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Introduction
In animal breeding, it is essential to know genetic parameters 

such as heritability in order to be able to predict genetic values (GV) 
and efficiently conduct selection programs. Genetic parameters are 
ratios between estimated population variances, known as variance 
components, which are calculated using linear models containing 
fixed and random factors, generally known as mixed models.1 For the 
correct estimation of parameters and genetic values, it is necessary to 
have a broad knowledge of estimation using mixed models. Therefore, 
this article reviews the estimation of variance components and genetic 
values using ANOVA, ML and REML under a reproductive model 
and an animal model, explaining the virtues and limitations of each 
method in balanced and unbalanced data. 

Theoretical framework mixed models 

A mixed model refers to those cases where the researcher considers 
both fixed and random factors in a statistical model.2 A model widely 
used in the area of animal breeding is the reproductive model or Sire 
Model, which considers the reproductive factor as random and a 
group of non-genetic effects as fixed.2 The reproductive model allows 
obtaining both heritability values (h2) for a trait, as well as genetic 
predictions such as the expected difference of progeny (DEPs) or 
the predicted transmission ability (PTA) for each breeder.3 In matrix 
algebra the reproductive model takes the following form: 

y Xb Zs e= + +

Where 𝑦 is a vector for the data, 𝑋 is an incidence matrix relating 
the data to the fixed effects, 𝑏 is a vector of unknown parameters 
for the fixed effects, 𝑍 is an incidence matrix relating the data to the 
random effects, 𝑠 is a vector of unknown predictions for each player, 
and 𝑒 is a vector of residuals. 

The covariance structure of the above model is: 
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Where 𝐼 is an identity matrix, 𝜎𝑠2 is the variance between breeders 
and 𝜎𝑒2 is the residual variance. 

The Henderson normal equations, necessary to find the genetic 
values of the breeders, for the above model are given by3: 
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Where 𝛼 is a ratio of the residual variance to the variance between 
breeders:
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According to Román and Aranguren,4 it is possible to substitute 
𝐼𝛼 by 𝐴−1𝛼 in the normal Henderson equations, with the objective 
of improving predictions using all the parentage information between 
males, therefore, the new equations are: 
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Where 𝐴−1 is the inverse of the kinship matrix. 

And the covariance structure taking into account the introduction 
of 𝐴 is5:
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Abstract

In animal breeding, it is essential to know genetic parameters such as heritability, with the 
aim of being able to predict genetic values (GV) and efficiently direct selection programs. A 
mixed model refers to those cases where the researcher considers fixed and random factors 
in a statistical model. Models widely used in the area of animal genetic improvement are 
the reproductive model and the animal model, which consider the reproductive or animal 
factor as random and a group of non-genetic effects as fixed. These mixed models allow 
us to obtain both heritability values (h2) for a trait, as well as genetic predictions such as 
the expected progeny difference (EPDs) or the predicted transmission ability (PTA) for 
each animal. An example of birth weight (BW) in cattle was used to calculate the VG, 
h2 and e2 using a mixed model, with a fixed and a random factor. The ANOVA, ML and 
REML methods were used to calculate h2, e2 and the VG first using all the information 
and subsequently assuming the last lost data, under a reproductive model and an animal 
model. The results found using the 3 methods were the same for REML and ANOVA in 
balanced data and different for the 3 methods in unbalanced data, where in the unbalanced 
case the ANOVA estimated a negative variance component, therefore, it can be concluded 
that estimate genetic values and parameters using ANOVA, ML and REML, but with the 
risk of estimating negative variance components using ANOVA or null (or overestimated) 
heritabilities with likelihood-based methods when the data structure or model is not the 
same correct. 
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Another model widely used in genetic evaluation is the animal 
model, which uses all the parentage information in the pedigree, and 
unlike the reproductive model, allows obtaining genetic predictions 
of all the animals in the herd, whether or not data is present or not: 

y Xb Za e= + +

Where 𝑎 is a vector of genetic predictions for each animal the 
covariance structure of the above model is as follows: 

2

2

0 0
00

a

e

Aa G
VAR

e RI

σ

σ

    
= =    

     
Where 𝐺 is a variance and covariance matrix for the random effects 

and 𝑅 is a matrix of residuals. 

The Henderson normal equations for this model are given by:6
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Where 𝛼 in this model is a ratio of the residual variance to the 
additive variance: 
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Where 𝜎𝑎2 is additive genetic variance 

Genetic parameters 

Using mixed models, it is possible to estimate the variance 
components, and from them calculate the hereability, which is given 
by:5
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Where ℎ2 is heritability, and 𝜎𝑝2 is phenotypic variance, therefore, 
heritability is defined as a quotient between the additive variance and 
the phenotypic variance. The additive component (additive variance) 
of the numerator of the formula of ℎ2 can be estimated using several 
procedures, a well-known one is to use a reproductive model to 
estimate the variance between breeders, which is ¼ of the additive 
variance, therefore, a formula to estimate 𝜎𝑎2 is: 

2 24a sσ σ=

Where 4𝜎𝑠2 is four times the variance among breeders, therefore, 
heritability can be calculated as:7
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If the heritability is known, the heritability component can be 𝜎𝑎2 
component can be calculated using the following formula:8
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a phσ σ=

Another parameter of interest is the environmental proportion 
coefficient, which indicates how much of the differences observed in the 
phenotype (data) of the animals are due to non-genetic (environmental) 
factors, this coefficient has the following mathematical formula:9
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Where 𝜎𝑒𝑛2 is the environmental variance. The variance 
component 𝜎𝑒𝑛2 is calculated using the difference between 𝜎𝑝2 𝜎𝑎2 
therefore, the formula for 𝜎𝑒𝑛2 is:8

2 2 2
en p aσ σ σ= −

Finally, the variance 𝜎𝑝2 is the sum of the variance components: 
2 2 2 2 2
p a en s eσ σ σ σ σ= + = +

Variance component estimation using a reproductive 
model analysis of variance 

There are several classical methods for estimating the variance 
components needed to compute ℎ2 y 𝑒2including analysis of variance 
(ANOVA), maximum likelihood (ML) and restricted maximum 
likelihood (REML). 

ANOVA is a technique that attempts to separate out different 
sources of variability. 𝜎𝑝2 into different sources of variability, this 
involves the separation of sums of squares (SC), degrees of freedom 
(GL) and mean squares (MS) for each source of variation. Variance 
components estimated using ANOVA are calculated by equating the 
expected values of the CM (E (CM)) for each source of variation, with 
their respective CM and solving the resulting system of equations.10 
CMs are a ratio of SC to GLs for each source of variation:10

SCCM
GL

=

In the case of a fixed factor and a random factor, without interaction, 
the reproductive model, in elementary algebra, is given by: 

ijk i j ijky s b eµ= + + +

And the ANOVA square for the above model is presented in Table 
1.

Table 1 ANOVA for Henderson’s method III

FV SC GL CM E ( CM)

Factor Fijo SCb fijon -1

Padres SCs sn -1 E( 2 2
s eCM ) fijo sn kσ σ= +

residual SCtotal SCresto−∑ GLtotal GLresto−∑ ( ) 2
eE CM eσ=

Total ( )y y R µ′ − n-1

1fijo

SCb
n −

1s

SCs
n −

SCe
GLtotal GLresto−
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Where 𝑘 is the number of replicates of the design, 𝑛𝑓𝑖𝑗𝑜 is the 
number of levels of the fixed effect and 𝑛𝑠 is the number of levels 
of the random factor. The variance components are calculated by 
equating the CM to their E (CM): 

2 2
e fijo sCMs n kσ σ= +
2
eCMe σ=

And the unique solution of this system of equations is: 
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In balanced data, the CS can be estimated directly without the need 
for adjustment, for a model with two non-interacting factors: 
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Where ∑ 𝑦𝑠2
. is the sum of the sum of the sum of the data for each 

player squared, ∑ 𝑦𝑏2
. is the sum of the sum of the sum of the data for 

each level of the fixed effect and w is the number of replicates for the 
fixed effect. For the unbalanced case, the SCs have to be calculated 
using the type III SCs for the random factor (sire), since type III 
calculates the SCs of an effect by correcting them with respect to any 
other effect that does not contain it and orthogonal to any effect (if it 
exists) that contains it. Type III CS can be expressed as:11 

( ) ( ), , ,SCs SC s b SC bµ µ= −

The 𝑆𝐶𝑠 is corrected for the effects of 𝜇 𝑦 𝑏where 𝜇 is the intercept 
or herd mean effect. In order to find the values of 𝑆𝐶𝑠 it is necessary 
to fit a complete model and calculate (𝜇, 𝑠, 𝑏, ) and subtract 𝑆𝐶(𝜇, 𝑏) 
a reduced model.  

Maximum likelihood  

The maximum likelihood (ML) method is a classical method of 
parameter estimation proposed by Fisher,12 but it was not until Hartley 
and Rao,13 that it was used for mixed models in general. Knowing 
the likelihood function as a function of the parameters of a statistical 
model given some data, in ML we try to obtain estimators of the 
variance components that maximize the likelihood function, that is, 
that have the maximum probability of representing the population 
parameters. 

The likelihood function is defined as the product of the likelihood 
function of the data, but in practice, the natural logarithm of the 
likelihood function is used because it is more manageable, if the 
distribution of the data is normal, in matrix algebra the natural 
logarithm of the likelihood function is defined as:11 

( ) ( ) ( ) ( ) ( )10.5 . 2 0.5 0.5Ln L n In In V y Xb V y Xbπ −= − − − − ′ −

Where (𝐿) is the natural logarithm of the likelihood function and 
𝑉 = 𝑍𝐺𝑍′ + 𝑅 is the variance and phenotypic covariance matrix of the 
model. To find the estimators that maximize the likelihood, we need 
to find the maximum of equation (𝐿)This is achieved with different 
methodologies, for example, if the data structure is balanced and we 
have a mixed model, with a random effect and a fixed one with no 
interaction, the derivative of 𝐿𝑛(𝐿)with respect to the parameters to 
be estimated σ2

s y σ2
e will lead us to a system of equations whose 
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2

2
e

s
s

fijo

SCs
n
n k

σ
σ

−
=

( )
2 1

1
1

fijo
e

s fijo

n
CMe

n n k
σ

 −
 = −
 − 

An important point of ML estimation, for this model, is that even 
with balanced data, it is possible to find estimators different from 
the ones presented above, since these solutions will be valid if the 
inequality 𝐶𝑀𝑠 > 𝐶𝑀𝑒 is met, but on the other hand, if the inequality 
is 𝐶𝑀𝑠 < 𝐶𝑀𝑒 ML estimates for this model and balanced data are 
given by:11
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That is all phenotypic variability is residual, which may indicate 
that the model used is incorrect or that the number of data is 
insufficient, thus increasing the variability of the error. The variance 
σ2

p is the sum of the variance components σ2
e y σ2

s whose sum gives 
an estimate of σ2

p given mathematically by: 
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p s e

y Xb y Xb
n

σ σ σ
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Which is biased, since it is associated with n degrees of freedom. If 
the structure of the daros is unbalanced, the partial derivatives of (𝐿) 
lead to nonlinear maximum likelihood equations for the parameters to 
be estimated, therefore, the system of equations cannot be solved with 
direct methods. Faced with this problem, iterative number methods 
are used to try to approximate the maximum of (𝐿) which are applied 
to the logarithmic likelihood itself and not to the equations resulting 
from its first derivative, in order to be able to simultaneously calculate 
the variance components and (𝐿)which we can use to find fit criteria 
for our model, such as the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC). 

Restricted maximum likelihood 

The restricted maximum likelihood method (REML) is a method 
proposed by Paterson and Thompson,13 which takes into account 
the loss of degrees of freedom by including fixed effects in the 
statistical model, therefore, the estimation of variability components 
are unbiased, since they are associated to degrees of freedom, which 
leads to an estimation of variance of the model. 𝑛 − (𝑋) degrees of 
freedom, which leads to an estimate of the variance, which is defined 
as σ2

pwhich is defined as: 

( ) ( )
( )

2
p

y Xb y Xb
n Rango X

σ
− ′ −

=
−

Where (𝑋) is the rank of the incidence matrix for the fixed effects 
of the model. For the case where the only fixed effect is 𝜇the variance 
σ2

p is associated with 𝑛 − 1 degrees of freedom. 

As in ML, in REML, the objective is to maximize the logarithm 
of a function of the parameters, but in this case restricted, which is 
known as restricted likelihood function, which in matrix algebra is 
defined as:14 

( ) ( ) ( ) ( ) ( )1 10.5 . 2 0.5 0.5 0.5Ln Lr n p In In V X V X y Xb V y Xbπ − −= − − − − ′ − − ′ −

Where (𝐿𝑟) is the logarithm of the restricted likelihood function. If 
we have a balanced data structure and by deriving (𝐿𝑟) as a function of 
the variability components of the model (model above), we can solve 
a system of equations that give rise to estimates given by:11 
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These are identical to estimates using an ANOVA, since a property 
of REML is that in a balanced data structure, REML estimates = 
ANOVA as long as the inequality is satisfied. 𝐶𝑀𝑠 > 𝐶𝑀𝑒 Otherwise, 
estimates via ANOVA would be negative and in REML all phenotypic 
variability is residual. In unbalanced data structure, the derivative of 
(𝐿𝑟) with respect to the variance components, gives rise to nonlinear 
equations, which cannot be solved directly, therefore, in these cases, 
as in ML, iterative numerical methods are used to approximate the 
value of the variance components. 

REML estimates using kinship information in an 
animal model

In the case of a simple animal model, where each animal has only 
one data (and there are animals without data), the ANOVA method 
cannot be applied, since it is not possible to estimate the variation 
within groups using this methodology, because the classification 
variable is each animal that has a unique record, but the ML and 
REML estimations are applicable since they allow introducing kinship 
information in the matrix. 𝐴. In a mixed model, maximizing (𝐿𝑟) is 
equivalent to minimize −2 (𝐿𝑟) Therefore, the objective function to be 
minimized, in matrix algebra, can be defined as:14

( ) ( ) ( )2 . 2Ln Lr n p In Ln R Ln G Ln C y Pyπ− = − + + + + ′

Where 𝐿𝑛|𝐶| is the natural logarithm of the determinant of the 
coefficient matrix of the normal Henderson equations and ′𝑃𝑦 is the 
generalized residual sum of squares. Obviously to minimize −2𝐿𝑛(𝐿𝑟) 
iterative numerical methods are needed, but it has the advantage that it 
is easier than maximizing 𝐿𝑛(𝐿𝑟) Therefore, most specialized REML 
programs use sparse matrix algorithms and numerical methods to try 
to find estimators resulting from the minimization of −2𝐿𝑛(𝐿𝑟). 

Materials and methods 
An example of birth weight (BW) in cattle was used to calculate 

the VG, ℎ2 y 𝑒2 using a mixed model, with a fixed and a random factor. 
The database is presented in Table 2. In this problem, we want to 
eliminate the variability that exists between the sexes, therefore, the 
sex factor is considered as fixed and the father factor as random, 
which leads us to the statistical model for this problem: 

PN media padre sexo error= + + +

Table 2 Database of animal records, sex and NP

Father Animal Sex y

1 3 Male 36 
1 4 Male 35 
1 5 Female 33 
1 6 Female 28 
2 7 Female 31 
2 8 Female 29 
2 9 Male 28 
2 10 Male 36 
3 11 Male 38 
3 12 Male 37 
3 13 Female 29 
3 14 female 35 

ANOVA, ML, and REML methods were used to calculate ℎ2 , 𝑒2 
and GVs using the data in Table 2, first using all the information and 
then assuming the last missing data. For the animal model, a similar 
model was used: 

PN media animal sexo error= + + +

Where all the kinship information and the value of the variance 
components found in the previous model were used to solve the 
Henderson normal equations. 

Results and discussion 

Balanced data in a reproductive model

To calculate the CM, it is necessary to calculate the SC and GL for 
each source of variation, for this model and our data structure, we can 
calculate them using the formulas in Table 1: 

3 1 2sGL = − =

2 1 1sexoGL = − =

12 1 11totalGL = − =

11 1 2 11 3 8eGL = − − = − =  

And since the design is balanced, the SCs are: 
2

2 2 2 2 39536 35 33 35 152.916
12totalSC = + + +…+ − =

( ) ( ) ( )2 2 2 2132 124 139 395 28.166
4 12sSC

+ +
= − =

( ) ( )2 2 2185 210 395 52.083
6 12sexoSC
+

= − =

( )152.916 28.166 52.083 72.667eSC = − + =

And the CMs come from: 
28.166 14.083

2SCM = =

72.667 9.083
8eCM = =

And from the CM we can calculate the variance components: 

( )
2 14.083 9.083 1.25

2 2sσ
−

= =

Therefore, ℎ2 using ANOVA is: 

( )2 4 1.25
0.483

1.25 9.083
h = =

+

2 10.33 5 0.515
10.33

e −
= =

And these ANOVA estimates, too, are REML, since the data 
structure is balanced and the 𝐶𝑀𝑠 > 𝐶𝑀𝑒. Now the calculation of 
the GVs, using the REML estimates, comes from the solutions of 
the normal Henderson equations, using the estimated value of the 
variance components, and calculating the value of 𝛼 we have that: 

9.083 7.2664
1.25

α = =
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Therefore, the equations are: 

1

2

1

2

1

2

1

2

33

185
6 0 2 2 2 6 0 2 2 2210
0 6 2 2 2 0 6 2 2 2132
2 2 4 7.266 0 0 2 2 11.266 0 0124
2 2 0 4 7.266 0 2 2 0 11.266 0139
2 2 0 0 4 7.266 2 2 0 0 11.266

b
b
s
s
s

b
b
s
s
s
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 
 
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185
210
132
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139

  
  
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    

In the previous equations the value of 𝜇 was forced to be zero in 
order to break the linear dependence between the rows and columns 
of the coefficient matrix. The solution of this system of equations is 
given by: 

1

1

2

1

2

3

185 30.83
6 0 2 2 2 210 35
0 6 2 2 2 132 0.029
2 2 11.266 0 0 124 0.680
2 2 0 11.266 0 139 0.650
2 2 0 0 11.266

b
b
s
s
s

−
  
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ML estimates are: 

( )
2

28.166 8.073
3 0.328

2 2sσ
−

= =

( )( )
2 2 1 1 9.083 8.073

3 2 2 1eσ
 −

= − = 
−  

Y ℎ2y 𝑒2using ML is: 

( )2 4 0.328
0.156

0.328 8.073
h = =

+

2 8.401 1.3212 0.842
8.401

e −
= =

And the equations using ML are: 
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185
6 0 2 2 2 210
0 6 2 2 2 132
2 2 28.612 0 0 124
2 2 0 28.612 0 139
2 2 0 0 28.612

b
b
s
s
s

 
             =          

 
 
 
 
 
 
   

 
 

Therefore the solution is:

1

2

1

2

1

3

185 30.83
6 0 2 2 2 210 35
0 6 2 2 2 132 0.011
2 2 28.612 0 0 124 0.267
2 2 0 28.612 0 139 0.256
2 2 0 0 28.612

b
b
s
s
s

−
 
                        = =                        
 


−



Introduction of the parentage matrix in a reproductive 
model 

Now it is assumed that animal 1 is the father of animal 2, therefore, 
the equations take into account all the genealogy between males. First 
we have to calculate 𝐴−1. Applying Henderson’s rules,5 we have: 

1
1 1 / 3 2 / 3 0 1 / 4 2 / 3 0

2 / 3 1 / 4 0 2 / 3 1 / 4 0
0 0 1 0 0 1

A−

+ − − 
 


= − = −


 
 


 
   

Therefore, 

( )1

1 2 0
4 3 1.8166 4.8442 0
2 1 0 4.8442 17.2664 .8166 0
3 4

0 0 7.26640 0 1

A α−

−
−

 
 

  
   =   
    

 
 

= − −



And adding the Z’Z matrix: 

1
4 0 0 1.8166 4.8442 0 5.8166 0.8442 0
0 4 0 4.8442 1.8166 0 0.8442 5.8166 0
0 0 4 0 0 7.2664 0 0 11.2664

Z Z A α−
     
     ′ + = + =     
     

− −
−

  

−

 

Therefore, the Henderson normal equations are: 

1

2

1

2

3

185
6 0 2.0000 2.0000 2.0000 210
0 6 2.0000 2.0000 2.0000 132
2 2 5.8166 0.8442 0.0000 124
2 2 .08442 5.8166 0.0000 139
2 2 0.0000 0.0000 11.2664

b
b
s
s
s

 
                    =      −         −    
 
 

And the solution of these equations is:
1

1

2

1

2

3

185 31.6285
6 0 2.0000 2.0000 2.0000 210 35.7952
0 6 2.0000 2.0000 2.0000 132
2 2 5.8166 0.8442 0.0000 124
2 2 0.8442 5.8166 0.0000 139
2 2 0.0000 0.0000 11.2664

b
b
s
s
s

−
 
                = =     −       −    
 
 

0.7765
1.9776

0.3685

 
 
 
 −
 
− 
  

In this solution, the fixed effect (sex) is adjusted for the random 
example, and the random effect is adjusted for the fixed effect. 

Unbalanced data in a reproductive model 

Assuming the last missing data, the 𝑆𝐶𝑡𝑜𝑡𝑎𝑙 is: 
2

2 2 2 2 36036 35 33 29 148.1818182
11totalSCtotal SC= = + + +…+ − =

The GLs are: 

3 1 2sGL = − =

2 1 1sexoGL = − =

11 1 10totalGL = − =

10 1 2 11 3 7eGL = − − = − =

To calculate the ordinary least squares solutions for the reduced 
model (without the sire factor) must be estimated: 

111 5 6 360 0.1666 0.1666 0 360 35
5 5 0 150 0.1666 0.3666 0 150 5
6 0 6 0 0 0 0 0 0

b

− −         
         = = − = −         
                  
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Therefore, the 𝑆𝐶𝑠𝑒𝑥𝑜 for the reduced model is:

( ) [ ] ( ) ( ) ( ) ( )
2 2360

360 36035 5  0 150 35 360 5 150 68.1818
11 11

210
sexo reducidoSC

 
 = − − = + − − = 
  

To obtain the adjusted SCs, we calculate the SC for the full model 
and subtract from it, respectively (𝑟𝑒𝑑𝑢𝑐𝑖𝑑𝑜): 

( ) ( ), , , , 83.6818182 68.1818 15.5SCs SC s sexo SC sexoµ µ= − = − =

 And the 𝑆𝐶𝑒 is: 

( )148.1818182 15.5 68.1818 64.5eSC = − + =

Therefore, the CMs are: 
15.5 7.75

2sCM = =

64.5 9.214286
7eCM = =

Finally, the variance components are: 

2 7.75 9.214286 0.4067
3.6sσ

−
= = −

2  9.214286eσ =

The component σ2
s component is a negative estimate of the 

variance, because the 𝐶𝑀𝑠 < 𝐶𝑀𝑒is negative, therefore, the ML and 
REML estimates for σ2

s are: 

σ2
s = 0 

In other words, all the total variability is residual. Table 3 shows 
the ML and REML iterations for the calculation of the residual 
variance with the Newton-Rapson method: As shown in Table 3, 
when an unbalanced database is used, the estimates for the variance 
components are different in ANOVA and REML, since with ANOVA 
we have σ2

e = 9.2142 and with REML σ2
e = 8.88. For this particular 

case, ℎ2 = 0 because the variance of the numerator is zero, obviously 
to find a more credible estimate, one should increase the number of 
data used in the genetic evaluation or try another model and compare 
the AIC. 

Animal model 

The solutions of the Henderson normal equations, using the values 
of σ2

e = 9.083 y σ2
a = 5 are presented in Table 4 Henderson’s normal 

equations are not presented for this case due to its large dimensions. 
Table 3 Iteration of variance components for ML and REML

ML REML

Iteración -2ln(L) iteración -2ln( )

1 53.0420 0 7.2727 1 48.6053 0 8.88
2 53.0420 0 7.2727 2 48.6053 0 8.88

Table 4 Genetic values using an animal model

Animal VG 
1 0.422982   
2 -0.984574   
3 1.10566  
4 0.217214   
5 0.809321   
6 -0.651756   
7 -0.273233   
8 -0.857664   
9 -2.32642   
10 0.113062E-01  
11 1.33545  
12 1.04324  

13 -0.117947   
14 1.63535  

Conclusion 
Genetic values and parameters can be estimated using ANOVA, 

ML and REML, but with the risk of estimating negative variance 
components using ANOVA or zero (or overestimated) heritabilities 
with likelihood-based methods when the data structure or model is 
not correct. When the data structure is unbalanced, mathematical 
calculations with ANOVA, ML and REML are more complex and 
require computational algorithms with higher performance. 
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