Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Review Article Volume 4 Issue 2

About method which increases efficiency of motion control of orbital spacecraft

MV Levskii

Khrunichev State scientific & production Space Center, Moscow, Russia

Correspondence: MV Levskii, Khrunichev State scientific & production Space Center, Moscow, Russia

Received: March 16, 2018 | Published: April 30, 2018

Citation: Levskii MV. About method which increases efficiency of motion control of orbital spacecraft. Int Rob Auto J. 2018;4(2):146-152. DOI: 10.15406/iratj.2018.04.00112

Download PDF

Abstract

Aspects of increase of efficiency of spacecraft’s motion control are discussed. It is supposed that basic means of control for change of spacecraft position are jet engines. The combining of control regimes of orientation and orbit correction, as perspective way of problem solution, is considered. New specific index of optimality is entered for estimate of a quality of motion control. Then, the problem of combining terminal orientation with correction of orbit altitude maintenance by optimal way is solved. Concrete control algorithm of spacecraft reorientation combined with orbit correction, in application to large massive spacecrafts and, in particular, orbital station, is presented. Results of mathematical simulation of motion control which uses the designed method are given. Also, estimation of efficiency indices is made for the mount scheme of motionless micro-engines. High efficiency of combining regimes of attitude control and correction of spacecraft’s orbit altitude is shown.

Keywords: spacecraft motion, jet engines, criterion of optimality, control law, combining regime

Introduction

Angular stabilization and reorientation of a space­craft are the most frequently used dynamic regimes. The research programs conducted during the flight and the related stringent requirements for precision and efficiency of control over the spacecraft angular motion motivate the interest in the problem of optimization of the process of spacecraft reorientation. The significant increase in size, mass and active lifetime of orbital spacecraft supplied with systems of attitude control and correction leads to a sharp increase in the relative propellant load necessary for operation of the executing devices of the motion control system. The conception of the control of motion as the center of mass, as well as of the motion with respect to the center of mass of the spacecraft by means of non-central jet force is successfully used in designing the control system of rockets. Using and developing the above idea, one can economize a significant amount of fuel when designing systems of control of spacecraft motion. Such economy can be achieved by combining the regimes of attitude control and correction, accomplished through applying to the spacecraft the non-central force produced by the jet engine of the atti­tude control system whose thrust vector does not pass through the spacecraft's center of mass. The goal of optimally combining the regimes of cor­rection and attitude control is advisable only for a certain class of spacecraft for which the condition GcGo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbGaeyisISRaam4raiaad+gaaaa@3B9E@ , holds true; here Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@ and Go MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGVbaaaa@3839@ are the propellant loads intended for the orbit correction and the spacecraft attitude control, respectively. If inertial actuators (powered gyroscopes1 or gyro dynes) are used, then Go MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGVbaaaa@3839@ represents the fuel consumption necessary to compensate the inadmissi­ble increase of angular momentum of the gyro-system. The considered class of spacecraft includes the long-term orbital stations also. In this paper, the problem of the optimal pro­grammed turn of the spacecraft combined with correc­tion of its orbit is considered in the general form. Let us assume that jet micro-engines are used as main actuators of the motion control system. In this case, possibilities to increase the efficiency of the spacecraft turn are related to three main directions:

  1. efficient arrangement of the attitude control engines on the spacecraft body;
  2. synthesis of the optimal, with respect to fuel consumption, laws of control of spacecraft reorientation, and
  3. Combining the process of attitude with a correction of the space­craft orbit altitude.

Development of the first theme leads us to a transition from control with respect to the principal central axes of a spacecraft to control with respect to the axes bound to its angular momentum vector. For this type of control, provisions must be made for shifting the point of attachment of the control engines with respect to the spacecraft body, which requires some special design features. The second subject is well known, and the largest number of works on optimization of spacecraft rotations (though without requiring the simultaneous cor­rection of the orbit) has been dedicated toil.1-14 In particular, kinematical problem of a slew maneuver is studied in detail2 where solution was resulted for variant when angular velocity vector is limited by modulus. The problems of solid body rotation, optimal in fast response and minimum energy expenditures, were considered.3 An analytic solution was obtained using the Pontryagins maximum principle. In some cases, construction of attitude control is based on fuzzy logic or on the method of inverse problem of dynamics4,5 (the majority of solutions1,2,4-7 corresponds to spacecraft rotation around motionless axis or instantaneous Euler axis). The combined control of the motion around the center of mass and of the motion of the spacecraft cen­ter of mass itself permits us to significantly reduce total stocks of propellant, necessary for all dynamic regimes of attitude control of the spacecraft and correction of its orbit. This domain is relatively new, but it is very promising nevertheless. Now, combining of terminal orientation and orbit correction of spacecraft by optimal way is considered in detail. Numerical realization of the algo­rithm with prognostic model15 is proposed. The peculiarity of the model in use is the prediction of the “free” motion in the class of spacecraft rotations along the trajectory where the vector of angular momentum of spacecraft body is constant in inertial coordinate system. This allows us to change over from the con­tinuous synthesis of controls to their determination and action onto the spacecraft at discreet instants of time.

General statement of the problem, and introduction of efficiency index

Increase of control efficiency by motion of the orbital spacecraft is possible at the expense of combination of regimes of orientation and correction of spacecraft orbit. Let, in the course of the combined control increase in the required direction of the correcting impulse of velocity Vc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGJbaaaa@383C@ be transmitted in the center of spacecraft mass; in the process, an amount of working medium G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@3A90@ is spent for the turn and orbit correction. Had the processes of the spacecraft reorientation and correction of its orbit been independent, the total fuel consumption would have been Gr+Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGYbGaey4kaSIaam4raiaadogaaaa@3AD2@ . To estimate the efficiency of the control, we introduce function E=( G Rmin +Gc )/ G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GH9aqpdaqadaqaaiaadEeadaWgaaqcfasaaiaadkfaciGGTbGaaiyA aiaac6gaaKqbagqaaiabgUcaRiaadEeacaWGJbaacaGLOaGaayzkaa Gaai4laiaadEeadaWgaaqcfasaaiaadoeacaWGpbGaamytaaqcfaya baaaaa@4684@ . Here, G Rmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadkfaciGGTbGaaiyAaiaac6gaaKqbagqaaaaa@3BCB@ denotes the minimum fuel expenditure for the independent turn of the spacecraft, Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@ is the fuel expenditure for the orbit correction, and G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@3A90@ is the fuel expenditure for the combined control. The absolute fuel economy is determined by the value Δ G COM = G Rmin +Gc G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadEeadaWgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaGaeyyp a0Jaam4ramaaBaaajuaibaGaamOuaiGac2gacaGGPbGaaiOBaaqcfa yabaGaey4kaSIaam4raiaadogacqGHsislcaWGhbWaaSbaaKqbGeaa caWGdbGaam4taiaad2eaaKqbagqaaaaa@49E9@ . It is obvious that the turn that is optimal for fuel expenditure corresponds to the maximum value of the target function E. Only in this case is the effect of combining the regimes of control revealed to the full­est extent. Thus, when optimizing laws of the com­bined control of spacecraft motion, first determine the value of the minimum fuel expenditure for the rotation independent of orbit correction, which requires in its turn, the prior solution of the traditional problem, i.e., the problem of optimization of control of the spacecraft reorientation. Therefore, we formulate the problem of combined control of the spacecraft reorientation as follows: one should determine the control providing, with the pre­scribed accuracy Δφ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej abeA8aQbaa@399D@  , the spacecraft turn from the arbi­trary initial position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyAaiaad6gaaKqbagqaaaaa@3AAC@ to the required final position Lf within the fixed time T, with the minimum fuel expen­diture: the increment of velocity ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadAfaaaa@38BB@  transmitted to the spacecraft center of mass during the turn should be maximum. It is accepted that the initial and final angu­lar velocities are equal to zero. When solving the formulated problem, we made some assumptions:

  1. The spacecraft is considered to be a perfectly rigid body,
  2. Possible misalignment of the principal central axes of the spacecraft's ellipsoid of inertia with the axes of the bound coordinate system is ignored;
  3. The time of action of the controlling moment is small compared to the time of the turn;
  4. The angular momentum imparted by the attitude control engines to the spacecraft body significantly exceeds the angular momentum acquired during the turn from external disturbances,
  5. The influence of the projection of thrust impulse of the attitude control engines on the normal to the spacecraft orbital velocity is negligible small.

For an estimation of a control efficiency by a turn, are used three indicators:

  1. Absolute economy of fuel ΔG= G Rmin +Gc G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadEeacqGH9aqpcaWGhbWaaSbaaKqbGeaacaWGsbGaciyBaiaacMga caGGUbaajuaGbeaacqGHRaWkcaWGhbGaam4yaiabgkHiTiaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@469E@ ,
  2. where G Rmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadkfaciGGTbGaaiyAaiaac6gaaKqbagqaaaaa@3BCB@ is minimum possible (theoretically) the expense of fuel for a turn at independent control; G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@3A90@  is the expense of fuel for a turn combined with correction of maintenance of orbit height (it is obvious, G COM G Pmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaGaeyyzImRaam4r amaaBaaajuaibaGaaiiuaiGac2gacaGGPbGaaiOBaaqcfayabaaaaa@41A5@ ); Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@ is the expense of the fuel necessary for orbit correction creating the same effect of orbit's raising (height increase) as after the turn which is executed using the investigated method; G Pmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaaccfaciGGTbGaaiyAaiaac6gaaKqbagqaaaaa@3BC8@ corresponds to two-impulse control for a turn;16 ΔG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadEeaaaa@38AC@ is a difference between the expense of fuel for motion control at the independent and combined control of orientation and orbit correction of the spacecraft;

  3. Efficiency of the combined control of a turn E=( G Rmin +Gc )/ G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GH9aqpdaqadaqaaiaadEeadaWgaaqcfasaaiaadkfaciGGTbGaaiyA aiaac6gaaKqbagqaaiabgUcaRiaadEeacaWGJbaacaGLOaGaayzkaa Gaai4laiaadEeadaWgaaqcfasaaiaadoeacaWGpbGaamytaaqcfaya baaaaa@4684@ ;
  4. An indicator of a combining Q=( G R +Gc )/ G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfacq GH9aqpdaqadaqaaiaadEeadaWgaaqcfasaaiaadkfaaKqbagqaaiab gUcaRiaadEeacaWGJbaacaGLOaGaayzkaaGaai4laiaadEeadaWgaa qcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@43BE@ ,

Where G R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadkfaaKqbagqaaaaa@38F9@  is the expense of fuel for a turn (it is agreed with the developed method) at independent control of orientation and orbit correction. If control of spacecraft motion is made by the engines established motionlessly concerning the spacecraft body then G COM = G R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaGaeyypa0Jaam4r amaaBaaajuaibaGaamOuaaqcfayabaaaaa@3E16@ , and G COM = k V V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaGaeyypa0Jaam4A amaaBaaajuaibaGaamOvaaqcfayabaGaamOvamaaBaaajuaibaGaam 4qaaqcfayabaaaaa@40BE@ , where V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadoeaaKqbagqaaaaa@38F9@  is an increment of orbital (linear) speed of the spacecraft, got during a turn (the correcting impulse); k V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqcfasaaiaadAfaaKqbagqaaaaa@3921@ is the coefficient of proportionality connecting the speed increment created by the correcting engine and the fuel expense necessary for giving the additional speed to the spacecraft in value V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadoeaaKqbagqaaaaa@38F9@  . More efficient control of motion corresponds to more value of indicators E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweaaa a@3743@  and Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfaaa a@374F@ (when the control of a turn is more effective, the values E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweaaa a@3743@ , Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfaaa a@374F@  are closer to 2). However, more capacious (and fairly) an indicator for an estimation (and comparisons with other analogues) of method of turn control combined with orbit correction is the rating I=( G COM Gc )/ G Rmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeacq GH9aqpdaqadaqaaiaadEeadaWgaaqcfasaaiaadoeacaWGpbGaamyt aaqcfayabaGaeyOeI0Iaam4raiaadogaaiaawIcacaGLPaaacaGGVa Gaam4ramaaBaaajuaibaGaamOuaiGac2gacaGGPbGaaiOBaaqcfaya baaaaa@4693@ Obviously, the volume of fuel equal Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@  is necessary to spend in any case (irrespective of turn method and its optimality) as the effect of speed increment V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadoeaaKqbagqaaaaa@38F9@ for orbit correction can be reached only at the expense of jet thrust. At independent control, is required at least G Rmin +Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadkfaciGGTbGaaiyAaiaac6gaaKqbagqaaiabgUca RiaadEeacaWGJbaaaa@3E61@ fuel (it is the minimum level); at the combined control of considered method of a turn, the fuel expense is G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@3A90@  or ( G COM Gc )+Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Gaam4ramaaBaaajuaibaGaam4qaiaad+eacaWGnbaajuaGbeaacqGH sislcaWGhbGaam4yaaGaayjkaiaawMcaaiabgUcaRiaadEeacaWGJb aaaa@4150@ . We can consider the quantity G COM Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaGaeyOeI0Iaam4r aiaadogaaaa@3D31@ as a payment for necessity of spacecraft turn but not just correction of its orbit. The difference between minimal possible expenses of fuel at independent control of a turn and the expense for that what the spacecraft has accepted the given angular position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@  as a result of motion control is the economy received for the account of combination of control regimes. The absolute economy ΔG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadEeaaaa@38AC@  also is coordinated with earlier accepted indicator: ΔG= G Rmin ( G COM Gc ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadEeacqGH9aqpcaWGhbWaaSbaaKqbGeaacaWGsbGaciyBaiaacMga caGGUbaajuaGbeaacqGHsisldaqadaqaaiaadEeadaWgaaqcfasaai aadoeacaWGpbGaamytaaqcfayabaGaeyOeI0Iaam4raiaadogaaiaa wIcacaGLPaaaaaa@4832@ . At independent control, is spent G Rmin +Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadkfaciGGTbGaaiyAaiaac6gaaKqbagqaaiabgUca RiaadEeacaWGJbaaaa@3E61@ , at the combined control we have Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@ . From here we receive the difference ΔG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadEeaaaa@38AC@ . At an ideal turn (the bottom lath) as pattern, is required GR min fuel, and at combined turn G COM Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaGaeyOeI0Iaam4r aiaadogaaaa@3D31@ (as from G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@3A90@  whole GC goes for orbit correction, and remains G COM Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaGaeyOeI0Iaam4r aiaadogaaaa@3D31@ for the rotation). For efficient control of spacecraft motion, is necessary that the value I corresponding to control method was as small as possible (in an ideal case it comes nearer to zero). The planar turn is a special case (it meets seldom), and its separate studying is not so actually. We will note only, what even in case of planar rotation of a spacecraft for a combination indicator is fairly 2 <Q<2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaakaaaba GaaGOmaaqabaGaeyipaWJaamyuaiabgYda8iaaikdaaaa@3ADF@  (it easily to demonstrate). Even by the example of this particular case (the planar rotation of the spacecraft around the principal central axis of inertia) one can clearly see that the use of the idea of regulation of the spacecraft’s angular position by means of the non-central jet force allows us to gain significant fuel economy. The general case of a spatial turn (three-dimensional rotation of the spacecraft when Euler's axis does not coincide with one of axes of body-fixed coordinate system) represents interest. Let's consider this case more in detail.

Solution of the problem of combined control of spacecraft’s spatial motion

At first, let's solve the problem of optimal control of spacecraft's three-dimensional reorientation independent of orbit correction. Turn of a spacecraft around the Euler axis and the turn in the form of the regular precession (simultaneous rotation around the longitudinal axis of the spacecraft and the motionless axis in inertial space) we not consider because they obviously are not optimum (the fuel expense in these cases much more of the optimal value, at least, in 1.4-1.6 times). The method proposed below belongs to a group of algorithms of the combined synthesis of optimal con­trol with predicting.15 As the prognos­tic models we take the model of the rotational motion of a dynamically symmetric spacecraft. Prediction of the "free" motion corresponds to the regular preces­sion of the spacecraft. We chose the parameters of the prognostic models on the basis of the condition of maximum symmetry of the predicted motion to the actual motion of the spacecraft. The spacecraft’s rotational motion is described by the following equations1,2
J 1 ω 1 +( J 3 J 2 ) ω 2 ω 3 = M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaigdaaeqaaKqbakabeM8a3naaBaaajuaibaGaaGym aaqabaqcfaOaey4kaSYaaeWaaeaacaWGkbWaaSbaaKqbGeaacaaIZa aajuaGbeaacaWGkbWaaSbaaKqbGeaacaaIYaaajuaGbeaaaiaawIca caGLPaaacqaHjpWDdaWgaaqcfasaaiaaikdaaeqaaKqbakabeM8a3n aaBaaajuaibaGaaG4maaqcfayabaGaeyypa0JaamytamaaBaaajuai baGaaGymaaqabaaaaa@4D30@ , J 2 ω 2 +( J 1 J 3 ) ω 1 ω 3 = M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaikdaaeqaaKqbakabeM8a3naaBaaajuaibaGaaGOm aaqabaqcfaOaey4kaSYaaeWaaeaacaWGkbWaaSbaaKqbGeaacaaIXa aajuaGbeaacqGHsislcaWGkbWaaSbaaKqbGeaacaaIZaaajuaGbeaa aiaawIcacaGLPaaacqaHjpWDdaWgaaqcfasaaiaaigdaaeqaaKqbak abeM8a3naaBaaajuaibaGaaG4maaqcfayabaGaeyypa0Jaamytamaa BaaajuaibaGaaGOmaaqabaaaaa@4E1E@  , J 3 ω 3 +( J 2 J 1 ) ω 1 ω 2 = M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaiodaaeqaaKqbakabeM8a3naaBaaajuaibaGaaG4m aaqabaqcfaOaey4kaSYaaeWaaeaacaWGkbWaaSbaaKqbGeaacaaIYa aajuaGbeaacqGHsislcaWGkbWaaSbaaKqbGeaacaaIXaaajuaGbeaa aiaawIcacaGLPaaacqaHjpWDdaWgaaqcfasaaiaaigdaaeqaaKqbak abeM8a3naaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0Jaamytamaa BaaajuaibaGaaG4maaqabaaaaa@4E1F@
2 λ 0 = λ 1 ω 1 λ 2 ω 2 λ 3 ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdacq aH7oaBdaWgaaqcfasaaiaaicdaaKqbagqaaiabg2da9iabgkHiTiab eU7aSnaaBaaajuaibaGaaGymaaqcfayabaGaeqyYdC3aaSbaaKqbGe aacaaIXaaabeaajuaGcqGHsislcqaH7oaBdaWgaaqcfasaaiaaikda aKqbagqaaiabeM8a3naaBaaajuaibaGaaGOmaaqabaqcfaOaeyOeI0 Iaeq4UdW2aaSbaaKqbGeaacaaIZaaajuaGbeaacqaHjpWDdaWgaaqc fasaaiaaiodaaeqaaaaa@51D8@  , 2 λ 1 = λ 0 ω 1 λ 2 ω 3 λ 3 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdacq aH7oaBdaWgaaqcfasaaiaaigdaaKqbagqaaiabg2da9iabgkHiTiab eU7aSnaaBaaajuaibaGaaGimaaqcfayabaGaeqyYdC3aaSbaaKqbGe aacaaIXaaabeaajuaGcqGHsislcqaH7oaBdaWgaaqcfasaaiaaikda aKqbagqaaiabeM8a3naaBaaajuaibaGaaG4maaqabaqcfaOaeyOeI0 Iaeq4UdW2aaSbaaKqbGeaacaaIZaaajuaGbeaacqaHjpWDdaWgaaqc fasaaiaaikdaaeqaaaaa@51D8@
2 λ 2 = λ 0 ω 2 + λ 3 ω 1 λ 1 ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdacq aH7oaBdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iabgkHiTiab eU7aSnaaBaaajuaibaGaaGimaaqcfayabaGaeqyYdC3aaSbaaKqbGe aacaaIYaaabeaajuaGcqGHRaWkcqaH7oaBdaWgaaqcfasaaiaaioda aKqbagqaaiabeM8a3naaBaaajuaibaGaaGymaaqabaqcfaOaeyOeI0 Iaeq4UdW2aaSbaaKqbGeaacaaIXaaajuaGbeaacqaHjpWDdaWgaaqc fasaaiaaiodaaeqaaaaa@51CD@  , 2 λ 3 = λ 0 ω 3 + λ 1 ω 2 λ 2 ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdacq aH7oaBdaWgaaqcfasaaiaaiodaaKqbagqaaiabg2da9iabgkHiTiab eU7aSnaaBaaajuaibaGaaGimaaqcfayabaGaeqyYdC3aaSbaaKqbGe aacaaIZaaabeaajuaGcqGHRaWkcqaH7oaBdaWgaaqcfasaaiaaigda aKqbagqaaiabeM8a3naaBaaajuaibaGaaGOmaaqabaqcfaOaeyOeI0 Iaeq4UdW2aaSbaaKqbGeaacaaIYaaajuaGbeaacqaHjpWDdaWgaaqc fasaaiaaigdaaeqaaaaa@51CD@  
Here, w1 , w2 , and w3 are the projections of the space­craft’s angular velocity on the hound axes; J 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaigdaaKqbagqaaaaa@38E0@ , J 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaikdaaKqbagqaaaaa@38E1@ , and J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada Wgaaqcfasaaiaaiodaaeqaaaaa@3854@ are the principal central moments of inertia of the spacecraft; M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada Wgaaqcfasaaiaaigdaaeqaaaaa@3855@ , M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada Wgaaqcfasaaiaaikdaaeqaaaaa@3856@ , and M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada Wgaaqcfasaaiaaiodaaeqaaaaa@3857@ are the moments of external forces; λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGimaaqcfayabaaaaa@39C4@ , λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGymaaqcfayabaaaaa@39C5@ , λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGOmaaqcfayabaaaaa@39C6@  and λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaG4maaqcfayabaaaaa@39C7@ are components of the quaternion L describing the relative orientation of the bound and inertial coordinate systems. For the sake of definiteness, we assume that the OX-axis is the longi­tudinal axis of the spacecraft, J 2 > J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaikdaaKqbagqaaiabg6da+iaadQeadaWgaaqcfasa aiaaiodaaKqbagqaaaaa@3C52@ , and J 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaikdaaKqbagqaaaaa@38E1@ , J 3 > J 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaiodaaKqbagqaaiabg6da+iaadQeadaWgaaqcfasa aiaaigdaaKqbagqaaaaa@3C51@ . Note that the chosen spacecraft class satisfies the con­dition of quasi-symmetry: J 2 J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaikdaaeqaaKqbakabgIKi7kaadQeadaWgaaqcfasa aiaaiodaaeqaaaaa@3C6D@ , but J 2 J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaikdaaeqaaKqbakabgcMi5kaadQeadaWgaaqcfasa aiaaiodaaeqaaaaa@3C83@ , and min{ | J 3 J 1 |,| J 2 J 1 | }>| J 2 J 3 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGac2gaca GGPbGaaiOBamaacmaabaWaaqWaaeaacaWGkbWaaSbaaKqbGeaacaaI ZaaajuaGbeaacqGHsislcaWGkbWaaSbaaKqbGeaacaaIXaaajuaGbe aaaiaawEa7caGLiWoacaGGSaWaaqWaaeaacaWGkbWaaSbaaKqbGeaa caaIYaaabeaajuaGcqGHsislcaWGkbWaaSbaaKqbGeaacaaIXaaabe aaaKqbakaawEa7caGLiWoaaiaawUhacaGL9baacqGH+aGpdaabdaqa aiaadQeadaWgaaqcfasaaiaaikdaaeqaaKqbakabgkHiTiaadQeada WgaaqcfasaaiaaiodaaeqaaaqcfaOaay5bSlaawIa7aaaa@57D1@ . Hence, the moment ( J 2 J 3 ) ω 2 ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOsamaaBaaajuaibaGaaGOmaaqabaqcfaOaeyOeI0IaamOsamaa BaaajuaibaGaaG4maaqabaaajuaGcaGLOaGaayzkaaGaeqyYdC3aaS baaKqbGeaacaaIYaaabeaajuaGcqaHjpWDdaWgaaqcfasaaiaaioda aeqaaaaa@43FF@ is small, and we can consider it as a per­turbation. Further, we select the moment of inertia with respect to the transverse axis J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeaaa a@3748@ on the basis of the condition of invariance of the characteristic equation of the dynamic system: J=( 1+η )/( J 2 + J 3 J 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq GH9aqpdaqadaqaaiaaigdacqGHRaWkcqaH3oaAaiaawIcacaGLPaaa caGGVaWaaeWaaeaacaWGkbWaaSbaaKqbGeaacaaIYaaabeaajuaGcq GHRaWkcaWGkbWaaSbaaKqbGeaacaaIZaaabeaajuaGcqGHsislcaWG kbWaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaaaaa@4863@  , where | η |= [ ( J 2 J 1 )( J 3 J 1 )/( J 2 J 3 ) ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba Gaeq4TdGgacaGLhWUaayjcSdGaeyypa0ZaamWaaeaadaqadaqaaiaa dQeadaWgaaqcfasaaiaaikdaaeqaaKqbakabgkHiTiaadQeadaWgaa qcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawMcaamaabmaabaGaamOs amaaBaaajuaibaGaaG4maaqabaqcfaOaeyOeI0IaamOsamaaBaaaju aibaGaaGymaaqabaaajuaGcaGLOaGaayzkaaGaai4lamaabmaabaGa amOsamaaBaaajuaibaGaaGOmaaqabaqcfaOaamOsamaaBaaajuaiba GaaG4maaqabaaajuaGcaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWba aeqajuaibaqcfa4aaSGbaKqbGeaacaaIXaaabaGaaGOmaaaaaaaaaa@5670@  , and | η |<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba Gaeq4TdGgacaGLhWUaayjcSdGaeyipaWJaaGymaaaa@3D06@ .
In the accepted notation is, the dynamics of real spacecraft will be described by the system:
J 1 ω 1 =( J 2 J 3 ) ω 2 ω 3 + M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaigdaaeqaaKqbakabeM8a3naaBaaajuaibaGaaGym aaqabaqcfaOaeyypa0ZaaeWaaeaacaWGkbWaaSbaaKqbGeaacaaIYa aabeaajuaGcqGHsislcaWGkbWaaSbaaKqbGeaacaaIZaaabeaaaKqb akaawIcacaGLPaaacqaHjpWDdaWgaaqcfasaaiaaikdaaeqaaKqbak abeM8a3naaBaaajuaibaGaaG4maaqabaqcfaOaey4kaSIaamytamaa BaaajuaibaGaaGymaaqabaaaaa@4E1D@ , J ω 3 =( J J 1 ) ω 1 ω 2 =[ J 1 ( J J 3 )+J( J 2 J 3 ) ] ω 1 ω 2 / J 3 + M 3 J/ J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq aHjpWDdaWgaaqcfasaaiaaiodaaeqaaKqbakabg2da9maabmaabaGa amOsaiabgkHiTiaadQeadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaay jkaiaawMcaaiabeM8a3naaBaaajuaibaGaaGymaaqabaqcfaOaeqyY dC3aaSbaaKqbGeaacaaIYaaabeaajuaGcqGH9aqpdaWadaqaaiaadQ eadaWgaaqcfasaaiaaigdaaeqaaKqbaoaabmaabaGaamOsaiabgkHi TiaadQeadaWgaaqcfasaaiaaiodaaeqaaaqcfaOaayjkaiaawMcaai abgUcaRiaadQeadaqadaqaaiaadQeadaWgaaqcfasaaiaaikdaaeqa aKqbakabgkHiTiaadQeadaWgaaqcfasaaiaaiodaaeqaaaqcfaOaay jkaiaawMcaaaGaay5waiaaw2faaiabeM8a3naaBaaajuaibaGaaGym aaqabaqcfaOaeqyYdC3aaSbaaKqbGeaacaaIYaaabeaajuaGcaGGVa GaamOsamaaBaaajuaibaGaaG4maaqabaqcfaOaey4kaSIaamytamaa BaaajuaibaGaaG4maaqcfayabaGaamOsaiaac+cacaWGkbWaaSbaaK qbGeaacaaIZaaabeaaaaa@6CC3@
J ω 2 +( J 1 J ) ω 1 ω 3 =[ J 1 ( J 2 J )+J( J 3 J 2 ) ] ω 1 ω 3 / J 2 + M 2 J/ J 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeacq aHjpWDdaWgaaqcfasaaiaaikdaaeqaaKqbakabgUcaRmaabmaabaGa amOsamaaBaaajuaibaGaaGymaaqabaqcfaOaeyOeI0IaamOsaaGaay jkaiaawMcaaiabeM8a3naaBaaajuaibaGaaGymaaqabaqcfaOaeqyY dC3aaSbaaKqbGeaacaaIZaaabeaajuaGcqGH9aqpdaWadaqaaiaadQ eadaWgaaqcfasaaiaaigdaaeqaaKqbaoaabmaabaGaamOsamaaBaaa juaibaGaaGOmaaqabaqcfaOaeyOeI0IaamOsaaGaayjkaiaawMcaai abgUcaRiaadQeadaqadaqaaiaadQeadaWgaaqcfasaaiaaiodaaeqa aKqbakabgkHiTiaadQeadaWgaaqcfasaaiaaikdaaeqaaaqcfaOaay jkaiaawMcaaaGaay5waiaaw2faaiabeM8a3naaBaaajuaibaGaaGym aaqabaqcfaOaeqyYdC3aaSbaaKqbGeaacaaIZaaabeaajuaGcaGGVa GaamOsamaaBaaajuaibaGaaGOmaaqabaqcfaOaey4kaSIaamytamaa BaaajuaibaGaaGOmaaqcfayabaGaamOsaiaac+cacaWGkbWaaSbaaK qbGeaacaaIYaaabeaaaaa@6C9C@

In the determination of the motion by prediction, the controlling moments are taken to be zero. There­fore, M 1 , M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaigdaaKqbagqaaiaacYcacaWGnbWaaSbaaKqbGeaa caaIYaaajuaGbeaaaaa@3BFE@ , and M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaiodaaKqbagqaaaaa@38E5@  include only the perturbing moments. Analysis of this system shows that the right-hand sides of the equations are the small values (the perturbations); thus, in the prognostic model, we neglect them. Finally, the equations of the prognostic model assume the form:
J 1 ω 1 =0,  J 1 ω 2 +( J 1 J ) ω 1 ω 3 =0, J ω 3 +( J J 1 ) ω 1 ω 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaigdaaeqaaKqbakabeM8a3naaBaaajuaibaGaaGym aaqabaqcfaOaeyypa0JaaGimaiaacYcaqaaaaaaaaaWdbiaacckapa GaamOsamaaBaaajuaibaGaaGymaaqabaqcfaOaeqyYdC3aaSbaaKqb GeaacaaIYaaabeaajuaGcqGHRaWkdaqadaqaaiaadQeadaWgaaqcfa saaiaaigdaaKqbagqaaiabgkHiTiaadQeaaiaawIcacaGLPaaacqaH jpWDdaWgaaqcfasaaiaaigdaaeqaaKqbakabeM8a3naaBaaajuaiba GaaG4maaqabaqcfaOaeyypa0JaaGimaiaacYcapeGaaiiOa8aacaWG kbGaeqyYdC3aaSbaaKqbGeaacaaIZaaabeaajuaGcqGHRaWkdaqada qaaiaadQeacqGHsislcaWGkbWaaSbaaKqbGeaacaaIXaaajuaGbeaa aiaawIcacaGLPaaacqaHjpWDdaWgaaqcfasaaiaaigdaaeqaaKqbak abeM8a3naaBaaajuaibaGaaG4maaqabaqcfaOaeyypa0JaaGimaaaa @6A32@

Solving the boundary value problem Λ( 0 )= Λ in ,Λ( t f )= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iabfU5amnaaBaaa juaibaGaamyAaiaad6gaaeqaaKqbakaacYcacqqHBoatdaqadaqaai aadshadaWgaaqcfasaaiaadAgaaKqbagqaaaGaayjkaiaawMcaaiab g2da9iabfU5amnaaBaaajuaibaGaamOzaaqcfayabaaaaa@4A1C@ with allowance for last system, we obtain the required angular velocities:
ω 10 =Jβ n 1 /( J 1 T ),  ω 20 =Jβ n 2 /( J 2 T ),  ω 30 =Jβ n 3 /( J 3 T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGymaiaaicdaaKqbagqaaiabg2da9iaadQeacqaH YoGycaWGUbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaGGVaWaaeWaae aacaWGkbWaaSbaaKqbGeaacaaIXaaajuaGbeaacaWGubaacaGLOaGa ayzkaaGaaiilaabaaaaaaaaapeGaaiiOa8aacqaHjpWDdaWgaaqcfa saaiaaikdacaaIWaaabeaajuaGcqGH9aqpcaWGkbGaeqOSdiMaamOB amaaBaaajuaibaGaaGOmaaqabaqcfaOaai4lamaabmaabaGaamOsam aaBaaajuaibaGaaGOmaaqcfayabaGaamivaaGaayjkaiaawMcaaiaa cYcapeGaaiiOa8aacqaHjpWDdaWgaaqcfasaaiaaiodacaaIWaaabe aajuaGcqGH9aqpcaWGkbGaeqOSdiMaamOBamaaBaaajuaibaGaaG4m aaqabaqcfaOaai4lamaabmaabaGaamOsamaaBaaajuaibaGaaG4maa qcfayabaGaamivaaGaayjkaiaawMcaaaaa@694C@

Angles β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIb aa@381A@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXb aa@382F@  and vector n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gaaa a@376C@  are determined by the fol­lowing system of relationships:
cos( β/2 )cos( θ/2 ) n 1 sin( β/2 )sin( θ/2 )= v 0 ,cos( β/2 )cos( θ/2 )+ n 1 sin( β/2 )sin( θ/2 )= v 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGacogaca GGVbGaai4CamaabmaabaWaaSGbaeaacqaHYoGyaeaacaaIYaaaaaGa ayjkaiaawMcaaiGacogacaGGVbGaai4CamaabmaabaWaaSGbaeaacq aH4oqCaeaacaaIYaaaaaGaayjkaiaawMcaaiabgkHiTiaad6gadaWg aaqcfasaaiaaigdaaeqaaKqbakGacohacaGGPbGaaiOBamaabmaaba WaaSGbaeaacqaHYoGyaeaacaaIYaaaaaGaayjkaiaawMcaaiGacoha caGGPbGaaiOBamaabmaabaWaaSGbaeaacqaH4oqCaeaacaaIYaaaaa GaayjkaiaawMcaaiabg2da9iaadAhadaWgaaqcfasaaiaaicdaaKqb agqaaiaacYcaciGGJbGaai4BaiaacohadaqadaqaamaalyaabaGaeq OSdigabaGaaGOmaaaaaiaawIcacaGLPaaaciGGJbGaai4Baiaacoha daqadaqaamaalyaabaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPa aacqGHRaWkcaWGUbWaaSbaaKqbGeaacaaIXaaabeaajuaGciGGZbGa aiyAaiaac6gadaqadaqaamaalyaabaGaeqOSdigabaGaaGOmaaaaai aawIcacaGLPaaaciGGZbGaaiyAaiaac6gadaqadaqaamaalyaabaGa eqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaacqGH9aqpcaWG2bWaaS baaKqbGeaacaaIXaaajuaGbeaaaaa@7C1F@
n 3 sin( β/2 )sin( θ/2 )+ n 2 sin( β/2 )cos( θ/2 )= v 2 , n 3 sin( β/2 )cos( θ/2 ) n 2 sin( β/2 )sin( θ/2 )= v 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gada WgaaqcfasaaiaaiodaaKqbagqaaiGacohacaGGPbGaaiOBamaabmaa baWaaSGbaeaacqaHYoGyaeaacaaIYaaaaaGaayjkaiaawMcaaiGaco hacaGGPbGaaiOBamaabmaabaWaaSGbaeaacqaH4oqCaeaacaaIYaaa aaGaayjkaiaawMcaaiabgUcaRiaad6gadaWgaaqcfasaaiaaikdaae qaaKqbakGacohacaGGPbGaaiOBamaabmaabaWaaSGbaeaacqaHYoGy aeaacaaIYaaaaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Camaabm aabaWaaSGbaeaacqaH4oqCaeaacaaIYaaaaaGaayjkaiaawMcaaiab g2da9iaadAhadaWgaaqcfasaaiaaikdaaKqbagqaaiaacYcacaWGUb WaaSbaaKqbGeaacaaIZaaajuaGbeaaciGGZbGaaiyAaiaac6gadaqa daqaamaalyaabaGaeqOSdigabaGaaGOmaaaaaiaawIcacaGLPaaaci GGJbGaai4BaiaacohadaqadaqaamaalyaabaGaeqiUdehabaGaaGOm aaaaaiaawIcacaGLPaaacqGHsislcaWGUbWaaSbaaKqbGeaacaaIYa aabeaajuaGciGGZbGaaiyAaiaac6gadaqadaqaamaalyaabaGaeqOS digabaGaaGOmaaaaaiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gada qadaqaamaalyaabaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaa cqGH9aqpcaWG2bWaaSbaaKqbGeaacaaIZaaajuaGbeaaaaa@8149@  
θ= n 1 β( J J 1 )/ J 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXj abg2da9iaad6gadaWgaaqcfasaaiaaigdaaeqaaKqbakabek7aInaa bmaabaGaamOsaiabgkHiTiaadQeadaWgaaqcfasaaiaaigdaaKqbag qaaaGaayjkaiaawMcaaiaac+cacaWGkbWaaSbaaKqbGeaacaaIXaaa juaGbeaaaaa@4627@ , where v 0 , v 1 , v 2  and  v 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhada WgaaqcfasaaiaaicdaaeqaaKqbakaacYcacaWG2bWaaSbaaKqbGeaa caaIXaaabeaajuaGcaGGSaGaamODamaaBaaajuaibaGaaGOmaabaaa aaaaaapeGaaiiOaaWdaeqaaKqbakaadggacaWGUbGaamiza8qacaGG GcWdaiaadAhadaWgaaqcfasaaiaaiodaaeqaaaaa@46F1@ are components of the quater­nion of the turn Λ t = Λ ˜ in Λ f ;0βπ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamiDaaqabaqcfaOaeyypa0Jafu4MdWKbaGaadaWg aaqcfasaaiaadMgacaWGUbaabeaajuaGcqWIyiYBcqqHBoatdaWgaa qcfasaaiaadAgaaKqbagqaaiaacUdacaaIWaGaeyizImQaeqOSdiMa eyizImQaeqiWdahaaa@4BC4@ . Taking into account the fact that the true motion of the spacecraft differs only slightly from the predicted motion, we will use the method of iterative guidance in order to form the control commands in the process of rotation. According to this method, the tra­jectory is divided into several legs where the control is absent (M = 0). The transition from one leg to another is accomplished by the correcting pulses. There is only one requirement for the legs: they must pass through Λ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aabmaabaGaamiDaaGaayjkaiaawMcaaaaa@3A70@ and Λ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aabmaabaGaamivaaGaayjkaiaawMcaaaaa@3A50@ . The objective of the control consists in providing such initial conditions for the legs without control that the motion by prediction passes through the final position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@ . To do this, for the beginning or each leg t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaadMgaaeqaaaaa@38AF@ , the quaternion of the turn is determined, Λ t ( i ) = Λ ˜ ( t i ) Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaDaaajuaibaGaamiDaaqaaKqbaoaabmaajuaibaGaamyAaaGaayjk aiaawMcaaaaajuaGcqGH9aqpcuqHBoatgaacamaabmaabaGaamiDam aaBaaajuaibaGaamyAaaqabaaajuaGcaGLOaGaayzkaaGaeSigI8Ma eu4MdW0aaSbaaKqbGeaacaWGMbaajuaGbeaaaaa@4846@ , by which the required initial conditions for the next leg, ω 1i, ω 2i, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGymaiaadMgajuaGcaGGSaaabeaacqaHjpWDdaWg aaqcfasaaiaaikdacaWGPbqcfaOaaiilaaqabaaaaa@4080@ and ω 3i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaG4maiaadMgaaKqbagqaaaaa@3ACE@ are determined. The spacecraft motion on the stages of acceleration and retardation coincide with the predicted trajectories (since M p << M c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaadchaaKqbagqaaiabgYda8iabgYda8iaad2eadaWg aaqcfasaaiaadogaaKqbagqaaaaa@3DBC@ ), and their duration τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0b aa@383E@ is determined by the prescribed time T of the turn, the available value of the controlling moment M, and the rotation angle φ 0 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaaGimaaqabaqcfaOaeyypa0JaaGOmaaaa@3B8F@ arccos ( sqal( Λ ˜ in Λ f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Gaam4CaiaadghacaWGHbGaamiBamaabmaabaGafu4MdWKbaGaadaWg aaqcfasaaiaadMgacaWGUbaabeaajuaGcqWIyiYBcqqHBoatdaWgaa qcfasaaiaadAgaaKqbagqaaaGaayjkaiaawMcaaaGaayjkaiaawMca aaaa@4609@ , by which it is necessary to rotate the spacecraft. Duration of the motion along the spacecraft’s free motion legs is determined from the condition of minimization of fuel expenditure G and depends on the logic of formation of the commands on execution of the angular momentum correction. Usually, several (depending on the rotation angle4–6) impulses of correction of the angular momentum are suf­ficient. The optimization is reduced to determination of the durations of gain and cancellation of the space­craft angular velocity. The controlling moments M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaigdaaKqbagqaaaaa@38E3@  , M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaikdaaKqbagqaaaaa@38E4@  and M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaiodaaKqbagqaaaaa@38E5@  on the legs of acceleration and retardation are determined by two conditions: M=ρK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eacq GH9aqpcqaHbpGCcaWGlbaaaa@3AE1@ and | M j | U j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamytamaaBaaajuaibaGaamOAaaqcfayabaaacaGLhWUaayjcSdGa eyizImQaamyvamaaBaaajuaibaGaamOAaaqcfayabaaaaa@4094@ for all j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maaaa@3C02@  and at the same time,

  1. For the leg of acceleration, ρ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYj abg6da+iaaicdaaaa@39FB@ and K is the calculated value of the angular momentum: K j = J j ω j0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqcfasaaiaadQgaaeqaaKqbakabg2da9iaadQeadaWgaaqcfasa aiaadQgaaeqaaKqbakabeM8a3naaBaaajuaibaGaamOAaiaaicdaaK qbagqaaaaa@4109@ ; and
  2. For the leg of retardation, ρ<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYj abgYda8iaaicdaaaa@39F7@ and K is the actual angular momentum of the spacecraft at the beginning of retardation. On both legs, M = const in the inertial coordinate system.

Thus, control of the spacecraft reorientation is reduced to the execution of the following operations13:
Calculation of the turn quaternion Λ t = Λ ˜ in Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamiDaaqabaqcfaOaeyypa0Jafu4MdWKbaGaadaWg aaqcfasaaiaadMgacaWGUbaabeaajuaGcqWIyiYBcqqHBoatdaWgaa qcfasaaiaadAgaaKqbagqaaaaa@4383@ and determination of the initial conditions for the free motion leg ω 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGymaiaaicdaaKqbagqaaaaa@3A98@ , ω 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGOmaiaaicdaaeqaaaaa@3A0B@ , and ω 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaG4maiaaicdaaeqaaaaa@3A0C@ ; determination of the calculated value of the angular momentum K* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeaca GGQaaaaa@37F7@ and the controlling moments M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaigdaaKqbagqaaaaa@38E3@  , M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaikdaaKqbagqaaaaa@38E4@  , and M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaiodaaKqbagqaaaaa@38E5@  ; Spacecraft acceleration with the maximal controlling moment to the required value of the angular momentum L= ( J 1 2 ω 10 2 + J 2 2 ω 20 2 + J 3 2 ω 30 2 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacYeacq GH9aqpdaqadaqaaiaadQeadaWgaaqcfasaaiaaigdaaKqbagqaamaa CaaabeqcfasaaiaaikdaaaqcfaOaeqyYdC3aa0baaKqbGeaacaaIXa GaaGimaaqaaiaaikdaaaGaey4kaSscfaOaamOsamaaBaaajuaibaGa aGOmaaqcfayabaWaaWbaaeqajuaibaGaaGOmaaaajuaGcqaHjpWDda qhaaqcfasaaiaaikdacaaIWaaabaGaaGOmaaaajuaGcqGHRaWkcaWG kbWaaSbaaKqbGeaacaaIZaaajuaGbeaadaahaaqabKqbGeaacaaIYa aaaKqbakabeM8a3naaDaaajuaibaGaaG4maiaaicdaaeaacaaIYaaa aaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaKqbaoaalyaajuaiba GaaGymaaqaaiaaikdaaaaaaaaa@58D2@ during the process, the controlling moment direction being constant in the inertial coordinate system: M= Λ ˜ M A Λ,M.K>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eacq GH9aqpcuqHBoatgaacaiablIHiVjaad2eadaWgaaqcfasaaiaadgea aKqbagqaaiablIHiVjabfU5amjaacYcacaWGnbGaaiOlaiaadUeacq GH+aGpcaaIWaaaaa@44F9@ Free rotation of the spacecraft, M = 0, up to the instant t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaadMgaaeqaaaaa@38AF@ of the spacecraft motion correction; At time instant t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaadMgaaeqaaaaa@38AF@ , determination of the error signal quaternion Λ E = Λ ˜ ( t i ) Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyraaqcfayabaGaeyypa0Jafu4MdWKbaGaadaqa daqaaiaadshadaWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawM caaiablIHiVjabfU5amnaaBaaajuaibaGaamOzaaqcfayabaaaaa@44E3@ , and calculation of the boundary conditions corresponding to it (the new hitting trajectory), ω 1i, ω 2i, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGymaiaadMgajuaGcaGGSaaabeaacqaHjpWDdaWg aaqcfasaaiaaikdacaWGPbqcfaOaaiilaaqabaaaaa@4080@ and ω 3i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaG4maiaadMgaaKqbagqaaaaa@3ACE@ , for the next leg of the motion without control. Determination of the re­quired impulse of the angular momentum < ΔK:Δ K j = J j ( ω ji ω j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadUeacaGG6aGaeyiLdqKaam4samaaBaaajuaibaGaamOAaaqabaqc faOaeyypa0JaamOsamaaBaaajuaibaGaamOAaaqcfayabaWaaeWaae aacqaHjpWDdaWgaaqcfasaaiaadQgacaWGPbaajuaGbeaacqGHsisl cqaHjpWDdaWgaaqcfasaaiaacQgaaKqbagqaaaGaayjkaiaawMcaaa aa@4BA7@ for j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaqvscfaOaam OAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaaaa@3C7A@ . We calculate the controlling moments on the basis of the requirement | M j | U j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamytamaaBaaajuaibaGaamOAaaqcfayabaaacaGLhWUaayjcSdGa eyizImQaamyvamaaBaaajuaibaGaamOAaaqabaaaaa@4006@ for all j= 1,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpdaqdaaqaaiaaigdacaGGSaGaaG4maaaaaaa@3AA7@ according to the M j = J j ( ω ji ω j )/Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaadQgaaeqaaKqbakabg2da9iaadQeadaWgaaqcfasa aiaadQgaaeqaaKqbaoaabmaabaGaeqyYdC3aaSbaaKqbGeaacaWGQb GaamyAaaqcfayabaGaeyOeI0IaeqyYdC3aaSbaaKqbGeaacaWGQbaa juaGbeaaaiaawIcacaGLPaaacaGGVaGaeuiLdqKaamiDaaaa@4A60@  , where Δt= j max ( | Δ Κ j |/ U j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshacqGH9aqpdaWfGaqaaiaadQgaaeqabaGaciyBaiaacggacaGG 4baaamaabmaabaWaaqWaaeaacqqHuoarcqqHAoWsdaWgaaqcfasaai aadQgaaKqbagqaaaGaay5bSlaawIa7aiaac+cacaWGvbWaaSbaaKqb GeaacaWGQbaajuaGbeaaaiaawIcacaGLPaaaaaa@4A88@ . Then, one should assume that t 0 = t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaaicdaaKqbagqaaiabg2da9iaadshadaWgaaqcfasa aiaadMgaaeqaaaaa@3C45@ , and repeat operation 3) and 4) until the time instant when the spacecraft can be rotated through the remaining error angle φ rem =2arccos( sqal( Λ ˜ Λ f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaamOCaiaadwgacaWGTbaajuaGbeaacqGH9aqpcaaI YaGaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbWaaeWaaeaaca WGZbGaamyCaiaadggacaWGSbWaaeWaaeaacuqHBoatgaacaiablIHi VjabfU5amnaaBaaajuaibaGaamOzaaqcfayabaaacaGLOaGaayzkaa aacaGLOaGaayzkaaaaaa@500F@ within the time τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0b aa@383E@ necessary to cancel the angular velocity. Braking of the spacecraft with the maxi­mal controlling moment: M= Λ ˜ M B Λ,M.K<0, K j = J j ω j ( j= 1,3 ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eacq GH9aqpcuqHBoatgaacaiablIHiVjaad2eadaWgaaqcfasaaiaadkea aeqaaKqbakablIHiVjabfU5amjaacYcacaWGnbGaaiOlaiaadUeacq GH8aapcaaIWaGaaiilaiaadUeadaWgaaqcfasaaiaadQgaaeqaaKqb akabg2da9iaadQeadaWgaaqcfasaaiaadQgaaeqaaKqbakabeM8a3n aaBaaajuaibaGaamOAaaqcfayabaWaaeWaaeaacaWGQbGaeyypa0Za a0aaaeaacaaIXaGaaiilaiaaiodaaaaacaGLOaGaayzkaaaaaa@5533@ at this phase, controlling moment is directed strictly opposite to the actual angular momentum. Correction of the trajectory of spacecraft motion can be made at regular intervals ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadsfaaaa@38B8@ or at reg­ular decrements of the remaining error angle Δ φ rem MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej abeA8aQnaaBaaajuaibaGaamOCaiaadwgacaWGTbaajuaGbeaaaaa@3D4C@ . The time instants t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaadMgaaeqaaaaa@38AF@ can be formed by the logarithmic scale as well, in the direction of lowering Δ t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshadaWgaaqcfasaaiaadMgaaeqaaaaa@3A15@ or Δ φ rem MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej abeA8aQnaaBaaajuaibaGaamOCaiaadwgacaWGTbaajuaGbeaaaaa@3D4C@ as time passes. The smaller the remaining angular dis­tance to the prescribed position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@ , the more fre­quently are corrections made of spacecraft angular momentum. The choice of a particular program for determination of the sequence of times t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaadMgaaeqaaaaa@38AF@  during the spacecraft rotation (the cyclogram of the output of the correcting impulses of spacecraft angular momentum) depends on the priorities of accomplishing the planned tasks. The proposed algorithm is based on the method of iterative guidance with the use of prognostic model. Therefore, it needs no continuous formation of the controls and is reduced to moderate correction of the trajectory of the spacecraft rotational motion at certain instants of time. It is known, that the minimum fuel expenditure is reached at two-impulse control of a turn.3 And for increase of accuracy of spacecraft reorientation into the required angular position we offer to correct rotary motion of the spacecraft during time interval between acceleration and braking. Corrections make at time moments t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaadMgaaeqaaaaa@38AF@ when equalities φ i =a φ i1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaamyyaiabeA8aQnaa BaaajuaibaGaamyAaiabgkHiTiaaigdaaKqbagqaaaaa@411D@ are carried out, where a<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggacq GH8aapcaaIXaaaaa@391E@ , i is correction number, φ i =2arccos( sqal( Λ ˜ ( t i ) Λ f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaamyAaaqcfayabaGaeyypa0JaaGOmaiGacggacaGG YbGaai4yaiaacogacaGGVbGaai4CamaabmaabaGaam4Caiaadghaca WGHbGaamiBamaabmaabaGafu4MdWKbaGaadaqadaqaaiaadshadaWg aaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaaiablIHiVjabfU 5amnaaBaaajuaibaGaamOzaaqcfayabaaacaGLOaGaayzkaaaacaGL OaGaayzkaaaaaa@5277@ . Such law of formation of correction moments is possible also φ i = φ 0 q i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaeqOXdO2aaSbaaKqb GeaacaaIWaaabeaajuaGcaWGXbWaaWbaaeqajuaibaGaamyAaaaaaa a@408F@ , where q < 1 (for example, q = 1/2 or q = 3/5). The designed method of con­trol is invariant to the external as well as to the para­metric disturbances and provides high efficiency and accuracy of the spacecraft reorientation.

The index of efficiency of the synthesized law of control of a single spatial turn of the spacecraft can be naturally represented in the form E=( Gr+Gc )/ G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GH9aqpdaqadaqaaiaadEeacaWGYbGaey4kaSIaam4raiaadogaaiaa wIcacaGLPaaacaGGVaGaam4ramaaBaaajuaibaGaam4qaiaad+eaca WGnbaabeaaaaa@4267@ . We form the control commands for the attitude control engines on the basis of the assumption that the main purpose of control is to minimize fuel expenditures on the spacecraft reorientation, Grmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGYbGaeyOKH4QaciyBaiaacMgacaGGUbaaaa@3CFB@ , and the orbit correction is the consequence of this process. Hence, it is reasonable to assume that G COM =Gr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqabaqcfaOaeyypa0Jaam4r aiaadkhaaaa@3D59@ ; i.e., the fuel is not consumed specially for increase of the orbit alti­tude. According to this approach, Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@ represents the fuel expenditures necessary to provide the same effect of orbit altitude increase for the independent control: Gc= k V V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbGaeyypa0Jaam4AamaaBaaajuaibaGaamOvaaqcfayabaGaamOv amaaBaaajuaibaGaam4qaaqcfayabaaaaa@3E5B@ , where V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadoeaaKqbagqaaaaa@38F9@ is the spacecraft velocity increase obtained as the result of the reorientation, k V =m/W=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqcfasaaiaadAfaaKqbagqaaiabg2da9iaad2gacaGGVaGaam4v aiabg2da9iaadogacaWGVbGaamOBaiaadohacaWG0baaaa@426E@ , m is the spacecraft mass, and W is the gas exhaust velocity of the altitude control engines. The values Gr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGYbaaaa@383C@ and Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@ depend on the pattern of mounting the attitude control engines. For spacecraft’s planar rotation, the opti­mal combining of the regimes of attitude and orbit correction require the possibility to turn the jet engine thrust in an arbitrary way. It is obvious that, for the case of spacecraft’s spatial rotation combined with orbit correction, the optimal control also necessitates orienting the engine thrust P in the required direction with respect to the bound spacecraft axes. However, such a method of control implies a mounting the attitude control engines in gimbals mounts, which involves non-small (and even considerable) constructive difficulties. Because of this, we consider pattern of the rigid mounting of the attitude control engines, which is expedient from the practical point of view Figure 1. The reorientation control law becomes rather simple: in order to create the prescribed controlling moment M providing the spacecraft transition from the initial angular position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyAaiaad6gaaKqbagqaaaaa@3AAC@ to the required final position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@ within the prescribed time T,we switch on only those engines whose thrust makes the acute angle with the velocity V. It can be easily seen that this is always possible, since, in order to create the required controlling moment one of two oppositely directed attitude control engines can be chosen. Values of the optimized fuel expense GCOM and of the index of optimality were determined by the method of mathematical shooting using a personal computer.17 When considering the problem of combining the regimes of attitude and correction, we make one important assumption: the velocity vector V is constant in inertial space (we have neglected the spacecraft’s orbital motion during the rotation time T and have not taken into account the rotation of the orbital coordinate system with respect to the inertial basis). For the new generation orbital stations where the rotation time T is large, this simplification might be too restrictive (and even inadmissible for exact estimations of the index of efficiency of combining). Hence, in the mathematical simulation, we take account of all factors of the spacecraft’s real flight including the variation in space of the direction of velocity V during the rotation. According to the notations in left part of Figure 1, we have M= M Cr + M 1 , M Cr ={ M 2 , M 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eacq GH9aqpcaWGnbWaaSbaaKqbGeaacaWGdbGaamOCaaqabaqcfaOaey4k aSIaamytamaaBaaajuaibaGaaGymaaqabaGaaiilaKqbakaad2eada WgaaqcfasaaiaadoeacaWGYbaabeaajuaGcqGH9aqpdaGadaqaaiaa d2eadaWgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGnbWaaSbaaK qbGeaacaaIZaaabeaaaKqbakaawUhacaGL9baaaaa@4BE7@ , where M Cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaadoeacaWGYbaabeaaaaa@3959@ the controlling moment in cross-section is; M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada Wgaaqcfasaaiaaigdaaeqaaaaa@3855@ is longitudinal component of controlling moment M. In the calculations, the following simplifications ere accepted; all the engines are situated at equal stances from the longitudinal axis OX and are symmetrically located with respect to the plane YOZ, and point O coincides with the center of mass of the spacecraft. Let us introduce the notations
Δ m X = ( W l 1 ) 1 0 Δt | M 1 | dt| Δ K j |/( W l 1 ),Δ m X = ( W l 1 ) 1 0 Δt | M 1 | dt| Δ K j |/( W l 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadIfaaKqbagqaaiabg2da9maabmaabaGa am4vaiaadYgadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawM caamaaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfa4aa8qmaeaadaab daqaaiaad2eadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaay5bSlaawI a7aaqaaiaaicdaaeaacqqHuoarcaWG0baacqGHRiI8aiaadsgacaWG 0bGaeyisIS7aaqWaaeaacqqHuoarcaWGlbWaaSbaaKqbGeaacaWGQb aabeaaaKqbakaawEa7caGLiWoacaGGVaWaaeWaaeaacaWGxbGaamiB amaaBaaajuaibaGaaGymaaqabaaajuaGcaGLOaGaayzkaaGaaiilai abfs5aejaad2gadaWgaaqcfasaaiaadIfaaKqbagqaaiabg2da9maa bmaabaGaam4vaiaadYgadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaay jkaiaawMcaamaaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfa4aa8qm aeaadaabdaqaaiaad2eadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaay 5bSlaawIa7aaqaaiaaicdaaeaacqqHuoarcaWG0baacqGHRiI8aiaa dsgacaWG0bGaeyisIS7aaqWaaeaacqqHuoarcaWGlbWaaSbaaKqbGe aacaWGQbaabeaaaKqbakaawEa7caGLiWoacaGGVaWaaeWaaeaacaWG xbGaamiBamaaBaaajuaibaGaaGymaaqabaaajuaGcaGLOaGaayzkaa aaaa@865D@
Δ m X = ( W l 1 ) 1 0 Δt | M 1 | dt| Δ K j |/( W l 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadIfaaKqbagqaaiabg2da9maabmaabaGa am4vaiaadYgadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawM caamaaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfa4aa8qmaeaadaab daqaaiaad2eadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaay5bSlaawI a7aaqaaiaaicdaaeaacqqHuoarcaWG0baacqGHRiI8aiaadsgacaWG 0bGaeyisIS7aaqWaaeaacqqHuoarcaWGlbWaaSbaaKqbGeaacaWGQb aabeaaaKqbakaawEa7caGLiWoacaGGVaWaaeWaaeaacaWGxbGaamiB amaaBaaajuaibaGaaGymaaqabaaajuaGcaGLOaGaayzkaaaaaa@5E13@ , where Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshaaaa@38D8@  is the time of action of the thrust impulse.
Similarly, Δ m d = ( W l d ) 1 0 Δt | M d | dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadsgaaKqbagqaaiabg2da9maabmaabaGa am4vaiaadYgadaWgaaqcfasaaiaadsgaaeqaaaqcfaOaayjkaiaawM caamaaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfa4aa8qmaeaadaab daqaaiaad2eadaWgaaqcfasaaiaadsgaaeqaaaqcfaOaay5bSlaawI a7aaqaaiaaicdaaeaacqqHuoarcaWG0baacqGHRiI8aiaadsgacaWG 0baaaa@5005@ , Δ m g = ( W l g ) 1 0 Δt | M g | dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadEgaaKqbagqaaiabg2da9maabmaabaGa am4vaiaadYgadaWgaaqcfasaaiaadEgaaeqaaaqcfaOaayjkaiaawM caamaaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfa4aa8qmaeaadaab daqaaiaad2eadaWgaaqcfasaaiaadEgaaeqaaaqcfaOaay5bSlaawI a7aaqaaiaaicdaaeaacqqHuoarcaWG0baacqGHRiI8aiaadsgacaWG 0baaaa@500E@ . Let, V 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada Wgaaqcfasaaiaaigdaaeqaaaaa@385E@  , V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada Wgaaqcfasaaiaaikdaaeqaaaaa@385F@  , and V 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada Wgaaqcfasaaiaaiodaaeqaaaaa@3860@ are the projections of the unit vector of velocity V on the bound axes ( V 1 2 + V 2 2 + V 3 2 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOvamaaDaaajuaibaGaaGymaaqaaiaaikdaaaGaey4kaSscfaOa amOvamaaDaaajuaibaGaaGOmaaqaaiaaikdaaaqcfaOaey4kaSIaam OvamaaDaaajuaibaGaaG4maaqaaiaaikdaaaqcfaOaeyypa0JaaGym aaGaayjkaiaawMcaaaaa@451A@ , ΔGc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadEeacaWGJbaaaa@3993@ is the fuel economy due to combining control per one impulse (one switching on of the attitude control engines); and ΔGc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadEeacaWGJbaaaa@3993@ is the fuel expenditure per one impulse. Then, Gc= i=1 N Δ G Ci MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbGaeyypa0ZaaabmaeaacqqHuoaraeaacaWGPbGaeyypa0JaaGym aaqaaiaad6eaaiabggHiLdGaam4ramaaBaaajuaibaGaam4qaiaadM gaaKqbagqaaaaa@4364@ , Gr= i=1 N Δ m i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGYbGaeyypa0ZaaabmaeaacqqHuoaraeaacaWGPbGaeyypa0JaaGym aaqaaiaad6eaaiabggHiLdGaamyBamaaBaaajuaibaGaamyAaaqcfa yabaaaaa@42D1@ , where N is the number of impulses of the spacecraft angular momentum per one turn. Omitting the detailed reasoning, we present the final logic of the calculations of Δm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gaaaa@38D1@ and ΔGc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadEeacaWGJbaaaa@3993@ for presented pattern of mounting the attitude control engines (the pattern with 32 attitude control engines, see right part of Figure 1):
if Δ m x Δ m y +Δ m z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadIhaaKqbagqaaiabgsMiJkabfs5aejaa d2gadaWgaaqcfasaaiaadMhaaKqbagqaaiabgUcaRiabfs5aejaad2 gadaWgaaqcfasaaiaadQhaaKqbagqaaaaa@45A9@ , then Δm=Δ m y +Δ m z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gacqGH9aqpcqqHuoarcaWGTbWaaSbaaKqbGeaacaWG5baajuaG beaacqGHRaWkcqqHuoarcaWGTbWaaSbaaKqbGeaacaWG6baajuaGbe aaaaa@4320@ and ΔGc=Δ m y | V 3 |+Δ m z | V 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadEeacaWGJbGaeyypa0JaeuiLdqKaamyBamaaBaaajuaibaGaamyE aaqcfayabaWaaqWaaeaacaWGwbWaaSbaaKqbGeaacaaIZaaajuaGbe aaaiaawEa7caGLiWoacqGHRaWkcqqHuoarcaWGTbWaaSbaaKqbGeaa caWG6baajuaGbeaadaabdaqaaiaadAfadaWgaaqcfasaaiaaikdaaK qbagqaaaGaay5bSlaawIa7aaaa@4F0F@ ;
if Δ m x >Δ m y +Δ m z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadIhaaKqbagqaaiabg6da+iabfs5aejaa d2gadaWgaaqcfasaaiaadMhaaKqbagqaaiabgUcaRiabfs5aejaad2 gadaWgaaqcfasaaiaadQhaaKqbagqaaaaa@44FC@ , then Δm=Δ m x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gacqGH9aqpcqqHuoarcaWGTbWaaSbaaKqbGeaacaWG4baajuaG beaaaaa@3E09@ and, at the same time:
if Δ m z >( Δ m y ,( Δ m x +Δ m y +Δ m z )/4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadQhaaKqbagqaaiabg6da+maabmaabaGa euiLdqKaamyBamaaBaaajuaibaGaamyEaaqcfayabaGaaiilamaabm aabaGaeuiLdqKaamyBamaaBaaajuaibaGaamiEaaqcfayabaGaey4k aSIaeuiLdqKaamyBamaaBaaajuaibaGaamyEaaqcfayabaGaey4kaS IaeuiLdqKaamyBamaaBaaajuaibaGaamOEaaqcfayabaaacaGLOaGa ayzkaaGaai4laiaaisdaaiaawIcacaGLPaaaaaa@5378@ , then ΔGc=| V 3 |( Δ m x Δ m z )+Δ m z | V 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadEeacaWGJbGaeyypa0ZaaqWaaeaacaWGwbWaaSbaaKqbGeaacaaI ZaaajuaGbeaaaiaawEa7caGLiWoadaqadaqaaiabfs5aejaad2gada WgaaqcfasaaiaadIhaaKqbagqaaiabgkHiTiabfs5aejaad2gadaWg aaqcfasaaiaadQhaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRiabfs 5aejaad2gadaWgaaqcfasaaiaadQhaaKqbagqaamaaemaabaGaamOv amaaBaaajuaibaGaaGOmaaqcfayabaaacaGLhWUaayjcSdaaaa@55B8@ ;
if Δ m y >( Δ m z ,( Δ m x +Δ m y +Δ m z )/4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aad2gadaWgaaqcfasaaiaadMhaaKqbagqaaiabg6da+maabmaabaGa euiLdqKaamyBamaaBaaajuaibaGaamOEaaqcfayabaGaaiilamaabm aabaGaeuiLdqKaamyBamaaBaaajuaibaGaamiEaaqcfayabaGaey4k aSIaeuiLdqKaamyBamaaBaaajuaibaGaamyEaaqcfayabaGaey4kaS IaeuiLdqKaamyBamaaBaaajuaibaGaamOEaaqcfayabaaacaGLOaGa ayzkaaGaai4laiaaisdaaiaawIcacaGLPaaaaaa@5378@  , then ΔGc=| V 2 |( Δ m x Δ m y )+Δ m y | V 3 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadEeacaWGJbGaeyypa0ZaaqWaaeaacaWGwbWaaSbaaKqbGeaacaaI YaaajuaGbeaaaiaawEa7caGLiWoadaqadaqaaiabfs5aejaad2gada WgaaqcfasaaiaadIhaaKqbagqaaiabgkHiTiabfs5aejaad2gadaWg aaqcfasaaiaadMhaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRiabfs 5aejaad2gadaWgaaqcfasaaiaadMhaaeqaaKqbaoaaemaabaGaamOv amaaBaaajuaibaGaaG4maaqcfayabaaacaGLhWUaayjcSdaaaa@55B6@
if ( Δ m x +Δ m y +Δ m z )/4>( Δ m y ,Δ m z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeuiLdqKaamyBamaaBaaajuaibaGaamiEaaqabaqcfaOaey4kaSIa euiLdqKaamyBamaaBaaajuaibaGaamyEaaqcfayabaGaey4kaSIaeu iLdqKaamyBamaaBaaajuaibaGaamOEaaqcfayabaaacaGLOaGaayzk aaGaai4laiaaisdacqGH+aGpdaqadaqaaiabfs5aejaad2gadaWgaa qcfasaaiaadMhaaKqbagqaaiaacYcacqqHuoarcaWGTbWaaSbaaKqb GeaacaWG6baajuaGbeaaaiaawIcacaGLPaaaaaa@5378@ , then ΔGc=Δ m x ( | V 2 |+| V 3 | )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadEeacaWGJbGaeyypa0JaeuiLdqKaamyBamaaBaaajuaibaGaamiE aaqcfayabaGcdaqadaqaaKqbaoaaemaabaGaamOvamaaBaaajuaiba GaaGOmaaqcfayabaaacaGLhWUaayjcSdGaey4kaSYaaqWaaeaacaWG wbWaaSbaaKqbGeaacaaIZaaabeaaaKqbakaawEa7caGLiWoaaOGaay jkaiaawMcaaKqbakaac+cacaaIYaaaaa@4F02@ .
For basic modes of a turn, indicators of a combining Q are known (after mathematical simulation of virtual turn), as a rule. Dependence between other characteristics (E and I) is expressed by formulas:
E=Q+ G Rmin /G1,I=( 2Q )G/ G Rmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GH9aqpcaWGrbGaey4kaSIaam4ramaaBaaajuaibaGaamOuaiGac2ga caGGPbGaaiOBaaqcfayabaGaai4laiaadEeacqGHsislcaaIXaGaai ilaiaadMeacqGH9aqpdaqadaqaaiaaikdacqGHsislcaWGrbaacaGL OaGaayzkaaGaam4raiaac+cacaWGhbWaaSbaaKqbGeaacaWGsbGaci yBaiaacMgacaGGUbaajuaGbeaaaaa@4FD7@

Relation EQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GHKjYOcaWGrbaaaa@39CE@ is fair for indicators Е and Q (parity ЕQ only for the two-impulse control accepted as a standard).

Figure 1 The schemes of mounting the controlling engines (16 at the left and 32 on the right).

Example of computational modeling the spatial motion under optimized control

Now, we give numerical illustrating the results of solving the problem of optimal rotation. For example, let us consider three-dimensional maneuver of some spacecraft (as solid body) from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyAaiaad6gaaKqbagqaaaaa@3AAC@  into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@ (the quaternion’s Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyAaiaad6gaaKqbagqaaaaa@3AAC@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@ give initial and final attitude). It was assumed that initial and final angular velocities are zero: ω( 0 )=ω( T )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iabeM8a3naabmaa baGaamivaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@417E@ . In the considered case the quaternion Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyAaiaad6gaaKqbagqaaaaa@3AAC@ is Λ in ={ 1,0,0,0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyAaiaad6gaaKqbagqaaiabg2da9maacmaabaGa aGymaiaacYcacaaIWaGaaiilaiaaicdacaGGSaGaaGimaaGaay5Eai aaw2haaaaa@42DC@ , and the elements of the quaternion Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@ are λ 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGimaaqabaqcfaOaeyypa0JaaGimaaaa@3B84@ , λ 1 =0.7071068 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0JaaGimaiaac6cacaaI 3aGaaGimaiaaiEdacaaIXaGaaGimaiaaiAdacaaI4aaaaa@416A@ , and λ 2 = λ 3 =0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGOmaaqabaqcfaOaeyypa0Jaeq4UdW2aaSbaaKqb GeaacaaIZaaabeaajuaGcqGH9aqpcaaIWaGaaiOlaiaaiwdaaaa@414B@ . Also, we assume that duration of maneuver should be not more than 360 seconds, and spacecraft have following characteristics: J 1 =128016.5kg. m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaigdaaeqaaKqbakabg2da9iaaigdacaaIYaGaaGio aiaaicdacaaIXaGaaGOnaiaac6cacaaI1aGaam4AaiaadEgacaGGUa GaamyBamaaCaaabeqcfasaaiaaikdaaaaaaa@4451@ ; J 2 =457475.7kg. m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaikdaaeqaaKqbakabg2da9iaaisdacaaI1aGaaG4n aiaaisdacaaI3aGaaGynaiaac6cacaaI3aGaam4AaiaadEgacaGGUa GaamyBamaaCaaabeqcfasaaiaaikdaaaaaaa@4462@ ; J 3 =403310.0kg. m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaaiodaaeqaaKqbakabg2da9iaaisdacaaIWaGaaG4m aiaaiodacaaIXaGaaGimaiaac6cacaaIWaGaam4AaiaadEgacaGGUa GaamyBamaaCaaabeqcfasaaiaaikdaaaaaaa@4447@ ; values U j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfada WgaaqcfasaaiaadQgaaKqbagqaaaaa@391F@ are equal U 1 =46.4N.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfada WgaaqcfasaaiaaigdaaKqbagqaaiabg2da9iaaisdacaaI2aGaaiOl aiaaisdacaWGobGaaiOlaiaad2gaaaa@3F56@ , U 2 =87.7N.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfada WgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiIdacaaI3aGaaiOl aiaaiEdacaWGobGaaiOlaiaad2gaaaa@3F5F@ , U 3 =87.5N.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfada WgaaqcfasaaiaaiodaaKqbagqaaiabg2da9iaaiIdacaaI3aGaaiOl aiaaiwdacaWGobGaaiOlaiaad2gaaaa@3F5E@ . After computational modeling we have: durations of acceleration and braking are 23.68 s and 23.64 s, accordingly; the entire turn is completed in a time T = 357.25 s, optimal control satisfies the condition T T giv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfacq GHKjYOcaWGubWaaSbaaKqbGeaacaWGNbGaamyAaiaadAhaaeqaaaaa @3D04@  (because T giv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadEgacaWGPbGaamODaaqabaaaaa@3A76@  = 360 s). It means that perturbations (including asymmetry of the spacecraft) helped rotation into required position. Visual illustration of rotation dynamics is given in Figure 2. The upper and the middle parts of this figure correspond to phase variables of motion: the upper part shows graphs of the variation of the angular velocities in the body coordinate system ω 1 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C60@ , ω 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGOmaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C61@ , ω 3 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaG4maaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C62@ ; the middle part shows graphs of the variation of the components of the quaternion L(t), which specifies the current attitude of the spacecraft during the rotation maneuver: λ 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGimaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C46@ , λ 1 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C47@ , λ 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaGOmaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C48@  and λ 3 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaajuaibaGaaG4maaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C49@ . The variables λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaqAqcfaOaeq 4UdW2aaSbaaKqbGeaacaWGQbaabeaaaaa@3A04@  are smooth functions of time. Finally, the lower part of Figure 2 presents the dynamics of the variation of the variables p 1 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchada WgaaqcfasaaKqbaoaaBaaajuaibaGaaGymaaqabaaabeaajuaGdaqa daqaaiaadshaaiaawIcacaGLPaaaaaa@3C65@ , p 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchada WgaaqcfasaaKqbaoaaBaaajuaibaGaaGOmaaqabaaabeaajuaGdaqa daqaaiaadshaaiaawIcacaGLPaaaaaa@3C66@  and p 3 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchada WgaaqcfasaaKqbaoaaBaaajuaibaGaaG4maaqabaaabeaajuaGdaqa daqaaiaadshaaiaawIcacaGLPaaaaaa@3C67@ which are components of the ort of the angular momentum. The following rule is observed for the functions ω 1 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@3C60@ and p1(t): for any combinations of the boundary values of Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamyAaiaad6gaaKqbagqaaaaa@3AAC@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamOzaaqcfayabaaaaa@39B6@ , these functions are always sign-invariant and of the same sign. From Figure 2, we see that number of motion corrections is four. Corrections of spatial motion are formed by following law:
t i+1 = t i + 2 i t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaadMgacqGHRaWkcaaIXaaabeaajuaGcqGH9aqpcaWG 0bWaaSbaaKqbGeaacaWGPbaabeaajuaGcqGHRaWkcaaIYaWaaWbaaK qbGeqabaGaeyOeI0IaamyAaaaajuaGcaWG0bWaaSbaaKqbGeaacaaI Xaaabeaaaaa@44FE@ , where i is number of correction. First correction of spacecraft motion carried out at instant t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada Wgaaqcfasaaiaaigdaaeqaaaaa@387C@  when φ= φ 0 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQj abg2da9iabeA8aQnaaBaaajuaibaGaaGimaaqabaqcfaOaai4laiaa ikdaaaa@3DFF@ , where φ=2arccos( sqal( Λ ˜ in Λ f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQj abg2da9iaaikdaciGGHbGaaiOCaiaacogacaGGJbGaai4Baiaacoha daqadaqaaiaadohacaWGXbGaamyyaiaadYgadaqadaqaaiqbfU5amz aaiaWaaSbaaKqbGeaacaWGPbGaamOBaaqabaqcfaOaeSigI8Maeu4M dW0aaSbaaKqbGeaacaWGMbaajuaGbeaaaiaawIcacaGLPaaaaiaawI cacaGLPaaaaaa@4F1D@ is discrepancy angle in current instant of time t; φ 0 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaaGimaaqabaqcfaOaeyypa0JaaGOmaaaa@3B8F@  arccos  φ 0 =( sqal( Λ ˜ in Λ f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaaGimaaqabaqcfaOaeyypa0ZaaeWaaeaacaWGZbGa amyCaiaadggacaWGSbWaaeWaaeaacuqHBoatgaacamaaBaaajuaiba GaamyAaiaad6gaaeqaaKqbakablIHiVjabfU5amnaaBaaajuaibaGa amOzaaqcfayabaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@4A63@ is initial angle of discrepancy. In this example of controlled rotation, we have following durations of correction: Δ t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshadaWgaaqcfasaaiaaigdaaeqaaaaa@39E2@ = 0.68 s, Δ t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshadaWgaaqcfasaaiaaikdaaeqaaaaa@39E3@ = 1.16 s, Δ t 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshadaWgaaqcfasaaiaaiodaaeqaaaaa@39E4@ = 0.64 s, Δ t 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshadaWgaaqcfasaaiaaisdaaeqaaaaa@39E5@ = 0.64 s. Notice that the quaternion of the turn Λ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfU5amn aaBaaajuaibaGaamiDaaqcfayabaaaaa@39C4@ corresponds to the case when the final rotation vector (Euler’s axis) makes the same angle with the longitudinal axis OX as with the plane perpendicular to OX, and initial angle of discrepancy φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQn aaBaaajuaibaGaaGimaaqabaaaaa@393F@ is 180 degrees. This is most difficult case of reorientation of solid body. The presented results of solving the reorientation problem demonstrate what the characteristics of designed method of spacecraft control are very good (and the best from known modes).

  • Figure 2 Result of mathematical simulation.

Data of mathemati­cal simulation

As an example, we present modeling results of a series of virtual turns of the spacecraft as the orbital station type, which has k V =36.32kg.s/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqcfasaaiaadAfaaKqbagqaaiabg2da9iaaiodacaaI2aGaaiOl aiaaiodacaaIYaGaam4AaiaadEgacaGGUaGaam4Caiaac+cacaWGTb aaaa@42FA@ , and the coefficients of expenditure by channels C j = J j /( W l j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqcfasaaiaadQgaaeqaaKqbakabg2da9iaadQeadaWgaaqcfasa aiaadQgaaKqbagqaaiaac+cadaqadaqaaiaadEfacaWGSbWaaSbaaK qbGeaacaWGQbaajuaGbeaaaiaawIcacaGLPaaaaaa@4283@ ,are equal: C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada Wgaaqcfasaaiaaigdaaeqaaaaa@384B@ = 8.74 kg×s , C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada Wgaaqcfasaaiaaikdaaeqaaaaa@384C@ = 11.59 kg×s , and C 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada Wgaaqcfasaaiaaiodaaeqaaaaa@384D@ = 7.09 kg×s. The simulation was accomplished for a large num­ber of turns, while the initial find final angular positions of the spacecraft were chosen at random and the reorientation time was assumed to be proportional to the angle of turn. The mathematical simulation results in estimations of the average fuel consumption per one rotation G and the location accuracy, as well as of the performance of combining the regimes of attitude and orbit correction for considered scheme of mounting of the control engines. For 16 engines, we have the average fuel consumption per one rotation G = 5.24 kg, the index of combining the control Q = 1.59 and the index of optimality I = 0.418. The reorientation precision was equal to ξ= 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe67a4j abg2da9iaaicdacaGGUaGaaGOmamaaCaaabeqcfasaaiablIHiVbaa aaa@3CF4@ . Values of the optimized functional G and of the index of combining Q were determined by the method of mathematical shooting using a personal computer.17 For the new family of orbital stations where the rotation time T is large, in the mathematical simulation, we take account of all factors of the spacecraft’s real flight including the variation in space of the direction of spacecraft’s linear velocity V during the rotation. One can clearly see that the use of the idea of regulation of the spacecraft’s angular position by means of the non-central jet force allows us to gain significant fuel economy.

For the purpose of comparison, we present the results of modeling of spacecraft reorientation by the two-impulse control pattern,16 which provides the absolutely minimum fuel con­sumption for the rotation, independent of the orbit correction. For the pattern with 16 attitude control engines, we have: G = 5.14 kg, Q = 1.43 and I = 0.570. They well demonstrates what the characteristics of method of spacecraft control designed by us are the best. To increase an efficiency of motion control of orbital spacecraft is possible at the expense of number increase of control jet-engines (by distribution or "a smearing" them onboard of a spacecraft). The number increase of the all-possible directions of thrusts of a included jet-engines for creation of a necessary moment of the controlling forces decreases a time of engines work for achievement of a required impulse of angular momentum, it decreases volume of fuel expense for control of motion around a centre of mass, on the one hand, and, on the other hand, it increases a probability of this that a thrust of working engines makes with a vector of spacecraft velocity minimal angle (obviously less than 90 degrees), and it will increase the increment V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadoeaaKqbagqaaaaa@38F9@ of orbital velocity ( V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadoeaaKqbagqaaaaa@38F9@ is result of motion control during time of maneuver) and, as consequence, will increase the value Gc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeaca WGJbaaaa@382D@  which is necessary for creation of same correcting impulse V C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadoeaaKqbagqaaaaa@38F9@ at independent control of spacecraft motion of a centre of mass. As a result, at more number of control engines, the coefficient of a combining will be more, and the control efficiency index (or the index of optimality) is less. As an example, the scheme with 32 control engines which are established onboard of a spacecraft is possible (it is shown in Figure 2). For this scheme, we received following values of basic indexes reflecting an efficiency of motion control: Q =1.72; I =0.286 (and, E =1.70). At this, absolute values have turned out equal: G C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaadoeaaeqaaaaa@385C@ = 3.30 kg, G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@3A90@  = 4.58 kg (and, G Rmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadkfaciGGTbGaaiyAaiaac6gaaKqbagqaaaaa@3BCB@ = 4.48 kg). For comparison, we give the values of the same indexes for the two-impulse control pattern: Q =1.51; I = 0.490 (and, E =1.51), and absolute volumes: G R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaadkfaaeqaaaaa@386B@ = 4.48 kg , G C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaadoeaaeqaaaaa@385C@ = 2.28 kg, G COM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqcfasaaiaadoeacaWGpbGaamytaaqcfayabaaaaa@3A90@ = 4.48 kg. An analysis of these data distinctly shows what even having 16 engines, our designed control method of spacecraft motion using iterative (multi-impulse) principle of control will be more preferable than the two-impulse scheme of spacecraft's rotation control at the presence of 32 engines, because Q it =1.59> Q 2im=1.51 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfada WgaaqcfasaaiaadMgacaWG0baabeaajuaGcqGH9aqpcaaIXaGaaiOl aiaaiwdacaaI5aGaeyOpa4JaamyuamaaBaaajuaibaGaaGOmaiaadM gacaWGTbqcfaOaeyypa0JaaGymaiaac6cacaaI1aGaaGymaaqabaaa aa@474C@ , E it MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada WgaaqcfasaaiaadMgacaWG0baabeaaaaa@3979@ =1.57 >  E 2im MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada WgaaqcfasaaiaaikdacaWGPbGaamyBaaqcfayabaaaaa@3ABC@ =1.51, I it =0.418< I 2im =0.49 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeada WgaaqcfasaaiaadMgacaWG0baabeaajuaGcqGH9aqpcaaIWaGaaiOl aiaaisdacaaIXaGaaGioaiabgYda8iaadMeadaWgaaqcfasaaiaaik dacaWGPbGaamyBaaqcfayabaGaeyypa0JaaGimaiaac6cacaaI0aGa aGyoaaaa@47F6@ .

Summary conclusion

It is supposed that the control efficiency of a motion of the orbital spacecraft may be raised by simultaneous control of spacecraft rotation and motion of the centre of mass. In this research, optimal control of a spacecraft turn combined with correction of maintenance of the orbit altitude is considered. An algorithm of the control of reorientation com­bined with orbit correction for orbital spacecraft (in particular, for spacecraft of the long-term orbital station’s type) is synthesized in this paper. Designed by us algorithm uses measurements of angular velocity and information about angular position of a spacecraft. Data of angular velocity vector is necessary for control of the angular momentum and determination of required correcting impulse at the moments of rotation correction (and at the phases of acceleration and braking also). The feedback organization over position allows to increase the accuracy of spacecraft reorientation (at the expense of the control of the remained turn angle before required position, of determination of the moments of correction of spacecraft motion and calculation of the angular momentum necessary at the beginning of phases of uncontrolled rotation). The high efficiency of the combining of the regimes of attitude and maintenance of the spacecraft orbit altitude is shown. A numerical simulation of spatial rotations of a spacecraft (as the orbital station) using the designed algorithm of control was executed. As a result, the practically attainable values of fuel expenditure and the indices of efficiency of combining the regimes which can be reached were obtained. The practical application of the proposed method of control of space­craft’s spatial motion allows us to lower signif­icantly the fuel consumption for the dynamic opera­tions as a whole. The results of mathematical sim­ulation show that this economy reaches no less than 60%. For sufficiently frequent changes of spacecraft attitude, the value of the velocity impulse necessary to maintain the orbit altitude can be achieved through control over the spacecraft angular position only. The operating experience of the orbital scientific complex Mir (before a joining with the reusable transport spacecrafts of Space Shuttle system) shows the approximate equality of the actual fuel consumption for attitude control and orbit altitude maintenance. The ratio of the considered consumptions Gc / Ga varies between 0.68 and 0.75, which corresponds to the range of the index variation of a combining Q[ 1.68,1.75 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfacq GHiiIZdaWadaqaaiaaigdacaGGUaGaaGOnaiaaiIdacaGGSaGaaGym aiaac6cacaaI3aGaaGynaaGaay5waiaaw2faaaaa@4151@ . These data confirm the real possibility of practical use of the combined regimes of control over motion of the orbital space­craft by means of jet micro-engines. It may be possible in the future to abandon the executing special corrections of the orbit in order to increase its altitude (or, at least, to reduce sharply the number of such corrections).

Acknowledgements

None.

Conflict of interest

The author declares there is no conflict of interest.

References

  1. Raushenbakh BV, Tokar’ EN. Spacecraft orientation control. Russia; 1974, 600c.
  2. Branets VN, Shmyglevskii IP. Use of quaternion in the problems of orientation of solid bodies. Russia; 320c.
  3. Levskii MV. Optimal control of a programmed turn of a spacecraft. Cosmic Research 2003;41(2):178–192.
  4. Alekseev KB, Malyavin AA, Shadyan AV. Extensive control of spacecraft orientation based on fuzzy logic. Flight. 2009;1:47–53.
  5. Ermoshina OV, Krishchenko AP. Synthesis of programmed controls of spacecraft orientation by the method of inverse problem of dynamics. Journal of Computer and Systems Sciences International. 2000;39(2):313–320.
  6. Zubov NE. Optimal control over terminal reorientation of a spacecraft based on algorithm with a prognostic model. Cosmic Research. 1991;29(3):291–300.
  7. Van’kov AI. Adaptive robust control of attitude motion of a spacecraft using prognostic models. Cosmic Research. 1994;32(4–5):359–366.
  8. Levskii MV. A solving the problem of optimal control over turn of a spacecraft within the class of regular motions. Cosmonautics and rocketry-constructing. 1999;16:22–36.
  9. Levskii MV. Control of a spacecraft’s spatial turn with minimum value of the path functional. Cosmic Research. 2007;45(3):234–247.
  10. Levskii MV. Some issues of time-optimal control over a spacecraft programmed turn. Cosmic Research. 2011;49(6):521–533.
  11. Levskii MV. A special case of spacecraft optimal attitude control. Journal of Computer and Systems Sciences International. 2012;51(4):587–601.
  12. Levskii MV. Kinematically optimal spacecraft attitude control. Journal of Computer and Systems Sciences International. 2015;54(1):116–132.
  13. Levskii MV. Method of control of spacecraft reorientation and control system of spacecraft reorientation. Russian Federation Patent No. 2076833. Bulletin “Inventions. Statements and Patents. 1997. p.133–134.
  14. Levskii MV. Method of Controlling a Spacecraft Turn. Russian Federation Patent No. 2093433. Bulletin “Inventions. Applications and Patents.1997. p. 271.
  15. Handbook on the Automatic Control Theory. Krasovskii AA editor. Russia; 1987. 712c.
  16. Levskii MV. Control system of spatial turn of a spacecraft, Russian Federation Patent No. 2006431. Bulletin “Inventions. Statements and Patents”, 1994. p. 49–50.
  17. Vasil'ev FP. Numerical Methods of Solving Extremal Problems. Russia; 1988. 374c.
Creative Commons Attribution License

©2018 Levskii. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.