Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 7 Issue 3

A rotating body about the fixed point is subjected by inertial torques

Ryspek Usubamatov

Kyrgyz State Technical University after I. Razzakov, Kyrgyzstan

Correspondence: Ryspek Usubamatov, Kyrgyz State Technical University after I. Razzakov, Bishkek, Kyrgyzstan

Received: April 24, 2021 | Published: September 7, 2021

Citation: Usubamatov R. A rotating body about the fixed point is subjected by inertial torques. Int Robot Automat J. 2021;7(3):75-76. DOI: 10.15406/iratj.2021.07.00229

Download PDF

Abstract

The planar rigid-body motion of a body is a classical topic of textbooks of engineering mechanics. This planar rigid-body motion considers its rotation about an axis and a curvilinear motion. The textbooks of classical mechanics describe only the radial acceleration and centrifugal force acting on the rotating body. Detailed analysis of the rotation of a body about a fixed point discovered the action of the two inertial torques and the angular acceleration. This inertial torques acting on the rotating bodies are not considered by lecturers, engineers, and practitioners. None of the less, this inertial torques are fundamental as the centrifugal force acting on the rotating body and should be computed in engineering with the aim to enhance the quality of machine work. This manuscript presents the physical interpretation of the angular acceleration of a rotating body that generates the two inertial torques acting about its center mass and fixed point.

Keywords: rotating body, radial and angular acceleration, inertial force and torque

Introduction

Classical mechanics describes the planar rigid-body motion with its rotation about its centre mass and curvilinear motion about the fixed point.1–3 The planar rigid-body motion generates its radial acceleration and the radial force that depends on the values of the angular velocityunder the action of the external torque and radius of gyration.2–5 The textbooks of engineering mechanics present the mathematical model for the radial acceleration of rotating body about the fixed point by the expression a = r ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacaqGGaGaeyypa0JaaeiiaiaadkhacqaHjpWDl8aa daahaaqabeaajugWa8qacaaIYaaaaaaa@3ED1@ where a is the radial acceleration, r is the radius of gyration of the body, and ω is the constant angular velocity of the body rotation about a fixed point.6–9 The textbooks present the expression ma = mr ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2gacaWGHbGaaeiiaiabg2da9iaabccacaWGTbGaamOC aiabeM8a3Lqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaaaaa@4143@ , where m is the mass of the body, as the centrifugal F ct = ma MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeal8aadaWgaaqaaKqzadWdbiaadogacaWG0baal8aa beaajugib8qacqGH9aqpcaqGGaGaamyBaiaadggaaaa@3F04@ and centripetal F cp = mr ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeal8aadaWgaaqaaKqzadWdbiaadogacaWGWbaal8aa beaajugib8qacqGH9aqpcaqGGaGaamyBaiaadkhacqaHjpWDl8aada ahaaqabeaajugWa8qacaaIYaaaaaaa@4314@ forces respectively and other components are as specified above.10–13 Analysis of two expressions for the radial force demonstrates the dual presentations of the one physical term which has different physical interpretations.14–16 This dualism contradicts mathematical rules that do not allow ambiguous interpretations due to the mathematical logic of the exact science. The physics of the rotation of the body about the fixed point manifests the turn of the body about its center mass and the turn about the fixed point. It means the rotating body is under the action of the two inertial torques. This manuscript gives the physical interpretation and mathematical proof of the action of the inertial torques on the body at the process of its rotation about the fixed point.

Methodology

The textbooks of engineering mechanics derive the mathematical model for the radial acceleration of the rotating body about the fixed point based on the schematic of Figure 1a & 1b. The radial acceleration of the rotating body is presented by the following expression:

a r = r ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzadWdbiaadkhaaSWdaeqa aKqzGeWdbiabg2da9iaabccacaWGYbGaeqyYdC3cpaWaaWbaaeqaba qcLbmapeGaaGOmaaaaaaa@41E5@                                                  (1)

where a r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggal8aadaWgaaqaaKqzadWdbiaadkhaaSWdaeqaaaaa @3A15@  is radial acceleration; r is the radius of rotation of the body about the fixed point o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+gaaaa@3799@ , ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3baa@3872@  is the constant angular velocity of rotation of the body. The radial acceleration a is obtained by the time derivative of the change of the tangential velocity ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadAfaaaa@38E6@ of the rotation of the body about the fixed point. The right side of Eq. 1 presents the scalar product of the constant angular velocity ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3baa@3872@ that expresses the angular acceleration, i.e., ω 2 =ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWdamaaCaaabeqaaKqzadWdbiaaikdaaaqcLbsa cqGH9aqpcqaH1oqzaaa@3DE4@ . This angular acceleration ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLbaa@384C@ relates to the change of the tangential velocity of rotation of the body about its center mass p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchaaaa@379A@ . It means the body rotates about its center mass with acceleration under the action of the inertial torque T p =  J b ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaadchaaSWdaeqaaKqz GeWdbiabg2da9iaabccacaWGkbqcfa4damaaBaaaleaajugWa8qaca WGIbaal8aabeaajugib8qacqaH1oqzaaa@426B@  where J b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeajuaGpaWaaSbaaSqaaKqzadWdbiaadkgaaSWdaeqa aaaa@3A7C@  is the mass moment of inertia of the body about its center mass, other parameters are as specified above. The second mathematical proves of the inertial torque T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaadchaaSWdaeqaaaaa @3A06@ acting on the rotating body is presented by the following. The equation of the circular motion of the body under the action of the external torque T that rotates it about the fixed point is presented by the following:

T= Jε =( J b + m r 2 )ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfacqGH9aqpcaqGGaGaamOsaiabew7aLjaabccacqGH 9aqpjuaGpaWaaeWaaOqaaKqzGeWdbiaadQeajuaGpaWaaSbaaSqaaK qzadWdbiaadkgaaSWdaeqaaKqzGeWdbiabgUcaRiaabccacaWGTbGa amOCaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaaak8aacaGLOa GaayzkaaqcLbsapeGaeqyTdugaaa@4D1C@                 (2)

Where J= J b + m r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeacqGH9aqpcaWGkbWcpaWaaSbaaeaajugWa8qacaWG Ibaal8aabeaajugib8qacqGHRaWkcaqGGaGaamyBaiaadkhal8aada ahaaqabeaajugWa8qacaaIYaaaaaaa@4206@  is defined by the parallel axis theorem, other parameters are as specified above.

The right side of Eq. (2) can be rewritten by the following expression:

T=  J b ε + m r 2 ε   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfacqGH9aqpcaqGGaGaamOsaSWdamaaBaaabaqcLbma peGaamOyaaWcpaqabaqcLbsapeGaeqyTduMaaeiiaiabgUcaRiaabc cacaWGTbGaamOCaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqc LbsacqaH1oqzcaGGGcGaaiiOaaaa@4A09@                   (3)

Where J b ε= T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeal8aadaWgaaqaaKqzadWdbiaadkgaaSWdaeqaaKqz GeWdbiabew7aLjabg2da9iaadsfajuaGpaWaaSbaaSqaaKqzadWdbi aadchaaSWdaeqaaaaa@4129@  that is the torque acting on rotating the body about its center mass.

The second item of Eq. (3) is presented by the following expression:

T o =mr( rε ) =m a t r=Fr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaad+gaaSWdaeqa aKqzGeWdbiabg2da9iaad2gacaWGYbqcfa4damaabmaakeaajugib8 qacaWGYbGaeqyTdugak8aacaGLOaGaayzkaaqcLbsapeGaaeiiaiab g2da9iaad2gacaWGHbWcpaWaaSbaaeaajugWa8qacaWG0baal8aabe aajugib8qacaWGYbGaeyypa0JaamOraiaadkhaaaa@4EB1@                  (4)

where rε= a t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkhacqaH1oqzcqGH9aqpcaWGHbWcpaWaaSbaaeaajugW a8qacaWG0baal8aabeaaaaa@3DBB@  is the tangential acceleration of the rotating body about the fixed point o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+gaaaa@3799@ , m a t =F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2gacaWGHbWcpaWaaSbaaeaajugWa8qacaWG0baal8aa beaajugib8qacqGH9aqpcaWGgbaaaa@3D79@  is the inertial force, and T o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaad+gaaSWdaeqa aaaa@3A93@  is the inertial torque acting on the body about the fixed point.

The obtained result demonstrates the rotating body about the fixed point is subjected to the action of the inertial torque T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadchaaSWdaeqa aaaa@3A94@  that turns the body about its center mass, and inertial torque T o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaad+gaaSWdaeqaaaaa @3A05@  acting on the body about the fixed point  T= T p + T o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfacqGH9aqpcaWGubqcfa4damaaBaaaleaajugWa8qa caWGWbaal8aabeaajugib8qacqGHRaWkcaWGubWcpaWaaSbaaeaaju gWa8qacaWGVbaal8aabeaaaaa@4154@ . These inertial torques do not consider in the textbooks of engineering mechanics but they are fundamental as the centrifugal force in physics mechanics. Generalization of the conducted analysis enables stating that all rotating bodies about the fixed point always submerged by the action of the centrifugal force F ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeal8aadaWgaaqaaKqzadWdbiaadogacaWG0baal8aa beaaaaa@3AE4@ of the radial direction and two inertial torques. The one inertial toque turns the body around its center mass and the second one turns about the fixed point Figure 1c. This statement is validated by the practice and by the circular motion of the moon about the earth that always shows its one side.

Figure 1 Schematic of the rotating of the body about the fixed point.

Case study

The disc of the radius 0.02 m, the mass of 0.1 kg that located on the length 0.4 m from the fixed point rotates with the constant angular velocity of 5 rad/s. Determine the values of the centrifugal force and the inertial torque acting on the disc.

Solution

The value of the centrifugal force is as follows:

F = ma=mr ω 2 = 0,1 × 0,4 × 5 2 = 1,0 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeacaqGGaGaeyypa0Jaaeiiaiaad2gacaWGHbGaeyyp a0JaamyBaiaadkhacqaHjpWDl8aadaahaaqabeaajugWa8qacaaIYa aaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGSaGaaGymaiaabccacqGH xdaTcaqGGaGaaGimaiaacYcacaaI0aGaaeiiaiabgEna0kaaiwdaju aGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaeyypa0Jaaeii aiaaigdacaGGSaGaaGimaiaabccacaWGobaaaa@5878@

The disc turns around its center mass under the action of the inertial torque of the value:

T=J ω 2 =(m l 2 /2 + m r 2 ) ω 2  =(0,1× 0,02 2 /2 + 0,1× 0,4 2 )× 5 2  = 0,4005 Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaeyypa0JaamOsaiabeM8a3TWaaWbaaeqabaqcLbmacaaIYaaaaKqz GeGaeyypa0Jaaiikaiaad2gacaWGSbqcfa4aaWbaaSqabeaajugWai aaikdaaaqcLbsacaWGVaGaaGOmaiaadccacaWGRaGaamiiaiaad2ga caWGYbWcdaahaaqabeaajugWaiaaikdaaaqcLbsacaqGPaGaeqyYdC xcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacaqGGaGaeyypa0Ja aiikaiaabcdacaqGSaGaaeymaiabgEna0kaabcdacaqGSaGaaeimai aabkdajuaGdaahaaWcbeqaaKqzadGaaeOmaaaajugibiaab+cacaqG YaGaaeiiaiaabUcacaqGGaGaaeimaiaabYcacaqGXaGaey41aqRaae imaiaabYcacaqG0aWcdaahaaqabeaajugWaiaabkdaaaqcLbsacaqG PaGaey41aqRaaGynaKqbaoaaCaaaleqabaqcLbmacaqGYaaaaKqzGe Gaaeiiaiabg2da9iaabccacaqGWaGaaeilaiaabsdacaqGWaGaaeim aiaabwdajuaGdaWfqaGcbaaaleaaaeqaaKqzGeGaaeOtaiaab2gaaa a@7B21@

where J is the disc mass moment of inertia about the fixed point.

Results and discussion

Mathematical analysis of the rotation of the body about the fixed point yields the two inertial torques and the centrifugal force are acting on the body. The inertial torqueses turn the body about the centre mass and fixed point at the process of its circular motion. These inertial torques are fundamental as the centrifugal force acting on the body rotating around the fixed point. These inertial torques are the missed components in the analytical approach and interpretation of the mathematical models for the rotating body in the textbooks. The kinetic energy of the rotation of the body around the fixed point generates the inertial torques. The textbooks and manuals should consider the mathematical models for the inertial torques acting on the rotating body.

Conclusion

The textbooks of classical mechanics consider the planar motion of the rigid body which curvilinear motion generates the centrifugal force acting on the body rotating about the fixed point. The analysis of the rotation of the body at this condition demonstrated the action of the two inertial torques. The first inertial torque turns the body about its center mass and the second torque turns about the fixed point of its rotation. The physics of the two inertial torques acting on a rotating body about the fixed point originated from the kinetic energy of its curvilinear motion. This inertial torques are fundamental as the centrifugal force of classical mechanics and should be presented in the textbooks and manuals.

Acknowledgments

None.

Conflicts of interest

The author declares that they have no conflicts of interest.

Funding

None.

References

Creative Commons Attribution License

©2021 Usubamatov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.