Submit manuscript...
International Journal of
eISSN: 2574-9862

Avian & Wildlife Biology

Research Article Volume 8 Issue 1

Theory of estimation of parameters and genetic values under mixed models

Pérez González José Raúl, Morales Valladares David Daniel

Maracaibo Territorial Polytechnic University of Maracaibo, Venezuela

Correspondence: Pérez González José Raúl, Maracaibo Territorial Polytechnic University of Maracaibo, Venezuela

Received: February 20, 2024 | Published: March 20, 2024

Citation: Raúl PGJ,Valladares M, Daniel D. Theory of estimation of parameters and genetic values under mixed models. Int J Avian & Wildlife Biol. 2024;8(1):27-33. DOI: 10.15406/ijawb.2024.08.00210

Download PDF

Abstract

In animal breeding, it is essential to know genetic parameters such as heritability, with the aim of being able to predict genetic values (GV) and efficiently direct selection programs. A mixed model refers to those cases where the researcher considers fixed and random factors in a statistical model. Models widely used in the area of animal genetic improvement are the reproductive model and the animal model, which consider the reproductive or animal factor as random and a group of non-genetic effects as fixed. These mixed models allow us to obtain both heritability values (h2) for a trait, as well as genetic predictions such as the expected progeny difference (EPDs) or the predicted transmission ability (PTA) for each animal. An example of birth weight (BW) in cattle was used to calculate the VG, h2 and e2 using a mixed model, with a fixed and a random factor. The ANOVA, ML and REML methods were used to calculate h2, e2 and the VG first using all the information and subsequently assuming the last lost data, under a reproductive model and an animal model. The results found using the 3 methods were the same for REML and ANOVA in balanced data and different for the 3 methods in unbalanced data, where in the unbalanced case the ANOVA estimated a negative variance component, therefore, it can be concluded that estimate genetic values and parameters using ANOVA, ML and REML, but with the risk of estimating negative variance components using ANOVA or null (or overestimated) heritabilities with likelihood-based methods when the data structure or model is not the same correct.

Keywords: heritability, ANOVA, REML, ML, mixed models

Introduction

In animal breeding, it is essential to know genetic parameters such as heritability in order to be able to predict genetic values (GV) and efficiently conduct selection programs. Genetic parameters are ratios between estimated population variances, known as variance components, which are calculated using linear models containing fixed and random factors, generally known as mixed models.1 For the correct estimation of parameters and genetic values, it is necessary to have a broad knowledge of estimation using mixed models. Therefore, this article reviews the estimation of variance components and genetic values using ANOVA, ML and REML under a reproductive model and an animal model, explaining the virtues and limitations of each method in balanced and unbalanced data.

Theoretical framework mixed models

A mixed model refers to those cases where the researcher considers both fixed and random factors in a statistical model.2 A model widely used in the area of animal breeding is the reproductive model or Sire Model, which considers the reproductive factor as random and a group of non-genetic effects as fixed.2 The reproductive model allows obtaining both heritability values (h2) for a trait, as well as genetic predictions such as the expected difference of progeny (DEPs) or the predicted transmission ability (PTA) for each breeder.3 In matrix algebra the reproductive model takes the following form:

y=Xb+Zs+e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG5bGaeyypa0JaamiwaiaadkgacqGHRaWkcaWGAbGaam4CaiabgUca Riaadwgaaaa@3F5C@

Where 𝑦 is a vector for the data, 𝑋 is an incidence matrix relating the data to the fixed effects, 𝑏 is a vector of unknown parameters for the fixed effects, 𝑍 is an incidence matrix relating the data to the random effects, 𝑠 is a vector of unknown predictions for each player, and 𝑒 is a vector of residuals.

The covariance structure of the above model is:

VAR[ s e ]=[ I σ 2 s 0 0 I σ 2 s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbGaamyqaiaadkfadaWadaqaamaalaaabaGaam4Caaqaaiaadwga aaaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGacaaabaGaam ysaiabeo8aZnaaCaaaleqabaGaaGOmaaaakmaaBaaaleaacaWGZbaa beaaaOqaaiaaicdaaeaacaaIWaaabaGaamysaiabeo8aZnaaCaaale qabaGaaGOmaaaakmaaBaaaleaacaWGZbaabeaaaaaakiaawUfacaGL Dbaaaaa@4B4A@

Where 𝐼 is an identity matrix, 𝜎𝑠2 is the variance between breeders and 𝜎𝑒2 is the residual variance.

The Henderson normal equations, necessary to find the genetic values of the breeders, for the above model are given by3:

[ X'X X'Z Z'X Z'Z+Iα ][ b i s i ]=[ X y Z'y ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaqaauaabeqaciaaaeaacaWGybGaai4jaiaadIfaaeaacaWGybGa ai4jaiaadQfaaeaacaWGAbGaai4jaiaadIfaaeaacaWGAbGaai4jai aadQfacqGHRaWkcaWGjbGaeqySdegaaaGaay5waiaaw2faamaadmaa paqaauaabeqaceaaaeaapeGaamOya8aadaWgaaWcbaWdbiaadMgaa8 aabeaaaOqaa8qacaWGZbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa aOWdbiaawUfacaGLDbaacqGH9aqpdaWadaWdaeaafaqabeGabaaaba WdbiqadIfapaGbauaapeGaamyEaaWdaeaapeGaamOwaiaacEcacaWG 5baaaaGaay5waiaaw2faaaaa@548D@

Where 𝛼 is a ratio of the residual variance to the variance between breeders:

α= σ e 2 σ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycqGH9aqpdaWcaaqaaiabeo8aZnaaDaaaleaacaWGLbaabaGa aGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGZbaabaGaaGOmaaaaaa aaaa@4107@

According to Román and Aranguren,4 it is possible to substitute 𝐼𝛼 by 𝐴−1𝛼 in the normal Henderson equations, with the objective of improving predictions using all the parentage information between males, therefore, the new equations are:

[ X'X X'Z Z'X Z'Z+ A 1 α ][ b i s i ]=[ X'y Z'y ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaqaauaabeqaciaaaeaacaWGybGaai4jaiaadIfaaeaacaWGybGa ai4jaiaadQfaaeaacaWGAbGaai4jaiaadIfaaeaacaWGAbGaai4jai aadQfacqGHRaWkcaWGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa eqySdegaaaGaay5waiaaw2faamaadmaabaqbaeqabiqaaaqaaiaadk gadaWgaaWcbaGaamyAaaqabaaakeaacaWGZbWaaSbaaSqaaiaadMga aeqaaaaaaOGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabiqaaa qaaiaadIfacaGGNaGaamyEaaqaaiaadQfacaGGNaGaamyEaaaaaiaa wUfacaGLDbaaaaa@560B@

Where 𝐴−1 is the inverse of the kinship matrix.

And the covariance structure taking into account the introduction of 𝐴 is5:

VAR[ s e ][ A σ s 2 0 0 I σ e 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaadgeaca WGsbWaamWaaeaafaqabeGabaaabaGaam4CaaqaaiaadwgaaaaacaGL BbGaayzxaaGaeyOeI0YaamWaaeaafaqabeGacaaabaGaamyqaiabeo 8aZnaaDaaaleaacaWGZbaabaGaaGOmaaaaaOqaaiaaicdaaeaacaaI WaaabaGaamysaiabeo8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaaaa aakiaawUfacaGLDbaaaaa@4A8C@

Another model widely used in genetic evaluation is the animal model, which uses all the parentage information in the pedigree, and unlike the reproductive model, allows obtaining genetic predictions of all the animals in the herd, whether or not data is present or not:

y=Xb+Za+e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9i aadIfacaWGIbGaey4kaSIaamOwaiaadggacqGHRaWkcaWGLbaaaa@3F29@

Where 𝑎 is a vector of genetic predictions for each animal the covariance structure of the above model is as follows:

VAR[ a e ]=[ A σ a 2 0 0 I σ e 2 ]=[ G 0 0 R ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaadgeaca WGsbWaamWaaeaafaqabeGabaaabaGaamyyaaqaaiaadwgaaaaacaGL BbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGacaaabaGaamyqaiabeo 8aZnaaDaaaleaacaWGHbaabaGaaGOmaaaaaOqaaiaaicdaaeaacaaI WaaabaGaamysaiabeo8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaaaa aakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqaciaaaeaacaWG hbaabaGaaGimaaqaaiaaicdaaeaacaWGsbaaaaGaay5waiaaw2faaa aa@50A0@

Where 𝐺 is a variance and covariance matrix for the random effects and 𝑅 is a matrix of residuals.

The Henderson normal equations for this model are given by:6

[ XX XΖ ΖX ΖΖ+ Α 1 α ][ b i a i ]=[ Xy Zy ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafaqabe GacaaabaGaamiwaGGaaiab=jdiIkaadIfaaeaacaWGybGae8NmGiQa e8NLdOfabaGae8NLdOLae8NmGiQaamiwaaqaaiab=z5aAjab=jdiIk ab=z5aAjab=TcaRiab=f5abnaaCaaaleqabaGae8NeI0Iae8xmaeda aOGaeqySdegaaaGaay5waiaaw2faamaadmaabaqbaeqabiqaaaqaai aadkgadaWgaaWcbaGaamyAaaqabaaakeaacaWGHbWaaSbaaSqaaiaa dMgaaeqaaaaaaOGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabi qaaaqaaiaadIfacqWFYaIOcaWG5baabaGaamOwaiab=jdiIkaadMha aaaacaGLBbGaayzxaaaaaa@5DCD@ >

Where 𝛼 in this model is a ratio of the residual variance to the additive variance:

α= σ e 2 σ a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0 ZaaSaaaeaacqaHdpWCdaqhaaWcbaGaamyzaaqaaiaaikdaaaaakeaa cqaHdpWCdaqhaaWcbaGaamyyaaqaaiaaikdaaaaaaaaa@40D5@

Where 𝜎𝑎2 is additive genetic variance

Genetic parameters

Using mixed models, it is possible to estimate the variance components, and from them calculate the hereability, which is given by:5

h 2 = σ a 2 σ p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaCaaale qabaGaaGOmaaaakiabg2da9maalaaabaGaeq4Wdm3aa0baaSqaaiaa dggaaeaacaaIYaaaaaGcbaGaeq4Wdm3aa0baaSqaaiaadchaaeaaca aIYaaaaaaaaaa@4121@

Where ℎ2 is heritability, and 𝜎𝑝2 is phenotypic variance, therefore, heritability is defined as a quotient between the additive variance and the phenotypic variance. The additive component (additive variance) of the numerator of the formula of ℎ2 can be estimated using several procedures, a well-known one is to use a reproductive model to estimate the variance between breeders, which is ¼ of the additive variance, therefore, a formula to estimate 𝜎𝑎2 is:

σ a 2 =4 σ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadggaaeaacaaIYaaaaOGaeyypa0JaaGinaiabeo8aZnaaDaaa leaacaWGZbaabaGaaGOmaaaaaaa@3FF2@

Where 4𝜎𝑠2 is four times the variance among breeders, therefore, heritability can be calculated as:7

h 2 = 4 s 2 σ p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaCaaale qabaGaaGOmaaaakiabg2da9maalaaabaGaaGinamaaDaaaleaacaWG ZbaabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGWbaabaGaaG Omaaaaaaaaaa@402E@

If the heritability is known, the heritability component can be 𝜎𝑎2 component can be calculated using the following formula:8

σ a 2 = h 2 σ p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadggaaeaacaaIYaaaaOGaeyypa0JaamiAamaaCaaaleqabaGa aGOmaaaakiabeo8aZnaaDaaaleaacaWGWbaabaGaaGOmaaaaaaa@4111@

Another parameter of interest is the environmental proportion coefficient, which indicates how much of the differences observed in the phenotype (data) of the animals are due to non-genetic (environmental) factors, this coefficient has the following mathematical formula:9

e 2 = σ en 2 σ p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaale qabaGaaGOmaaaakiabg2da9maalaaabaGaeq4Wdm3aa0baaSqaaiaa dwgacaWGUbaabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGWb aabaGaaGOmaaaaaaaaaa@4215@

Where 𝜎𝑒𝑛2 is the environmental variance. The variance component 𝜎𝑒𝑛2 is calculated using the difference between 𝜎𝑝2 𝜎𝑎2 therefore, the formula for 𝜎𝑒𝑛2 is:8

σ en 2 = σ p 2 σ a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadwgacaWGUbaabaGaaGOmaaaakiabg2da9iabeo8aZnaaDaaa leaacaWGWbaabaGaaGOmaaaakiabgkHiTiabeo8aZnaaDaaaleaaca WGHbaabaGaaGOmaaaaaaa@44B1@

Finally, the variance 𝜎𝑝2 is the sum of the variance components:

σ p 2 = σ a 2 + σ en 2 = σ s 2 + σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadchaaeaacaaIYaaaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa dggaaeaacaaIYaaaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadwgaca WGUbaabaGaaGOmaaaakiabg2da9iabeo8aZnaaDaaaleaacaWGZbaa baGaaGOmaaaakiabgUcaRiabeo8aZnaaDaaaleaacaWGLbaabaGaaG Omaaaaaaa@4DDC@

Variance component estimation using a reproductive model analysis of variance

There are several classical methods for estimating the variance components needed to compute ℎ2 y 𝑒2including analysis of variance (ANOVA), maximum likelihood (ML) and restricted maximum likelihood (REML).

ANOVA is a technique that attempts to separate out different sources of variability. 𝜎𝑝2 into different sources of variability, this involves the separation of sums of squares (SC), degrees of freedom (GL) and mean squares (MS) for each source of variation. Variance components estimated using ANOVA are calculated by equating the expected values of the CM (E (CM)) for each source of variation, with their respective CM and solving the resulting system of equations.10 CMs are a ratio of SC to GLs for each source of variation:10

CM= SC GL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaad2eacq GH9aqpdaWcaaqaaiaadofacaWGdbaabaGaam4raiaadYeaaaaaaa@3CDB@

In the case of a fixed factor and a random factor, without interaction, the reproductive model, in elementary algebra, is given by:

y ijk =μ+ s i + b j + e ijk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaale aacaWGPbGaamOAaiaadUgaaeqaaOGaeyypa0JaeqiVd0Maey4kaSIa am4CamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadkgadaWgaaWcba GaamOAaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaadMgacaWGQbGa am4Aaaqabaaaaa@485C@

And the ANOVA square for the above model is presented in Table 1.

FV

SC

GL

CM

E ( CM)

Factor Fijo

SCb

n fijo MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbWdamaaBaaaleaapeGaamOzaiaadMgacaWGQbGaam4BaaWdaeqa aaaa@3C18@ -1

SCb n fijo 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaam4uaiaadoeacaWGIbaapaqaa8qacaWGUbWdamaa BaaaleaapeGaamOzaiaadMgacaWGQbGaam4BaaWdaeqaaOWdbiabgk HiTiaaigdaaaaaaa@40AF@

 

Padres

SCs

n s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbWdamaaBaaaleaapeGaam4CaaWdaeqaaaaa@3954@ -1

SCs n s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaam4uaiaadoeacaWGZbaapaqaa8qacaWGUbWdamaa BaaaleaapeGaam4CaaWdaeqaaOWdbiabgkHiTiaaigdaaaaaaa@3DFC@

E( CM s )= σ e 2 + n fijo k σ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGdbGaaeyta8aadaWgaaWcbaWdbiaabohaa8aabeaak8qacaGGPaGa eyypa0Jaeq4Wdm3damaaDaaaleaapeGaaeyzaaWdaeaapeGaaGOmaa aakiabgUcaRiaad6gadaWgaaWcbaGaamOzaiaadMgacaWGQbGaam4B aaqabaGccaWGRbGaeq4Wdm3aa0baaSqaaiaadohaaeaacaaIYaaaaa aa@49F8@

residual

SCtotal SCresto MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaam4qaiaadshacaWGVbGaamiDaiaadggacaWGSbGaeyOeI0Yd amaavacabeWcbeqaaiaaygW7a0qaaiabggHiLdaak8qacaWGtbGaam 4qaiaadkhacaWGLbGaam4CaiaadshacaWGVbaaaa@486C@ GLtotal GLresto MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGhbGaamitaiaadshacaWGVbGaamiDaiaadggacaWGSbGaeyOeI0Yd amaavacabeWcbeqaaiaaygW7a0qaaiabggHiLdaak8qacaWGhbGaam itaiaadkhacaWGLbGaam4CaiaadshacaWGVbaaaa@4866@ SCe GLtotalGLresto MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaam4uaiaadoeacaWGLbaapaqaa8qacaWGhbGaamit aiaadshacaWGVbGaamiDaiaadggacaWGSbGaeyOeI0Iaam4raiaadY eacaWGYbGaamyzaiaadohacaWG0bGaam4Baaaaaaa@4791@

E( CM e )= σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGfbWaaeWaa8aabaWdbiaaboeacaqGnbWdamaaBaaaleaapeGaaeyz aaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDaaale aacaWGLbaabaGaaGOmaaaaaaa@410D@

Total

yyR( μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG5baccaGae8NmGiQaamyEaiabgkHiTiaadkfadaqadaWdaeaacqaH 8oqBa8qacaGLOaGaayzkaaaaaa@3FB0@

n-1

 

 

Table 1 ANOVA for Henderson's method III

Where 𝑘 is the number of replicates of the design, 𝑛𝑓𝑖𝑗𝑜 is the number of levels of the fixed effect and 𝑛𝑠 is the number of levels of the random factor. The variance components are calculated by equating the CM to their E (CM):

CMs= σ e 2 + n fijo k σ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaad2eaca WGZbGaeyypa0Jaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaOGa ey4kaSIaamOBamaaBaaaleaacaWGMbGaamyAaiaadQgacaWGVbaabe aakiaadUgacqaHdpWCdaqhaaWcbaGaam4Caaqaaiaaikdaaaaaaa@4881@

CMe= σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaad2eaca WGLbGaeyypa0Jaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaaaa @3E0E@

And the unique solution of this system of equations is:

σ s 2 = CMsCMe n fijo k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadohaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGdbGaamyt aiaadohacqGHsislcaWGdbGaamytaiaadwgaaeaacaWGUbWaaSbaaS qaaiaadAgacaWGPbGaamOAaiaad+gaaeqaaOGaam4Aaaaaaaa@478A@

σ e 2 =C M e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadwgaaeaacaaIYaaaaOGaeyypa0Jaam4qaiaad2eadaWgaaWc baGaamyzaaqabaaaaa@3E44@

In balanced data, the CS can be estimated directly without the need for adjustment, for a model with two non-interacting factors:

SCs= y s. 2 k ( y ) 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadoeaca WGZbGaeyypa0ZaaSaaaeaacqGHris5caWG5bWaa0baaSqaaiaadoha caGGUaaabaGaaGOmaaaaaOqaaiaadUgaaaGaeyOeI0YaaSaaaeaada qadaqaaiabggHiLlaadMhaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaakeaacaWGUbaaaaaa@47D9@

SCb= y b. 2 w ( y ) 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadoeaca WGIbGaeyypa0ZaaSaaaeaacqGHris5caWG5bWaa0baaSqaaiaackga caGGUaaabaGaaGOmaaaaaOqaaiaadEhaaaGaeyOeI0YaaSaaaeaada qadaqaaiabggHiLlaadMhaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaakeaacaWGUbaaaaaa@47C2@

Where ∑ 𝑦𝑠2. is the sum of the sum of the sum of the data for each player squared, ∑ 𝑦𝑏2. is the sum of the sum of the sum of the data for each level of the fixed effect and w is the number of replicates for the fixed effect. For the unbalanced case, the SCs have to be calculated using the type III SCs for the random factor (sire), since type III calculates the SCs of an effect by correcting them with respect to any other effect that does not contain it and orthogonal to any effect (if it exists) that contains it. Type III CS can be expressed as:11

SCs=SC( μ,s,b )SC( μ,b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadoeaca WGZbGaeyypa0Jaam4uaiaadoeadaqadaqaaiabeY7aTjaacYcacaWG ZbGaaiilaiaadkgaaiaawIcacaGLPaaacqGHsislcaWGtbGaam4qam aabmaabaGaeqiVd0MaaiilaiaadkgaaiaawIcacaGLPaaaaaa@4A0D@

The 𝑆𝐶𝑠 is corrected for the effects of 𝜇 𝑦 𝑏where 𝜇 is the intercept or herd mean effect. In order to find the values of 𝑆𝐶𝑠 it is necessary to fit a complete model and calculate (𝜇, 𝑠, 𝑏, ) and subtract 𝑆𝐶(𝜇, 𝑏) a reduced model.

Maximum likelihood  

The maximum likelihood (ML) method is a classical method of parameter estimation proposed by Fisher,12 but it was not until Hartley and Rao,13 that it was used for mixed models in general. Knowing the likelihood function as a function of the parameters of a statistical model given some data, in ML we try to obtain estimators of the variance components that maximize the likelihood function, that is, that have the maximum probability of representing the population parameters.

The likelihood function is defined as the product of the likelihood function of the data, but in practice, the natural logarithm of the likelihood function is used because it is more manageable, if the distribution of the data is normal, in matrix algebra the natural logarithm of the likelihood function is defined as:11

Ln( L )=0.5( n ).In( 2π )0.5In| V |0.5( yXb ) V 1 ( yXb ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaad6gada qadaqaaiaadYeaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaaIWaGa aiOlaiaaiwdadaqadaqaaiaad6gaaiaawIcacaGLPaaacaGGUaGaam ysaiaad6gadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaacqGH sislcaaIWaGaaiOlaiaaiwdacaWGjbGaamOBamaaemaabaGaamOvaa Gaay5bSlaawIa7aiabgkHiTiaaicdacaGGUaGaaGynamaabmaabaGa amyEaiabgkHiTiaadIfacaWGIbaacaGLOaGaayzkaaaccaGae8NmGi QaamOvamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyE aiabgkHiTiaadIfacaWGIbaacaGLOaGaayzkaaaaaa@62B6@

Where (𝐿) is the natural logarithm of the likelihood function and 𝑉 = 𝑍𝐺𝑍+ 𝑅 is the variance and phenotypic covariance matrix of the model. To find the estimators that maximize the likelihood, we need to find the maximum of equation (𝐿)This is achieved with different methodologies, for example, if the data structure is balanced and we have a mixed model, with a random effect and a fixed one with no interaction, the derivative of 𝐿𝑛(𝐿)with respect to the parameters to be estimated σ2s y σ2e will lead us to a system of equations whose solution is:

σ s 2 = SCs n s σ e 2 n fijo k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadohaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaadaWcaaqaaiaa dofacaWGdbGaam4Caaqaaiaad6gadaWgaaWcbaGaam4CaaqabaaaaO GaeyOeI0Iaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaaGcbaGa amOBamaaBaaaleaacaWGMbGaamyAaiaadQgacaWGVbaabeaakiaadU gaaaaaaa@4ADD@

σ e 2 =[ 1 n fijo 1 n s ( n fijo k1 ) ]CMe MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadwgaaeaacaaIYaaaaOGaeyypa0ZaamWaaeaacaaIXaGaeyOe I0YaaSaaaeaacaWGUbWaaSbaaSqaaiaadAgacaWGPbGaamOAaiaad+ gaaeqaaOGaeyOeI0IaaGymaaqaaiaad6gadaWgaaWcbaGaam4Caaqa baGcdaqadaqaaiaad6gadaWgaaWcbaGaamOzaiaadMgacaWGQbGaam 4BaaqabaGccaWGRbGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaaaiaa wUfacaGLDbaacaWGdbGaamytaiaadwgaaaa@5376@

An important point of ML estimation, for this model, is that even with balanced data, it is possible to find estimators different from the ones presented above, since these solutions will be valid if the inequality 𝐶𝑀𝑠 > 𝐶𝑀𝑒is met, but on the other hand, if the inequality is 𝐶𝑀𝑠 < 𝐶𝑀𝑒 ML estimates for this model and balanced data are given by:11

σ e 2 = SCtotal σ s 2 =0 ( n s )( n fijo )( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadwgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaadaWfGaqaaiaa dofacaWGdbGaamiDaiaad+gacaWG0bGaamyyaiaadYgaaSqabeaacq aHdpWCdaqhaaadbaGaam4CaaqaaiaaikdaaaWccqGH9aqpcaaIWaaa aaGcbaWaaeWaaeaacaWGUbWaaSbaaSqaaiaadohaaeqaaaGccaGLOa GaayzkaaWaaeWaaeaacaWGUbWaaSbaaSqaaiaadAgacaWGPbGaamOA aiaad+gaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGRbaacaGLOa Gaayzkaaaaaaaa@5455@

That is all phenotypic variability is residual, which may indicate that the model used is incorrect or that the number of data is insufficient, thus increasing the variability of the error. The variance σ2p is the sum of the variance components σ2e y σ2s whose sum gives an estimate of σ2p given mathematically by:

σ p 2 = σ s 2 + σ e 2 = ( yXb )( yXb ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadchaaeaacaaIYaaaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa dohaaeaacaaIYaaaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadwgaae aacaaIYaaaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaadMhacqGHsisl caWGybGaamOyaaGaayjkaiaawMcaaGGaaiab=jdiIoaabmaabaGaam yEaiabgkHiTiaadIfacaWGIbaacaGLOaGaayzkaaaabaGaamOBaaaa aaa@51CB@

Which is biased, since it is associated with n degrees of freedom. If the structure of the daros is unbalanced, the partial derivatives of (𝐿) lead to nonlinear maximum likelihood equations for the parameters to be estimated, therefore, the system of equations cannot be solved with direct methods. Faced with this problem, iterative number methods are used to try to approximate the maximum of (𝐿) which are applied to the logarithmic likelihood itself and not to the equations resulting from its first derivative, in order to be able to simultaneously calculate the variance components and (𝐿)which we can use to find fit criteria for our model, such as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

Restricted maximum likelihood

The restricted maximum likelihood method (REML) is a method proposed by Paterson and Thompson,13 which takes into account the loss of degrees of freedom by including fixed effects in the statistical model, therefore, the estimation of variability components are unbiased, since they are associated to degrees of freedom, which leads to an estimation of variance of the model. 𝑛 − (𝑋) degrees of freedom, which leads to an estimate of the variance, which is defined as σ2pwhich is defined as:

σ p 2 = ( yXb )( yXb ) nRango( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadchaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa dMhacqGHsislcaWGybGaamOyaaGaayjkaiaawMcaaGGaaiab=jdiIo aabmaabaGaamyEaiabgkHiTiaadIfacaWGIbaacaGLOaGaayzkaaaa baGaamOBaiabgkHiTiaadkfacaWGHbGaamOBaiaadEgacaWGVbWaae WaaeaacaWGybaacaGLOaGaayzkaaaaaaaa@5078@

Where (𝑋) is the rank of the incidence matrix for the fixed effects of the model. For the case where the only fixed effect is 𝜇the variance σ2p is associated with 𝑛 − 1 degrees of freedom.

As in ML, in REML, the objective is to maximize the logarithm of a function of the parameters, but in this case restricted, which is known as restricted likelihood function, which in matrix algebra is defined as:14

Ln( Lr )=0.5( np ).In( 2π )0.5In| V |0.5| X V 1 X |0.5( yXb ) V 1 ( yXb ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaad6gada qadaqaaiaadYeacaWGYbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0Ia aGimaiaac6cacaaI1aWaaeWaaeaacaWGUbGaeyOeI0IaamiCaaGaay jkaiaawMcaaiaac6cacaWGjbGaamOBamaabmaabaGaaGOmaiabec8a WbGaayjkaiaawMcaaiabgkHiTiaaicdacaGGUaGaaGynaiaadMeaca WGUbWaaqWaaeaacaWGwbaacaGLhWUaayjcSdGaeyOeI0IaaGimaiaa c6cacaaI1aWaaqWaaeaacaWGybaccaGae8NmGiQaamOvamaaCaaale qabaGaeyOeI0IaaGymaaaakiaadIfaaiaawEa7caGLiWoacqGHsisl caaIWaGaaiOlaiaaiwdadaqadaqaaiaadMhacqGHsislcaWGybGaam OyaaGaayjkaiaawMcaaiab=jdiIkaadAfadaahaaWcbeqaaiabgkHi TiaaigdaaaGcdaqadaqaaiaadMhacqGHsislcaWGybGaamOyaaGaay jkaiaawMcaaaaa@71B6@

Where (𝐿𝑟) is the logarithm of the restricted likelihood function. If we have a balanced data structure and by deriving (𝐿𝑟) as a function of the variability components of the model (model above), we can solve a system of equations that give rise to estimates given by:11

σ s 2 = CMsCMe n fijo k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadohaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGdbGaamyt aiaadohacqGHsislcaWGdbGaamytaiaadwgaaeaacaWGUbWaaSbaaS qaaiaadAgacaWGPbGaamOAaiaad+gaaeqaaOGaam4Aaaaaaaa@478A@

σ e 2 =CMe MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaiaadwgaaeaacaaIYaaaaOGaeyypa0Jaam4qaiaad2eacaWGLbaa aa@3E18@

These are identical to estimates using an ANOVA, since a property of REML is that in a balanced data structure, REML estimates = ANOVA as long as the inequality is satisfied. 𝐶𝑀𝑠 > 𝐶𝑀𝑒Otherwise, estimates via ANOVA would be negative and in REML all phenotypic variability is residual. In unbalanced data structure, the derivative of (𝐿𝑟) with respect to the variance components, gives rise to nonlinear equations, which cannot be solved directly, therefore, in these cases, as in ML, iterative numerical methods are used to approximate the value of the variance components.

REML estimates using kinship information in an animal model

In the case of a simple animal model, where each animal has only one data (and there are animals without data), the ANOVA method cannot be applied, since it is not possible to estimate the variation within groups using this methodology, because the classification variable is each animal that has a unique record, but the ML and REML estimations are applicable since they allow introducing kinship information in the matrix. 𝐴. In a mixed model, maximizing (𝐿𝑟) is equivalent to minimize −2 (𝐿𝑟) Therefore, the objective function to be minimized, in matrix algebra, can be defined as:14

2Ln( Lr )=( np ).In( 2π )+Ln| R |+Ln| G |+Ln| C |+yPy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGOmai aadYeacaWGUbWaaeWaaeaacaWGmbGaamOCaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamOBaiabgkHiTiaadchaaiaawIcacaGLPaaaca GGUaGaamysaiaad6gadaqadaqaaiaaikdacqaHapaCaiaawIcacaGL PaaacqGHRaWkcaWGmbGaamOBamaaemaabaGaamOuaaGaay5bSlaawI a7aiabgUcaRiaadYeacaWGUbWaaqWaaeaacaWGhbaacaGLhWUaayjc SdGaey4kaSIaamitaiaad6gadaabdaqaaiaadoeaaiaawEa7caGLiW oacqGHRaWkcaWG5baccaGae8NmGiQaamiuaiaadMhaaaa@627E@

Where 𝐿𝑛|𝐶| is the natural logarithm of the determinant of the coefficient matrix of the normal Henderson equations and ′𝑃𝑦 is the generalized residual sum of squares. Obviously to minimize −2𝐿𝑛(𝐿𝑟) iterative numerical methods are needed, but it has the advantage that it is easier than maximizing 𝐿𝑛(𝐿𝑟) Therefore, most specialized REML programs use sparse matrix algorithms and numerical methods to try to find estimators resulting from the minimization of −2𝐿𝑛(𝐿𝑟).

Material and methods

An example of birth weight (BW) in cattle was used to calculate the VG, ℎ2 y 𝑒2 using a mixed model, with a fixed and a random factor. The database is presented in Table 2. In this problem, we want to eliminate the variability that exists between the sexes, therefore, the sex factor is considered as fixed and the father factor as random, which leads us to the statistical model for this problem:

PN=media+padre+sexo+error MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGqbGaamOtaiabg2da9iaad2gacaWGLbGaamizaiaadMgacaWGHbGa ey4kaSIaamiCaiaadggacaWGKbGaamOCaiaadwgacqGHRaWkcaWGZb GaamyzaiaadIhacaWGVbGaey4kaSIaamyzaiaadkhacaWGYbGaam4B aiaadkhaaaa@4E36@

Father

Animal

Sex

y

1

3

Male

36

1

4

Male

35

1

5

Female

33

1

6

Female

28

2

7

Female

31

2

8

Female

29

2

9

Male

28

2

10

Male

36

3

11

Male

38

3

12

Male

37

3

13

Female

29

3

14

female

35

Table 2 Database of animal records, sex and NP

ANOVA, ML, and REML methods were used to calculate ℎ2 , 𝑒2 and GVs using the data in Table 2, first using all the information and then assuming the last missing data. For the animal model, a similar model was used:

PN=media+animal+sexo+error MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGqbGaamOtaiabg2da9iaad2gacaWGLbGaamizaiaadMgacaWGHbGa ey4kaSIaamyyaiaad6gacaWGPbGaamyBaiaadggacaWGSbGaey4kaS Iaam4CaiaadwgacaWG4bGaam4BaiabgUcaRiaadwgacaWGYbGaamOC aiaad+gacaWGYbaaaa@4F21@

Where all the kinship information and the value of the variance components found in the previous model were used to solve the Henderson normal equations.

Results and discussion

Balanced data in a reproductive model

To calculate the CM, it is necessary to calculate the SC and GL for each source of variation, for this model and our data structure, we can calculate them using the formulas in Table 1.

G L s =31=2 G L sexo =21=1 G L total =121=11 G L e =1112=113=8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa WdbiaadEeacaWGmbWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiab g2da9iaaiodacqGHsislcaaIXaGaeyypa0JaaGOmaaqaaiaadEeaca WGmbWdamaaBaaaleaapeGaam4CaiaadwgacaWG4bGaam4BaaWdaeqa aOWdbiabg2da9iaaikdacqGHsislcaaIXaGaeyypa0JaaGymaaqaai aadEeacaWGmbWdamaaBaaaleaapeGaamiDaiaad+gacaWG0bGaamyy aiaadYgaa8aabeaak8qacqGH9aqpcaaIXaGaaGOmaiabgkHiTiaaig dacqGH9aqpcaaIXaGaaGymaaqaaiaadEeacaWGmbWdamaaBaaaleaa peGaamyzaaWdaeqaaOWdbiabg2da9iaaigdacaaIXaGaeyOeI0IaaG ymaiabgkHiTiaaikdacqGH9aqpcaaIXaGaaGymaiabgkHiTiaaioda cqGH9aqpcaaI4aaaaaa@6682@

And since the design is balanced, the SCs are:

S C total = 36 2 + 35 2 + 33 2 ++ 35 2 395 2 12 =152.916 S C s = ( 132 ) 2 + ( 124 ) 2 + ( 139 ) 2 4 395 2 12 =28.166 S C sexo = ( 185 ) 2 + ( 210 ) 2 6 395 2 12 =52.083 S C e =152.916( 28.166+52.083 )=72.667 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtbGaam 4qamaaBaaaleaaqaaaaaaaaaWdbiaadshacaWGVbGaamiDaiaadgga caWGSbaapaqabaGcpeGaeyypa0JaaG4maiaaiAdapaWaaWbaaSqabe aapeGaaGOmaaaakiabgUcaRiaaiodacaaI1aWdamaaCaaaleqabaWd biaaikdaaaGccqGHRaWkcaaIZaGaaG4ma8aadaahaaWcbeqaa8qaca aIYaaaaOGaey4kaSIaeyOjGWRaey4kaSIaaG4maiaaiwdapaWaaWba aSqabeaapeGaaGOmaaaakiabgkHiTmaalaaapaqaa8qacaaIZaGaaG yoaiaaiwdapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGym aiaaikdaaaGaeyypa0JaaGymaiaaiwdacaaIYaGaaiOlaiaaiMdaca aIXaGaaGOnaaqaaiaadofacaWGdbWdamaaBaaaleaapeGaam4CaaWd aeqaaOWdbiabg2da9maalaaapaqaa8qadaqadaWdaeaapeGaaGymai aaiodacaaIYaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikda aaGccqGHRaWkdaqadaWdaeaapeGaaGymaiaaikdacaaI0aaacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkdaqadaWd aeaapeGaaGymaiaaiodacaaI5aaacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiaaisdaaaGaeyOeI0YaaSaaa8aa baWdbiaaiodacaaI5aGaaGyna8aadaahaaWcbeqaa8qacaaIYaaaaa Gcpaqaa8qacaaIXaGaaGOmaaaacqGH9aqpcaaIYaGaaGioaiaac6ca caaIXaGaaGOnaiaaiAdaaeaacaWGtbGaam4qa8aadaWgaaWcbaWdbi aadohacaWGLbGaamiEaiaad+gaa8aabeaak8qacqGH9aqpdaWcaaWd aeaapeWaaeWaa8aabaWdbiaaigdacaaI4aGaaGynaaGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSYaaeWaa8aabaWd biaaikdacaaIXaGaaGimaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaaIYaaaaaGcpaqaa8qacaaI2aaaaiabgkHiTmaalaaapaqaa8qa caaIZaGaaGyoaiaaiwdapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaaGymaiaaikdaaaGaeyypa0JaaGynaiaaikdacaGGUaGaaGim aiaaiIdacaaIZaaabaGaam4uaiaadoeapaWaaSbaaSqaa8qacaWGLb aapaqabaGcpeGaeyypa0JaaGymaiaaiwdacaaIYaGaaiOlaiaaiMda caaIXaGaaGOnaiabgkHiTmaabmaapaqaa8qacaaIYaGaaGioaiaac6 cacaaIXaGaaGOnaiaaiAdacqGHRaWkcaaI1aGaaGOmaiaac6cacaaI WaGaaGioaiaaiodaaiaawIcacaGLPaaacqGH9aqpcaaI3aGaaGOmai aac6cacaaI2aGaaGOnaiaaiEdaaaaa@B489@

And the CMs come from:

C M S = 28.166 2 =14.083 C M e = 72.667 8 =9.083 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa WdbiaadoeacaWGnbWdamaaBaaaleaapeGaam4uaaWdaeqaaOWdbiab g2da9maalaaapaqaa8qacaaIYaGaaGioaiaac6cacaaIXaGaaGOnai aaiAdaa8aabaWdbiaaikdaaaGaeyypa0JaaGymaiaaisdacaGGUaGa aGimaiaaiIdacaaIZaaabaGaam4qaiaad2eapaWaaSbaaSqaa8qaca WGLbaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaiEdacaaIYaGa aiOlaiaaiAdacaaI2aGaaG4naaWdaeaapeGaaGioaaaacqGH9aqpca aI5aGaaiOlaiaaicdacaaI4aGaaG4maaaaaa@5413@

And from the CM we can calculate the variance components:

σ s 2 =  14.0839.083 2( 2 ) =1.25 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0baaS qaaabaaaaaaaaapeGaam4CaaWdaeaapeGaaGOmaaaakiabg2da9iaa cckadaWcaaWdaeaapeGaaGymaiaaisdacaGGUaGaaGimaiaaiIdaca aIZaGaeyOeI0IaaGyoaiaac6cacaaIWaGaaGioaiaaiodaa8aabaWd biaaikdadaqadaWdaeaapeGaaGOmaaGaayjkaiaawMcaaaaacqGH9a qpcaaIXaGaaiOlaiaaikdacaaI1aaaaa@4D61@

Therefore, ℎ2 using ANOVA is:

h 2 = 4( 1.25 ) 1.25+9.083 =0.483 e 2 = 10.335 10.33 =0.515 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa WdbiaadIgapaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9maalaaa paqaa8qacaaI0aWaaeWaa8aabaWdbiaaigdacaGGUaGaaGOmaiaaiw daaiaawIcacaGLPaaaa8aabaWdbiaaigdacaGGUaGaaGOmaiaaiwda cqGHRaWkcaaI5aGaaiOlaiaaicdacaaI4aGaaG4maaaacqGH9aqpca aIWaGaaiOlaiaaisdacaaI4aGaaG4maaqaaiaadwgapaWaaWbaaSqa beaapeGaaGOmaaaakiabg2da9maalaaapaqaa8qacaaIXaGaaGimai aac6cacaaIZaGaaG4maiabgkHiTiaaiwdaa8aabaWdbiaaigdacaaI WaGaaiOlaiaaiodacaaIZaaaaiabg2da9iaaicdacaGGUaGaaGynai aaigdacaaI1aaaaaa@5CC7@

And these ANOVA estimates, too, are REML, since the data structure is balanced and the 𝐶𝑀𝑠 > 𝐶𝑀𝑒. Now the calculation of the GVs, using the REML estimates, comes from the solutions of the normal Henderson equations, using the estimated value of the variance components, and calculating the value of 𝛼 we have that:

α= 9.083 1.25 =7.2664 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycqGH9aqpdaWcaaWdaeaapeGaaGyoaiaac6cacaaIWaGaaGio aiaaiodaa8aabaWdbiaaigdacaGGUaGaaGOmaiaaiwdaaaGaeyypa0 JaaG4naiaac6cacaaIYaGaaGOnaiaaiAdacaaI0aaaaa@460B@

Therefore, the equations are:

( 6 0 2 2 2 0 6 2 2 2 2 2 2 2 2 2 4+7.266 0 0 0 4+7.266 0 0 0 4+7.266 )[ b 1 b 2 s 1 s 2 s 3 ]=[ 185 210 132 124 139 ][ 6 0 2 2 2 0 6 2 2 2 2 2 2 2 2 2 11.266 0 0 0 11.266 0 0 0 11.266 ][ b 1 b 2 s 1 s 2 s 3 ]=[ 185 210 132 124 139 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabe Wadaaabaaeaaaaaaaaa8qacaaI2aaapaqaa8qacaaIWaaapaqaauaa beqabmaaaeaapeGaaGOmaaWdaeaapeGaaGOmaaWdaeaapeGaaGOmaa aaa8aabaWdbiaaicdaa8aabaWdbiaaiAdaa8aabaqbaeqabeWaaaqa a8qacaaIYaaapaqaa8qacaaIYaaapaqaa8qacaaIYaaaaaWdaeaafa qabeWabaaabaWdbiaaikdaa8aabaWdbiaaikdaa8aabaWdbiaaikda aaaapaqaauaabeqadeaaaeaapeGaaGOmaaWdaeaapeGaaGOmaaWdae aapeGaaGOmaaaaa8aabaqbaeqabmqaaaqaauaabeqabmaaaeaapeGa aGinaiabgUcaRiaaiEdacaGGUaGaaGOmaiaaiAdacaaI2aaapaqaa8 qacaaIWaaapaqaa8qacaaIWaaaaaWdaeaafaqabeqadaaabaWdbiaa icdaa8aabaWdbiaaisdacqGHRaWkcaaI3aGaaiOlaiaaikdacaaI2a GaaGOnaaWdaeaapeGaaGimaaaaa8aabaqbaeqabeWaaaqaa8qacaaI Waaapaqaa8qacaaIWaaapaqaa8qacaaI0aGaey4kaSIaaG4naiaac6 cacaaIYaGaaGOnaiaaiAdaaaaaaaaaa8aacaGLOaGaayzkaaWaamWa aeaafaqabeabbaaaaeaafaqabeGabaaabaGaamOyamaaBaaaleaaca aIXaaabeaaaOqaaiaadkgadaWgaaWcbaGaaGOmaaqabaaaaaGcbaGa am4CamaaBaaaleaacaaIXaaabeaaaOqaaiaadohadaWgaaWcbaGaaG OmaaqabaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5w aiaaw2faaiabg2da98qadaWadaWdaeaafaqabeqbbaaaaeaapeGaaG ymaiaaiIdacaaI1aaapaqaa8qacaaIYaGaaGymaiaaicdaa8aabaWd biaaigdacaaIZaGaaGOmaaWdaeaapeGaaGymaiaaikdacaaI0aaapa qaa8qacaaIXaGaaG4maiaaiMdaaaaacaGLBbGaayzxaaGaeyOKH46a amWaa8aabaqbaeqabmWaaaqaa8qacaaI2aaapaqaa8qacaaIWaaapa qaauaabeqabmaaaeaapeGaaGOmaaWdaeaapeGaaGOmaaWdaeaapeGa aGOmaaaaa8aabaWdbiaaicdaa8aabaWdbiaaiAdaa8aabaqbaeqabe Waaaqaa8qacaaIYaaapaqaa8qacaaIYaaapaqaa8qacaaIYaaaaaWd aeaafaqabeWabaaabaWdbiaaikdaa8aabaWdbiaaikdaa8aabaWdbi aaikdaaaaapaqaauaabeqadeaaaeaapeGaaGOmaaWdaeaapeGaaGOm aaWdaeaapeGaaGOmaaaaa8aabaqbaeqabmqaaaqaauaabeqabmaaae aapeGaaGymaiaaigdacaGGUaGaaGOmaiaaiAdacaaI2aaapaqaa8qa caaIWaaapaqaa8qacaaIWaaaaaWdaeaafaqabeqadaaabaWdbiaaic daa8aabaWdbiaaigdacaaIXaGaaiOlaiaaikdacaaI2aGaaGOnaaWd aeaapeGaaGimaaaaa8aabaqbaeqabeWaaaqaa8qacaaIWaaapaqaa8 qacaaIWaaapaqaa8qacaaIXaGaaGymaiaac6cacaaIYaGaaGOnaiaa iAdaaaaaaaaaaiaawUfacaGLDbaadaWadaWdaeaafaqabeqbbaaaae aapeGaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWG IbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaadohapaWaaS baaSqaa8qacaaIXaaapaqabaaakeaapeGaam4Ca8aadaWgaaWcbaWd biaaikdaa8aabeaaaOqaa8qacaWGZbWdamaaBaaaleaapeGaaG4maa WdaeqaaaaaaOWdbiaawUfacaGLDbaacqGH9aqpdaWadaWdaeaafaqa beqbbaaaaeaapeGaaGymaiaaiIdacaaI1aaapaqaa8qacaaIYaGaaG ymaiaaicdaa8aabaWdbiaaigdacaaIZaGaaGOmaaWdaeaapeGaaGym aiaaikdacaaI0aaapaqaa8qacaaIXaGaaG4maiaaiMdaaaaacaGLBb Gaayzxaaaaaa@B6B1@

In the previous equations the value of 𝜇 was forced to be zero in order to break the linear dependence between the rows and columns of the coefficient matrix. The solution of this system of equations is given by:

[ b 1 b 2 s 1 s 2 s 3 ]= [ [ 6 0 2 2 2 0 6 2 2 2 2 2 2 2 2 2 11.266 0 0 0 11.266 0 0 0 11.266 ] ] 1 [ 185 210 132 124 139 ]=[ 30.83 35 0.029 0.680 0.650 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaafaqabeqbbaaaaeaapeGaamOya8aadaWgaaWcbaWdbiaa igdaa8aabeaaaOqaa8qacaWGIbWdamaaBaaaleaapeGaaGOmaaWdae qaaaGcbaWdbiaadohapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaa peGaam4Ca8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacaWGZb WdamaaBaaaleaapeGaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaa cqGH9aqpdaWadaWdaeaapeWaamWaa8aabaqbaeqabmWaaaqaa8qaca aI2aaapaqaa8qacaaIWaaapaqaauaabeqabmaaaeaapeGaaGOmaaWd aeaapeGaaGOmaaWdaeaapeGaaGOmaaaaa8aabaWdbiaaicdaa8aaba WdbiaaiAdaa8aabaqbaeqabeWaaaqaa8qacaaIYaaapaqaa8qacaaI Yaaapaqaa8qacaaIYaaaaaWdaeaafaqabeWabaaabaWdbiaaikdaa8 aabaWdbiaaikdaa8aabaWdbiaaikdaaaaapaqaauaabeqadeaaaeaa peGaaGOmaaWdaeaapeGaaGOmaaWdaeaapeGaaGOmaaaaa8aabaqbae qabmqaaaqaauaabeqabmaaaeaapeGaaGymaiaaigdacaGGUaGaaGOm aiaaiAdacaaI2aaapaqaa8qacaaIWaaapaqaa8qacaaIWaaaaaWdae aafaqabeqadaaabaWdbiaaicdaa8aabaWdbiaaigdacaaIXaGaaiOl aiaaikdacaaI2aGaaGOnaaWdaeaapeGaaGimaaaaa8aabaqbaeqabe Waaaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacaaIXaGaaGym aiaac6cacaaIYaGaaGOnaiaaiAdaaaaaaaaaaiaawUfacaGLDbaaai aawUfacaGLDbaapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakmaa dmaapaqaauaabeqafeaaaaqaa8qacaaIXaGaaGioaiaaiwdaa8aaba WdbiaaikdacaaIXaGaaGimaaWdaeaapeGaaGymaiaaiodacaaIYaaa paqaa8qacaaIXaGaaGOmaiaaisdaa8aabaWdbiaaigdacaaIZaGaaG yoaaaaaiaawUfacaGLDbaacqGH9aqpdaWadaWdaeaafaqabeqbbaaa aeaapeGaaG4maiaaicdacaGGUaGaaGioaiaaiodaa8aabaWdbiaaio dacaaI1aaapaqaa8qacaaIWaGaaiOlaiaaicdacaaIYaGaaGyoaaWd aeaapeGaeyOeI0IaaGimaiaac6cacaaI2aGaaGioaiaaicdaa8aaba WdbiaaicdacaGGUaGaaGOnaiaaiwdacaaIWaaaaaGaay5waiaaw2fa aaaa@8E1B@

ML estimates are:

σ s 2 = 28.166 3 8.073 2( 2 ) =0.328 σ e 2 = [ 1 21 3( 2( 2 )1 ) ]9.083=8.073 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdpWCda qhaaWcbaaeaaaaaaaaa8qacaWGZbaapaqaa8qacaaIYaaaaOGaeyyp a0ZaaSaaa8aabaWdbmaalaaapaqaa8qacaaIYaGaaGioaiaac6caca aIXaGaaGOnaiaaiAdaa8aabaWdbiaaiodaaaGaeyOeI0IaaGioaiaa c6cacaaIWaGaaG4naiaaiodaa8aabaWdbiaaikdadaqadaWdaeaape GaaGOmaaGaayjkaiaawMcaaaaacqGH9aqpcaaIWaGaaiOlaiaaioda caaIYaGaaGioaaqaa8aacqaHdpWCdaqhaaWcbaGaamyzaaqaa8qaca aIYaaaaOGaeyypa0JaaiiOamaadmaapaqaa8qacaaIXaGaeyOeI0Ya aSaaa8aabaWdbiaaikdacqGHsislcaaIXaaapaqaa8qacaaIZaWaae Waa8aabaWdbiaaikdadaqadaWdaeaapeGaaGOmaaGaayjkaiaawMca aiabgkHiTiaaigdaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaG yoaiaac6cacaaIWaGaaGioaiaaiodacqGH9aqpcaaI4aGaaiOlaiaa icdacaaI3aGaaG4maaaaaa@69F4@

Y ℎ2y 𝑒2using ML is:

h 2 = 4( 0.328 ) 0.328+8.073 =0.156 e 2 = 8.4011.3212 8.401 =0.842 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa WdbiaadIgadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaWdaeaa peGaaGinamaabmaapaqaa8qacaaIWaGaaiOlaiaaiodacaaIYaGaaG ioaaGaayjkaiaawMcaaaWdaeaapeGaaGimaiaac6cacaaIZaGaaGOm aiaaiIdacqGHRaWkcaaI4aGaaiOlaiaaicdacaaI3aGaaG4maaaacq GH9aqpcaaIWaGaaiOlaiaaigdacaaI1aGaaGOnaaqaaiaadwgadaah aaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaWdaeaapeGaaGioaiaac6 cacaaI0aGaaGimaiaaigdacqGHsislcaaIXaGaaiOlaiaaiodacaaI YaGaaGymaiaaikdaa8aabaWdbiaaiIdacaGGUaGaaGinaiaaicdaca aIXaaaaiabg2da9iaaicdacaGGUaGaaGioaiaaisdacaaIYaaaaaa@61AF@

And the equations using ML are:

[ 6 0 2 2 2 0 6 2 2 2 2 2 2 2 2 2 28.612 0 0 0 28.612 0 0 0 28.612 ][ b 1 b 2 s 1 s 2 s 3 ]=[ 185 210 132 124 139 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaafaqabeWadaaabaWdbiaaiAdaa8aabaWdbiaaicdaa8aa baqbaeqabeWaaaqaa8qacaaIYaaapaqaa8qacaaIYaaapaqaa8qaca aIYaaaaaWdaeaapeGaaGimaaWdaeaapeGaaGOnaaWdaeaafaqabeqa daaabaWdbiaaikdaa8aabaWdbiaaikdaa8aabaWdbiaaikdaaaaapa qaauaabeqadeaaaeaapeGaaGOmaaWdaeaapeGaaGOmaaWdaeaapeGa aGOmaaaaa8aabaqbaeqabmqaaaqaa8qacaaIYaaapaqaa8qacaaIYa aapaqaa8qacaaIYaaaaaWdaeaafaqabeWabaaabaqbaeqabeWaaaqa a8qacaaIYaGaaGioaiaac6cacaaI2aGaaGymaiaaikdaa8aabaWdbi aaicdaa8aabaWdbiaaicdaaaaapaqaauaabeqabmaaaeaapeGaaGim aaWdaeaapeGaaGOmaiaaiIdacaGGUaGaaGOnaiaaigdacaaIYaaapa qaa8qacaaIWaaaaaWdaeaafaqabeqadaaabaWdbiaaicdaa8aabaWd biaaicdaa8aabaWdbiaaikdacaaI4aGaaiOlaiaaiAdacaaIXaGaaG OmaaaaaaaaaaGaay5waiaaw2faamaadmaapaqaauaabeqafeaaaaqa a8qacaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaadk gapaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaam4Ca8aadaWg aaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWGZbWdamaaBaaaleaape GaaGOmaaWdaeqaaaGcbaWdbiaadohapaWaaSbaaSqaa8qacaaIZaaa paqabaaaaaGcpeGaay5waiaaw2faaiabg2da98aadaWadaqaauaabe qafeaaaaqaa8qacaaIXaGaaGioaiaaiwdaa8aabaWdbiaaikdacaaI XaGaaGimaaWdaeaapeGaaGymaiaaiodacaaIYaaapaqaa8qacaaIXa GaaGOmaiaaisdaa8aabaWdbiaaigdacaaIZaGaaGyoaaaaa8aacaGL BbGaayzxaaaaaa@757B@

Therefore the solution is:

[ b 1 b 2 s 1 s 2 s 3 ]= [ 6 0 2 2 2 0 6 2 2 2 2 2 2 2 2 2 28.612 0 0 0 28.612 0 0 0 28.612 ] 1 [ 185 210 132 124 139 ]=[ 30.83 35 0.011 0.267 0.256 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafaqabe qbbaaaaeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqaa8qacaaIXaaa paqabaaakeaapeGaamOya8aadaWgaaWcbaWdbiaaikdaa8aabeaaaO qaa8qacaWGZbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaa dohapaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaam4Ca8aada WgaaWcbaWdbiaaiodaa8aabeaaaaaakiaawUfacaGLDbaacqGH9aqp daWadaqaauaabeqadmaaaeaapeGaaGOnaaWdaeaapeGaaGimaaWdae aafaqabeqadaaabaWdbiaaikdaa8aabaWdbiaaikdaa8aabaWdbiaa ikdaaaaapaqaa8qacaaIWaaapaqaa8qacaaI2aaapaqaauaabeqabm aaaeaapeGaaGOmaaWdaeaapeGaaGOmaaWdaeaapeGaaGOmaaaaa8aa baqbaeqabmqaaaqaa8qacaaIYaaapaqaa8qacaaIYaaapaqaa8qaca aIYaaaaaWdaeaafaqabeWabaaabaWdbiaaikdaa8aabaWdbiaaikda a8aabaWdbiaaikdaaaaapaqaauaabeqadeaaaeaafaqabeqadaaaba WdbiaaikdacaaI4aGaaiOlaiaaiAdacaaIXaGaaGOmaaWdaeaapeGa aGimaaWdaeaapeGaaGimaaaaa8aabaqbaeqabeWaaaqaa8qacaaIWa aapaqaa8qacaaIYaGaaGioaiaac6cacaaI2aGaaGymaiaaikdaa8aa baWdbiaaicdaaaaapaqaauaabeqabmaaaeaapeGaaGimaaWdaeaape GaaGimaaWdaeaapeGaaGOmaiaaiIdacaGGUaGaaGOnaiaaigdacaaI YaaaaaaaaaaapaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaG ymaaaakmaadmaabaqbaeqabuqaaaaabaWdbiaaigdacaaI4aGaaGyn aaWdaeaapeGaaGOmaiaaigdacaaIWaaapaqaa8qacaaIXaGaaG4mai aaikdaa8aabaWdbiaaigdacaaIYaGaaGinaaWdaeaapeGaaGymaiaa iodacaaI5aaaaaWdaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabe qafeaaaaqaa8qacaaIZaGaaGimaiaac6cacaaI4aGaaG4maaWdaeaa peGaaG4maiaaiwdaa8aabaWdbiaaicdacaGGUaGaaGimaiaaigdaca aIXaaapaqaa8qacqGHsislcaaIWaGaaiOlaiaaikdacaaI2aGaaG4n aaWdaeaapeGaaGimaiaac6cacaaIYaGaaGynaiaaiAdaaaaapaGaay 5waiaaw2faaaaa@8BBF@

Introduction of the parentage matrix in a reproductive model

Now it is assumed that animal 1 is the father of animal 2, therefore, the equations take into account all the genealogy between males. First we have to calculate 𝐴−1. Applying Henderson's rules,5 we have:

A 1 =[ 1+1/3 2/3 0 2/3 1/4 0 0 0 1 ]=[ 1/4 2/3 0 2/3 1/4 0 0 0 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0ZaamWaa8aa baqbaeqabmWaaaqaa8qacaaIXaGaey4kaSIaaGymaiaac+cacaaIZa aapaqaa8qacqGHsislcaaIYaGaai4laiaaiodaa8aabaWdbiaaicda a8aabaWdbiabgkHiTiaaikdacaGGVaGaaG4maaWdaeaapeGaaGymai aac+cacaaI0aaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qa caaIWaaapaqaa8qacaaIXaaaaaGaay5waiaaw2faaiabg2da98aada WadaqaauaabeqadmaaaeaapeGaaGymaiaac+cacaaI0aaapaqaa8qa cqGHsislcaaIYaGaai4laiaaiodaa8aabaWdbiaaicdaa8aabaWdbi abgkHiTiaaikdacaGGVaGaaG4maaWdaeaapeGaaGymaiaac+cacaaI 0aaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapa qaa8qacaaIXaaaaaWdaiaawUfacaGLDbaaaaa@6004@

Therefore,

A 1 α=[ 1 4 2 3 0 2 3 1 4 0 0 0 1 ]( 7.2664 )=[ 1.8166 4.8442 0 4.8442 1.8166 0 0 0 7.2664 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeqySdeMaeyypa0Zd amaadmaabaqbaeqabmWaaaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaaGinaaaaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaaIYaaa paqaa8qacaaIZaaaaaWdaeaapeGaaGimaaWdaeaapeGaeyOeI0YaaS aaa8aabaWdbiaaikdaa8aabaWdbiaaiodaaaaapaqaa8qadaWcaaWd aeaapeGaaGymaaWdaeaapeGaaGinaaaaa8aabaWdbiaaicdaa8aaba Wdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiaaigdaaaaapaGaay5w aiaaw2faamaabmaabaGaaG4naiaac6cacaaIYaGaaGOnaiaaiAdaca aI0aaacaGLOaGaayzkaaGaeyypa0ZaamWaaeaafaqabeWadaaabaWd biaaigdacaGGUaGaaGioaiaaigdacaaI2aGaaGOnaaWdaeaapeGaey OeI0IaaGinaiaac6cacaaI4aGaaGinaiaaisdacaaIYaaapaqaa8qa caaIWaaapaqaa8qacqGHsislcaaI0aGaaiOlaiaaiIdacaaI0aGaaG inaiaaikdaa8aabaWdbiaaigdacaGGUaGaaGioaiaaigdacaaI2aGa aGOnaaWdaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGaaGimaa WdaeaapeGaaG4naiaac6cacaaIYaGaaGOnaiaaiAdacaaI0aaaaaWd aiaawUfacaGLDbaaaaa@7113@

And adding the Z'Z matrix:

ZZ+ A 1 α=[ 4 0 0 0 4 0 0 0 4 ]+[ 1.8166 4.8442 0 4.8442 1.8166 0 0 0 7.2664 ]=[ 5.8166 0.8442 0 0.8442 5.8166 0 0 0 11.2664 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabgkdiIk aadQfacqGHRaWkcaWGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa eqySdeMaeyypa0ZaamWaaeaafaqabeWadaaabaaeaaaaaaaaa8qaca aI0aaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacaaIWaaa paqaa8qacaaI0aaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8 qacaaIWaaapaqaa8qacaaI0aaaaaWdaiaawUfacaGLDbaacqGHRaWk daWadaqaauaabeqadmaaaeaapeGaaGymaiaac6cacaaI4aGaaGymai aaiAdacaaI2aaapaqaa8qacqGHsislcaaI0aGaaiOlaiaaiIdacaaI 0aGaaGinaiaaikdaa8aabaWdbiaaicdaa8aabaWdbiabgkHiTiaais dacaGGUaGaaGioaiaaisdacaaI0aGaaGOmaaWdaeaapeGaaGymaiaa c6cacaaI4aGaaGymaiaaiAdacaaI2aaapaqaa8qacaaIWaaapaqaa8 qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacaaI3aGaaiOlaiaaikda caaI2aGaaGOnaiaaisdaaaaapaGaay5waiaaw2faaiabg2da9maadm aabaqbaeqabmWaaaqaa8qacaaI1aGaaiOlaiaaiIdacaaIXaGaaGOn aiaaiAdaa8aabaWdbiabgkHiTiaaicdacaGGUaGaaGioaiaaisdaca aI0aGaaGOmaaWdaeaapeGaaGimaaWdaeaapeGaeyOeI0IaaGimaiaa c6cacaaI4aGaaGinaiaaisdacaaIYaaapaqaa8qacaaI1aGaaiOlai aaiIdacaaIXaGaaGOnaiaaiAdaa8aabaWdbiaaicdaa8aabaWdbiaa icdaa8aabaWdbiaaicdaa8aabaWdbiaaigdacaaIXaGaaiOlaiaaik dacaaI2aGaaGOnaiaaisdaaaaapaGaay5waiaaw2faaaaa@88AA@

Therefore, the Henderson normal equations are:

[ 6 0 2.0000 2.0000 2.0000 0 6 2.0000 2.0000 2.0000 2 2 2 2 2 2 5.8166 0.8442 0.0000 .08442 5.8166 0.0000 0.0000 0.0000 11.2664 ][ b 1 b 2 s 1 s 2 s 3 ]=[ 185 210 132 124 139 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaafaqabeWadaaabaWdbiaaiAdaa8aabaWdbiaaicdaa8aa baqbaeqabeWaaaqaa8qacaaIYaGaaiOlaiaaicdacaaIWaGaaGimai aaicdaa8aabaWdbiaaikdacaGGUaGaaGimaiaaicdacaaIWaGaaGim aaWdaeaapeGaaGOmaiaac6cacaaIWaGaaGimaiaaicdacaaIWaaaaa WdaeaapeGaaGimaaWdaeaapeGaaGOnaaWdaeaafaqabeqadaaabaWd biaaikdacaGGUaGaaGimaiaaicdacaaIWaGaaGimaaWdaeaapeGaaG Omaiaac6cacaaIWaGaaGimaiaaicdacaaIWaaapaqaa8qacaaIYaGa aiOlaiaaicdacaaIWaGaaGimaiaaicdaaaaapaqaauaabeqadeaaae aapeGaaGOmaaWdaeaapeGaaGOmaaWdaeaapeGaaGOmaaaaa8aabaqb aeqabmqaaaqaa8qacaaIYaaapaqaa8qacaaIYaaapaqaa8qacaaIYa aaaaWdaeaafaqabeWabaaabaqbaeqabeWaaaqaa8qacaaI1aGaaiOl aiaaiIdacaaIXaGaaGOnaiaaiAdaa8aabaWdbiabgkHiTiaaicdaca GGUaGaaGioaiaaisdacaaI0aGaaGOmaaWdaeaapeGaaGimaiaac6ca caaIWaGaaGimaiaaicdacaaIWaaaaaWdaeaafaqabeqadaaabaWdbi abgkHiTiaac6cacaaIWaGaaGioaiaaisdacaaI0aGaaGOmaaWdaeaa peGaaGynaiaac6cacaaI4aGaaGymaiaaiAdacaaI2aaapaqaa8qaca aIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaicdaaaaapaqaauaabeqa bmaaaeaapeGaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaIWaaapa qaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaicdaa8aabaWd biaaigdacaaIXaGaaiOlaiaaikdacaaI2aGaaGOnaiaaisdaaaaaaa aaaiaawUfacaGLDbaadaWadaWdaeaafaqabeqbbaaaaeaapeGaamOy a8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWGIbWdamaaBa aaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaadohapaWaaSbaaSqaa8qa caaIXaaapaqabaaakeaapeGaam4Ca8aadaWgaaWcbaWdbiaaikdaa8 aabeaaaOqaa8qacaWGZbWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa aOWdbiaawUfacaGLDbaacqGH9aqpdaWadaWdaeaafaqabeqbbaaaae aapeGaaGymaiaaiIdacaaI1aaapaqaa8qacaaIYaGaaGymaiaaicda a8aabaWdbiaaigdacaaIZaGaaGOmaaWdaeaapeGaaGymaiaaikdaca aI0aaapaqaa8qacaaIXaGaaG4maiaaiMdaaaaacaGLBbGaayzxaaaa aa@A36B@

And the solution of these equations is:

[ b 1 b 2 s 1 s 2 s 3 ]= [ 6 0 2.0000 2.0000 2.0000 0 6 2.0000 2.0000 2.0000 2 2 2 2 2 2 5.8166 0.8442 0.0000 0.8442 5.8166 0.0000 0.0000 0.0000 11.2664 ] 1 [ 185 210 132 124 139 ]=[ 31.6285 35.7952 0.7765 1.9776 0.3685 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaafaqabeqbbaaaaeaapeGaamOya8aadaWgaaWcbaWdbiaa igdaa8aabeaaaOqaa8qacaWGIbWdamaaBaaaleaapeGaaGOmaaWdae qaaaGcbaWdbiaadohapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaa peGaam4Ca8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacaWGZb WdamaaBaaaleaapeGaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaa cqGH9aqpdaWadaWdaeaafaqabeWadaaabaWdbiaaiAdaa8aabaWdbi aaicdaa8aabaqbaeqabeWaaaqaa8qacaaIYaGaaiOlaiaaicdacaaI WaGaaGimaiaaicdaa8aabaWdbiaaikdacaGGUaGaaGimaiaaicdaca aIWaGaaGimaaWdaeaapeGaaGOmaiaac6cacaaIWaGaaGimaiaaicda caaIWaaaaaWdaeaapeGaaGimaaWdaeaapeGaaGOnaaWdaeaafaqabe qadaaabaWdbiaaikdacaGGUaGaaGimaiaaicdacaaIWaGaaGimaaWd aeaapeGaaGOmaiaac6cacaaIWaGaaGimaiaaicdacaaIWaaapaqaa8 qacaaIYaGaaiOlaiaaicdacaaIWaGaaGimaiaaicdaaaaapaqaauaa beqadeaaaeaapeGaaGOmaaWdaeaapeGaaGOmaaWdaeaapeGaaGOmaa aaa8aabaqbaeqabmqaaaqaa8qacaaIYaaapaqaa8qacaaIYaaapaqa a8qacaaIYaaaaaWdaeaafaqabeWabaaabaqbaeqabeWaaaqaa8qaca aI1aGaaiOlaiaaiIdacaaIXaGaaGOnaiaaiAdaa8aabaWdbiabgkHi TiaaicdacaGGUaGaaGioaiaaisdacaaI0aGaaGOmaaWdaeaapeGaaG imaiaac6cacaaIWaGaaGimaiaaicdacaaIWaaaaaWdaeaafaqabeqa daaabaWdbiabgkHiTiaaicdacaGGUaGaaGioaiaaisdacaaI0aGaaG OmaaWdaeaapeGaaGynaiaac6cacaaI4aGaaGymaiaaiAdacaaI2aaa paqaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaicdaaaaapa qaauaabeqabmaaaeaapeGaaGimaiaac6cacaaIWaGaaGimaiaaicda caaIWaaapaqaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaic daa8aabaWdbiaaigdacaaIXaGaaiOlaiaaikdacaaI2aGaaGOnaiaa isdaaaaaaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaig daaaGcdaWadaWdaeaafaqabeqbbaaaaeaapeGaaGymaiaaiIdacaaI 1aaapaqaa8qacaaIYaGaaGymaiaaicdaa8aabaWdbiaaigdacaaIZa GaaGOmaaWdaeaapeGaaGymaiaaikdacaaI0aaapaqaa8qacaaIXaGa aG4maiaaiMdaaaaacaGLBbGaayzxaaGaeyypa0ZaamWaa8aabaqbae qabuqaaaaabaWdbiaaiodacaaIXaGaaiOlaiaaiAdacaaIYaGaaGio aiaaiwdaa8aabaWdbiaaiodacaaI1aGaaiOlaiaaiEdacaaI5aGaaG ynaiaaikdaa8aabaWdbiabgkHiTiaaicdacaGGUaGaaG4naiaaiEda caaI2aGaaGynaaWdaeaapeGaeyOeI0IaaGymaiaac6cacaaI5aGaaG 4naiaaiEdacaaI2aaapaqaa8qacaaIWaGaaiOlaiaaiodacaaI2aGa aGioaiaaiwdaaaaacaGLBbGaayzxaaaaaa@C267@

In this solution, the fixed effect (sex) is adjusted for the random example, and the random effect is adjusted for the fixed effect.

Unbalanced data in a reproductive model

Assuming the last missing data, the 𝑆𝐶𝑡𝑜𝑡𝑎𝑙 is:

SCtotal=S C total = 36 2 + 35 2 + 33 2 ++ 29 2 360 2 11 =148.1818182 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaam4qaiaadshacaWGVbGaamiDaiaadggacaWGSbGaeyypa0Ja am4uaiaadoeapaWaaSbaaSqaa8qacaWG0bGaam4BaiaadshacaWGHb GaamiBaaWdaeqaaOWdbiabg2da9iaaiodacaaI2aWdamaaCaaaleqa baWdbiaaikdaaaGccqGHRaWkcaaIZaGaaGyna8aadaahaaWcbeqaa8 qacaaIYaaaaOGaey4kaSIaaG4maiaaiodapaWaaWbaaSqabeaapeGa aGOmaaaakiabgUcaRiabgAci8kabgUcaRiaaikdacaaI5aWdamaaCa aaleqabaWdbiaaikdaaaGccqGHsisldaWcaaWdaeaapeGaaG4maiaa iAdacaaIWaWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaig dacaaIXaaaaiabg2da9iaaigdacaaI0aGaaGioaiaac6cacaaIXaGa aGioaiaaigdacaaI4aGaaGymaiaaiIdacaaIYaaaaa@64B9@

The GLs are:

G L s =31=2 G L sexo =21=1 G L total =111=10 G L e =1012=113=7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa WdbiaadEeacaWGmbWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiab g2da9iaaiodacqGHsislcaaIXaGaeyypa0JaaGOmaaqaaiaadEeaca WGmbWdamaaBaaaleaapeGaam4CaiaadwgacaWG4bGaam4BaaWdaeqa aOWdbiabg2da9iaaikdacqGHsislcaaIXaGaeyypa0JaaGymaaqaai aadEeacaWGmbWdamaaBaaaleaapeGaamiDaiaad+gacaWG0bGaamyy aiaadYgaa8aabeaak8qacqGH9aqpcaaIXaGaaGymaiabgkHiTiaaig dacqGH9aqpcaaIXaGaaGimaaqaaiaadEeacaWGmbWdamaaBaaaleaa peGaamyzaaWdaeqaaOWdbiabg2da9iaaigdacaaIWaGaeyOeI0IaaG ymaiabgkHiTiaaikdacqGH9aqpcaaIXaGaaGymaiabgkHiTiaaioda cqGH9aqpcaaI3aaaaaa@667E@

To calculate the ordinary least squares solutions for the reduced model (without the sire factor) must be estimated:

b= [ 11 5 6 5 5 0 6 0 6 ] 1 [ 360 150 0 ]=[ 0.1666 0.1666 0 0.1666 0.3666 0 0 0 0 ][ 360 150 0 ]=[ 35 5 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGIbGaeyypa0ZaamWaa8aabaqbaeqabmWaaaqaa8qacaaIXaGaaGym aaWdaeaapeGaaGynaaWdaeaapeGaaGOnaaWdaeaapeGaaGynaaWdae aapeGaaGynaaWdaeaapeGaaGimaaWdaeaapeGaaGOnaaWdaeaapeGa aGimaaWdaeaapeGaaGOnaaaaaiaawUfacaGLDbaadaahaaWcbeqaai abgkHiTiaaigdaaaGcdaWadaWdaeaafaqabeWabaaabaWdbiaaioda caaI2aGaaGimaaWdaeaapeGaaGymaiaaiwdacaaIWaaapaqaa8qaca aIWaaaaaGaay5waiaaw2faaiabg2da9maadmaapaqaauaabeqadmaa aeaapeGaaGimaiaac6cacaaIXaGaaGOnaiaaiAdacaaI2aaapaqaa8 qacqGHsislcaaIWaGaaiOlaiaaigdacaaI2aGaaGOnaiaaiAdaa8aa baWdbiaaicdaa8aabaWdbiabgkHiTiaaicdacaGGUaGaaGymaiaaiA dacaaI2aGaaGOnaaWdaeaapeGaaGimaiaac6cacaaIZaGaaGOnaiaa iAdacaaI2aaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qaca aIWaaapaqaa8qacaaIWaaaaaGaay5waiaaw2faamaadmaapaqaauaa beqadeaaaeaapeGaaG4maiaaiAdacaaIWaaapaqaa8qacaaIXaGaaG ynaiaaicdaa8aabaWdbiaaicdaaaaacaGLBbGaayzxaaGaeyypa0Za amWaa8aabaqbaeqabmqaaaqaa8qacaaIZaGaaGynaaWdaeaapeGaey OeI0IaaGynaaWdaeaapeGaaGimaaaaaiaawUfacaGLDbaaaaa@76EE@

Therefore, the 𝑆𝐶𝑠𝑒𝑥𝑜 for the reduced model is:

S C sexo( reducido ) =[ 355  0 ][ 360 150 210 ] 360 2 11 =( 35 )( 360 )+( 5 )( 150 ) 360 2 11 =68.1818 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaam4qamaaBaaaleaacaWGZbGaamyzaiaadIhacaWGVbWaaeWa aeaacaWGYbGaamyzaiaadsgacaWG1bGaam4yaiaadMgacaWGKbGaam 4BaaGaayjkaiaawMcaaaqabaGccqGH9aqpdaWadaWdaeaapeGaaG4m aiaaiwdacqGHsislcaaI1aGaaiiOaiaacckacaaIWaaacaGLBbGaay zxaaWaamWaa8aabaqbaeqabmqaaaqaa8qacaaIZaGaaGOnaiaaicda a8aabaWdbiaaigdacaaI1aGaaGimaaWdaeaapeGaaGOmaiaaigdaca aIWaaaaaGaay5waiaaw2faaiabgkHiTmaalaaapaqaa8qacaaIZaGa aGOnaiaaicdapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaG ymaiaaigdaaaGaeyypa0ZaaeWaa8aabaWdbiaaiodacaaI1aaacaGL OaGaayzkaaWaaeWaa8aabaWdbiaaiodacaaI2aGaaGimaaGaayjkai aawMcaaiabgUcaRmaabmaapaqaa8qacqGHsislcaaI1aaacaGLOaGa ayzkaaWaaeWaa8aabaWdbiaaigdacaaI1aGaaGimaaGaayjkaiaawM caaiabgkHiTmaalaaapaqaa8qacaaIZaGaaGOnaiaaicdapaWaaWba aSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGymaiaaigdaaaGaeyypa0 JaaGOnaiaaiIdacaGGUaGaaGymaiaaiIdacaaIXaGaaGioaaaa@7A36@

To obtain the adjusted SCs, we calculate the SC for the full model and subtract from it, respectively (𝑟𝑒𝑑𝑢𝑐𝑖𝑑𝑜):

SCs=SC( μ,s,sexo, )SC( μ,sexo )=83.681818268.1818=15.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaam4qaiaadohacqGH9aqpcaWGtbGaam4qamaabmaapaqaa8qa cqaH8oqBcaGGSaGaam4CaiaacYcacaWGZbGaamyzaiaadIhacaWGVb GaaiilaaGaayjkaiaawMcaaiabgkHiTiaadofacaWGdbWaaeWaa8aa baWdbiabeY7aTjaacYcacaWGZbGaamyzaiaadIhacaWGVbaacaGLOa GaayzkaaGaeyypa0JaaGioaiaaiodacaGGUaGaaGOnaiaaiIdacaaI XaGaaGioaiaaigdacaaI4aGaaGOmaiabgkHiTiaaiAdacaaI4aGaai OlaiaaigdacaaI4aGaaGymaiaaiIdacqGH9aqpcaaIXaGaaGynaiaa c6cacaaI1aaaaa@636F@

And the 𝑆𝐶𝑒 is:

S C e =148.1818182( 15.5+68.1818 )=64.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaam4qa8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqp caaIXaGaaGinaiaaiIdacaGGUaGaaGymaiaaiIdacaaIXaGaaGioai aaigdacaaI4aGaaGOmaiabgkHiTmaabmaapaqaa8qacaaIXaGaaGyn aiaac6cacaaI1aGaey4kaSIaaGOnaiaaiIdacaGGUaGaaGymaiaaiI dacaaIXaGaaGioaaGaayjkaiaawMcaaiabg2da9iaaiAdacaaI0aGa aiOlaiaaiwdaaaa@52B8@

Therefore, the CMs are:

C M s = 15.5 2 =7.75 C M e = 64.5 7 =9.214286 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa WdbiaadoeacaWGnbWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiab g2da9maalaaapaqaa8qacaaIXaGaaGynaiaac6cacaaI1aaapaqaa8 qacaaIYaaaaiabg2da9iaaiEdacaGGUaGaaG4naiaaiwdaaeaacaWG dbGaamyta8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpda WcaaWdaeaapeGaaGOnaiaaisdacaGGUaGaaGynaaWdaeaapeGaaG4n aaaacqGH9aqpcaaI5aGaaiOlaiaaikdacaaIXaGaaGinaiaaikdaca aI4aGaaGOnaaaaaa@51FA@

Finally, the variance components are:

σ s 2 =  7.759.214286 3.6 =0.4067 σ e 2 = 9.214286 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa Wdbiabeo8aZnaaDaaaleaacaWGZbaabaGaaGOmaaaakiabg2da9iaa cckadaWcaaWdaeaapeGaaG4naiaac6cacaaI3aGaaGynaiabgkHiTi aaiMdacaGGUaGaaGOmaiaaigdacaaI0aGaaGOmaiaaiIdacaaI2aaa paqaa8qacaaIZaGaaiOlaiaaiAdaaaGaeyypa0JaeyOeI0IaaGimai aac6cacaaI0aGaaGimaiaaiAdacaaI3aaabaGaeq4Wdm3aa0baaSqa aiaadwgaaeaacaaIYaaaaOGaeyypa0JaaiiOaiaaiMdacaGGUaGaaG OmaiaaigdacaaI0aGaaGOmaiaaiIdacaaI2aaaaaa@5B3D@

The component σ2s component is a negative estimate of the variance, because the 𝐶𝑀𝑠 < 𝐶𝑀𝑒is negative, therefore, the ML and REML estimates for σ2s are:

σ2s = 0

In other words, all the total variability is residual. Table 3 shows the ML and REML iterations for the calculation of the residual variance with the Newton-Rapson method: As shown in Table 3, when an unbalanced database is used, the estimates for the variance components are different in ANOVA and REML, since with ANOVA we have σ2e = 9.2142 and with REML σ2e = 8.88. For this particular case, ℎ2 = 0 because the variance of the numerator is zero, obviously to find a more credible estimate, one should increase the number of data used in the genetic evaluation or try another model and compare the AIC.

ML

REML

Iteración

-2ln(L)

σs2 σe2

iteración

-2ln()

σs2 σe2

1

53.0420

0

7.2727

1

48.6053

0

8.88

2

53.0420

0

7.2727

2

48.6053

0

8.88

Table 3 Iteration of variance components for ML and REML

Animal model

The solutions of the Henderson normal equations, using the values of σ2e = 9.083 y σ2a = 5 are presented in Table 4 Henderson's normal equations are not presented for this case due to its large dimensions.

Animal

VG

1

0.422982   

2

-0.984574  

3

1.10566 

4

0.217214   

5

0.809321   

6

-0.651756  

7

-0.273233  

8

-0.857664  

9

-2.32642   

10

0.113062E-01 

11

1.33545 

12

1.04324 

13

-0.117947  

14

1.63535 

Table 4 Genetic values using an animal model

Conclusion

Genetic values and parameters can be estimated using ANOVA, ML and REML, but with the risk of estimating negative variance components using ANOVA or zero (or overestimated) heritabilities with likelihood-based methods when the data structure or model is not correct. When the data structure is unbalanced, mathematical calculations with ANOVA, ML and REML are more complex and require computational algorithms with higher performance.

Acknowledgments

None.

Conflicts of interest

The authors declared that there are no conflicts of interest.

References

  1. Caballero J, Pablo E, Martinez C. Restricted maximum likelihood estimation of variance and covariance components of multiple traits under designs i and ii of North Carolina. Rev Fitotec Mex. 2003;26(1):53–66.
  2. Castejón, Osiris. Design and analysis of experiments with statistix. Venezuela: Rafael Urdaneta University; 2008.
  3. Elzo M, Garay O. Evolution of genetic improvement practices in domestic animal populations. Gainesville: University of Florida; 2012.
  4. Román R, Aranguren A. Genetic evaluation of breeding stock: achievements and challenges From: Achievements and challenges in dual purpose cattle breeding; 2014.
  5. Gutiérrez P. Introduction to animal genetic assessment methodology adapted to the EHEA. Madrid: Complutense; 2010.
  6. Aranguren A, Román R. The simple animal model: a methodology for geneticists from: achievements and challenges of dual purpose cattle breeding; 2014.
  7. Perez J, Montiel N. Heritability of the IBMI index of Italian buffaloes used in artificial insemination. Rev Cientif FCV-LUZ XXXIII. 2023;205–207.
  8. Román R, Aranguren J, Garcidueñas R, et al. Association between reproductive characteristics and milk production in crossbred heifers. Revista Espamciencia. 2023;14(2):63–70.
  9. Montgomery D. Experiments with random factors. From: Design and analysis of experiments. 2nd edn. Limusa-wiley; 2015.  
  10. Searle R, Casella G, Mcculloch C. Variance Components. Wiley series; 1992.
  11. Aldrich J. R. A. Fisher and the making of maximum likelihood 1912 - 1922. Statist Sci. 1997;12(3):162–176.
  12. Hartley HO, Rao JNK. "Maximum likelihood estimation for the mixed analysis of variance model". Biometrika. 1967;54(1):93–108.
  13. Patterson HD, Thompson R. "Recovery of inter-block information when block sizes are unequal". Biometrika. 1971;58:545–554.
  14. Meyer K. Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm. Genet Sel Evol. 1989;21:317–340.
  15. Román R, Aranguren J, Villasmil Y, et al. Analysis of fertility at first service in dual-purpose heifers under an animal model. Revista Científica. 2010;20(4):383–389.
Creative Commons Attribution License

©2024 Raúl, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.