacaWG4bWaaSbaaSqaaiaadEgaaeqaaOGa amiCaiabgUcaRiaadMhadaWgaaWcbaGaam4zaaqabaGccaWGXbGaai ykaaaaaiaawUfacaGLDbaaaeaacaWGdbWaaSbaaSqaaiaadkfacaWG cbGaaGinaaqabaGccqGH9aqpdaWadaqaauaabeqadmaaaeaacaaIWa aabaGaeyOeI0IaamysamaaBaaaleaacaWG5bGaamOEaaqabaGccaWG XbGaeyOeI0IaamysamaaBaaaleaacaWG4bGaamOEaaqabaGccaWGWb Gaey4kaSIaamysamaaBaaaleaacaWG6baabeaakiaadkhaaeaacaWG jbWaaSbaaSqaaiaadMhacaWG6baabeaakiaadkhacqGHRaWkcaWGjb WaaSbaaSqaaiaadIhacaWG5baabeaakiaadchacqGHsislcaWGjbWa aSbaaSqaaiaadMhaaeqaaOGaamyCaaqaaiaadMeadaWgaaWcbaGaam yEaiaadQhaaeqaaOGaamyCaiabgkHiTiaadMeadaWgaaWcbaGaamiE aiaadQhaaeqaaOGaamiCaiabgUcaRiaadMeadaWgaaWcbaGaamOEaa qabaGccaWGYbaabaGaaGimaaqaaiabgkHiTiaadMeadaWgaaWcbaGa amiEaiaadQhaaeqaaOGaamOCaiabgkHiTiaadMeadaWgaaWcbaGaam iEaiaadMhaaeqaaOGaamyCaiabgUcaRiaadMeadaWgaaWcbaGaamiE aaqabaGccaWGWbaabaGaeyOeI0IaamysamaaBaaaleaacaWG5bGaam OEaaqabaGccaWGYbGaey4kaSIaamysamaaBaaaleaacaWG4bGaamyE aaqabaGccaWGWbGaeyOeI0IaamysamaaBaaaleaacaWG5baabeaaki aadghaaeaacaWGjbWaaSbaaSqaaiaadIhacaWG6baabeaakiaadkha cqGHsislcaWGjbWaaSbaaSqaaiaadIhacaWG5baabeaakiaadghacq GHRaWkcaWGjbWaaSbaaSqaaiaadIhaaeqaaOGaamiCaaqaaiaaicda aaaacaGLBbGaayzxaaaaaaa@5266@   (12)

General force and torque vector τRB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jaadk facaWGcbaaaa@3A71@ is the sum of hydrodynamic force and torque vector τH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jaadI eacaaMc8oaaa@3B2B@ , external disturbance force and torque vector τE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jaadw eaaaa@399D@ and thruster force and torque vector, τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0baa@38D3@ .

τ RB = τ H + τ E +τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaadaWgaaadbaGaamOuaiaadkeaaeqaaaWcbeaakiabg2da9iab es8a0naaBaaaleaacaWGibaabeaakiabgUcaRiabes8a0naaBaaale aacaWGfbaabeaakiabgUcaRiabes8a0baa@44FB@   (13)

Hydrodynamic forces and moments are the forces and moments that are applied to the AUV when it moves inside the water. These forces and torques are in the form of three components:

  1. Added mass: This component is created by the inertia of the fluid surrounding the object.
  2. Damping: this component causes the body's movement to be damped.
  3. Restoring force: This component is caused by the force of buoyancy and weight.

The hydrodynamic force and moments τH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jaadI eacaaMc8oaaa@3B2B@ can be obtained by using the equation (14):

τ H = M A v ˙ C A (v)vD(v)vg(η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGibaabeaakiabg2da9iabgkHiTiaad2eadaWgaaWcbaGa amyqaaqabaGcceWG2bGbaiaacqGHsislcaWGdbWaaSbaaSqaaiaadg eaaeqaaOGaaiikaiaadAhacaGGPaGaamODaiabgkHiTiaadseacaGG OaGaamODaiaacMcacaWG2bGaeyOeI0Iaam4zaiaacIcacqaH3oaAca GGPaaaaa@4E7E@   (14)

where the added mass matrix, the Coriolis matrix, the damping matrix and the orientation position of the vector are related to the restoring force and torque. The added mass matrix is obtained from the equation (15):

M A =[ X u ˙ X v ˙ X w ˙ X p ˙ X q ˙ X r ˙ Y u ˙ Y v ˙ Y w ˙ Y p ˙ Y q ˙ Y r ˙ Z u ˙ Z v ˙ Z w ˙ Z p ˙ Z q ˙ Z r ˙ K u ˙ K v ˙ K w ˙ K p ˙ K q ˙ K r ˙ M u ˙ M v ˙ M w ˙ M p ˙ M q ˙ M r ˙ N u ˙ N v ˙ N w ˙ N p ˙ N q ˙ N r ˙ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaac2eadaWgaa WcbaGaaiyqaaqabaGccqGH9aqpcqGHsisldaWadaqaauaabeqageaa aaqaaiaadIfadaWgaaWcbaGabmyDayaacaGaaGPaVdqabaGccaaMc8 UaamiwamaaBaaaleaaceWG2bGbaiaacaaMc8oabeaakiaaykW7caWG ybWaaSbaaSqaaiqadEhagaGaaaqabaGccaaMc8UaaGPaVlaadIfada WgaaWcbaGabmiCayaacaaabeaakiaaykW7caaMc8UaamiwamaaBaaa leaaceWGXbGbaiaaaeqaaOGaaGPaVlaaykW7caWGybWaaSbaaSqaai qadkhagaGaaaqabaaakeaacaWGzbGaaGPaVlaaykW7caaMc8+aaSba aSqaaiqadwhagaGaaaqabaGccaaMc8UaaGPaVlaaykW7caWGzbWaaS baaSqaaiqadAhagaGaaiaaykW7caaMc8UaaGPaVdqabaGccaaMc8Ua aGPaVlaadMfadaWgaaWcbaGabm4DayaacaaabeaakiaaykW7caaMc8 UaaGPaVlaaykW7caWGzbWaaSbaaSqaaiqadchagaGaaaqabaGccaaM c8UaaGPaVlaaykW7caWGzbWaaSbaaSqaaiqadghagaGaaaqabaGcca aMc8UaaGPaVlaaykW7caWGzbWaaSbaaSqaaiqadkhagaGaaaqabaaa keaacaWGAbWaaSbaaSqaaiqadwhagaGaaiaaykW7aeqaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGAbWaaSbaaSqaaiqadAhagaGa aiaaykW7aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaadQfadaWgaa WcbaGabm4DayaacaaabeaakiaaykW7caaMc8UaaGPaVlaadQfadaWg aaWcbaGabmiCayaacaaabeaakiaaykW7caaMc8UaamOwamaaBaaale aaceWGXbGbaiaaaeqaaOGaaGPaVlaaykW7caWGAbWaaSbaaSqaaiqa dkhagaGaaaqabaaakeaacaWGlbWaaSbaaSqaaiqadwhagaGaaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8Uaam4samaaBaaaleaaceWG2bGb aiaaaeqaaOGaaGPaVlaaykW7caaMc8Uaam4samaaBaaaleaaceWG3b GbaiaaaeqaaOGaaGPaVlaaykW7caWGlbWaaSbaaSqaaiqadchagaGa aaqabaGccaaMc8UaaGPaVlaadUeadaWgaaWcbaGabmyCayaacaaabe aakiaaykW7caaMc8Uaam4samaaBaaaleaaceWGYbGbaiaaaeqaaaGc baGaamytamaaBaaaleaaceWG1bGbaiaaaeqaaOGaaGPaVlaad2eada WgaaWcbaGabmODayaacaaabeaakiaaykW7caWGnbWaaSbaaSqaaiqa dEhagaGaaaqabaGccaaMc8UaaGPaVlaad2eadaWgaaWcbaGabmiCay aacaaabeaakiaaykW7caaMc8UaamytamaaBaaaleaaceWGXbGbaiaa aeqaaOGaamytamaaBaaaleaaceWGYbGbaiaaaeqaaaGcbaGaamOtam aaBaaaleaaceWG1bGbaiaaaeqaaOGaaGPaVlaaykW7caaMc8UaamOt amaaBaaaleaaceWG2bGbaiaaaeqaaOGaaGPaVlaaykW7caaMc8Uaam OtamaaBaaaleaaceWG3bGbaiaaaeqaaOGaaGPaVlaaykW7caWGobWa aSbaaSqaaiqadchagaGaaaqabaGccaaMc8UaaGPaVlaad6eadaWgaa WcbaGabmyCayaacaaabeaakiaaykW7caaMc8UaamOtamaaBaaaleaa ceWGYbGbaiaaaeqaaaaaaOGaay5waiaaw2faaaaa@026C@   (15)

The Coriolis matrix is obtained from the equation (16):

CA(v)=[ 0 0 0 0 a 3 a 2 0 0 0 a 3 0 a 1 0 0 0 a 2 a 1 0 0 a 3 a 2 0 b 3 b 2 a 3 0 a 1 b 3 0 b 1 a 2 a 1 0 b 2 b 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qai aadgeacaGGOaGaamODaiaacMcacqGH9aqpcqGHsislkmaadmaabaqb aeqabyGbaaaaaeaacaaIWaGaaGPaVdqaaiaaicdacaaMc8oabaGaaG PaVlaaicdacaaMc8oabaGaaGimaaqaaiabgkHiTiaadggadaWgaaWc baGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyyamaaBaaaleaacaaI ZaaabeaaaOqaaiaaicdaaeaacqGHsislcaWGHbWaaSbaaSqaaiaaig daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeyOeI0Ia amyyamaaBaaaleaacaaIYaaabeaakiaaykW7aeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacqGHsislcaWG HbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYa aabeaaaOqaaiaaicdaaeaacqGHsislcaWGIbWaaSbaaSqaaiaaioda aeqaaaGcbaGaamOyamaaBaaaleaacaaIYaaabeaaaOqaaiaadggada WgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaeyOeI0Iaamyyamaa BaaaleaacaaIXaaabeaaaOqaaiaadkgadaWgaaWcbaGaaG4maaqaba GccaaMc8UaaGPaVdqaaiaaicdaaeaacqGHsislcaWGIbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaOqaai aaykW7caWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiab gkHiTiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaMc8oabaGaamOyam aaBaaaleaajugWaiaaigdaaSqabaaakeaacaaMc8UaaGimaaaaaiaa wUfacaGLDbaaaaa@85FF@   (16)

That

a 1 = X u ˙ u+ X v ˙ v+ X w ˙ w+ X p ˙ p+ X q ˙ q+ X r ˙ r a 2 = Y u ˙ u+ Y v ˙ v+ Y w ˙ w+ Y p ˙ p+ Y q ˙ q+ Y r ˙ r a 3 = Z u ˙ u+ Z v ˙ v+ Z w ˙ w+ Z p ˙ p+ Z q ˙ q+ Z r ˙ r b 1 = K u ˙ u+ K v ˙ v+ K w ˙ w+ K p ˙ p+ K q ˙ q+ K r ˙ r b 2 = M u ˙ u+ M v ˙ v+ M w ˙ w+ M p ˙ p+ M q ˙ q+ M r b 3 = N u ˙ u+ N v ˙ v+ N w ˙ w+ N p ˙ p+ N q ˙ q+ N r ˙ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyyam aaBaaaleaacaaIXaaabeaakiabg2da9iaadIfadaWgaaWcbaGabmyD ayaacaaabeaakiaadwhacaaMc8UaaGPaVlabgUcaRiaadIfadaWgaa WcbaGabmODayaacaaabeaakiaadAhacqGHRaWkcaWGybWaaSbaaSqa aiqadEhagaGaaaqabaGccaWG3bGaey4kaSIaamiwamaaBaaaleaace WGWbGbaiaaaeqaaOGaamiCaiabgUcaRiaadIfadaWgaaWcbaGabmyC ayaacaaabeaakiaadghacqGHRaWkcaWGybWaaSbaaSqaaiqadkhaga GaaaqabaGccaWGYbaabaGaamyyamaaBaaaleaacaaIYaaabeaakiab g2da9iaadMfadaWgaaWcbaGabmyDayaacaaabeaakiaadwhacqGHRa WkcaWGzbWaaSbaaSqaaiqadAhagaGaaaqabaGccaWG2bGaey4kaSIa amywamaaBaaaleaaceWG3bGbaiaaaeqaaOGaam4DaiabgUcaRiaadM fadaWgaaWcbaGabmiCayaacaaabeaakiaadchacqGHRaWkcaWGzbWa aSbaaSqaaiqadghagaGaaaqabaGccaWGXbGaey4kaSIaamywamaaBa aaleaaceWGYbGbaiaaaeqaaOGaamOCaaqaaiaadggadaWgaaWcbaGa aG4maaqabaGccqGH9aqpcaWGAbWaaSbaaSqaaiqadwhagaGaaaqaba GccaWG1bGaey4kaSIaamOwamaaBaaaleaaceWG2bGbaiaaaeqaaOGa amODaiabgUcaRiaadQfadaWgaaWcbaGabm4DayaacaaabeaakiaadE hacqGHRaWkcaWGAbWaaSbaaSqaaiqadchagaGaaaqabaGccaWGWbGa ey4kaSIaamOwamaaBaaaleaaceWGXbGbaiaaaeqaaOGaamyCaiabgU caRiaadQfadaWgaaWcbaGabmOCayaacaaabeaakiaadkhaaeaacaWG IbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Jaam4samaaBaaaleaace WG1bGbaiaaaeqaaOGaamyDaiabgUcaRiaadUeadaWgaaWcbaGabmOD ayaacaaabeaakiaadAhacqGHRaWkcaWGlbWaaSbaaSqaaiqadEhaga GaaaqabaGccaWG3bGaey4kaSIaam4samaaBaaaleaaceWGWbGbaiaa aeqaaOGaamiCaiabgUcaRiaadUeadaWgaaWcbaGabmyCayaacaaabe aakiaadghacqGHRaWkcaWGlbWaaSbaaSqaaiqadkhagaGaaaqabaGc caWGYbaabaGaamOyamaaBaaaleaacaaIYaaabeaakiabg2da9iaad2 eadaWgaaWcbaGabmyDayaacaaabeaakiaadwhacqGHRaWkcaWGnbWa aSbaaSqaaiqadAhagaGaaaqabaGccaWG2bGaey4kaSIaamytamaaBa aaleaaceWG3bGbaiaaaeqaaOGaam4DaiabgUcaRiaad2eadaWgaaWc baGabmiCayaacaaabeaakiaadchacqGHRaWkcaWGnbWaaSbaaSqaai qadghagaGaaaqabaGccaWGXbGaey4kaSIaamytamaaBaaaleaacaWG YbaabeaaaOqaaiaadkgadaWgaaWcbaGaaG4maaqabaGccqGH9aqpca WGobWaaSbaaSqaaiqadwhagaGaaaqabaGccaWG1bGaey4kaSIaamOt amaaBaaaleaaceWG2bGbaiaaaeqaaOGaamODaiabgUcaRiaad6eada WgaaWcbaGabm4DayaacaaabeaakiaadEhacqGHRaWkcaWGobWaaSba aSqaaiqadchagaGaaaqabaGccaWGWbGaey4kaSIaamOtamaaBaaale aaceWGXbGbaiaaaeqaaOGaamyCaiabgUcaRiaad6eadaWgaaWcbaGa bmOCayaacaaabeaakiaadkhaaaaa@D1FC@   (17)

In general, hydrodynamic damping is created due to body friction, wave drift and waves that are emitted from the body and carry energy. The general description of the damping matrix is complex. Although it is customary to write the damping matrix as (18):

D(v)=D+ D n (v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamODaiaacMcacqGH9aqpcaWGebGaey4kaSIaamiramaaBaaaleaa caWGUbaabeaakiaacIcacaWG2bGaaiykaaaa@4122@   (18)

D=[ X u X v X w X p X q X r Y u Y v Y w Y p Y q Y r Z u Z v Z w Z p Z q Z r K u K v K w K p K q K r M u M v M w M p M q M r N u N v N w N p N q N r ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGH9a qpcqGHsisldaWadaqaauaabeqagyaaaaaabaGaamiwamaaBaaaleaa caWG1baabeaaaOqaaiaadIfalmaaBaaameaacaWG2baabeaaaOqaai aadIfadaWgaaWcbaGaam4DaaqabaaakeaacaWGybWaaSbaaSqaaiaa dchaaeqaaaGcbaGaamiwamaaBaaaleaacaWGXbaabeaaaOqaaiaadI fadaWgaaWcbaGaamOCaaqabaaakeaacaWGzbWaaSbaaSqaaiaadwha aeqaaaGcbaGaamywamaaBaaaleaacaWG2baabeaaaOqaaiaadMfada WgbaWcbaWaaSbaaWqaaiaadEhaaeqaaaWcbeaaaOqaaiaadMfadaWg aaWcbaGaamiCaaqabaaakeaacaWGzbWaaSbaaSqaaiaadghaaeqaaa GcbaGaamywamaaBaaaleaacaWGYbaabeaaaOqaaiaadQfadaWgbaWc baGaamyDaaqabaaakeaacaWGAbWaaSbaaSqaaiaadAhaaeqaaaGcba GaamOwamaaBaaaleaacaWG3baabeaaaOqaaiaadQfadaWgaaWcbaGa amiCaaqabaaakeaacaWGAbWaaSbaaSqaaiaadghaaeqaaaGcbaGaam OwamaaBaaaleaacaWGYbaabeaaaOqaaiaadUeadaWgaaWcbaGaamyD aaqabaaakeaacaWGlbWaaSbaaSqaaiaadAhaaeqaaaGcbaGaam4sam aaBaaaleaacaWG3baabeaaaOqaaiaadUeadaWgaaWcbaGaamiCaaqa baaakeaacaWGlbWaaSbaaSqaaiaadghaaeqaaaGcbaGaam4samaaBa aaleaacaWGYbaabeaaaOqaaiaad2eadaWgaaWcbaGaamyDaaqabaaa keaacaWGnbWaaSbaaSqaaiaadAhaaeqaaaGcbaGaamytamaaBaaale aacaWG3baabeaaaOqaaiaad2eadaWgaaWcbaGaamiCaaqabaaakeaa caWGnbWaaSbaaSqaaiaadghaaeqaaaGcbaGaamytamaaBaaaleaaca WGYbaabeaaaOqaaiaad6eadaWgaaWcbaGaamyDaaqabaaakeaacaWG obWaaSbaaSqaaiaadAhaaeqaaaGcbaGaamOtamaaBaaaleaacaWG3b aabeaaaOqaaiaad6eadaWgaaWcbaGaamiCaaqabaaakeaacaWGobWa aSbaaSqaaiaadghaaeqaaaGcbaGaamOtamaaBaaaleaacaWGYbaabe aaaaaakiaawUfacaGLDbaaaaa@851E@   (19)

The non-linear part of the damping is obtained by using the equation (20):

D n (v)=[ X | u |u| |u| 0 0 0 0 0 0 Y | v |v | v |+ Y | r |v| r| 0 0 0 Y | v |r| v|+ Y | r |r r| 0 0 Z | w |w| w| 0 0 0 ][ 0 0 0 K | p |p | p | 0 0 0 0 0 0 M | q |q | q | N | v |r| v| + | r |r r| 0 N | v |v | v |+ N | r |v| r| 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaamOBaaqabaGccaGGOaGaaiODaiaacMcacqGH9aqpdaWadaqa auaabeqadyaaaaqaaiaadIfadaWgaaWcbaWaaqWaaeaacaWG1baaca GLhWUaayjcSdWaaqGaaeaacaWG1baacaGLiWoaaeqaaOWaaqGaaeaa daabbaqaaiaadwhaaiaawEa7aaGaayjcSdaabaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyw amaaBaaaleaadaabdaqaaiaadAhaaiaawEa7caGLiWoacaWG2baabe aakmaaemaabaGaamODaaGaay5bSlaawIa7aiabgUcaRiaadMfadaWg aaWcbaWaaqWaaeaacaWGYbaacaGLhWUaayjcSdWaaqGaaeaacaWG2b aacaGLiWoaaeqaaOWaaqGaaeaacaWGYbaacaGLiWoaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaWGzbWaaSbaaSqaamaaemaabaGaam ODaaGaay5bSlaawIa7amaaeiaabaGaamOCaaGaayjcSdaabeaakmaa eiaabaGaamODaaGaayjcSdGaey4kaSIaamywamaaBaaaleaadaabda qaaiaadkhaaiaawEa7caGLiWoacaWGYbaabeaakmaaeiaabaGaamOC aaGaayjcSdaabaGaaGimaaqaaiaaicdaaeaacaWGAbWaaSbaaSqaam aaemaabaGaam4DaaGaay5bSlaawIa7amaaeiaabaGaam4DaaGaayjc SdaabeaakmaaeiaabaGaam4DaaGaayjcSdaabaGaaGimaaqaaiaaic daaeaacaaIWaaaaaGaay5waiaaw2faaiabgkHiTmaadmaabaqbaeqa bmGbaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaam4samaaBa aaleaadaabdaqaaiaadchaaiaawEa7caGLiWoacaWGWbaabeaakmaa emaabaGaamiCaaGaay5bSlaawIa7aaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaad2eadaWg aaWcbaWaaqWaaeaacaWGXbaacaGLhWUaayjcSdGaamyCaaqabaGcda abdaqaaiaadghaaiaawEa7caGLiWoaaeaacaWGobWaaSbaaSqaamaa emaabaGaamODaaGaay5bSlaawIa7amaaeiaabaGaamOCaaGaayjcSd aabeaakmaaeiaabaGaamODaaGaayjcSdGaey4kaSYaaSbaaSqaamaa emaabaGaamOCaaGaay5bSlaawIa7aiaadkhaaeqaaOWaaqGaaeaaca WGYbaacaGLiWoaaeaacaaIWaaabaGaamOtamaaBaaaleaadaabdaqa aiaadAhaaiaawEa7caGLiWoacaWG2baabeaakmaaemaabaGaamODaa Gaay5bSlaawIa7aiabgUcaRiaad6eadaWgaaWcbaWaaqWaaeaacaWG YbaacaGLhWUaayjcSdWaaqGaaeaacaWG2baacaGLiWoaaeqaaOWaaq GaaeaacaWGYbaacaGLiWoaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaaaaGaay5waiaaw2faaaaa@D20A@   (20)

All members of the above matrix have a numerical value. However, the values of some of them are very small and therefore they are considered zero [89]. The restoring forces and torques are obtained from the equation (20):

D n (v)=[ X | u |u| |u| 0 0 0 0 0 0 Y | v |v | v |+ Y | r |v| r| 0 0 0 Y | v |r| v|+ Y | r |r r| 0 0 Z | w |w| w| 0 0 0 ][ 0 0 0 K | p |p | p | 0 0 0 0 0 0 M | q |q | q | N | v |r| v| + | r |r r| 0 N | v |v | v |+ N | r |v| r| 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaamOBaaqabaGccaGGOaGaaiODaiaacMcacqGH9aqpdaWadaqa auaabeqadyaaaaqaaiaadIfadaWgaaWcbaWaaqWaaeaacaWG1baaca GLhWUaayjcSdWaaqGaaeaacaWG1baacaGLiWoaaeqaaOWaaqGaaeaa daabbaqaaiaadwhaaiaawEa7aaGaayjcSdaabaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyw amaaBaaaleaadaabdaqaaiaadAhaaiaawEa7caGLiWoacaWG2baabe aakmaaemaabaGaamODaaGaay5bSlaawIa7aiabgUcaRiaadMfadaWg aaWcbaWaaqWaaeaacaWGYbaacaGLhWUaayjcSdWaaqGaaeaacaWG2b aacaGLiWoaaeqaaOWaaqGaaeaacaWGYbaacaGLiWoaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaWGzbWaaSbaaSqaamaaemaabaGaam ODaaGaay5bSlaawIa7amaaeiaabaGaamOCaaGaayjcSdaabeaakmaa eiaabaGaamODaaGaayjcSdGaey4kaSIaamywamaaBaaaleaadaabda qaaiaadkhaaiaawEa7caGLiWoacaWGYbaabeaakmaaeiaabaGaamOC aaGaayjcSdaabaGaaGimaaqaaiaaicdaaeaacaWGAbWaaSbaaSqaam aaemaabaGaam4DaaGaay5bSlaawIa7amaaeiaabaGaam4DaaGaayjc SdaabeaakmaaeiaabaGaam4DaaGaayjcSdaabaGaaGimaaqaaiaaic daaeaacaaIWaaaaaGaay5waiaaw2faaiabgkHiTmaadmaabaqbaeqa bmGbaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaam4samaaBa aaleaadaabdaqaaiaadchaaiaawEa7caGLiWoacaWGWbaabeaakmaa emaabaGaamiCaaGaay5bSlaawIa7aaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaad2eadaWg aaWcbaWaaqWaaeaacaWGXbaacaGLhWUaayjcSdGaamyCaaqabaGcda abdaqaaiaadghaaiaawEa7caGLiWoaaeaacaWGobWaaSbaaSqaamaa emaabaGaamODaaGaay5bSlaawIa7amaaeiaabaGaamOCaaGaayjcSd aabeaakmaaeiaabaGaamODaaGaayjcSdGaey4kaSYaaSbaaSqaamaa emaabaGaamOCaaGaay5bSlaawIa7aiaadkhaaeqaaOWaaqGaaeaaca WGYbaacaGLiWoaaeaacaaIWaaabaGaamOtamaaBaaaleaadaabdaqa aiaadAhaaiaawEa7caGLiWoacaWG2baabeaakmaaemaabaGaamODaa Gaay5bSlaawIa7aiabgUcaRiaad6eadaWgaaWcbaWaaqWaaeaacaWG YbaacaGLhWUaayjcSdWaaqGaaeaacaWG2baacaGLiWoaaeqaaOWaaq GaaeaacaWGYbaacaGLiWoaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaaaaGaay5waiaaw2faaaaa@D20A@   (21)

where and are the force of weight and buoyancy, respectively, and can be obtained from the equation (21):

W=mg B=ρm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGxbGaeyypa0JaamyBaiaadEgaaOqaaKqzGeGaamOqaiabg2da9iab eg8aYjaad2gacqGHhis0aaaa@4202@   (22)

Where the mass of the object, the acceleration of gravity, the density of the object, and the volume of the fluid displaced by the object are the coordinates of the center of buoyancy and the coordinates of the center of gravity.

AUV motion equations in six degrees of freedom, by placing (14) in (11) and combining it with (7) are obtained as follows

M v ˙ =C(v)vD(v)vg(η)+τ+ τ E η ˙ =J(η)v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGnbGabmODayaacaGaeyypa0JaeyOeI0Iaam4qaiaacIcacaWG2bGa aiykaiaadAhacqGHsislcaWGebGaaiikaiaadAhacaGGPaGaamODai abgkHiTiaadEgacaGGOaGaeq4TdGMaaiykaiabgUcaRiabes8a0jab gUcaRiabes8a0TWaaSbaaeaajugWaiaadweaaSqabaaakeaacuaH3o aAgaGaaiabg2da9iaadQeajugibiaacIcacqaH3oaAcaGGPaGaamOD aaaaaa@5907@   (23)

Where

M=(MRB+MA)C(v)=CRB(v)+CA(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamytai abg2da9iaacIcacaWGnbGaamOuaiaadkeacqGHRaWkcaWGnbGaamyq aiaacMcacaaMc8UaaGPaVlaadoeacaGGOaGaamODaiaacMcacqGH9a qpcaWGdbqcLbmacaWGsbGaamOqaKqzGeGaaiikaiaadAhacaGGPaGa ey4kaSIaai4qaKqzadGaaiyqaKqzGeGaaiikaiaacAhacaGGPaaaaa@53E5@   (24)

The Coriolis matrix for a body moving in a fluid is a quasi-symmetric matrix. that is:

C(v)= C T (v),v 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qai aacIcacaWG2bGaaiykaiabg2da9iabgkHiTiaadoealmaaCaaameqa baGaamivaaaajugibiaacIcacaWG2bGaaiykaiaacYcacqGHaiIica WG2bGaeyicI4SaeSyhHe6cdaahaaadbeqaaiaaiAdaaaaaaa@47D1@   (25)

If the body moves in an ideal fluid; the damping matrix is a real, non-symmetric and positive matrix. that is:

D(v)>0,v 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamirai aacIcacaWG2bGaaiykaiabg6da+iaaicdacaGGSaGaeyiaIiIaamOD aiabgIGiolabl2riHUWaaWbaaWqabeaadaahaaqabeaacaaI2aaaaa aaaaa@4306@   (26)

Design adaptive control

As mentioned, the sliding mode control is a non-linear and robust control, but the presence of constant gain in the switching section leads to the undesirable chattering phenomenon. This stable profit is considered proportional to the limit of disturbance and uncertainty. It is customary to choose a more conservative uncertainty band in the design of the controller to ensure the convergence of currents to the sliding surface. However, this causes chattering to increase. For this reason, sliding-mode adaptive controllers are used to reduce chattering so that the gain of the controller is estimated using the matching law and is as small as possible to avoid chattering and as large as required. Until they converge to the sliding surface and the algorithm is resistant to external disturbances and uncertainties of the system

In short, by using the resilient-adaptive method, a fixed gain is not used to suppress disturbances and the phenomenon of chattering, which is too large for disturbances due to the large gain, is avoided, while, in the event of a large disturbance, control the adjuster has controllable gain and consistency. This method, by using the two-layer matching law, works without the need of disturbance boundary information and its derivative, and the control law is proposed to build the principles of equivalent control, which, unlike the conventional sliding mode control law, is the sum of two parts, equivalent control and control switching.

In this method, the sliding surface is considered as a simple sliding mode control as (26). In order to simplify the relation (27), nonlinear dynamics and disturbance in the derivative of the sliding surface, as an invariant expression is taken and its value is estimated using the adaptive controller:

S 1 ˙ =d(t)+ u c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uai qaigdagaGaaiabg2da9iaadsgacaGGOaGaamiDaiaacMcacqGHRaWk caGG1bWcdaWgaaadbaGaai4yaaqabaqcLbsacaGGOaGaaiiDaiaacM caaaa@4354@   (27)

Where

d(t)= ( C η (v,η) S 1 D η (v,η) S 1 M v ˙ r C(v) v r D(v) v r + τ E M η (η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamizai aacIcacaWG0bGaaiykaiabg2da9OWaaSaaaeaajugibiaacIcacqGH sislcaWGdbWcdaWgaaadbaGaeq4TdGgabeaajugibiaacIcacaWG2b GaaiilaiabeE7aOjaacMcacaGGtbGcdaWgaaWcbaqcLbmacaaIXaaa leqaaKqzGeGaeyOeI0IaamiraOWaaSbaaSqaaiabeE7aObqabaqcLb sacaGGOaGaamODaiaacYcacqaH3oaAcaGGPaGaai4uaOWaaSbaaSqa aiaaigdaaeqaaKqzGeGaeyOeI0IaamytaiqadAhagaGaaOWaaSbaaS qaaiaadkhaaeqaaKqzGeGaeyOeI0Iaam4qaiaacIcacaWG2bGaaiyk aiaadAhakmaaBaaaleaacaWGYbaabeaajugibiabgkHiTiaadseaca GGOaGaamODaiaacMcacaWG2bGcdaWgaaWcbaGaamOCaaqabaqcLbsa cqGHRaWkcqaHepaDkmaaBaaaleaadaWgaaadbaGaamyraaqabaaale qaaaGcbaqcLbsacaWGnbGcdaWgaaWcbaGaeq4TdGgabeaajugibiaa cIcacqaH3oaAcaGGPaaaaaaa@7189@   (28)

u c (t)= M η 1 (η)τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyDaO WaaSbaaSqaaiaadogaaeqaaKqzGeGaaiikaiaadshacaGGPaGaeyyp a0JaamytaOWaaSbaaSqaaiabeE7aObqabaGcdaahaaWcbeqaaiabgk HiTiaaigdaaaqcLbsacaGGOaGaeq4TdGMaaiykaiabes8a0baa@4788@   (29)

Provided that ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaGG0bGaaiykaaaa@3A9A@ is bounded with a range of 0d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGimai aacsgaaaa@393F@  and its derivative is bounded with a limit of 1d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGymai aacsgaaaa@3940@ , in this case, the control law is considered as (30) [91]:

u c (t)=K(t)+β)sgn( S 1 (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyDaO WaaSbaaSqaaiaadogaaeqaaKqzGeGaaiikaiaadshacaGGPaGaeyyp a0JaeyOeI0Iaam4saiaacIcacaWG0bGaaiykaiabgUcaRiabek7aIj aacMcaciGGZbGaai4zaiaac6gacaGGOaGaam4uaSWaaSbaaWqaaiaa igdaaeqaaKqzGeGaaiikaiaadshacaGGPaGaaiykaaaa@4DB6@   (30)

where β is a positive and small constant scalar of design and K(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4sai aacIcacaWG0bGaaiykaaaa@3ABF@ is a variable scalar that is adjusted using the matching law. To converge to the sliding surface, the relation (30) must be established:

S 1 S 1 ˙ <β| S 1 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaai4uaO WaaSbaaSqaaiaaigdaaeqaaKqzGeGaai4uaOWaaSbaaSqaaiqaigda gaGaaaqabaGccqGH8aapcqGHsisljugibiabek7aIPWaaqWaaeaaju gibiaacofakmaaBaaaleaacaaIXaaabeaaaOGaay5bSlaawIa7aaaa @457D@   (31)

By placing the relation (31) in (30), it is possible to obtain:

S 1 (t)(d(t)+ u c (t))<β| S 1 (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaSbaaWqaaiaaigdaaeqaaKqzGeGaaiikaiaadshacaGGPaGaaiik aiaadsgacaGGOaGaamiDaiaacMcacqGHRaWkcaWG1bGcdaWgaaWcba Gaam4yaaqabaqcLbsacaGGOaGaamiDaiaacMcacaGGPaGccqGH8aap cqGHsisljugibiabek7aIPWaaqWaaeaajugibiaacofakmaaBaaale aacaaIXaaabeaakiaacIcacaWG0bGaaiykaaGaay5bSlaawIa7aaaa @52C2@   (32)

By placing (30) in (32), it can be written:

S 1 (t)(d(t)K(t)+β)sgn( S 1 (t))<β| S 1 (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaSbaaWqaaiaaigdaaeqaaKqzGeGaaiikaiaadshacaGGPaGaaiik aiaadsgacaGGOaGaamiDaiaacMcacqGHsislcaWGlbGaaiikaiaads hacaGGPaGaey4kaSIaeqOSdiMaaiykaiGacohacaGGNbGaaiOBaiaa cIcacaWGtbWcdaWgaaadbaGaaGymaaqabaqcLbsacaGGOaGaamiDai aacMcacaGGPaGccqGH8aapcqGHsisljugibiabek7aIPWaaqWaaeaa jugibiaacofakmaaBaaaleaacaaIXaaabeaakiaacIcacaWG0bGaai ykaaGaay5bSlaawIa7aaaa@5C54@   (33)

The relation (32), with a slight simplification, is rewritten as (34):

S 1 (t)d(t)K(t)| S 1 (t) |β| S 1 (t) |<β| S 1 (t) | S 1 (t)d(t)<K(t)| S 1 (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGtbWcdaWgaaadbaGaaGymaaqabaqcLbsacaGGOaGaamiDaiaacMca caWGKbGaaiikaiaadshacaGGPaGaeyOeI0Iaam4saiaacIcacaWG0b GaaiykaOWaaqWaaeaajugibiaacofakmaaBaaaleaacaaIXaaabeaa kiaacIcacaWG0bGaaiykaaGaay5bSlaawIa7aiabgkHiTKqzGeGaeq OSdiMcdaabdaqaaKqzGeGaai4uaOWaaSbaaSqaaiaaigdaaeqaaOGa aiikaiaadshacaGGPaaacaGLhWUaayjcSdGaeyipaWJaeyOeI0scLb sacqaHYoGykmaaemaabaqcLbsacaGGtbGcdaWgaaWcbaGaaGymaaqa baGccaGGOaGaamiDaiaacMcaaiaawEa7caGLiWoaaeaajugibiaado falmaaBaaameaacaaIXaaabeaajugibiaacIcacaWG0bGaaiykaiaa dsgacaGGOaGaamiDaiaacMcakiabgYda8KqzGeGaam4saiaacIcaca WG0bGaaiykaOWaaqWaaeaajugibiaacofakmaaBaaaleaacaaIXaaa beaakiaacIcacaWG0bGaaiykaaGaay5bSlaawIa7aaaaaa@7789@   (34)

(sgn(S1(t))d(t)<K(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcajugibi GacohacaGGNbGaaiOBaiaacIcacaWGtbGccaaIXaqcLbsacaGGOaGa amiDaiaacMcacaGGPaGaamizaiaacIcacaWG0bGaaiykaOGaeyipaW tcLbsacaWGlbGaaiikaiaadshacaGGPaaaaa@48F0@  from the relation (34) it can be concluded that:

| d(t) |<K(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaGaam izaiaacIcacaWG0bGaaiykaaGaay5bSlaawIa7aiabgYda8KqzGeGa am4saiaacIcacaWG0bGaaiykaaaa@4220@   (35)

Therefore, the relation (35) is a sufficient condition for convergence to the sliding surface. During the convergence to the sliding surface, 0=(S1(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGimai abg2da9iaacIcacaWGtbGccaaIXaqcLbsacaGGOaGaamiDaiaacMca aaa@3E87@ and uc(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaWGJb qcLbsacaGGOaGaamiDaiaacMcaaaa@3BD1@ is equal to the equivalent control of (ueq(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacwhacaGGLbGaaiyCaiaacIcacaWG0bGaaiykaaaa@3D72@ , which is actually the average of is uc(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaWGJb qcLbsacaGGOaGaamiDaiaacMcaaaa@3BD1@ and it is possible to pass the signal (uc(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWG1b Gaam4yaKqzGeGaaiikaiaadshacaGGPaaaaa@3C7D@  through a low-pass filter to its approximate value [92].       is from the solution of the algebraic equation 0=(S 1 ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGimai abg2da9iaacIcacaWGtbGcceaIXaGbaiaajugibiaacIcacaWG0bGa aiykaaaa@3E90@ when 0=(S1(t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGimai abg2da9iaacIcacaWGtbGccaaIXaGaaiikaKqzGeGaamiDaaaa@3DDA@ , is obtained.

Therefore:

u eq (t)=d(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiyDaO WaaSbaaSqaaiaacwgacaGGXbaabeaajugibiaacIcacaWG0bGaaiyk aiabg2da9iabgkHiTiaacsgacaGGOaGaamiDaiaacMcaaaa@42B8@   (36)

By passing the switching signal ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaWG0bGaaiykaaaa@3A9B@ through a low-pass filter, an approximation of ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaWG0bGaaiykaaaa@3A9B@   is obtained in the form (36):

u ¯ eq (t)= 1 1+ τ f S u c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aaraGcdaWgaaWcbaGcdaWgaaWcbaGcdaWgbaWcbaqcLbmacaGGLbGa aiyCaaWcbeaaaeqaaaqabaqcLbsacaGGOaGaamiDaiaacMcacqGH9a qpkmaalaaabaqcLbsacaaIXaaakeaajugibiaaigdacqGHRaWkcqaH epaDkmaaBaaaleaacaWGMbaabeaajugibiaadofaaaGaamyDaOWaaS baaSqaaiaadogaaeqaaKqzGeGaaiikaiaadshacaGGPaaaaa@4D30@   (37)

u ¯ ˙ eq(t)= 1 τ ((k(t)+(sgn(S1(t)) u ¯ eq (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwhagaqega GaaiaadwgacaWGXbqcLbsacaGGOaGaamiDaiaacMcacqGH9aqpkmaa laaabaGaaGymaaqaaKqzGeGaeqiXdqhaaOGaaiikaiabgkHiTiaacI cacaWGRbqcLbsacaGGOaGaamiDaiaacMcacqGHRaWkkiaacIcajugi biGacohacaGGNbGaaiOBaiaacIcacaWGtbGccaaIXaqcLbsacaGGOa GaamiDaiaacMcacaGGPaGaeyOeI0IcdaqdaaqaaKqzGeGaaiyDaaaa kmaaBaaaleaakmaaBaaaleaakmaaBeaaleaajugWaiaacwgacaGGXb aaleqaaaqabaaabeaajugibiaacIcacaWG0bGaaiykaiaacMcaaaa@5BE4@

In the relation (37), τ f >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiXdq NcdaWgaaWcbaqcLbsacaWGMbaaleqaaKqzGeGaeyOpa4JaaGimaaaa @3D6E@ is a time constant and if it is chosen small enough, | ( u ¯ eq(t)ueq(t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaqcLb sacaGGOaGabmyDayaaraGaamyzaiaadghacaGGOaGaamiDaiaacMca cqGHsislcaWG1bGaamyzaiaadghacaGGOaGaamiDaiaacMcaaOGaay 5bSlaawIa7aaaa@46D2@ becomes small enough and the correct estimate of ueq(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyDai aadwgacaWGXbGaaiikaiaadshacaGGPaaaaa@3CC9@  is obtained. The adaptation of ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaWG0bGaaiykaaaa@3A9B@ is made using equivalent control. By adding a confidence margin and an estimate of ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaWG0bGaaiykaaaa@3A9B@ under the condition (38), we can write:

K(t)> 1 μ | u ¯ eq (t) |+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeajugibi aacIcacaWG0bGaaiykaiabg6da+OWaaSaaaeaacaaIXaaabaGaeqiV d0gaamaaemaabaqcLbsaceWG1bGbaebakmaaBaaaleaacaWGLbGaam yCaaqabaqcLbsacaGGOaGaamiDaiaacMcaaOGaay5bSlaawIa7aiab gUcaRiabgIGiodaa@4A7C@   (38)

where 0<μ<1   and >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaacq GHiiIZaeqaaKqzGeGaeyOpa4JaaGimaaaa@3B0F@ are design scalars and should be chosen in such a way that:

1 μ | u ¯ eq (t) |+ 2 > u eq (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeY7aTbaadaabdaqaaKqzGeGabmyDayaaraGcdaWgaaWc baGaamyzaiaadghaaeqaaKqzGeGaaiikaiaadshacaGGPaaakiaawE a7caGLiWoacqGHRaWkdaWcaaqaaiabgIGiodqaaiaaikdaaaGaeyOp a4JaamyDamaaBaaaleaacaWGLbGaamyCaaqabaqcLbsacaGGOaGaam iDaiaacMcaaaa@4D74@   (39)

Now the error variable is considered as (40):

δ(t)=(k(t) 1 μ | u ¯ eq (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKLqzGe GaaiikaiaadshacaGGPaGaeyypa0JccaGGOaGaam4AaKqzGeGaaiik aiaadshacaGGPaGaeyOeI0IcdaWcaaqaaiaaigdaaeaacqaH8oqBaa WaaqWaaeaajugibiqadwhagaqeaOWaaSbaaSqaaiaadwgacaWGXbaa beaajugibiaacIcacaWG0bGaaiykaaGccaGLhWUaayjcSdGaeyOeI0 IaeyicI4maaa@50CE@   (40)

k(t)= 1 μ | u ¯ eq (t) |+>| u eq (t) |=| d(t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgajugibi aacIcacaWG0bGaaiykaiabg2da9OWaaSaaaeaacaaIXaaabaGaeqiV d0gaamaaemaabaqcLbsaceWG1bGbaebakmaaBaaaleaacaWGLbGaam yCaaqabaqcLbsacaGGOaGaamiDaiaacMcaaOGaay5bSlaawIa7aiab gUcaRiabgIGiolabg6da+maaemaabaGaamyDamaaBaaaleaacaWGLb GaamyCaaqabaqcLbsacaGGOaGaamiDaiaacMcaaOGaay5bSlaawIa7 aiabg2da9maaemaabaGaamizaKqzGeGaaiikaiaadshacaGGPaaaki aawEa7caGLiWoaaaa@5CB1@

Note that if 0=δc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH9a qpcqaH0oazcaWGJbaaaa@3B5C@ , then Therefore, the problem of the sliding mode becomes a problem whose goal is 0((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGHsg IRcaGGOaGaaiikaiaacshacaGGPaaaaa@3CB2@ . The matching law ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaGGOa GaaiiDaiaacMcaaaa@3A0B@ is considered as 41): MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaisdacaaIXa GaaiykaiaacQdaaaa@39F2@

k ˙ t= ρ c (t)sgn( δ c ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabm4Aay aacaGaaiiDaiabg2da9iabgkHiTiabeg8aYPWaaSbaaSqaaiaacoga aeqaaKqzGeGaaiikaiaacshacaGGPaGaai4CaiaacEgacaGGUbGaai ikaiabes7aKPWaaSbaaSqaaKqzadGaam4yaaWcbeaajugibiaacIca caGGOaGaaiiDaiaacMcaaaa@4C46@   (41)

where (ρc(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai abeg8aYPGaam4yaKqzGeGaaiikaiaacshacaGGPaaaaa@3DDB@ is the design variable scalar and is an interpretation of the upper limit of the disturbance change rate, and the structure of (ρc(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai abeg8aYPGaam4yaKqzGeGaaiikaiaacshacaGGPaaaaa@3DDB@ is written as (42) below:

ρ c (t)= r o + r c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyWdi NcdaWgaaWcbaGcdaWgaaWcbaqcLbsacaWGJbaaleqaaaqabaqcLbsa caGGOaGaaiiDaiaacMcacqGH9aqpcaWGYbGcdaWgaaWcbaGaam4Baa qabaqcLbsacqGHRaWkcaWGYbGcdaWgaaWcbaGaam4yaaqabaqcLbsa caGGOaGaaiiDaiaacMcaaaa@47B8@   (42)

where 𝑟0 is a positive and constant scalar and (rc(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aackhacaGGJbGaaiikaiaacshacaGGPaaaaa@3C77@  is obtained by solving a differential equation (adaptation law). Therefore, in this controller there are two adaptation laws related to ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaGG0bGaaiykaaaa@3A9A@ and ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaGG0bGaaiykaaaa@3A9A@ , the rate of change of (k(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacUgacaGGOaGaaiiDaiaacMcaaaa@3B89@  (first adaptation law) is a function of ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaGG0bGaaiykaaaa@3A9A@ which is calculated by the second adaptation law in relation (43) so that | ρc(t)> |d(t. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaqcLb sacqaHbpGCcaWGJbGaaiikaiaacshacaGGPaGaeyOpa4dakiaawEa7 caGLiWoacaWGKbGaaiikaiaadshacaGGUaaaaa@440A@

r ˙ c (t)={ γ| δ c (t) | if| δ c (t) |> δ 0 0 o.w. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqackhagaGaam aaBaaaleaacaGGJbaabeaajugibiaacIcacaGG0bGaaiykaiabg2da 9OWaaiqaaeaajugibuaabeqaciaaaeaacqaHZoWzkmaaemaabaGaeq iTdq2aaSbaaSqaaiaadogaaeqaaOGaaiikaiaacshacaGGPaaacaGL hWUaayjcSdaajugibeaacaWGPbGaamOzaOWaaqWaaeaacqaH0oazda WgaaWcbaGaam4yaaqabaGccaGGOaGaaiiDaiaacMcaaiaawEa7caGL iWoacqGH+aGpcqaH0oazdaWgaaWcbaGaaGimaaqabaaajugibeaaca aIWaaabaGaam4Baiaac6cacaWG3bGaaiOlaaaaaOGaay5Eaaaaaa@5B92@   (43)

where 0>δ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH+a GpcqaH0oazcaaIWaaaaa@3B2F@ scalar is designed. ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aacIcacaGG0bGaaiykaaaa@3A9A@ is defined as the second matching error as (44):

e(t)= q c d1 μ r c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadghadaWgaaWcbaGaam4y aaqabaGccaWGKbGaaGymaaqaaiabeY7aTbaacqGHsislcaWGYbWaaS baaSqaaiaadogaaeqaaOGaaiikaiaadshacaGGPaaaaa@4622@   (44)

where qc>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacghacaGGJb GaeyOpa4JaaGymaaaa@3AAD@ is the confidence margin variable and the disturbance derivative limit whose value is unknown. In figure (45), the block diagram of the proposed controller is shown (Figure 2).

e(t)= q c d1 μ r c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadghadaWgaaWcbaGaam4y aaqabaGccaWGKbGaaGymaaqaaiabeY7aTbaacqGHsislcaWGYbWaaS baaSqaaiaadogaaeqaaOGaaiikaiaadshacaGGPaaaaa@4622@

Figure 2 Block diagram of adaptive sliding mode control for the proposed submarine system.

Proof of stability

According to theorem [91], if we consider the indefinite term d such that 0(t)| <d | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacaGGOa GaamiDaiaacMcadaabdaqaaiabgYda8iaadsgaaiaawEa7caGLiWoa aaa@3F29@ and 1d(t)| <d | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaWGKb GaaiikaiaadshacaGGPaWaaqWaaeaacqGH8aapcaWGKbaacaGLhWUa ayjcSdaaaa@4013@ be valid and d0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaaIWa aaaa@38B1@ and d1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7caWGKb GaaGymaaaa@3A3D@ are restricted but unknown. By choosing MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@3892@ in such a way that the relation (45) holds for each δ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaaic daaaa@396D@ and d1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaaIXa aaaa@38B2@ , causes it to be blocked in time and as a result the sliding motion is stable.

1 4 2 > δ 0 2 + 1 γ ( q c d 1 μ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaisdaaaGaeyicI48aaWbaaSqabeaacaaIYaaaaOGaeyOp a4JaeqiTdq2aaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaacaaIYa aaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4SdCgaamaabmaabaWa aSaaaeaacaWGXbWaaSbaaSqaaiaadogaaeqaaOGaamizamaaBaaale aacaaIXaaabeaaaOqaaiabeY7aTbaaaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaaaa@4B18@   (44)

The Lyapunov function is considered as (45):

V= 1 2 δ c 2 + 1 2γ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabes7aKnaaBaaaleaacaWG JbaabeaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaG ymaaqaaiaaikdacqaHZoWzaaGaamyzamaaCaaaleqabaGaaGOmaaaa aaa@440F@   (45)

By deriving from the relation (46), it can be written:

δ ˙ c (t)= k ˙ t 1 μ u ¯ ˙ eq (t)sgn( u ¯ eq (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbes7aKzaaca WaaSbaaSqaaiaadogaaeqaaOGaaiikaiaadshacaGGPaGaeyypa0tc LbsaceWGRbGbaiaacaGG0bGaeyOeI0IcdaWcaaqaaiaaigdaaeaacq aH8oqBaaGabmyDayaaryaacaWaaSbaaSqaaiaadwgacaWGXbaabeaa kiaacIcacaWG0bGaaiykaiGacohacaGGNbGaaiOBaiaacIcaceWG1b GbaebadaWgaaWcbaGaamyzaiaadghaaeqaaOGaaiikaiaadshacaGG PaGaaiykaaaa@5255@   (46)

By placing the relation (46) in (45), ( k ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai qadUgagaGaaiaacIcacaGG0bGaaiykaaaa@3B93@ is obtained as follows:

k ˙ (t)= r 0 + r c (t))sgn( δ c (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabm4Aay aacaGaaiikaiaacshacaGGPaGaeyypa0JaeyOeI0IaamOCaOWaaSba aSqaaiaaicdaaeqaaKqzGeGaey4kaSIaamOCaOWaaSbaaSqaaiaado gaaeqaaKqzGeGaaiikaiaacshacaGGPaGaaiykaiaacohacaGGNbGa aiOBaiaacIcakiabes7aKnaaBaaaleaacaWGJbaabeaakiaacIcaca WG0bGaaiykaiaacMcaaaa@4F20@   (47)

Also, according to the relation (48), it can be written:

r c (t)= q c d 1 μ e(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOCaO WaaSbaaSqaaiaadogaaeqaaKqzGeGaaiikaiaacshacaGGPaGaeyyp a0JcdaWcaaqaaiaadghadaWgaaWcbaGaam4yaaqabaGccaWGKbWaaS baaSqaaiaaigdaaeqaaaGcbaGaeqiVd0gaaiabgkHiTiaadwgacaGG OaGaamiDaiaacMcaaaa@477F@   (48)

By placing relation (48) in (47):

k ˙ (t)=( r 0 + q c d 1 μ e(t) )sgn( δ c (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabm4Aay aacaGaaiikaiaacshacaGGPaGaeyypa0JaeyOeI0IcdaqadaqaaKqz GeGaaiOCaOWaaSbaaSqaaiaaicdaaeqaaKqzGeGaey4kaSIcdaWcaa qaaiaadghadaWgaaWcbaGaam4yaaqabaGccaWGKbWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeqiVd0gaaiabgkHiTiaadwgacaGGOaGaamiDai aacMcaaiaawIcacaGLPaaajugibiaacohacaGGNbGaaiOBaiaacIca kiabes7aKnaaBaaaleaacaWGJbaabeaakiaacIcacaWG0bGaaiykai aacMcaaaa@5615@   (49)

Therefore, (δ̇(𝑡) is obtained as follows:

δ ˙ c (t)=( r 0 + q c d 1 μ e(t) )sgn( δ c (t)) 1 μ ϕ(t)sgn( u ¯ eq (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbes7aKzaaca WaaSbaaSqaaiaadogaaeqaaOGaaiikaiaadshacaGGPaGaeyypa0Ja eyOeI0YaaeWaaeaajugibiaackhakmaaBaaaleaacaaIWaaabeaaju gibiabgUcaROWaaSaaaeaacaWGXbWaaSbaaSqaaiaadogaaeqaaOGa amizamaaBaaaleaacaaIXaaabeaaaOqaaiabeY7aTbaacqGHsislca WGLbGaaiikaiaadshacaGGPaaacaGLOaGaayzkaaqcLbsacaGGZbGa ai4zaiaac6gacaGGOaGccqaH0oazdaWgaaWcbaGaam4yaaqabaGcca GGOaGaamiDaiaacMcacaGGPaGaeyOeI0YaaSaaaeaacaaIXaaabaGa eqiVd0gaaiabew9aMjaacIcacaGG0bGaaiykaiaacohacaGGNbGaai OBaiaacIcaceWG1bGbaebadaWgaaWcbaGaamyzaiaadghaaeqaaOGa aiikaiaadshacaGGPaGaaiykaaaa@687E@   (50)

where by deriving the relation (50), it can be written:

e ˙ (t)= r c ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwgagaGaai aacIcacaWG0bGaaiykaiabg2da9iabgkHiTKqzGeGaamOCaOWaaSba aSqaaiqadogagaGaaaqabaqcLbsacaGGOaGaaiiDaiaacMcaaaa@41D3@   (51)

From the relation (51) it can be written:

δ c δ ˙ c = r 0 δ c (t)sgn( δ c (t))+( e(t) c 1 μ ) δ c (t)sgn( δ c (t)) 1 μ δ c (t)ϕ(t)sgn( u ¯ eq (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaWGJbaabeaakiqbes7aKzaacaWaaSbaaSqaaiaadogaaeqa aOGaeyypa0tcLbsacaWGYbGcdaWgaaWcbaGaaGimaaqabaGccqaH0o azdaWgaaWcbaGaam4yaaqabaGccaGGOaGaamiDaiaacMcaciGGZbGa ai4zaiaac6gajugibiaacIcakiabes7aKnaaBaaaleaacaWGJbaabe aakiaacIcacaWG0bGaaiykaiaacMcacqGHRaWkdaqadaqaaiaadwga caGGOaGaamiDaiaacMcacqGHsisldaWcaaqaamaaBaaaleaacaWGJb aabeaakiaaykW7caaMc8+aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqiV d0gaaaGaayjkaiaawMcaaiabes7aKnaaBaaaleaacaWGJbaabeaaki aacIcacaGG0bGaaiykaiaacohacaGGNbGaaiOBaKqzGeGaaiikaOGa eqiTdq2aaSbaaSqaaiaadogaaeqaaOGaaiikaiaadshacaGGPaGaai ykaiabgkHiTmaalaaabaGaaGymaaqaaiabeY7aTbaacqaH0oazdaWg aaWcbaGaam4yaaqabaGccaGGOaGaaiiDaiaacMcacqaHvpGzcaGGOa GaaiiDaiaacMcacaGGZbGaai4zaiaac6gacaGGOaGabmyDayaaraWa aSbaaSqaaiaadwgacaWGXbaabeaakiaacIcacaWG0bGaaiykaiaacM caaaa@81C5@   (52)

we know:

1 μ ϕ(t) 1 μ | ϕ(t) |< q c d 1 μ δ c (t)| δ c (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeY7aTbaacqaHvpGzcaGGOaGaaiiDaiaacMcacqGHKjYO daWcaaqaaiaaigdaaeaacqaH8oqBaaWaaqWaaeaacqaHvpGzcaGGOa GaaiiDaiaacMcaaiaawEa7caGLiWoacqGH8aapdaWcaaqaaiaadgha daWgaaWcbaGaam4yaaqabaGccaWGKbWaaSbaaSqaaiaaigdaaeqaaa GcbaGaeqiVd0gaaiabes7aKnaaBaaaleaacaWGJbaabeaakiaacIca caWG0bGaaiykaiabgsMiJoaaemaabaGaeqiTdq2aaSbaaSqaaiaado gaaeqaaOGaaiikaiaacshacaGGPaaacaGLhWUaayjcSdaaaa@5ED1@   (53)

Therefore, using relation (53), relation (52) is obtained:

1 μ δ c ϕ(t)sgn( u ¯ eq (t) )< q c d 1 | δ c (t) | μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeY7aTbaacqaH0oazdaWgaaWcbaGaam4yaaqabaGccqaH vpGzcaGGOaGaaiiDaiaacMcacaGGZbGaai4zaiaac6gadaqadaqaai qadwhagaqeamaaBaaaleaacaWGLbGaamyCaaqabaGccaGGOaGaamiD aiaacMcaaiaawIcacaGLPaaacqGH8aapdaWcaaqaaiaadghadaWgaa WcbaGaam4yaaqabaGccaWGKbWaaSbaaSqaaiaaigdacaaMc8oabeaa kmaaemaabaGaeqiTdq2aaSbaaSqaaiaadogaaeqaaOGaaiikaiaads hacaGGPaaacaGLhWUaayjcSdaabaGaeqiVd0gaaaaa@5ABC@   (54)

Using relation (53), relation (54) can be rewritten as follows:

δ c δ ˙ c r 0 | δ c (t) |+( e(t) q c d 1 μ )| δ c (t) | q c d 1 μ | δ c (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaWGJbaabeaakiqbes7aKzaacaWaaSbaaSqaaiaadogaaeqa aOGaeyizImQaeyOeI0scLbsacaWGYbGcdaWgaaWcbaGaaGimaaqaba Gcdaabdaqaaiabes7aKnaaBaaaleaacaWGJbaabeaakiaacIcacaWG 0bGaaiykaaGaay5bSlaawIa7aiabgUcaRmaabmaabaGaamyzaiaacI cacaWG0bGaaiykaiabgkHiTmaalaaabaGaamyCamaaBaaaleaacaWG JbaabeaakiaadsgadaWgaaWcbaGaaGymaaqabaaakeaacqaH8oqBaa aacaGLOaGaayzkaaWaaqWaaeaacqaH0oazdaWgaaWcbaGaam4yaaqa baGccaGGOaGaaiiDaiaacMcaaiaawEa7caGLiWoacqGHsisldaWcaa qaaiaadghadaWgaaWcbaGaam4yaaqabaGccaWGKbWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeqiVd0gaamaaemaabaGaeqiTdq2aaSbaaSqaai aadogaaeqaaOGaaiikaiaacshacaGGPaaacaGLhWUaayjcSdaaaa@6D4B@   (55)

The relation (55) is finally rewritten as the relation (56):

δ c δ ˙ c r 0 | δ c (t) |+e(t)| δ c (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaWGJbaabeaakiqbes7aKzaacaWaaSbaaSqaaiaadogaaeqa aOGaeyizImQaeyOeI0scLbsacaWGYbGcdaWgaaWcbaGaaGimaaqaba Gcdaabdaqaaiabes7aKnaaBaaaleaacaWGJbaabeaakiaacIcacaWG 0bGaaiykaaGaay5bSlaawIa7aiabgUcaRiaadwgacaGGOaGaamiDai aacMcadaabdaqaaiabes7aKnaaBaaaleaacaWGJbaabeaakiaacIca caGG0bGaaiykaaGaay5bSlaawIa7aaaa@564A@   (56)

By deriving the relation (57), we can write:

V ˙ = δ c (t) δ ˙ c + 1 γ e(t) e ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAfagaGaai abg2da9iabes7aKnaaBaaaleaacaWGJbaabeaakiaacIcacaWG0bGa aiykaiqbes7aKzaacaWaaSbaaSqaaiaadogaaeqaaOGaey4kaSYaaS aaaeaacaaIXaaabaGaeq4SdCgaaiaadwgacaGGOaGaamiDaiaacMca ceWGLbGbaiaacaGGOaGaamiDaiaacMcaaaa@4AAE@   (57)

From the relationship (56) and (57) it can be concluded that:

V ˙ r 0 | δ c (t) |+e(t)| δ c (t) |+ 1 γ e(t) e ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAfagaGaai abgsMiJkabgkHiTKqzGeGaamOCaOWaaSbaaSqaaiaaicdaaeqaaOWa aqWaaeaacqaH0oazdaWgaaWcbaGaam4yaaqabaGccaGGOaGaamiDai aacMcaaiaawEa7caGLiWoacqGHRaWkcaWGLbGaaiikaiaadshacaGG PaWaaqWaaeaacqaH0oazdaWgaaWcbaGaam4yaaqabaGccaGGOaGaai iDaiaacMcaaiaawEa7caGLiWoacqGHRaWkdaWcaaqaaiaaigdaaeaa cqaHZoWzaaGaamyzaiaacIcacaWG0bGaaiykaiqadwgagaGaaiaacI cacaWG0bGaaiykaaaa@5B74@   (58)

Now, to prove the stability, the Lyapunov function plot in terms of and in figure 3 is used. Assuming that e0=(0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaaIWa Gaeyypa0JaaiikaiaaicdacaGGPaaaaa@3BCB@ and according to the relation (45), it can be found that (r c ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaGGYb Gabi4yayaacaGaaiikaiaadshacaGGPaaaaa@3BF2@ is always positive or zero. Therefore, considering that ((t)fort>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7caGGOa GaaiikaiaacshacaGGPaGaaiOzaiaac+gacaGGYbGaaGPaVlaacsha cqGH+aGpcaaIWaaaaa@42AE@ will never be negative, from the equation (59), we can write:

e(t) q c d 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaGGOa GaamiDaiaacMcacqGHKjYOdaWcaaqaaiaadghadaWgaaWcbaGaam4y aaqabaGccaWGKbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeqiVd0gaaa aa@41B3@   (59)

Therefore, only the regions specified in Figure 3 are checked for stability. In the first region, according to the definition of ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaGGOa GaaiiDaiaacMcaaaa@3A0B@ and ((t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaGGOa GaaiiDaiaacMcaaaa@3A0B@ in relation) (45) and (58), it can be written:

e ˙ (t)= r c ˙ (t)=γ| δ c (t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwgagaGaai aacIcacaWG0bGaaiykaiabg2da9iabgkHiTKqzGeGaamOCaOWaaSba aSqaaiqadogagaGaaaqabaqcLbsacaGGOaGaaiiDaiaacMcacqGH9a qpcqGHsislkiabeo7aNnaaemaabaGaeqiTdq2aaSbaaSqaaiaadoga aeqaaOGaaiikaiaacshacaGGPaaacaGLhWUaayjcSdaaaa@4DAD@   (59)

Figure 3 Zoning based on the upper limit of Lyapunov swing in terms of δc and e.

Discussion and results

In this section, the conventional sliding mode control for tracking the AUV path in the horizontal plane of the simulation and its results are presented and compared with the results [47]. In the simulations, the Marj path is a circular path with a constant speed and it is considered as (1-4).

[ x ˙ d y ˙ d ψ ˙ d ]=[ cos( ψ d ) 0 0 0 sin( ψ d ) 0 0 0 1 ][ u d u d r d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabmqaaaqaaiqadIhagaGaamaaBaaaleaacaWGKbaabeaaaOqaaiqa dMhagaGaamaaBaaaleaacaWGKbaabeaaaOqaaiqbeI8a5zaacaWaaS baaSqaaiaadsgaaeqaaaaaaOGaay5waiaaw2faaiabg2da9maadmaa baqbaeqabmWaaaqaaiGacogacaGGVbGaai4CamaabmaabaGaeqiYdK 3aaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaci4CaiaacMgacaGGUbWaaeWaaeaacq aHipqEdaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaay5waiaaw2faam aadmaabaqbaeqabmqaaaqaaiaadwhadaWgaaWcbaGaamizaaqabaaa keaacaWG1bWaaSbaaSqaaiaadsgaaeqaaaGcbaGaamOCamaaBaaale aacaWGKbaabeaaaaaakiaawUfacaGLDbaaaaa@5F56@   (60)

in which is r d =0.0033π( rad s ), u d =8(m/s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaamizaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaicdacaaIWaGa aG4maiaaiodacqaHapaCdaqadaqaamaalaaabaGaamOCaiaadggaca WGKbaabaGaam4CaaaaaiaawIcacaGLPaaacaGGSaGaamyDamaaBaaa leaacaWGKbaabeaakiabg2da9iaaiIdacaGGOaGaamyBaiaac+caca GGZbGaaiykaaaa@4E1E@ Also, the initial conditions of the system are as, η 0 =[ 100,800, π 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaaIWaaabeaakiabg2da9maadmaabaGaeyOeI0IaaGymaiaa icdacaaIWaGaaiilaiaaiIdacaaIWaGaaGimaiaacYcadaWcaaqaai abec8aWbqaaiaaikdaaaaacaGLBbGaayzxaaaaaa@45DD@ it has been assumed.

In the simulations, the path of Marg is considered to be a circular path with a constant speed and is considered as (1-4), where, and the initial conditions of the system are as [ 0700100 ]= η 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaGaaG imaiaaykW7caaMc8UaaG4naiaaicdacaaIWaGaaGPaVlaaykW7caaI XaGaaGimaiaaicdacqGHsislaiaawUfacaGLDbaacqGH9aqpcqaH3o aAdaWgaaWcbaGaaGimaaqabaaaaa@48CF@ , Ferried S. Design parameters to simulate the proposed control, as 200=τf=0.5,μ=0.99,δ0=4,=15,γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaaIWa GaaGimaiabg2da9iabes8a0jaadAgacqGH9aqpcaaIWaGaaiOlaiaa iwdacaGGSaGaaGPaVlaaykW7caaMc8UaeqiVd0Maeyypa0JaaGimai aac6cacaaI5aGaaGyoaiaacYcacaaMc8UaaGPaVlabes7aKjaaicda cqGH9aqpcaaI0aGaaiilaiaaykW7caaMc8UaeyicI4Saeyypa0JaaG ymaiaaiwdacaGGSaGaaGPaVlaaykW7cqaHZoWzaaa@6044@ and [ 1,2.0,2.0 ]α1=diag MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaGaaG ymaiaacYcacaaIYaGaaiOlaiaaicdacaGGSaGaaGOmaiaac6cacaaI WaaacaGLBbGaayzxaaGaeqySdeMaaGymaiabg2da9iaadsgacaWGPb GaamyyaiaadEgaaaa@4674@ are considered and the used hydrodynamic parameters of AUV, in the table 2, is stated.

unit in SI

Numerical value

Parameter

Kg

40

m

kg/s

-0.5138

Xu

kg

-5.096

Xu

kg/s

-0.698

Yv

Kg

-6.608

Yv

kgm/s

0.212

Yr

kgm

-31.23

Yr

kgm2

40

Iz

kgm/s

0.212

Nv

kgm

-31.23

Nv

kgm2/s

-0.53

Nr

kgm2

-29.683

Nr

Table 2 AUV system parameters

 

Suggested control

Common sliding mode control

 

Norm

Average

maximum

Norm

Average

maximum

τ1

3.17E+04

22.1135

394.5168

6.25E+04

46.0795

5.27E+03

τ2

6.09E+04

32.7434

752.284

5.26E+05

84.6475

3.29E+04

τ3

4.77E+04

19.1623

808.6312

5.42E+05

89.0992

2.21E+04

τ

7.71E+04

24.6731

-

6.70E+05

73.2754

-

Table 3 Comparison of the control effort in the conventional sliding mode control and the proposed control in the hypothetical scenario in the entire simulation time period (s) 0-600

Continuous sinusoidal disturbance: Sinusoidal disturbance is applied in the form of (61), throughout the operation time (s)0600 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGZb GaaiykaiaaykW7caaMc8UaaGimaiabgkHiTiaaiAdacaaIWaGaaGim aaaa@4050@ to the system.

τ E 2 =[ 300sin(0.13πt) 300sin(0.13πt) 300sin(0.13πt) ],0<t<600 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGfbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabg2da9maa dmaabaqbaeqabmqaaaqaaiaaiodacaaIWaGaaGimaiGacohacaGGPb GaaiOBaiaacIcacaaIWaGaaiOlaiaaigdacaaIZaGaeqiWdaNaamiD aiaacMcaaeaacaaIZaGaaGimaiaaicdaciGGZbGaaiyAaiaac6gaca GGOaGaaGimaiaac6cacaaIXaGaaG4maiabec8aWjaadshacaGGPaaa baGaaG4maiaaicdacaaIWaGaci4CaiaacMgacaGGUbGaaiikaiaaic dacaGGUaGaaGymaiaaiodacqaHapaCcaWG0bGaaiykaaaaaiaawUfa caGLDbaacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacqGH8a apcaWG0bGaeyipaWJaaGOnaiaaicdacaaIWaaaaa@6E8D@   (61)

A sinusoidal disturbance is introduced during the entire operation (Figure 4). Figure 5 AUV track tracking using the proposed controller in the presence of continuous sinusoidal disturbances. In Figure 5, the AUV tracking is shown, and the route traveled and the path of Marg are in complete agreement.

Figure 4 Reference path tracking by robot with proposed controller.

Figure 5 AUV path tracking error using the proposed controller in the presence of continuous sinusoidal disturbances.

In figure 6, the time and direction tracking error is shown and as it is clear, the convergence to zero has taken place. But from the comparison of the simulation results of two controllers in the second scenario, it can be concluded that the error in the proposed control, it is significantly less common than the sliding mode control.

Figure 6 Control gain ((𝑡), nonlinear terms and disturbance in the proposed controller in the presence of continuous sinusoidal disturbances.

As shown in figure 7, the gain of the controller is estimated according to the amount of nonlinear terms, external disturbance and safety margin included in the control system.

Figure 7 Slip surface in the proposed controller in the presence of disturbances.

A continuous sinusoid is shown in Figure 8 slip surfaces converge to zero.

Figure 8 Linear and angular velocities of AUV using the proposed controller in the presence of continuous sinusoidal disturbances.

The linear and angular velocities are shown in figure 9. The range of velocities in the transient response is lower than in figure 9 and in the permanent response, although fluctuations are observed, the range of Fluctuations are relatively small.

Figure 9 Control effort of the proposed controller in the presence of continuous sinusoidal disturbances.

The control effort is shown in figure 9. Since the amplitude of disturbance is considered relatively high, the range of control forces and torques must also be close to these values to deal with the disturbance and also, Chattering is not observed in the control effort and it has a good quality. The range of the control effort in the transient response is less compared to the conventional sliding mode control. Therefore, the performance of the proposed controller is confirmed compared to the conventional sliding mode control in this scenario.

Conclusion

The simulation results of the proposed control and the conventional sliding mode control showed that in each of the hypothetical scenarios for the disturbance, the error rate in the proposed control is much lower than the conventional sliding mode control and the reference path tracking in the proposed resilient-adaptive control method is done more accurately. The amount of error was checked through soft, average and maximum indicators and all these indicators confirmed the performance of the proposed method compared to conventional sliding mode control. Also, the scope of the control effort in the conventional sliding mode control in the scenario had chattering, and in general the torque and control forces of the conventional sliding mode were more than the proposed control. If chattering was not observed in the proposed control and the range of control effort was appropriate. Therefore, in terms of the quality of the control effort, the performance of the proposed control is confirmed compared to the sliding mode control.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Paull L, Saeedi S, Seto M et al. AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering. 2013;39(1):131–149.
  2. Borlaug Ida-Louise G, Kristin Y, Pettersen, et al. Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results. Ocean Engineering. 2021;222:108480.
  3. Cheng C, Sha Q, He B, et al. Path planning and obstacle avoidance for AUV: A review. Ocean Engineering. 2021;235(1):109355.
  4. Carroll KP, Mc Claran SR, Nelson EL, et al. AUV path planning: an A* approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones. Proceedings of the 1992 symposium on autonomous underwater vehicle technology. IEEE; 1992.
  5. Lapierre L, Bruno J. Robust nonlinear path-following control of an AUV. IEEE Journal of Oceanic Engineering. 2008;33(2):89-102.
  6. Wu Z, Peng H, Hu B, et al. Trajectory tracking of a novel underactuated AUV via nonsingular integral terminal sliding mode control. IEEE Access. 2021;9:103407–103418.
  7. Li D, Ling D. Auv trajectory tracking models and control strategies: A review. Journal of Marine Science and Engineering. 2021;9(9):1020.
  8. Zhang C, Cheng P, Du B, et al. AUV path tracking with real-time obstacle avoidance via reinforcement learning under adaptive constraints. Ocean Engineering. 2022;256:111453.
  9. Cao X, Hongbing S, Gene EJ. Multi-AUV cooperative target search and tracking in unknown underwater environment. Ocean Engineering. 2018;150(15):1–11.
  10. Sun Y, Ran X, Zhang G, et al. AUV 3D path planning based on the improved hierarchical deep Q network. Journal of Marine Science and Engineering. 2020;8(2):145.
  11. Chen F, Jiang R, Zhang K, et al. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Transactions on Industrial Electronics. 2016;63(8):5044–5056.
  12. Yu C, Xiang X, Lapierre L, et al. Robust magnetic tracking of subsea cable by AUV in the presence of sensor noise and ocean currents. IEEE Journal of Oceanic Engineering. 43(2):311–322.
  13. Elmokadem T, Mohamed Z, Kamal YT. Terminal sliding mode control for the trajectory tracking of underactuated autonomous underwater vehicles. Ocean Engineering. 2017;129:613–625.
  14. Jinyi Y, Quing J, Qiang Z, et al. Design and analysis of fully-actuated AUV's three-dimensional path tracking control system. Chinese Journal of Ship Research. 2019;14(6):22–29.
  15. Elmokadem T, Mohamed Z, Kamal YT. Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dynamics. 2016;84(2):1079–1091.
  16. Labbadi, M, Mohamed C. Adaptive fractional-order nonsingular fast terminal sliding mode based robust tracking control of quadrotor UAV with Gaussian random disturbances and uncertainties. IEEE Transactions on Aerospace and Electronic Systems. 2021;57(4):2265–2277.
Creative Commons Attribution License

©2022 Jalalnezhada. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.