Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Conceptual Paper Volume 6 Issue 3

Active fault tolerant control based on nonlinear subject to actuator and sensor faults for a parallel robot

Mahmood Mazare, Mostafa Taghizadeh, Pegah Ghaf G

School of Mechanical engineering, Shahid Beheshti University, Iran

Correspondence: Mahmood Mazare, School of Mechanical engineering, Shahid Beheshti University, Iran, P.O.B. 1743524155, Tehran, Iran

Received: May 07, 2020 | Published: August 31, 2020

Citation: Mazare M, Taghizadeh M, Ghaf PG. Active fault tolerant control based on nonlinear H? subject to actuator and sensor faults for a parallel robot. Int Rob Auto J . 2020;6(3):115?125. DOI: 10.15406/iratj.2020.06.00210

Download PDF

Abstract

In this paper, an Active Fault Tolerant Control (AFTC) strategy using a nonlinear H control is proposed for a delta type parallel robot in the presence of actuator and sensor fault. First, dynamic modeling of the robot is accomplished using the Lagrange method. To measure the position and velocity, a super-twisting third-order sliding mode (STW-TOSM) observer is applied. The proposed scheme can accommodate both faults and uncertainties without velocity measurement. In addition, fast convergence and high accuracy is achieved because of applying the high-order sliding mode (HOSM) observer. In order to indicate the effectiveness of the FTC on the basis of nonlinear H, its performance is compared with conventional sliding mode and feedback linearization methods. The obtained results reveal the efficacy of the proposed FTC- H.

Keywords: fault tolerant control, parallel robot, nonlinear H, finite time convergence

Introduction

Parallel manipulators have proven their outstanding performance compared to the conventional serial ones, in terms of high accuracy, velocity, stiffness, payload capacity and great dynamic performance.1,2 This makes them a good choice for application in industrial sector, particularly for processing and manufacturing, and increases the productivity and product quality. However, regardless of their satisfactory performance, they are prone to component faults and failures, which not only deteriorate their performance, but also has the potential to damage their structure and their environment. Moreover, effective handling the occurring faults can save considerable cost of repair and maintenance, and prevents the production line shutdown for every fault or minor failure. The growing demand for safety, reliability and productivity has been the driving force for the emergence of Fault-Tolerant Control (FTC) systems and has made them an indispensable part of control system design process.3 Successful implementation of this approach to various applications has proven its effectiveness in diverse fields like, spacecrafts,4,5 robotics,6-9 and energy.10–12

Generally, fault-tolerant control approaches can be categorized into two distinct categories: active approach,13,14 and passive approach.15,16 Passive FTC (PFTC) does not rely on the fault information, instead the effects of faults are considered as the effects of an additional uncertainties. In this case, a robust control approach is utilized to compensate for the effect of the faults.17,18 On the other hand, Active FTC (AFTC) requires the faults information in advance and is based on rearranging the control structure isolation.19,20

Fault detection (FD), a fundamental part of AFTC, is conducted through different approaches, among which sliding mode observer (SMO)21–23 is highly attractive, as it offers high robustness against uncertainties. However, conventional SMO suffers from chattering and infinite time convergence. The super-twisting SMO was designed to guarantee the finite time convergence of the state observer and attenuate the chattering,24–26 but it cannot eliminate it completely.27 High order Sliding Mode (HOSM) techniques have been proposed to promote accuracy and eliminate chattering, while retaining the robustness of the conventional SMC.28 A super-twisting third-order SMO gives both exact theoretical velocity estimations and an unknown input estimation.29 For FTC purpose of robotic manipulators, different strategies have been adopted, mainly based on computed torque control (CTC),30,31 backstepping,32 Neural Networks (NN),33 Model predictive,9 and sliding mode control (SMC).6,7

An adaptive fuzzy sliding mode controller with variable estimation was introduced by Piltan et al.34 to handle faults and uncertainties with high robustness, and verified with 6 DOF programmable universal manipulation arm (PUMA) 560 robot manipulator. The sliding surface slope gain of this sliding mode fault-tolerant control technique was tuned adaptively using a fuzzy procedure. Van et al.35 proposed a robust fault diagnosis and fault-tolerant control (FTC) system by applying a combination of a fault diagnosis scheme based on a super-twisting third-order sliding mode (STW-TOSM) observer with a robust super-twisting second-order sliding mode (STW-SOSM) controller to a PUMA560 robot. Employing high-order sliding mode (HOSM) observer/controller strategy has improved the convergence rate, enhanced the accuracy, and reduced the chattering. A finite-time integral back-stepping fault tolerant control for a class of nonlinear systems was introduced36 and applied to a two-link rigid robot manipulator. An adaptive version of the controller is then developed to deal with the total uncertainties in the system. It was proved that the controller is effective in terms of precision of tracking, convergent speed and robustness.

During recent years, nonlinear H control theory has attracted increasing attention due to its inherent robustness and disturbance rejection capabilities and has been applied to a variety of systems, such as electric motors,37 spacecrafts,38–40 and robotic manipulators.41–43 The objective of this control theory is to achieve a bounded ratio between the energy of error signals and the energy of disturbance signals.44 To the best of the authors’ knowledge, nonlinear H control scheme has not been employed for fault-tolerant control of robotic manipulators which takes actuator faults, input saturation, external disturbances and system uncertainties into account, simultaneously. Motivated by the above discussion, the most obvious contributions of this study can briefly be drawn as follows:

  1. Proposing a new finite-time FTC based on nonlinear H and third order super twisting sliding mode observer for a delta type parallel robot which guarantees faster convergence of the system states and also provides high-precision tracking.
  2. Considering actuator and sensor faults, input saturation, external disturbances and parameter uncertainties simultaneously and applying a nonlinear robust FTC to deal with these challenges which can increase reliability and safety.
  3. The FTC-H does not require uncertainty information, which enables the proposed FTC more applicable for implementing.

The following sections of this paper are: section 2 entailing the introduction of the 3[P2(US)] parallel robot, followed by its kinematic and dynamic analysis in sections 3 and 4. In section 5 the proposed control strategy is described and section 6 contains fault detection using STW-TOSM. Desired path planning is addressed in section 7.  Section 8 is devoted to numerical simulation and the conclusion is drawn is section 9.

Architecture of 3[P2(US)] parallel manipulator

The 3[P2(US)] parallel manipulator under study consists of a moving platform termed the end-effector and a fixed platform named the base, joined together via three identical limbs as depicted in Figure 1. Each limb is comprised of an active prismatic joint, installed at an inclination relative to the base and a parallelogram linkage. As the name implies, each parallelogram consists of two parallel rods with universal and spherical joints at their both extremities.

Figure 1 The 3[P2(US)] architecture of delta PKM.

Geometric parameters and variables of one of the limbs are illustrated Figure 2.  Three limbs are connected to the base through points Ai, which are located on an imaginary circle with R radius and centered at the origin of reference frame. Similarly, the points Bi are placed on a circle with the radius r and show the connection between the limbs and the end-effector. Active prismatic joints are installed at the angle β to the base and are connected to the parallelogram via universal joints at the points Ci. The length of each parallelogram is specified with l.

Figure 2 Parameters and variables of the i-th limb.

Kinematic model

By kinematic analysis, the relative displacement, velocity and acceleration of the links of the manipulator are derived. Jacobian matrix, which provides a mapping between the velocity of active joints and the velocity of the end-effector, is extracted in this section.

Looking at Figure 2, it is obvious that the magnitude of B i C i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaFiaabaaeaa aaaaaaa8qacaWGcbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaa doeapaWaaSbaaSqaa8qacaWGPbaapaqabaaakiaawEniaaaa@3D24@ , representing the length of i-th parallelogram, is constant, so

| B i C i |=l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWaa8HaaeaapeGaaeOqa8aadaWgaaWcbaWdbiaabMga a8aabeaak8qacaqGdbWdamaaBaaaleaapeGaaeyAaaWdaeqaaaGcca GLxdcaa8qacaGLhWUaayjcSdGaeyypa0JaaeiBaaaa@4262@   (1)

From the loop closure equation, we can write

B i C i = OA i + A i C i PB i OP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaFiaabaaeaa aaaaaaa8qacaqGcbWdamaaBaaaleaapeGaaeyAaaWdaeqaaOWdbiaa boeapaWaaSbaaSqaa8qacaqGPbaapaqabaaakiaawEnia8qacqGH9a qppaWaa8HaaeaapeGaae4taiaabgeapaWaaSbaaSqaa8qacaqGPbaa paqabaaakiaawEnia8qacqGHRaWkpaWaa8HaaeaapeGaaeyqa8aada WgaaWcbaWdbiaabMgaa8aabeaak8qacaqGdbWdamaaBaaaleaapeGa aeyAaaWdaeqaaaGccaGLxdcapeGaeyOeI0YdamaaFiaabaWdbiaabc facaqGcbWdamaaBaaaleaapeGaaeyAaaWdaeqaaaGccaGLxdcapeGa eyOeI0YdamaaFiaabaWdbiaab+eacaqGqbaapaGaay51Gaaaaa@5426@   (2)

l i e B i C i =R e A i +q e A i C i r e PB i p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBa8aadaWgaaWcbaWdbiaabMgaa8aabeaak8qacaWHLbWdamaa BaaaleaapeGaaeOqa8aadaWgaaadbaWdbiaabMgaa8aabeaal8qaca qGdbWdamaaBaaameaapeGaaeyAaaWdaeqaaaWcbeaak8qacqGH9aqp caqGsbGaaCyza8aadaWgaaWcbaWdbiaabgeapaWaaSbaaWqaa8qaca qGPbaapaqabaaaleqaaOWdbiabgUcaRiaabghacaWHLbWdamaaBaaa leaapeGaaeyqa8aadaWgaaadbaWdbiaabMgaa8aabeaal8qacaqGdb WdamaaBaaameaapeGaaeyAaaWdaeqaaaWcbeaak8qacqGHsislcaqG YbGaaCyza8aadaWgaaWcbaWdbiaabcfacaqGcbWdamaaBaaameaape GaaeyAaaWdaeqaaaWcbeaak8qacqGHsislcaWHWbaaaa@53BE@   (3)

where,

e BiCi = [cos α i cos ϕ i  sin α i cos ϕ i  sin ϕ i ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamOqaiaadMgacaWGdbGaamyAaaqabaGccqGH9aqpcaGGBbGa ci4yaiaac+gacaGGZbGaeqySde2aaSbaaSqaaiaadMgaaeqaaOGaci 4yaiaac+gacaGGZbGaeqy1dy2aaSbaaSqaaiaadMgaaeqaaOaeaaaa aaaaa8qacaGGGcGaci4CaiaacMgacaGGUbGaeqySde2aaSbaaSqaai aadMgaaeqaaOWdaiGacogacaGGVbGaai4Caiabew9aMnaaBaaaleaa caWGPbaabeaak8qacaGGGcGaci4CaiaacMgacaGGUbWdaiabew9aMn aaBaaaleaacaWGPbaabeaakiaac2fadaahaaWcbeqaaiaadsfaaaaa aa@5E6C@   (4)

e Ai = [cos α i  sin α i  0] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamyqaiaadMgaaeqaaOGaeyypa0Jaai4waiGacogacaGGVbGa ai4Caiabeg7aHnaaBaaaleaacaWGPbaabeaakabaaaaaaaaapeGaai iOaiGacohacaGGPbGaaiOBaiabeg7aHnaaBaaaleaacaWGPbaabeaa kiaacckacaaIWaWdaiaac2fadaahaaWcbeqaaiaadsfaaaaaaa@4C0E@   (5)

e PBi = [cos α i  sin α i  0] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamiuaiaadkeacaWGPbaabeaakiabg2da9iaacUfaciGGJbGa ai4BaiaacohacqaHXoqydaWgaaWcbaGaamyAaaqabaGcqaaaaaaaaa WdbiaacckaciGGZbGaaiyAaiaac6gacqaHXoqydaWgaaWcbaGaamyA aaqabaGccaGGGcGaaGima8aacaGGDbWaaWbaaSqabeaacaWGubaaaa aa@4CE4@   (6)

p= [ x p y p z p ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiCaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaaCiEa8aa daWgaaWcbaWdbiaabchaa8aabeaaaOqaa8qacaWH5bWdamaaBaaale aapeGaaeiCaaWdaeqaaaGcbaWdbiaahQhapaWaaSbaaSqaa8qacaqG WbaapaqabaaaaaGcpeGaay5waiaaw2faa8aadaahaaWcbeqaa8qaca WHubaaaaaa@43B0@   (7)

Replacing Eqs. (4–7) into Eq. 3 and simplifying the resulting equation yields the following constraint equation from which the forward and inverse kinematics of the PKM can be extracted.43

f i = ( x p +(rR+ q i  cos β) sin  α i ) 2 + ( y P (rR+ q i  cosβ)cos α i ) 2 + ( z P + q i sinβ) 2 1 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaGGOaGaaiiEamaaBaaaleaacaWG WbaabeaakiabgUcaRiaacIcacaWGYbGaeyOeI0IaamOuaiabgUcaRi aadghadaWgaaWcbaGaamyAaaqabaGcqaaaaaaaaaWdbiaacckaciGG JbGaai4BaiaacohacaGGGcGaeqOSdiMaaiykaiaacckaciGGZbGaai yAaiaac6gacaGGGcGaeqySde2aaSbaaSqaaiaadMgaaeqaaOGaaiyk amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaacIcacaGG5bWaaSbaaS qaaiaadcfaaeqaaOGaeyOeI0IaaiikaiaadkhacqGHsislcaWGsbGa ey4kaSIaamyCamaaBaaaleaacaWGPbaabeaakiaacckacaGGJbGaai 4BaiaacohacqaHYoGycaGGPaGaai4yaiaac+gacaGGZbGaeqySde2a aSbaaSqaaiaadMgaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaki abgUcaRiaacIcacaGG6bWaaSbaaSqaaiaadcfaaeqaaOGaey4kaSIa amyCamaaBaaaleaacaWGPbaabeaakiGacohacaGGPbGaaiOBaiabek 7aIjaacMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaWaaWba aSqabeaacaaIYaaaaOGaeyypa0JaaGimaaaa@7EA9@   (8)

Direct differentiation of the kinematic Eq. 8 with respect to time yields the velocity equations.

J p p ˙  +  J q q ˙  =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQeaqaaaaa aaaaWdbmaaBaaaleaacaqGWbaabeaakiqadchagaGaaiaacckacqGH RaWkcaGGGcWdaiaadQeadaWgaaWcbaGaamyCaaqabaGcceWGXbGbai aapeGaaiiOaiabg2da9iaaicdaaaa@4349@   (9)

where the Jacobian matrices are:

J p =f/p, J q =f/q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOsa8aadaWgaaWcbaWdbiaabchaa8aabeaak8qacqGH9aqpcqGH ciITcaWHMbGaai4laiabgkGi2kaahchacaGGSaGaaCOsa8aadaWgaa WcbaWdbiaabghaa8aabeaak8qacqGH9aqpcqGHciITcaWHMbGaai4l aiabgkGi2kaahghaaaa@492D@   (10)

Considering the end-effector velocity vector as  and the actuators velocity vector as q ˙ =  [  q ˙ 1   q ˙ 2   q ˙ 3 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadghagaGaai abg2da9abaaaaaaaaapeGaaiiOaiaacUfacaGGGcGabmyCayaacaWa aSbaaSqaaiaaigdaaeqaaOGaaiiOaiqadghagaGaamaaBaaaleaaca aIYaaabeaakiaacckaceWGXbGbaiaadaWgaaWcbaGaaG4maaqabaGc caGGDbWaaWbaaSqabeaacaWGubaaaaaa@465B@ , the following linear mapping, known as forward velocity kinematic equation holds.

p ˙ =J q ˙ ,J= J p 1 J q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadchagaGaai abg2da9iaadQeaceWGXbGbaiaacaGGSaaeaaaaaaaaa8qacaWHkbGa eyypa0JaeyOeI0IaaCOsa8aadaqhaaWcbaWdbiaabchaa8aabaWdbi abgkHiTiaaigdaaaGccaWHkbWdamaaBaaaleaapeGaaeyCaaWdaeqa aaaa@4479@   (11)

The Jacobians can also be derived directly from the following velocity equation.

p ˙ = q ˙ i e A i C i + ω i ×l  e B i C i           i=1, 2, 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGab8hCa8aagaGaa8qacqGH9aqpceWFXbWdayaacaWaaSbaaSqa a8qacaWGPbaapaqabaGcpeGaaeyza8aadaWgaaWcbaWdbiaadgeapa WaaSbaaWqaa8qacaWGPbaapaqabaWcpeGaam4qa8aadaWgaaadbaWd biaadMgaa8aabeaaaSqabaGcpeGaey4kaSIaeqyYdC3damaaBaaale aapeGaamyAaaWdaeqaaOWdbiabgEna0kaadYgacaGGGcGaaeyza8aa daWgaaWcbaWdbiaadkeapaWaaSbaaWqaa8qacaWGPbaapaqabaWcpe Gaam4qa8aadaWgaaadbaWdbiaadMgaa8aabeaaaSqabaGcpeGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaadMgacqGH9aqpcaaIXaGaaiilaiaacckacaaIYaGaaiil aiaacckacaaIZaaaaa@6251@   (12)

Dot multiplying both sides of Eq. 12 with e BC i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyza8aadaWgaaWcbaWdbiaabkeacaqGdbWdamaaBaaameaapeGa amyAaaWdaeqaaaWcbeaaaaa@3B3F@ omits the term including the unknown angular velocity of the parallelogram rods, ω i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xYd8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@39CE@ , and yields

p ˙ . e Bi Ci q ˙ i e Ai Ci . e Bi Ci =0, i=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadchagaGaai aac6cacaWGLbWaaSbaaSqaaiaadkeacaWGPbaeaaaaaaaaa8qacaGG GcWdaiaadoeacaWGPbaabeaakiabgkHiTiqadghagaGaamaaBaaale aacaWGPbaabeaakiaadwgadaWgaaWcbaGaamyqaiaadMgapeGaaiiO a8aacaWGdbGaamyAaaqabaGccaGGUaGaamyzamaaBaaaleaacaWGcb GaamyAa8qacaGGGcWdaiaadoeacaWGPbaabeaakiabg2da9iaaicda caGGSaWdbiaacckacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaai ilaiaaiodaaaa@5724@   (13)

which can be written in the matrix form of Eq. 9 where

J p = [ e B 1 C 1 T e B 2 C 2 T e B 3 C 3 T ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOsa8aadaWgaaWcbaWdbiaabchaa8aabeaak8qacqGH9aqpdaWa daWdaeaafaqabeqadaaabaWdbiaahwgapaWaa0baaSqaa8qacaqGcb WdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaaboeapaWaaSbaaWqa a8qacaaIXaaapaqabaaaleaapeGaaeivaaaaaOWdaeaapeGaaCyza8 aadaqhaaWcbaWdbiaabkeapaWaaSbaaWqaa8qacaaIYaaapaqabaWc peGaae4qa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqaa8qacaqGub aaaaGcpaqaa8qacaWHLbWdamaaDaaaleaapeGaaeOqa8aadaWgaaad baWdbiaaiodaa8aabeaal8qacaqGdbWdamaaBaaameaapeGaaG4maa WdaeqaaaWcbaWdbiaabsfaaaaaaaGccaGLBbGaayzxaaWdamaaCaaa leqabaWdbiaabsfaaaaaaa@500C@   (14)

J q =diag[ e A 1 C 1 . e B 1 C 1 e A 2 C 2 . e B 2 C 2 e A 3 C 3 . e B 3 C 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOsa8aadaWgaaWcbaWdbiaabghaa8aabeaak8qacqGH9aqpcqGH sislcaqGKbGaaeyAaiaabggacaqGNbWaamWaa8aabaqbaeqabeWaaa qaa8qacaqGLbWdamaaBaaaleaapeGaaeyqa8aadaWgaaadbaWdbiaa igdaa8aabeaal8qacaqGdbWdamaaBaaameaapeGaaGymaaWdaeqaaa Wcbeaak8qacaGGUaGaaeyza8aadaWgaaWcbaWdbiaabkeapaWaaSba aWqaa8qacaaIXaaapaqabaWcpeGaae4qa8aadaWgaaadbaWdbiaaig daa8aabeaaaSqabaaakeaapeGaaeyza8aadaWgaaWcbaWdbiaabgea paWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaae4qa8aadaWgaaadba Wdbiaaikdaa8aabeaaaSqabaGcpeGaaiOlaiaabwgapaWaaSbaaSqa a8qacaqGcbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaaboeapa WaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabwgapaWa aSbaaSqaa8qacaqGbbWdamaaBaaameaapeGaaG4maaWdaeqaaSWdbi aaboeapaWaaSbaaWqaa8qacaaIZaaapaqabaaaleqaaOWdbiaac6ca caqGLbWdamaaBaaaleaapeGaaeOqa8aadaWgaaadbaWdbiaaiodaa8 aabeaal8qacaqGdbWdamaaBaaameaapeGaaG4maaWdaeqaaaWcbeaa aaaak8qacaGLBbGaayzxaaaaaa@6237@   (15)

Kinematic equations for acceleration can be derived by differentiation of Eq. 9 as:

J p p ¨  + J p q ¨  + J ˙ p p ˙ + J ˙ q q ˙ =0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQeadaWgaa WcbaGaamiCaaqabaGcceWGWbGbamaaqaaaaaaaaaWdbiaacckacqGH RaWkpaGaamOsamaaBaaaleaacaWGWbaabeaakiqacghagaWaa8qaca GGGcGaey4kaSIabmOsayaacaWaaSbaaSqaaiaadchaaeqaaOGabiiC ayaacaGaey4kaSIabmOsayaacaWaaSbaaSqaaiaadghaaeqaaOGabi yCayaacaGaeyypa0JaaGimaiaacckaaaa@4B11@   (16)

Dynamic model

In order to analyze the dynamic behavior of the robot, Euler-Lagrange formulation is used. Since in parallel robots the generalized coordinates are constrained, the formulation comprising Lagrange multipliers is applied.

d dt ( L θ ˙ j ) L θ j = Q j + i=1 3 λ i f i θ j ,(j=1,2,...,6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG0baaamaabmaabaWaaSaaaeaacqGHciITcaWG mbaabaGaeyOaIyRafqiUdeNbaiaadaWgaaWcbaGaamOAaaqabaaaaa GccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacqGHciITcaWGmbaabaGa eyOaIyRaeqiUde3aaSbaaSqaaiaadQgaaeqaaaaakiabg2da9iaadg fadaWgaaWcbaGaamOAaaqabaGccqGHRaWkdaaeWbqaaiabeU7aSnaa BaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaaio daa0GaeyyeIuoakmaalaaabaGaeyOaIyRaamOzamaaBaaaleaacaWG PbaabeaaaOqaaiabgkGi2kabeI7aXnaaBaaaleaacaWGQbaabeaaaa GccaGGSaGaaiikaiaadQgacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaaiOlaiaac6cacaGGUaGaaiilaiaaiAdacaGGPaaaaa@67F5@   (17)

where is the j-th generalized coordinate, Qj is its corresponding generalized active force, λi s are the Lagrange multipliers, and fi are the constraint equations denoted by Eq 8. Generalized coordinates are defined as

θ=[ p q ]  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaeyypa0ZaamWaa8aabaqbaeqabiqaaaqaaGqad8qacaWF Wbaapaqaa8qacaWFXbaaaaGaay5waiaaw2faaiaa=bkaaaa@3F36@   (18)

Lagrangian is defined as the difference between kinetic and potential energies.

L(θ, θ ˙ )=K(θ, θ ˙ )U(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYeacaGGOa GaeqiUdeNaaiilaiqbeI7aXzaacaGaaiykaiabg2da9iaacUeacaGG OaGaeqiUdeNaaiilaiqbeI7aXzaacaGaaiykaiabgkHiTiaadwfaca GGOaGaeqiUdeNaaiykaaaa@4985@   (19)

Due to the fact that rotational inertia of the parallelogram rods is negligible, they are considered as two point-masses on their both extreme ends. Thus, the kinetic energy of the whole manipulator will be calculated by adding the kinetic energy of the sliding actuators and that of the end-effector.

K= 1 2 m q q ˙ T q ˙ + 1 2 m p p ˙ T p ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4saiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaa aiaab2gapaWaaSbaaSqaa8qacaqGXbaapaqabaGcpeGabCyCa8aaga GaamaaCaaaleqabaWdbiaabsfaaaGcceWHXbWdayaacaWdbiabgUca Rmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiaab2gapaWaaS baaSqaa8qacaqGWbaapaqabaGcpeGabCiCa8aagaGaamaaCaaaleqa baWdbiaabsfaaaGcceWHWbWdayaacaaaaa@48AE@   (20)

m q = m a + m II 2 ,    m p = m e +3( m II 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyBa8aadaWgaaWcbaWdbiaabghaa8aabeaak8qacqGH9aqpcaqG TbWdamaaBaaaleaapeGaaeyyaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaqGTbWdamaaBaaaleaapeGaaeysaiaabMeaa8aabeaaaOqa a8qacaaIYaaaaiaacYcacaqGGcGaaeiOaiaabckacaqGTbWdamaaBa aaleaapeGaaeiCaaWdaeqaaOWdbiabg2da9iaab2gapaWaaSbaaSqa a8qacaqGLbaapaqabaGcpeGaey4kaSIaaG4mamaabmaapaqaa8qada WcaaWdaeaapeGaaeyBa8aadaWgaaWcbaWdbiaabMeacaqGjbaapaqa baaakeaapeGaaGOmaaaaaiaawIcacaGLPaaaaaa@528C@   (21)

where m e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@3963@ , m II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiaadMeacaWGjbaapaqabaaaaa@3A15@ , and m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@395F@ represent the masses of the end-effector, the parallelogram, and the actuator piston, respectively. Potential energy of the whole mechanism is obtained from

U= m q gsinβ( q 1 + q 2 + q 3 )+ m p g z p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfacqGH9a qpcqGHsislcaWGTbWaaSbaaSqaaiaadghaaeqaaOGaam4zaiGacoha caGGPbGaaiOBaiabek7aIjaacIcacaWGXbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamyCamaaBaaaleaacaaIYaaabeaakiabgUcaRiaa dghadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaamyBamaaBa aaleaacaWGWbaabeaakiaadEgacaWG6bWaaSbaaSqaaiaadchaaeqa aaaa@503C@   (22)

Therefore, the Lagrangian of the system can be expanded as follows

L= 1 2 m q q ˙ T q ˙ + 1 2 m p p ˙ T p ˙ + m q gsinβ( q 1 + q 2 + q 3 ) m p q z p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYeacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2gadaWgaaWcbaGaamyC aaqabaGcceWGXbGbaiaadaahaaWcbeqaaiaadsfaaaGcceWGXbGbai aacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2gadaWgaaWc baGaamiCaaqabaGcceWGWbGbaiaadaahaaWcbeqaaiaadsfaaaGcce WGWbGbaiaacqGHRaWkcaWGTbWaaSbaaSqaaiaadghaaeqaaOGaam4z aiGacohacaGGPbGaaiOBaiabek7aIjaacIcacaGGXbWaaSbaaSqaai aaigdaaeqaaOGaey4kaSIaamyCamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadghadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyOeI0Iaam yBamaaBaaaleaacaWGWbaabeaakiaadghacaWG6bWaaSbaaSqaaiaa dchaaeqaaaaa@5E81@   (23)

Substituting the resulting Lagrangian into Eq. 17 and after some mathematical simplification, the resulting equations can be written in the following matrix form.45

M 1 q ¨ + M 2 p ¨ +G=τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaaGymaaqabaGcceWGXbGbamaacqGHRaWkcaWGnbWaaSbaaSqa aiaaikdaaeqaaOGabmiCayaadaGaey4kaSIaam4raiabg2da9iabes 8a0baa@41ED@   (24)

Besides these three equations, three others are also needed to determine the six unknown generalized coordinates. These extra equations are the acceleration equations, Eq. (16)

J q q ¨ + J p p ¨ + J ˙ q q ˙ + J ˙ p p ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQeadaWgaa WcbaGaamyCaaqabaGcceWGXbGbamaacqGHRaWkcaWGkbWaaSbaaSqa aiaadchaaeqaaOGabmiCayaadaGaey4kaSIabmOsayaacaWaaSbaaS qaaiaadghaaeqaaOGabmyCayaacaGaey4kaSIabmOsayaacaWaaSba aSqaaiaadchaaeqaaOGabmiCayaacaGaeyypa0JaaGimaaaa@476B@   (25)

The six equations of Eq. (24), (25) describe the dynamics of the robot. Eliminating p ¨ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadchagaWaaa aa@380C@ and p ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadchagaGaaa aa@380B@ from these equations, the reduced dynamic equations are obtained as:

M(q) q ¨ +C(q, q ˙ ) q ˙ +G(q)=τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eacaGGOa GaamyCaiaacMcaceWGXbGbamaacqGHRaWkcaWGdbGaaiikaiaadgha caGGSaGabmyCayaacaGaaiykaiqadghagaGaaiabgUcaRiaadEeaca GGOaGaamyCaiaacMcacqGH9aqpcqaHepaDaaa@489C@   (26)

where,

M( q )= M 1 + M 2  J C( q, q ˙ )= M 2   J p 1 ( J ˙ q + J ˙ p  J ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWHnbWaaeWaa8aabaWdbiaahghaaiaawIcacaGLPaaacqGH 9aqpcaWHnbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRi aah2eapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiiOaiaahQea aeaacaWHdbWaaeWaa8aabaWdbiaahghacaGGSaGabCyCa8aagaGaaa WdbiaawIcacaGLPaaacqGH9aqpcqGHsislcaWHnbWdamaaBaaaleaa peGaaGOmaaWdaeqaaOWdbiaacckacaWHkbWdamaaDaaaleaapeGaae iCaaWdaeaapeGaeyOeI0IaaGymaaaakmaabmaapaqaa8qaceWHkbWd ayaacaWaaSbaaSqaa8qacaqGXbaapaqabaGcpeGaey4kaSIabCOsa8 aagaGaamaaBaaaleaapeGaaeiCaaWdaeqaaOWdbiaacckacaWHkbaa caGLOaGaayzkaaaaaaa@59DE@   (27)

In order to consider uncertainties and actuator faults, the dynamic model Eq. 26 can be rewritten as (30),

M(q) q ¨ +C(q, q ˙ ) q ˙ +G(q)+β(t T f )δ(q, q ˙ ,τ)+σ(q, q ˙ ,τ)=τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eacaGGOa GaamyCaiaacMcaceWGXbGbamaacqGHRaWkcaWGdbGaaiikaiaadgha caGGSaGabmyCayaacaGaaiykaiqadghagaGaaiabgUcaRiaadEeaca GGOaGaamyCaiaacMcacqGHRaWkcqaHYoGycaGGOaGaaiiDaiabgkHi TiaacsfadaWgaaWcbaGaamOzaaqabaGccaGGPaGaeqiTdqMaaiikai aadghacaGGSaGabmyCayaacaGaaiilaiabes8a0jaacMcacqGHRaWk cqaHdpWCcaGGOaGaamyCaiaacYcaceWGXbGbaiaacaGGSaGaeqiXdq Naaiykaiabg2da9iabes8a0baa@6186@   (28)

where  δ( q, q ˙ ,τ )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiabes7aKnaabmaapaqaaGqad8qacaWFXbGaaiilaiqa=fha paGbaiaapeGaaiilaiabes8a0bGaayjkaiaawMcaaiaacckaaaa@41FF@ , β( t T f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaeWaa8aabaWdbiaadshacqGHsislcaWGubWdamaaBaaa leaapeGaamOzaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3E94@ , T f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaa@394B@ , and σ( q, q ˙ ,τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3aaeWaa8aabaacbmWdbiaa=fhacaGGSaGab8xCa8aagaGa a8qacaGGSaGaeqiXdqhacaGLOaGaayzkaaaaaa@3FD5@   are the fault vector, its time profile, the fault occurrence time, and uncertainties, respectively.  The time profile of the fault is as follows:

β(t T f )={ 0 t< T f 1 e v(tTf) t > = T f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIjaacI cacaGG0bGaeyOeI0IaaiivamaaBaaaleaacaWGMbaabeaakiaacMca cqGH9aqpdaGabaqaauaabeqaciaaaeaacaaIWaaabaGaamiDaiabgY da8iaadsfadaWgaaWcbaGaamOzaaqabaaakeaacaaIXaGaeyOeI0Ia amyzamaaCaaaleqabaGaamODaiaacIcacaWG0bGaeyOeI0Iaamivai aadAgacaGGPaaaaaGcbaGaamiDamaaxababaGaeyOpa4daleaacqGH 9aqpaeqaaOGaamivamaaBaaaleaacaWGMbaabeaaaaaakiaawUhaaa aa@52D0@   (29)

where v denotes the growth rate of the fault. In this paper, actuator fault is taken into account which is one of the frequent failures in robotics. Small value or means that the fault is developing at slow rate, usually called an incipient fault. On the other hand, when this parameter has a large value, its time profile, γ, tends to a step function and is called an abrupt fault. Clearly, as v→∞, γ becomes a step function and the incipient fault turns to the abrupt fault.  When an actuator fails, its force can be defined as:

τ= τ nominal +δτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hXdiabg2da9iaa=r8apaWaaSbaaSqaa8qacaWGUbGaam4B aiaad2gacaWGPbGaamOBaiaadggacaWGSbaapaqabaGcpeGaey4kaS IaeqiTdqMaeqiXdqhaaa@4620@   (30)

The actuator fault, δτ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeqiXdq3aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3D38@ , can be written as the fault function defined by F( q, q ˙ ,τ )= Μ 1 δτ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8Nramaabmaapaqaa8qacaWFXbGaaiilaiqa=fhapaGbaiaa peGaaiilaiabes8a0bGaayjkaiaawMcaaiabg2da9iabfY5an9aada ahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaeqiTdqMaeqiXdq3aaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@495E@ .

Now, the dynamic model of the robot can be rewritten as:

q ¨ =M (q) 1 τ+N(q, q ˙ )+Δ(q, q ˙ ,τ)+F(q, q ˙ ,τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadghagaWaai abg2da9iaad2eacaGGOaGaamyCaiaacMcadaahaaWcbeqaaiabgkHi TiaaigdaaaGccqaHepaDcqGHRaWkcaWGobGaaiikaiaadghacaGGSa GabmyCayaacaGaaiykaiabgUcaRiabfs5aejaacIcacaWGXbGaaiil aiqadghagaGaaiaacYcacqaHepaDcaGGPaGaey4kaSIaamOraiaacI cacaWGXbGaaiilaiqadghagaGaaiaacYcacqaHepaDcaGGPaaaaa@5665@   (31)

N( q, q ˙ )=M ( q ) 1 [ C( q, q ˙ ) q ˙ +G( q ) ] Δ(q, q ˙ ,τ)=M (q) 1 β(t T f )δ(q, q ˙ ,τ) F(q, q ˙ ,τ)=M (q) 1 σ(q, q ˙ ,τ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWHobWaaeWaa8aabaWdbiaahghacaGGSaGabCyCa8aagaGa aaWdbiaawIcacaGLPaaacqGH9aqpcqGHsislcaWHnbWaaeWaa8aaba WdbiaahghaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeyOeI0Ia aGymaaaakmaadmaapaqaa8qacaWHdbWaaeWaa8aabaWdbiaahghaca GGSaGabCyCa8aagaGaaaWdbiaawIcacaGLPaaaceWHXbWdayaacaWd biabgUcaRiaahEeadaqadaWdaeaapeGaaCyCaaGaayjkaiaawMcaaa Gaay5waiaaw2faaaqaa8aacqqHuoarcaGGOaGaamyCaiaacYcaceWG XbGbaiaacaGGSaGaeqiXdqNaaiykaiabg2da9iabgkHiTiaad2eaca GGOaGaamyCaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqaH YoGycaGGOaGaaiiDaiabgkHiTiaadsfadaWgaaWcbaGaamOzaaqaba GccaGGPaGaeqiTdqMaaiikaiaadghacaGGSaGabmyCayaacaGaaiil aiabes8a0jaacMcaaeaacaGGgbGaaiikaiaadghacaGGSaGabmyCay aacaGaaiilaiabes8a0jaacMcacqGH9aqpcqGHsislcaWGnbGaaiik aiaadghacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeq4Wdm NaaiikaiaadghacaGGSaGabmyCayaacaGaaiilaiabes8a0jaacMca aaaa@84E2@

where N, Δ, and F introduce the nominal robot dynamics, uncertainties, and actuator faults, respectively.

Proposed control strategy

In this section, first of all, a nonlinear H controller is designed to control a parallel robot in the presence of actuator faults, uncertainties and also exogenous disturbances.

The dynamic model of the parallel robot can be rewritten in the following state-space form:

{ q ˙ 1 = q 2 q 2 =M (q) 1 τ+N(q, q ˙ )+ϕ(q, q ˙ ,τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaiqadghagaGaamaaBaaaleaacaaIXaaabeaakiabg2da 9iaadghadaWgaaWcbaGaaGOmaaqabaaakeaacaWGXbWaaSbaaSqaai aaikdaaeqaaOGaeyypa0JaamytaiaacIcacaWGXbGaaiykamaaCaaa leqabaGaeyOeI0IaaGymaaaakiabes8a0jabgUcaRiaad6eacaGGOa GaamyCaiaacYcaceWGXbGbaiaacaGGPaGaey4kaSIaeqy1dyMaaiik aiaadghacaGGSaGabmyCayaacaGaaiilaiabes8a0jaacMcaaaaaca GL7baaaaa@5594@   (32)

where ϕ(q, q ˙ ,τ)=Δ(q, q ˙ ,τ)+F(q, q ˙ ,τ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy1dyMaaiikaiaadghacaGGSaGabmyCayaacaGaaiilaiabes8a 0jaacMcacqGH9aqpcqqHuoarcaGGOaGaamyCaiaacYcaceWGXbGbai aacaGGSaGaeqiXdqNaaiykaiabgUcaRiaadAeacaGGOaGaamyCaiaa cYcaceWGXbGbaiaacaGGSaGaeqiXdqNaaiykaaaa@5067@ . A performance index can be defined using the following cost variable:

ξ=W[ h(q) τ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyypa0Jaam4vaiaacUfafaqabeGabaaabaGaamiAaiaa cIcacaWGXbGaaiykaaqaaiabes8a0baacaGGDbaaaa@41A0@   (33)

where W is a weighting function and h(q) is a function of states which should be controlled. If the robot states are available, then the H performance index is as follows (44):

0 T ξ 2 dt γ 2 0 T d 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaabsfaa0WdaeaapeGa ey4kIipaaOWaauWaaeaacqaH+oaEaiaawMa7caGLkWoapaWaaWbaaS qabeaapeGaaGOmaaaakiaabsgacaqG0bGaeyizImQaeq4SdC2damaa CaaaleqabaWdbiaaikdaaaGcdaGfWbqabSWdaeaapeGaaGimaaWdae aapeGaaeivaaqdpaqaa8qacqGHRiI8aaGcdaqbdaqaaiaahsgaaiaa wMa7caGLkWoapaWaaWbaaSqabeaapeGaaGOmaaaakiaabsgacaqG0b aaaa@534A@   (34)

in which

ξ 2 = ξ ' ξ=[ h ' (q)  τ ' ]W'W[ h(q) τ ] W'W=[ Q S S ' R ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaauWaaeaacqaH+oaEaiaawMa7caGLkWoadaahaaWcbeqaaiaaikda aaGccqGH9aqpcqaH+oaEdaahaaWcbeqaaGqadiaa=DcaaaGccqaH+o aEcqGH9aqpcaGGBbGaamiAamaaCaaaleqabaGaa83jaaaakiaacIca caWGXbGaaiykaiaacckacqaHepaDdaahaaWcbeqaaiaa=DcaaaGcca GGDbGaam4vaiaa=DcacaWGxbGaai4wauaabeqaceaaaeaacaWGObGa aiikaiaadghacaGGPaaabaGaeqiXdqhaaiaac2facaGGGcGaam4vai aa=DcacaWGxbGaeyypa0Jaai4wauaabeqaciaaaeaacaWGrbaabaGa am4uaaqaaiaadofadaahaaWcbeqaaiaa=DcaaaaakeaacaWGsbaaai aac2faaaa@60ED@   (35)

where Q and R are symmetric positive matrices. By relying on the W W>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGab83va8aagaqba8qacaWFxbGaeyOpa4JaaGimaaaa@3AD6@ , then QS R 1 S >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xuaiabgkHiTiaa=nfacaWFsbWdamaaCaaaleqabaWdbiab gkHiTiaaigdaaaGcceWFtbWdayaafaWdbiabg6da+iaaicdaaaa@3F5E@ . Therefore, the optimal control signal can be determined based on the solution of HJBI:46

V t + V q f( q,t )+ 1 2 V q [ 1 γ 2 k( q,t ) k ( q,t )g( q,t ) R 1 g( q,t ) ] V q V q g( q,t ) R 1 S h( q )+ 1 2 h'( q )( QS R 1 S' )h( q )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaabAfaa8aabaWdbiabgkGi2kaabsha aaGaey4kaSYaaSaaa8aabaWdbiqbgkGi2+aagaqba8qacaqGwbaapa qaa8qacqGHciITcaWHXbaaaiaahAgadaqadaWdaeaapeGaaCyCaiaa cYcacaWH0baacaGLOaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiaaig daa8aabaWdbiaaikdaaaWaaSaaa8aabaWdbiqbgkGi2+aagaqba8qa caqGwbaapaqaa8qacqGHciITcaWHXbaaamaadmaapaqaa8qadaWcaa WdaeaapeGaaGymaaWdaeaapeGaae4Sd8aadaahaaWcbeqaa8qacaaI YaaaaaaakiaahUgadaqadaWdaeaapeGaaCyCaiaacYcacaqG0baaca GLOaGaayzkaaGabC4Aa8aagaqba8qadaqadaWdaeaapeGaaCyCaiaa cYcacaqG0baacaGLOaGaayzkaaGaeyOeI0IaaC4zamaabmaapaqaa8 qacaWHXbGaaiilaiaabshaaiaawIcacaGLPaaacaWHsbWdamaaCaaa leqabaWdbiabgkHiTiaaigdaaaGccaWHNbWaaeWaa8aabaWdbiaahg hacaGGSaGaaeiDaaGaayjkaiaawMcaaaGaay5waiaaw2faamaalaaa paqaa8qacqGHciITcaqGwbaapaqaa8qacqGHciITcaWHXbaaaiabgk HiTmaalaaapaqaa8qacuGHciITpaGbauaapeGaaeOvaaWdaeaapeGa eyOaIyRaaCyCaaaacaqGNbWaaeWaa8aabaWdbiaahghacaGGSaGaae iDaaGaayjkaiaawMcaaiaabkfapaWaaWbaaSqabeaapeGaeyOeI0Ia aGymaaaakiqahofapaGbauaapeGaaCiAamaabmaapaqaa8qacaWHXb aacaGLOaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWd biaaikdaaaGaaCiAaiaacEcadaqadaWdaeaapeGaaCyCaaGaayjkai aawMcaamaabmaapaqaa8qacaWHrbGaeyOeI0IaaC4uaiaahkfapaWa aWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaahofacaGGNaaacaGLOa GaayzkaaGaaCiAamaabmaapaqaa8qacaWHXbaacaGLOaGaayzkaaGa eyypa0JaaGimaaaa@99C5@   (36)

For each γ> σ max ( R ) 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyOpa4ZaaOaaa8aabaWdbiabeo8aZ9aadaWgaaWcbaWd biaab2gacaqGHbGaaeiEaaWdaeqaaOWdbmaabmaapaqaaGqad8qaca WFsbaacaGLOaGaayzkaaaaleqaaOGaeyyzImRaaGimaaaa@442D@ (maximum singular value). In this case, the optimal state feedback control command can be derived as:

τ * = R 1 ( S h( q )+g'( q,t ) V q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiXd8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0JaeyOeI0Ia aCOua8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOWaaeWaa8aaba WdbiqahofapaGbauaapeGaaCiAamaabmaapaqaa8qacaWHXbaacaGL OaGaayzkaaGaey4kaSIaaC4zaiaabEcadaqadaWdaeaapeGaaCyCai aacYcacaqG0baacaGLOaGaayzkaaWaaSaaa8aabaWdbiabgkGi2kaa bAfaa8aabaWdbiabgkGi2kaahghaaaaacaGLOaGaayzkaaaaaa@5041@   (37)

By defining the tracking error vector x=[ e ˙ e edt ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGab8xz a8aagaGaaaqaa8qacaWFLbaapaqaamaavacabeWcbeqaaiaaygW7a0 qaa8qacqGHRiI8aaGccaWFLbGaamizaiaadshaaaaacaGLBbGaayzx aaaaaa@43E8@ where e=q q d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xzaiabg2da9iaa=fhacqGHsislcaWFXbWdamaaBaaaleaa peGaamizaaWdaeqaaaaa@3D39@   e ˙ = q ˙ q ˙ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGab8xza8aagaGaa8qacqGH9aqpceWFXbWdayaacaWdbiabgkHi Tiqa=fhapaGbaiaadaWgaaWcbaWdbiaadsgaa8aabeaaaaa@3D92@ ,  and edt= ( q q d )dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaavacabeWcbe qaaiaaygW7a0qaaabaaaaaaaaapeGaey4kIipaaGqadOGaa8xzaiaa dsgacaWG0bGaeyypa0ZdamaavacabeWcbeqaaiaaygW7a0qaa8qacq GHRiI8aaGcdaqadaWdaeaapeGaa8xCaiabgkHiTiaa=fhapaWaaSba aSqaa8qacaWGKbaapaqabaaak8qacaGLOaGaayzkaaGaamizaiaads haaaa@4A48@ . Due to acting persistence disturbances on the parallel robot during the whole process, the integral term is added to nullifying steady state error. Then, the following control law is taken into account:

τ=M( q ) q ¨ +C( q, q ˙ ) q ˙ +G( q ) 1 T 1 ( M( q )T x ˙ +C( q, q ˙ )Tx )+ 1 T 1 u T=[ T 1 T 2 T 3 ], T 1 =ρI     ρ>0   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbmaeaa aaaaaaa8qacaWFepGaeyypa0Jaa8xtamaabmaapaqaa8qacaWFXbaa caGLOaGaayzkaaWdamaaxacabaWdbiaa=fhaaSWdaeqabaWdbiaacI kaaaGccqGHRaWkcaWFdbWaaeWaa8aabaWdbiaa=fhacaGGSaGab8xC a8aagaGaaaWdbiaawIcacaGLPaaaceWFXbWdayaacaWdbiabgUcaRi aa=DeadaqadaWdaeaapeGaa8xCaaGaayjkaiaawMcaaiabgkHiTmaa laaapaqaa8qacaaIXaaapaqaa8qacaWFubWdamaaBaaaleaapeGaaG ymaaWdaeqaaaaak8qadaqadaWdaeaapeGaa8xtamaabmaapaqaa8qa caWFXbaacaGLOaGaayzkaaGaa8hvaiqa=HhapaGbaiaapeGaey4kaS Iaa83qamaabmaapaqaa8qacaWFXbGaaiilaiqa=fhapaGbaiaaa8qa caGLOaGaayzkaaGaa8hvaiaa=HhaaiaawIcacaGLPaaacqGHRaWkda WcaaWdaeaapeGaaGymaaWdaeaapeGaa8hva8aadaWgaaWcbaWdbiaa igdaa8aabeaaaaGcpeGaa8xDaaqaaiaahsfacqGH9aqpdaWadaWdae aafaqabeqadaaabaWdbiaahsfapaWaaSbaaSqaa8qacaaIXaaapaqa baaakeaapeGaaCiva8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8 qacaWHubWdamaaBaaaleaapeGaaG4maaWdaeqaaaaaaOWdbiaawUfa caGLDbaacaGGSaGaaCiva8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGH9aqpcaqGbpGaaCysaiaabckacaqGGcGaaeiOaiaabckacaqG GcGaaeyWdiabg6da+iaaicdacaqGGcGaaeiOaaaaaa@7DCD@   (38)

where l is the nth-order identity matrix. By substituting the control command into the dynamic model, then the error dynamics can be expressed by the following expression:

M( q )T x ˙ +C( q, q ˙ )Tx=u+d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCytamaabmaapaqaa8qacaWHXbaacaGLOaGaayzkaaGaaCivaiqa hIhapaGbaiaapeGaey4kaSIaaC4qamaabmaapaqaa8qacaWHXbGaai ilaiqahghapaGbaiaaa8qacaGLOaGaayzkaaGaaCivaiaahIhacqGH 9aqpcaWH1bGaey4kaSIaaCizaaaa@487E@   (39)

By considering Eq. ‎39, we try to determine an optimal control signal so that

ξ d γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbmaafmaabaacbmGaa8NVdaGaayzcSlaawQa7aaWd aeaapeWaauWaaeaacaWFKbaacaGLjWUaayPcSdaaaiabgsMiJkabeo 7aN9aadaahaaWcbeqaa8qacaaIYaaaaaaa@4460@   (40)

Based on the above vector error and cost variable ,

Q=[ Q 1 Q 12 Q 13 Q 12 Q 2 Q 23 Q 13 Q 23 Q 3 ],S=[ S 1 S 2 S 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCyuaiabg2da9maadmaapaqaauaabeqadmaaaeaapeGaaCyua8aa daWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWHrbWdamaaBaaale aapeGaaGymaiaaikdaa8aabeaaaOqaa8qacaWHrbWdamaaBaaaleaa peGaaGymaiaaiodaa8aabeaaaOqaa8qacaWHrbWdamaaBaaaleaape GaaGymaiaaikdaa8aabeaaaOqaa8qacaWHrbWdamaaBaaaleaapeGa aGOmaaWdaeqaaaGcbaWdbiaahgfapaWaaSbaaSqaa8qacaaIYaGaaG 4maaWdaeqaaaGcbaWdbiaahgfapaWaaSbaaSqaa8qacaaIXaGaaG4m aaWdaeqaaaGcbaWdbiaahgfapaWaaSbaaSqaa8qacaaIYaGaaG4maa WdaeqaaaGcbaWdbiaahgfapaWaaSbaaSqaa8qacaaIZaaapaqabaaa aaGcpeGaay5waiaaw2faaiaacYcacaWHtbGaeyypa0ZaamWaa8aaba qbaeqabmqaaaqaa8qacaWHtbWdamaaBaaaleaapeGaaGymaaWdaeqa aaGcbaWdbiaahofapaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaape GaaC4ua8aadaWgaaWcbaWdbiaaiodaa8aabeaaaaaak8qacaGLBbGa ayzxaaaaaa@5CCD@   (41)

By rewriting the error dynamics into the standard form of the nonlinear H problem as:

q ˙ =f( q,t )+g( q,t )u+k( q,t )ϕ f( q,t )= T 0 1 [ M 1 ( q )C( q, q ˙ ) 0 0 T 1 1 I T 1 1 T 2 I+ T 1 1 ( T 2 T 3 ) 0 I I ]  T 0 x g( q,t )=k( q,t )= T 0 1 [ M 1 ( q ) 0 0 ]          T 0 =[ T 1 T 2 T 3 0 I I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qaceWHXbWdayaacaWdbiabg2da9iaahAgadaqadaWdaeaapeGa aCyCaiaacYcacaqG0baacaGLOaGaayzkaaGaey4kaSIaaC4zamaabm aapaqaa8qacaWHXbGaaiilaiaabshaaiaawIcacaGLPaaacaWH1bGa ey4kaSIaaC4Aamaabmaapaqaa8qacaWHXbGaaiilaiaabshaaiaawI cacaGLPaaacqaHvpGzaeaacaWHMbWaaeWaa8aabaWdbiaahghacaGG SaGaaeiDaaGaayjkaiaawMcaaiabg2da9iaahsfapaWaa0baaSqaa8 qacaaIWaaapaqaa8qacqGHsislcaaIXaaaaOWaamWaa8aabaqbaeqa bmWaaaqaa8qacqGHsislcaWHnbWdamaaCaaaleqabaWdbiabgkHiTi aaigdaaaGcdaqadaWdaeaapeGaaCyCaaGaayjkaiaawMcaaiaahoea daqadaWdaeaapeGaaCyCaiaacYcaceWHXbWdayaacaaapeGaayjkai aawMcaaaWdaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGaaCiv a8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiabgkHiTiaaigdaaaaak8 aabaWdbiaahMeacqGHsislcaWHubWdamaaDaaaleaapeGaaGymaaWd aeaapeGaeyOeI0IaaGymaaaakiaahsfapaWaaSbaaSqaa8qacaaIYa aapaqabaaakeaapeGaeyOeI0IaaCysaiabgUcaRiaahsfapaWaa0ba aSqaa8qacaaIXaaapaqaa8qacqGHsislcaaIXaaaaOWaaeWaa8aaba WdbiaahsfapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0Ia aCiva8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPa aaa8aabaWdbiaaicdaa8aabaWdbiaahMeaa8aabaWdbiabgkHiTiaa hMeaaaaacaGLBbGaayzxaaGaaeiOaiaahsfapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaaCiEaaqaaiaahEgadaqadaWdaeaapeGaaCyC aiaacYcacaqG0baacaGLOaGaayzkaaGaeyypa0JaaC4Aamaabmaapa qaa8qacaWHXbGaaiilaiaabshaaiaawIcacaGLPaaacqGH9aqpcaqG ubWdamaaDaaaleaapeGaaGimaaWdaeaapeGaeyOeI0IaaGymaaaakm aadmaapaqaauaabeqadeaaaeaapeGaaCyta8aadaahaaWcbeqaa8qa cqGHsislcaaIXaaaaOWaaeWaa8aabaWdbiaahghaaiaawIcacaGLPa aaa8aabaWdbiaaicdaa8aabaWdbiaaicdaaaaacaGLBbGaayzxaaGa aeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckaca qGGcGaaeiva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqp daWadaWdaeaafaqabeWadaaabaWdbiaabsfapaWaaSbaaSqaa8qaca aIXaaapaqabaaakeaapeGaaeiva8aadaWgaaWcbaWdbiaaikdaa8aa beaaaOqaa8qacaqGubWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcba Wdbiaaicdaa8aabaWdbiaahMeaa8aabaWdbiaahMeaa8aabaWdbiaa icdaa8aabaWdbiaaicdaa8aabaWdbiaahMeaaaaacaGLBbGaayzxaa aaaaa@BB8F@   (42)

It should be noted that HJBI solution depends on the selection of both cost variable and h(q) which is considered equally to the error vector. By taking such function into account, a Lyapunov function should be chosen in order to determine the control law.

Theorem: Take the following Lyapunov function:

V( q,t )=0.5 xT ' 0 [ M( q ) 0 0 0 Y XY 0 XY Z+Y ]  T 0 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOvamaabmaapaqaa8qacaWHXbGaaiilaiaabshaaiaawIcacaGL PaaacqGH9aqpcaaIWaGaaiOlaiaaiwdacaqGGcGaaCiEaiaabEcaca qGGcGaaCivaiaabEcapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWa amWaa8aabaqbaeqabmWaaaqaa8qacaWHnbWaaeWaa8aabaWdbiaahg haaiaawIcacaGLPaaaa8aabaWdbiaaicdaa8aabaWdbiaaicdaa8aa baWdbiaaicdaa8aabaWdbiaahMfaa8aabaWdbiaahIfacqGHsislca WHzbaapaqaa8qacaaIWaaapaqaa8qacaWHybGaeyOeI0IaaCywaaWd aeaapeGaaCOwaiabgUcaRiaahMfaaaaacaGLBbGaayzxaaGaaeiOai aahsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaeiEaaaa@5CB8@   (43)

Where X,Y and Z are symmetric and positive definite matrices so that ZX Y 1 X+2X>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NwaiabgkHiTiaa=HfacaWFzbWdamaaCaaaleqabaWdbiab gkHiTiaaigdaaaGccaWFybGaey4kaSIaaGOmaiaa=HfacqGH+aGpca aIWaaaaa@41C4@ by verifying the following expression, for the high value of γ, the candidate function embodies a solution of HJBI.

Some Riccati algebraic equations are solved to obtain T=[ T 1 T 2 T 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hvaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaa8hv a8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWFubWdamaaBa aaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaa=rfapaWaaSbaaSqaa8qa caaIZaaapaqabaaaaaGcpeGaay5waiaaw2faaaaa@4143@ . By substituting the Lyapunov function in Eq.37, the control law can be rewritten as:

τ * = R 1 ( S +T ) x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaCaaaleqabaWdbiaabQcaaaGccqGH9aqpcqGHsisl caWHsbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcdaqadaWdae aapeGabC4ua8aagaqba8qacqGHRaWkcaWHubaacaGLOaGaayzkaaGa aiiOaiaahIhaaaa@4554@   (44)

By replacing the control law in Eq. ‎0 and some mathematical simplification, the control law is as:

τ=M( q ) q ¨ +C( q, q ˙ ) q ˙ +G( q )M( q )( K P e+ K I edt+ K D e ˙ ) K P = T 1 1 ( T 3 + M 1 ( q )C( q, q ˙ ) T 2 + M 1 ( q ) R 1 ( S 2 ' + T 2 ) ) K I = T 1 1 ( M 1 ( q )C( q, q ˙ ) T 3 + M 1 ( q ) R 1 ( S 3 ' + T 3 ) ) K D = T 1 1 ( T 2 + M 1 ( q )C( q, q ˙ ) T 1 + M 1 ( q ) R 1 ( S 1 ' + T 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqGepGaeyypa0JaaCytamaabmaapaqaa8qacaWHXbaacaGL OaGaayzkaaWdamaaxacabaWdbiaahghaaSWdaeqabaWdbiaacIkaaa GccqGHRaWkcaWHdbWaaeWaa8aabaWdbiaahghacaGGSaGabCyCa8aa gaGaaaWdbiaawIcacaGLPaaaceWHXbWdayaacaWdbiabgUcaRiaahE eadaqadaWdaeaapeGaaCyCaaGaayjkaiaawMcaaiabgkHiTiaah2ea daqadaWdaeaapeGaaCyCaaGaayjkaiaawMcaamaabmaapaqaa8qaca WHlbWdamaaBaaaleaapeGaaeiuaaWdaeqaaOWdbiaahwgacqGHRaWk caWHlbWdamaaBaaaleaapeGaaeysaaWdaeqaaOWaaubiaeqaleqaba GaaGzaVdqdbaWdbiabgUIiYdaakiaahwgacaqGKbGaaeiDaiabgUca RiaahUeapaWaaSbaaSqaa8qacaqGebaapaqabaGcpeGabCyza8aaga GaaaWdbiaawIcacaGLPaaaaeaacaWHlbWdamaaBaaaleaapeGaaeiu aaWdaeqaaOWdbiabg2da9iaahsfapaWaa0baaSqaa8qacaaIXaaapa qaa8qacqGHsislcaaIXaaaaOWaaeWaa8aabaWdbiaahsfapaWaaSba aSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaaCyta8aadaahaaWcbe qaa8qacqGHsislcaaIXaaaaOWaaeWaa8aabaWdbiaahghaaiaawIca caGLPaaacaWHdbWaaeWaa8aabaWdbiaahghacaGGSaGabCyCa8aaga GaaaWdbiaawIcacaGLPaaacaWHubWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbiabgUcaRiaah2eapaWaaWbaaSqabeaapeGaeyOeI0IaaG ymaaaakmaabmaapaqaa8qacaWHXbaacaGLOaGaayzkaaGaaCOua8aa daahaaWcbeqaa8qacqGHsislcaaIXaaaaOWaaeWaa8aabaWdbiaaho fapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaGGNaaaaOGaey4kaSIa aCiva8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPa aaaiaawIcacaGLPaaaaeaacaWHlbWdamaaBaaaleaapeGaaeysaaWd aeqaaOWdbiabg2da9iabgkHiTiaahsfapaWaa0baaSqaa8qacaaIXa aapaqaa8qacqGHsislcaaIXaaaaOWaaeWaa8aabaWdbiaah2eapaWa aWbaaSqabeaapeGaeyOeI0IaaGymaaaakmaabmaapaqaa8qacaWHXb aacaGLOaGaayzkaaGaaC4qamaabmaapaqaa8qacaWHXbGaaiilaiqa hghapaGbaiaaa8qacaGLOaGaayzkaaGaaCiva8aadaWgaaWcbaWdbi aaiodaa8aabeaak8qacqGHRaWkcaWHnbWdamaaCaaaleqabaWdbiab gkHiTiaaigdaaaGcdaqadaWdaeaapeGaaCyCaaGaayjkaiaawMcaai aahkfapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakmaabmaapaqa a8qacaWHtbWdamaaDaaaleaapeGaaG4maaWdaeaapeGaai4jaaaaki abgUcaRiaahsfapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaaacaGLOaGaayzkaaaabaGaaC4sa8aadaWgaaWcbaWdbi aabseaa8aabeaak8qacqGH9aqpcaWHubWdamaaDaaaleaapeGaaGym aaWdaeaapeGaeyOeI0IaaGymaaaakmaabmaapaqaa8qacaWHubWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaah2eapaWaaWba aSqabeaapeGaeyOeI0IaaGymaaaakmaabmaapaqaa8qacaWHXbaaca GLOaGaayzkaaGaaC4qamaabmaapaqaa8qacaWHXbGaaiilaiqahgha paGbaiaaa8qacaGLOaGaayzkaaGaaCiva8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGHRaWkcaWHnbWdamaaCaaaleqabaWdbiabgkHi TiaaigdaaaGcdaqadaWdaeaapeGaaCyCaaGaayjkaiaawMcaaiaahk fapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakmaabmaapaqaa8qa caWHtbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaai4jaaaakiabgU caRiaahsfapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGa ayzkaaaacaGLOaGaayzkaaaaaaa@D9DD@   (45)

By defining

Q 1 = ω 1 2 I ,R= ω u 2 I, Q 12 = Q 13 = Q 23 =0 Q 2 = ω 2 2 I Q 3 = ω 3 2 I, S 1 = S 2 = S 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWHrbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaabM8apaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaaC ysaiaabckacaqGSaGaaeOuaiabg2da9iaabM8apaWaa0baaSqaa8qa caqG1baapaqaa8qacaaIYaaaaOGaaCysaiaacYcacaWHrbWdamaaBa aaleaapeGaaGymaiaaikdaa8aabeaak8qacqGH9aqpcaWHrbWdamaa BaaaleaapeGaaGymaiaaiodaa8aabeaak8qacqGH9aqpcaWHrbWdam aaBaaaleaapeGaaGOmaiaaiodaa8aabeaak8qacqGH9aqpcaaIWaaa baGaaCyua8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpca qGjpWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiaahMea aeaacaWHrbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9i aabM8apaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIYaaaaOGaaCys aiaacYcacaWHtbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2 da9iaahofapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0Ja aC4ua8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaaIWa aaaaa@6BF3@   (46)

Now, the above gains can be rewritten as:

K P = ω 3 ω 1 I+ ω 2 2 +2 ω 1 ω 3 ω 1 M 1 ( q )( C( q, q ˙ )+ 1 ω u 2 I ) K I = ω 3 ω 1 M 1 ( q )( C( q, q ˙ )+ 1 ω u 2 I ) K D = ω 2 2 +2 ω 1 ω 3 ω 1 I+ M 1 ( q )( C( q, q ˙ )+ 1 ω u 2 I ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWHlbWdamaaBaaaleaapeGaaeiuaaWdaeqaaOWdbiabg2da 9maalaaapaqaa8qacaqGjpWdamaaBaaaleaapeGaaG4maaWdaeqaaa GcbaWdbiaabM8apaWaaSbaaSqaa8qacaaIXaaapaqabaaaaOWdbiaa hMeacqGHRaWkdaWcaaWdaeaapeWaaOaaa8aabaWdbiaabM8apaWaa0 baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOGaey4kaSIaaGOmaiaa bM8apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaeyYd8aadaWgaa WcbaWdbiaaiodaa8aabeaaa8qabeaaaOWdaeaapeGaaeyYd8aadaWg aaWcbaWdbiaaigdaa8aabeaaaaGcpeGaaCyta8aadaahaaWcbeqaa8 qacqGHsislcaaIXaaaaOWaaeWaa8aabaWdbiaahghaaiaawIcacaGL PaaadaqadaWdaeaapeGaaC4qamaabmaapaqaa8qacaWHXbGaaiilai qahghapaGbaiaaa8qacaGLOaGaayzkaaGaey4kaSYaaSaaa8aabaWd biaaigdaa8aabaWdbiaabM8apaWaa0baaSqaa8qacaqG1baapaqaa8 qacaaIYaaaaaaakiaahMeaaiaawIcacaGLPaaaaeaacaWHlbWdamaa BaaaleaapeGaaeysaaWdaeqaaOWdbiabg2da9maalaaapaqaa8qaca qGjpWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiaabM8apaWa aSbaaSqaa8qacaaIXaaapaqabaaaaOWdbiaah2eapaWaaWbaaSqabe aapeGaeyOeI0IaaGymaaaakmaabmaapaqaa8qacaWHXbaacaGLOaGa ayzkaaWaaeWaa8aabaWdbiaahoeadaqadaWdaeaapeGaaCyCaiaacY caceWHXbWdayaacaaapeGaayjkaiaawMcaaiabgUcaRmaalaaapaqa a8qacaaIXaaapaqaa8qacaqGjpWdamaaDaaaleaapeGaaeyDaaWdae aapeGaaGOmaaaaaaGccaqGjbaacaGLOaGaayzkaaaabaGaaC4sa8aa daWgaaWcbaWdbiaabseaa8aabeaak8qacqGH9aqpdaWcaaWdaeaape WaaOaaa8aabaWdbiaabM8apaWaa0baaSqaa8qacaaIYaaapaqaa8qa caaIYaaaaOGaey4kaSIaaGOmaiaabM8apaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaaeyYd8aadaWgaaWcbaWdbiaaiodaa8aabeaaa8qa beaaaOWdaeaapeGaaeyYd8aadaWgaaWcbaWdbiaaigdaa8aabeaaaa GcpeGaaCysaiabgUcaRiaah2eapaWaaWbaaSqabeaapeGaeyOeI0Ia aGymaaaakmaabmaapaqaa8qacaWHXbaacaGLOaGaayzkaaWaaeWaa8 aabaWdbiaahoeadaqadaWdaeaapeGaaCyCaiaacYcaceWHXbWdayaa caaapeGaayjkaiaawMcaaiabgUcaRmaalaaapaqaa8qacaaIXaaapa qaa8qacaqGjpWdamaaDaaaleaapeGaaeyDaaWdaeaapeGaaGOmaaaa aaGccaWHjbaacaGLOaGaayzkaaaaaaa@9FA0@   (47)

In which ω 1 ,  ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaqG GcGaeqyYdC3damaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3EDF@  and ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaaG4maaWdaeqaaaaa@3A11@  are constant parameters. More details regarding stability analysis is presented in 43.

Remark: by considering the aforementioned control scheme, it can be obviously seen that should constant parameters obtain properly, stability of the closed-loop system in the presence of the exogenous disturbances, uncertainties and actuator faults will be guaranteed in finite time. 

It is worth mentioning that the complex faults and disturbances are as follows. The fault is occurred at 1.5 sec.

δτ=[ 2 q 2 2 +5 q ˙ 1 q 3 +14sin q ˙ 3 20 q 1 2 +15 q ˙ 1 +14cos q 1 0.3 U FTCHO T 3 +6cos q ˙ 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeqiXdqNaeyypa0ZaamWaa8aabaqbaeqabmqaaaqaa8qa caaIYaGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaikdaaa GccqGHRaWkcaaI1aGabmyCa8aagaGaamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaadghapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey 4kaSIaaGymaiaaisdaciGGZbGaaiyAaiaac6gaceWGXbWdayaacaWa aSbaaSqaa8qacaaIZaaapaqabaaakeaapeGaaGOmaiaaicdacaWGXb WdamaaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiabgUcaRiaa igdacaaI1aGabmyCa8aagaGaamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiabgUcaRiaaigdacaaI0aGaci4yaiaac+gacaGGZbGaamyCa8aa daWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaaIWaGaaiOlaiaaio dacaWGvbWdamaaBaaaleaapeGaamOraiaadsfacaWGdbGaamisaiaa d+eacaWGubWdamaaBaaameaapeGaaG4maaWdaeqaaaWcbeaak8qacq GHRaWkcaaI2aGaci4yaiaac+gacaGGZbGabmyCa8aagaGaamaaBaaa leaapeGaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaaaaa@6F00@   (48)

d=[ 0.1 q 1 2 +sin t q 1 0.15cos t q 2 0.1sint+0.8 q 3 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeizaiabg2da9maadmaapaqaauaabeqadeaaaeaapeGaaGimaiaa c6cacaaIXaGaaeyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaik daaaGccqGHRaWkciGGZbGaaiyAaiaac6gacaqG0bGaaeiOaiaabgha paWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaaGimaiaac6caca aIXaGaaGynaiGacogacaGGVbGaai4CaiaabshacaqGGcGaaeyCa8aa daWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacaaIWaGaaiOlaiaaig daciGGZbGaaiyAaiaac6gacaqG0bGaey4kaSIaaGimaiaac6cacaaI 4aGaaeyCa8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaikdaaaaaaa GccaGLBbGaayzxaaaaaa@5E17@   (49)

As the controller performance is affected by actuator saturation, it is assumed that the maximum value of the control inputs is 100 N.m, in other words, | τ |100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWdbiabes8a0bGaay5bSlaawIa7aiabgsMiJkaaigda caaIWaGaaGimaaaa@4017@ .

Fault detection based on a super-twisting third-order sliding mode observer

In this section, the observer scheme that is used for both state observer and fault diagnosis based on STW-TOSM observer is described. By defining x 1  =q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEa8aadaWgaaWcbaWdbiaaigdacaqGGcaapaqabaGcpeGa eyypa0Jaa8xCaaaa@3C7C@ and x 2  = q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hEa8aadaWgaaWcbaWdbiaaikdacaqGGcaapaqabaGcpeGa eyypa0Jab8xCa8aagaGaaaaa@3C95@ , the dynamic model Eq. can be rewritten in following form:

x ˙ 1 = x 2 x ˙ 2 =N( x 1 , x 2 ,τ)+Δ( x 1 , x 2 ,τ)+F( x 1 , x 2 ,τ) y= x 1  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qaceWH4bWdayaacaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyypa0JaaCiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaaiqadI hagaGaamaaBaaaleaacaaIYaaabeaakiabg2da9iaad6eacaGGOaGa amiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaai aaikdaaeqaaOGaaiilaiabes8a0jaacMcacqGHRaWkcqqHuoarcaGG OaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaiilaiabes8a0jaacMcacqGHRaWkcaWGgbGa aiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBa aaleaacaaIYaaabeaakiaacYcacqaHepaDcaGGPaaabaWdbiaahMha cqGH9aqpcaWH4bWdamaaBaaaleaapeGaaGymaiaabckaa8aabeaaaa aa@62BD@   (50)

The third order super twisting sliding mode observer is as follows35

x ^ ˙ 1 = x ^ 2 + γ 2 x 1  x ^ 1 2 3  sign( x 1  x ^ 1 ) x ^ ˙ 2 =N( x 1 , x ^ 2 ,τ )+ γ 1 x ^ ˙ 1 x ^ 2 1 2  sign( x ^ ˙ 1 x ^ 2 )+ z ^ eq z ^ ˙ eq = γ 0 sign( x ^ ˙ 1 x ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaWaaCbiae aaieWaqaaaaaaaaaWdbiqa=HhapaGbaKaaaSqabeaapeGaaiy2caaa k8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpceWF4bWday aajaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaeq4SdC2d amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa=HhapaWaaSbaaSqaa8 qacaaIXaGaaiiOaaWdaeqaaOWdbiabgkHiTiqa=HhapaGbaKaadaWg aaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbmaalaaapaqaa8 qacaaIYaaapaqaa8qacaaIZaaaaaaakiaacckacaWGZbGaamyAaiaa dEgacaWGUbWaaeWaa8aabaWdbiaa=HhapaWaaSbaaSqaa8qacaaIXa GaaiiOaaWdaeqaaOWdbiabgkHiTiqa=HhapaGbaKaadaWgaaWcbaWd biaaigdaa8aabeaaaOWdbiaawIcacaGLPaaaaeaapaWaaCbiaeaape Gab8hEa8aagaqcaaWcbeqaa8qacaGGzlaaaOWdamaaBaaaleaapeGa aGOmaaWdaeqaaOWdbiabg2da9iaa=5eadaqadaWdaeaapeGaa8hEa8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGab8hEa8aagaqc amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacYcacaWFepaacaGLOa GaayzkaaGaey4kaSIaae4Sd8aadaWgaaWcbaWdbiaaigdaa8aabeaa kmaaxacabaWdbiqa=HhapaGbaKaaaSqabeaapeGaaiy2caaak8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislceWF4bWdayaajaWa aSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qadaWcaaWdae aapeGaaGymaaWdaeaapeGaaGOmaaaaaaGccaqGGcGaae4CaiaabMga caqGNbGaaeOBamaabmaapaqaamaaxacabaWdbiqa=HhapaGbaKaaaS qabeaapeGaaiy2caaak8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGHsislceWF4bWdayaajaWaaSbaaSqaa8qacaaIYaaapaqabaaak8 qacaGLOaGaayzkaaGaey4kaSIab8NEa8aagaqcamaaBaaaleaapeGa amyzaiaadghaa8aabeaaaOqaamaaxacabaWdbiqa=PhapaGbaKaaaS qabeaapeGaaiy2caaak8aadaWgaaWcbaWdbiaadwgacaWGXbaapaqa baGcpeGaeyypa0Jaeq4SdC2damaaBaaaleaapeGaaGimaaWdaeqaaO WdbiaadohacaWGPbGaam4zaiaad6gadaqadaWdaeaadaWfGaqaa8qa ceWF4bWdayaajaaaleqabaWdbiaacMTaaaGcpaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyOeI0Iab8hEa8aagaqcamaaBaaaleaapeGa aGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaa@9A76@   (51)

in which γ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Sd8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@39AE@  are the sliding mode gains. By taking into account the estimation error as:

x ˜ ˙ 1 = x ˜ 2  γ 2 x 1  x ^ 1 2/3  sign( x 1  x ^ 1 ) x ˜ ˙ 2 =d( x 1 , x ^ 2 , x ˜ 2 )+Δ( θ, θ ˙ ,τ ) γ 1 x ^ ˙ 1 x ^ 2 1 2  sign( x ^ ˙ 1 x ^ 2 ) z ^ eq MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaWaaCbiae aaieWaqaaaaaaaaaWdbiqa=HhapaGbaGaaaSqabeaapeGaaiy2caaa k8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpceWF4bWday aaiaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaaeiOaiaa bo7apaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaa8hEa8aadaWgaa WcbaWdbiaaigdacaGGGcaapaqabaGcpeGaeyOeI0Iab8hEa8aagaqc amaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmai aac+cacaaIZaaaaOGaaeiOaiaabohacaqGPbGaae4zaiaab6gadaqa daWdaeaapeGaaCiEa8aadaWgaaWcbaWdbiaaigdacaGGGcaapaqaba GcpeGaeyOeI0IabCiEa8aagaqcamaaBaaaleaapeGaaGymaaWdaeqa aaGcpeGaayjkaiaawMcaaaqaa8aadaWfGaqaa8qaceWF4bWdayaaia aaleqabaWdbiaacMTaaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaeyypa0Jaamizamaabmaapaqaa8qacaWF4bWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiaacYcaceWF4bWdayaajaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaaiilaiqa=HhapaGbaGaadaWgaaWcbaWdbi aaikdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkcaWHuoWaaeWa a8aabaWdbiaa=H7acaGGSaGab8hUd8aagaGaa8qacaGGSaGaa8hXda GaayjkaiaawMcaaiabgkHiTiaabo7apaWaaSbaaSqaa8qacaaIXaaa paqabaGcdaWfGaqaa8qaceWF4bWdayaajaaaleqabaWdbiaacMTaaa GcpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0Iab8hEa8aa gaqcamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeWaaS aaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaOGaaeiOaiaaboha caqGPbGaae4zaiaab6gadaqadaWdaeaadaWfGaqaa8qaceWF4bWday aajaaaleqabaWdbiaacMTaaaGcpaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyOeI0Iab8hEa8aagaqcamaaBaaaleaapeGaaGOmaaWdae qaaaGcpeGaayjkaiaawMcaaiabgkHiTiqa=PhapaGbaKaadaWgaaWc baWdbiaadwgacaWGXbaapaqabaaaaaa@8FEF@   (52)

z ^ ˙ eq = γ 0 sign( x ^ ˙ 1 x ^ 2 ) d( x 1 , x ^ 2 , x ˜ 2 )=N( x 1 , x 2 ,τ )N( x 1 , x ^ 2 ,τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaWaaCbiae aaieWaqaaaaaaaaaWdbiqa=PhapaGbaKaaaSqabeaapeGaaiy2caaa k8aadaWgaaWcbaWdbiaadwgacaWGXbaapaqabaGcpeGaeyypa0Jaae 4Sd8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaqGZbGaaeyAaiaa bEgacaqGUbWaaeWaa8aabaWaaCbiaeaapeGab8hEa8aagaqcaaWcbe qaa8qacaGGzlaaaOWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiab gkHiTiqa=HhapaGbaKaadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbi aawIcacaGLPaaaaeaacaWFKbWaaeWaa8aabaWdbiaa=HhapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaaiilaiqa=HhapaGbaKaadaWgaa WcbaWdbiaaikdaa8aabeaak8qacaGGSaGab8hEa8aagaacamaaBaaa leaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iaa=5 eadaqadaWdaeaapeGaa8hEa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaGGSaGaa8hEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qaca GGSaGaa8hXdaGaayjkaiaawMcaaiabgkHiTiaad6eadaqadaWdaeaa peGaa8hEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGab8 hEa8aagaqcamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacYcacaWF epaacaGLOaGaayzkaaaaaaa@6BDE@   (53)

where x ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGab8hEa8aagaacamaaBaaaleaapeGaamyAaaWdaeqaaaaa@3989@  are the estimation error. By defining

H( x 1 , x 2 , x ^ 2 ,τ)=d( x 1 , x ^ 2 , x ˜ 2 )+Δ( x 1 , x 2 ,τ)+F( x 1 , x 2 ,τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIeacaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaaiilaiqadIhagaqcamaaBaaaleaacaaIYaaabe aakiaacYcacqaHepaDcaGGPaGaeyypa0JaamizaiaacIcacaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaiilaiqadIhagaqcamaaBaaaleaaca aIYaaabeaakiaacYcaceWG4bGbaGaadaWgaaWcbaGaaGOmaaqabaGc caGGPaGaey4kaSIaeuiLdqKaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacqaH epaDcaGGPaGaey4kaSIaaiOraiaacIcacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa eqiXdqNaaiykaaaa@621F@   (53)

and also by having the following assumptions:

Δ( x 1 , x 2 ,τ) Δ ¯ F( x 1 , x 2 ,τ) φ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaeuiLdq KaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaa BaaaleaacaaIYaaabeaakiaacYcacqaHepaDcaGGPaGaeyizImQafu iLdqKbaebaaeaacaGGgbGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacqaHep aDcaGGPaGaeyizImQafqOXdOMbaebaaaaa@50B6@   (54)

then, a constant parameter is existing so that:

H( x 1 , x 2 , x ^ 2 ,τ)< f + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIeacaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaaiilaiqadIhagaqcamaaBaaaleaacaaIYaaabe aakiaacYcacqaHepaDcaGGPaGaeyipaWJaamOzamaaCaaaleqabaGa ey4kaScaaaaa@45E0@   (55)

According to the analysis performed in,35 the sliding gains can be chosen as follows which ensure the stability and convergence of the system.

γ 2 =1.9  f +   1/3 γ 1 =1.5  f +   1/2 γ 0 =1.1  f + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqGZoWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da 9iaaigdacaGGUaGaaGyoaiaabckacaWGMbWdamaaCaaaleqabaWdbi abgUcaRaaakiaacckapaWaaWbaaSqabeaapeGaaGymaiaac+cacaaI ZaaaaaGcpaqaa8qacaqGZoWdamaaBaaaleaapeGaaGymaaWdaeqaaO Wdbiabg2da9iaaigdacaGGUaGaaGynaiaabckacaWGMbWdamaaCaaa leqabaWdbiabgUcaRaaakiaacckapaWaaWbaaSqabeaapeGaaGymai aac+cacaaIYaaaaaGcpaqaa8qacaqGZoWdamaaBaaaleaapeGaaGim aaWdaeqaaOWdbiabg2da9iaaigdacaGGUaGaaGymaiaabckacaWGMb WdamaaCaaaleqabaWdbiabgUcaRaaaaaaa@5952@   (56)

After converging the estimation error to zero, estimated states would be reached to actual stated and the following equality will be hold:

Δ( x 1 , x 2 ,τ)+F( x 1 , x 2 ,τ) γ 1 x ^ 1 x ^ 2 1 2 sign( x ^ 1 x ^ 2 ) z ^ eq =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfs5aejaacI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWc baGaaGOmaaqabaGccaGGSaGaeqiXdqNaaiykaiabgUcaRiaadAeaca GGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSba aSqaaiaaikdaaeqaaOGaaiilaiabes8a0jaacMcacqGHsislcqaHZo WzdaWgaaWcbaGaaGymaaqabaGcceWG4bGbaKaadaWgaaWcbaGaaGym aaqabaGccqGHsislceWG4bGbaKaadaWgaaWcbaGaaGOmaaqabaGcda ahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaOGaam4Caiaa dMgacaWGNbGaamOBaiaacIcaceWG4bGbaKaadaWgaaWcbaGaaGymaa qabaGccqGHsislceWG4bGbaKaadaWgaaWcbaGaaGOmaaqabaGccaGG PaGaeyOeI0IabmOEayaajaWaaSbaaSqaaiaadwgacaWGXbaabeaaki abg2da9iaaicdaaaa@64DC@   (57)

When the observer converges to zero, the third term of Eq. 57 is equal to zero. Then, uncertainty and fault can be reconstructed as:

z ^ eq =Δ( x 1 , x 2 ,τ)+F( x 1 , x 2 ,τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadQhagaqcam aaBaaaleaacaWGLbGaamyCaaqabaGccqGH9aqpcqqHuoarcaGGOaGa amiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaai aaikdaaeqaaOGaaiilaiabes8a0jaacMcacqGHRaWkcaWGgbGaaiik aiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaale aacaaIYaaabeaakiaacYcacqaHepaDcaGGPaaaaa@4F00@   (58)

Where z ^ eq MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOEa8aagaqcamaaBaaaleaapeGaamyzaiaadghaa8aabeaaaaa@3A76@ is a continuous term and low pass filter for determining equivalent output injection is not required.

Therefore, they are an exact estimation of the uncertainty and fault without filtration which could contribute the performance of AFTC due to requiring accurate fault estimation.

Path planning

The objective of optimal path planning is to design a path for the end-effector in an area containing some obstacles, so that it is of minimum length and avoids any collision with the obstacles. A predetermined margin is considered around the obstacles and the end-effector would keep a minimum distance from the borders of the obstacles.

To create a 2-D trajectory from the starting point, P 0 =( X 0 , Y 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qaca GGSaGaamywa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIca caGLPaaaaaa@40A5@ , to the final point,   P f =( X f , Y f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiOaiaadcfapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGMbaapaqaba GcpeGaaiilaiaadMfapaWaaSbaaSqaa8qacaWGMbaapaqabaaak8qa caGLOaGaayzkaaaaaa@425B@ , in the time interval of ( T 0 , T f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaaiilaiaadsfapaWaaSbaaSqaa8qacaWGMbaapaqabaaak8qaca GLOaGaayzkaaaaaa@3DC4@ , a number of accuracy points are considered as:

P i =( X i , Y i ) @ T i ( i=1,2,,n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeiua8aadaWgaaWcbaWdbiaabMgaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaaeiwa8aadaWgaaWcbaWdbiaabMgaa8aabeaak8qaca GGSaGaaeywa8aadaWgaaWcbaWdbiaabMgaa8aabeaaaOWdbiaawIca caGLPaaacaqGGcGaaiiqaiaabsfapaWaaSbaaSqaa8qacaqGPbaapa qabaGcpeWaaeWaa8aabaWdbiaabMgacqGH9aqpcaaIXaGaaiilaiaa ikdacaGGSaGaeyOjGWRaaiilaiaab6gaaiaawIcacaGLPaaaaaa@4EF3@   (59)

Where Ti is the time instant at which the end-effector is planned to be located at Pi. All accuracy points will be checked to be placed in the reachable workspace and far enough from singular points. End-effector trajectory is derived by cubic spline interpolation of accuracy points coordinates Xi and Yi with respect to time that guarantees the continuity of velocity and acceleration. So, the trajectory curve can be obtained as,

x d ( t )=spline( X,T,t ) y d ( t )=spline( Y,T,t ) z d ( t )=spline( Z,T,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqG4bWdamaaBaaaleaapeGaaeizaaWdaeqaaOWdbmaabmaa paqaa8qacaqG0baacaGLOaGaayzkaaGaeyypa0Jaae4Caiaabchaca qGSbGaaeyAaiaab6gacaqGLbWaaeWaa8aabaWdbiaabIfacaGGSaGa aeivaiaacYcacaqG0baacaGLOaGaayzkaaaabaGaaeyEa8aadaWgaa WcbaWdbiaabsgaa8aabeaak8qadaqadaWdaeaapeGaaeiDaaGaayjk aiaawMcaaiabg2da9iaabohacaqGWbGaaeiBaiaabMgacaqGUbGaae yzamaabmaapaqaa8qacaqGzbGaaiilaiaabsfacaGGSaGaaeiDaaGa ayjkaiaawMcaaaqaaiaabQhapaWaaSbaaSqaa8qacaqGKbaapaqaba GcpeWaaeWaa8aabaWdbiaabshaaiaawIcacaGLPaaacqGH9aqpcaqG ZbGaaeiCaiaabYgacaqGPbGaaeOBaiaabwgadaqadaWdaeaapeGaae OwaiaacYcacaqGubGaaiilaiaabshaaiaawIcacaGLPaaaaaaa@6B16@   (60)

Where, is the number of interpolated points along the curve. Spatial and time vectors are defined as,

X=[ X 0 X f ],            Y=[ Y 0 Y f ],           T=[ T 0 T f ]  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiwaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaaeiwa8aa daWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacqGHMacVa8aabaWdbi aabIfapaWaaSbaaSqaa8qacaqGMbaapaqabaaaaaGcpeGaay5waiaa w2faaiaacYcacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckaca qGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaWHzbGaeyypa0Za amWaa8aabaqbaeqabeWaaaqaa8qacaqGzbWdamaaBaaaleaapeGaaG imaaWdaeqaaaGcbaWdbiabgAci8cWdaeaapeGaaeywa8aadaWgaaWc baWdbiaabAgaa8aabeaaaaaak8qacaGLBbGaayzxaaGaaiilaiaabc kacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiO aiaabckacaqGGcGaaCivaiabg2da9maadmaapaqaauaabeqabmaaae aapeGaaeiva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacqGH MacVa8aabaWdbiaabsfapaWaaSbaaSqaa8qacaqGMbaapaqabaaaaa GcpeGaay5waiaaw2faaiaabckaaaa@71AB@   (61)

Numerical simulation

To demonstrate effectiveness of the proposed fault-tolerant control scheme in performing trajectory tracking task in the presence of uncertainties, and actuator fault and saturation, some simulations have been performed. The desired path is formed by spline interpolation, passing through some accuracy points, and avoiding some obstacles in the workspace. System initial conditions are extracted from kinematic solution. To compare the performance of the proposed scheme with other methods, simulations are also conducted for feedback linearization and conventional sliding mode control schemes. Measurement noise is considered in this simulation. Control parameters are presented in Table 1.

Parameter

Value

ω1 

0.5 

ω2 

ω3 

ω4 

0.12 

Table 1 Controller parameters

Actuator trajectories and their errors are illustrated in Figure 3 and Figure 4 As can be seen from the results, the proposed controller is the most robust one compared to the other schemes, which upon occurring fault at 1.5 sec, it has maintained its high performance and followed the desired trajectories with minimum tracking errors. Moreover, finite time convergence is also evident in these figures. Figure 5 demonstrates how the desired trajectories in workspace have been followed by different controllers and how much error, and the corresponding errors have been presented in Figure 6. As can be seen, under the influence of actuator faults the tracking performance of the SM and FL controllers is declined significantly, while H tracks the desired trajectories with high accuracy. Nullifying the influence of actuator fault and uncertainty would be the obvious fact with regards to superiority of the proposed H. The paths followed by the end effector under the influence of different controllers are illustrated in Figure 7. As is clear from the results, SM and FL controllers diverge from the desired path as the faults occur in the system. H, on the other hand, is capable of following the path with high precision. The control commands presented in Figure 8 reveal a reasonable range and fluctuation-free pattern of the signal. This has attained as a result of employing high-order algorithm. As the fault has occurred at 1.5 sec, the system has experienced a slight change.

Figure 3 Actuator motion plots.

Figure 4 Tracking error components.

Figure 5 End-effector motion plots.

Figure 6 Tracking error components.

Figure 7 End-effector path following.

Figure 8 Actuator forces in the presence of actuator fault.

In order to show a vivid comparison between the three controllers, three error criteria termed as Integral of the Time multiplied by the Absolute value of the Error (ITAE), Integral of the Time multiplied by the Absolute value of the Squared of the Error (ITASE) and Integral of the Absolute value of the Error (IAE) have been studied, which are defined as,

ITAE= | e( t ).t |dt ITASE= t. | e( t ) | 2 dt IASE= | e( t ) | 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqGjbGaaeivaiaabgeacaqGfbGaeyypa0ZdamaavacabeWc beqaaiaaygW7a0qaa8qacqGHRiI8aaGcdaabdaWdaeaapeGaaCyzam aabmaapaqaa8qacaqG0baacaGLOaGaayzkaaGaaiOlaiaabshaaiaa wEa7caGLiWoacaqGKbGaaeiDaaqaaiaabMeacaqGubGaaeyqaiaabo facaqGfbGaeyypa0ZdamaavacabeWcbeqaaiaaygW7a0qaa8qacqGH RiI8aaGccaqG0bGaaiOlamaaemaapaqaa8qacaWHLbWaaeWaa8aaba WdbiaabshaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqa beaapeGaaGOmaaaakiaabsgacaqG0baabaGaaeysaiaabgeacaqGtb Gaaeyraiabg2da98aadaqfGaqabSqabeaacaaMb8oaneaapeGaey4k IipaaOWaaqWaa8aabaWdbiaahwgadaqadaWdaeaapeGaaeiDaaGaay jkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaaIYaaa aOGaaeizaiaabshaaaaa@6F9F@   (62)

Figure 9 Reveals that FTC on the basis of H has the minimum value for the three criteria.

Figure 9 Error criteria in the presence of actuator fault.

To show the effectiveness of the TW-TOSM observer, the estimated velocity in joint space and workspace are compared with their actual values in Figure 10. As is clear from the result, this observer is able to estimate the velocities with high accuracy and no chattering. Fault detection performance of the H-based FTC is presented in Figure 11 through the obtained residuals from the simulations. As the fault occurs, the residuals cross the predefined threshold, showing the presence of the fault in the system.

Figure 10 Actual and estimated velocities.

Figure 11 Residuals of a faulty system under the effect of actuator fault.

Conclusion

In this paper, a robust Fault Tolerant Control based on nonlinear H was proposed for a delta type parallel robot exposed to actuator fault. For fault detection a super-twisting third-order sliding mode (STW-TOSM) observer was exploited which can accommodate faults and uncertainties without velocity measurement. In addition, it provides fast convergence and high accuracy thanks to its high-order sliding mode algorithm. The simulation results proved that the proposed FTC offers high accuracy, finite time convergence for reasonable control effort compared to conventional SMC- and FL-based FTC schemes.

Funding

None.

Acknowledgments

None.

Conflicts of interest

The authors declare that there was no conflict of interest.

References

  1. Brinker J, Corves B, Takeda Y. Kinematic performance evaluation of high-speed Delta parallel robots based on motion/force transmission indices. Mechanism and Machine Theory. 2018;125:111–125.
  2. Guilin Y, Chen IM, Wei L, et al. Singularity analysis of three-legged parallel robots based on passive-joint velocities. IEEE Transactions on Robotics and Automation. 2001;17(4):413–422.
  3. Chen M, Tao G. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone. IEEE Transactions on Cybernetics. 2016;46(8):1851–1862.
  4. Hu Q, Shi Y, Shao X. Adaptive fault-tolerant attitude control for satellite reorientation under input saturation. Aerospace Science and Technology. 2018;78:171–182.
  5. Gao Z, Zhou Z, Qian MS, et al. Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults. IET Control Theory &amp Applications. 2017;12(3):405–412.
  6. Meng Q, Zhang T, Gao X, et al. Adaptive Sliding Mode Fault-Tolerant Control of the Uncertain Stewart Platform Based on Offline Multibody Dynamics. IEEE/ASME Transactions on Mechatronics. 2014;19(3):882–894.
  7. Meng Q, Zhang T, He TF, et al. Adaptive vector sliding mode fault-tolerant control of the uncertain Stewart platform based on position measurements only. Robotica. 2016;34(6):1297–1321.
  8. Farid Y, Majd VJ, Ehsani-Seresht A. Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation. Mechanical Systems and Signal Processing. 2018;104:465–486.
  9. Karras GC, Fourlas GK. Model Predictive Fault Tolerant Control for Omni-directional Mobile Robots. Journal of Intelligent & Robotic Systems. 2020;97(3):635–655.
  10. Azizi A, Nourisola H, Shoja-Majidabad S. Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller. Renewable Energy. 2019;135:55–65.
  11. Lan J, Patton RJ, Zhu X. Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renewable Energy. 2018;116:219–231.
  12. Cho S, Gao Z, Moan T. Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines. Renewable Energy. 2018;120:306–321.
  13. Li B, Du H, Li W. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers. Mechanical Systems and Signal Processing. 2016;72-73:462–485.
  14. Jang JO. Neuro-fuzzy networks saturation compensation of DC motor systems. Mechatronics. 2009;19(4):529–534.
  15. Gao Z, Cecati C, Ding SX. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics. 2015;62(6):3757–3767.
  16. Jiang J, Yu X. Fault-tolerant control systems: A comparative study between active and passive approaches. Annual Reviews in Control. 2012;36(1):60–72.
  17. Benosman M, Lum K. Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems. IEEE Transactions on Control Systems Technology. 2010;18(1):152–163.
  18. Zhang R, Qiao J, Li T, et al. Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dynamics. 2014;76(3):1753–1760.
  19. Allerhand LI, Shaked U. Robust Switching-Based Fault Tolerant Control. IEEE Transactions on Automatic Control. 2015;60(8):2272–2276.
  20. Shen Q, Jiang B, Cocquempot V. Adaptive Fuzzy Observer-Based Active Fault-Tolerant Dynamic Surface Control for a Class of Nonlinear Systems With Actuator Faults. IEEE Transactions on Fuzzy Systems. 2014;22(2):338–349.
  21. Awan ZS, Ali K, Iqbal J, et al. Adaptive Backstepping Based Sensor and Actuator Fault Tolerant Control of a Manipulator. Journal of Electrical Engineering & Technology. 2019;14(6):2497–2504.
  22. Shi P, Liu M, Zhang L. Fault-Tolerant Sliding-Mode-Observer Synthesis of Markovian Jump Systems Using Quantized Measurements. IEEE Transactions on Industrial Electronics. 2015;62(9):5910–5918.
  23. Yin S, Yang H, Kaynak O. Sliding Mode Observer-Based FTC for Markovian Jump Systems With Actuator and Sensor Faults. IEEE Transactions on Automatic Control. 2017;62(7):3551–3558.
  24. Davila J, Fridman L, Levant A. Second-order sliding-mode observer for mechanical systems. IEEE Transactions on Automatic Control. 2005;50(11):1785–1789.
  25. Utkin V. On Convergence Time and Disturbance Rejection of Super-Twisting Control. IEEE Transactions on Automatic Control. 2013;58(8):2013–2017.
  26. Guzmán E, Moreno JA. Super-twisting observer for second-order systems with time-varying coefficient. IET Control Theory &amp; Applications. 2014;9(4):553–562.
  27. Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain super twisting sliding mode controller: Methodology and application. Automatica. 2012;48(5):759–769.
  28. Thanh HLNN, Hong SK. Quadcopter Robust Adaptive Second Order Sliding Mode Control Based on PID Sliding Surface. IEEE Access. 2018;6:66850–66860.
  29. KC Veluvolu, Van M, Franciosa P, et al. Fault Diagnosis and Fault-Tolerant Control of Uncertain Robot Manipulators Using High-Order Sliding Mode. Mathematical Problems in Engineering. 2016.
  30. Van M, Kang HJ, Suh YS, et al. A robust fault diagnosis and accommodation scheme for robot manipulators. International Journal of Control, Automation and Systems. 2013;11(2):377–388.
  31. Van M, Kang HJ, Suh YS. A novel neural second-order sliding mode observer for robust fault diagnosis in robot manipulators. International Journal of Precision Engineering and Manufacturing. 2013;14(3):397–406.
  32. Van M, Mavrovouniotis M, Ge SS. An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2019;49(7):1448–1458.
  33. Van M, Kang HJ. Robust fault-tolerant control for uncertain robot manipulators based on adaptive quasi-continuous high-order sliding mode and neural network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2015;229(8):1425–1446.
  34. Piltan F, Kim H, Kim JM. Advanced Adaptive Fault Diagnosis and Tolerant Control for Robot Manipulators. Energies. 2019;12(7).
  35. Van M, Franciosa P, Ceglarek D. Fault Diagnosis and Fault-Tolerant Control of Uncertain Robot Manipulators Using High-Order Sliding Mode. Mathematical Problems in Engineering. 2016:7926280.
  36. Smaeilzadeh SM, Golestani M. Finite-time fault-tolerant adaptive robust control for a class of uncertain non-linear systems with saturation constraints using integral back stepping approach. IET Control Theory &amp; Applications. 2018;12(15):2109–2117.
  37. Rigatos G, Siano P, Wira P, et al. Nonlinear H_∞ Feedback Control for Asynchronous Motors of Electric Trains. Intelligent Industrial Systems. 2015;1(2):85–98.
  38. Raffo GV, Ortega MG, Rubio FR. Path Tracking of a UAV via an Underactuated H [infinity] Control Strategy. European Journal of Control. 2011;2:194–213.
  39. Han C, Guo J, Pechev A. Nonlinear H∞ based underactuated attitude control for small satellites with two reaction wheels. Acta Astronautica. 2014;104(1):159–172.
  40. Raffo GV, Ortega MG, Rubio FR. An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter. Automatica. 2010;46(1):29–39.
  41. Rigatos G, Siano P, Abbaszadeh M. Nonlinear H_∞ control for 4-DOF underactuated overhead cranes. Transactions of the Institute of Measurement and Control. 2018;40(7):2364–2377.
  42. Rigatos G, Siano P, Raffo G. A nonlinear H_∞ control method for multi-DOF robotic manipulators.  Nonlinear Dynamics. 2017;88(1):329–348.
  43. Ortega MG, Vargas M, Vivas C, et al. Robustness improvement of a nonlinear H∞ controller for robot manipulators via saturation functions. Journal of Robotic Systems. 2005;22(8):421–437.
  44. Van der Schaft A. L/ Sub 2/-gain analysis of nonlinear systems and nonlinear state feedback H/ sub infinity/control. Transactions on Automatic Control. 1992;37(6):770–784.
  45. Mazare M, Taghizadeh M, Najafi MR. Contouring control of a 3-[P2(US)] parallel manipulator. Advanced Robotics. 2017;31(9):496–508.
  46. Van der Schaft A. L2-gain and passivity techniques in nonlinear control. New York: Springer-Verlag; 2000.
Creative Commons Attribution License

©2020 Mazare, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.