Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 12 Issue 3

Weighted Adya distribution with properties and application

Rama Shanker,1 Kamlesh Kumar Shukla2

1Department of Statistics, Assam University, Silchar, Assam, India
2Department of Community Medicine, Noida International Institute of Medical Science, India

Correspondence: Kamlesh Kumar Shukla, Department of Community Medicine, Noida International Institute of Medical Science, India

Received: May 15, 2023 | Published: May 31, 2023

Citation: Shanker R, Shukla KK. Weighted Adya distribution with properties and application. Biom Biostat Int J. 2023;12(3):68-74. DOI: 10.15406/bbij.2023.12.00386

Download PDF

Abstract

In this paper a weighted version of Adya distribution which includes Adya distribution has been suggested for modeling lifetime data. The natures of descriptive statistics including coefficients of variation, skewness, kurtosis, and index of dispersion have been studied. The reliability measures including hazard rate function, reversed hazard rate function, mean residual life function and stochastic ordering have been studied. Method of maximum likelihood estimation has been discussed for estimating the parameters. A simulation study has been presented to know the performance of maximum likelihood estimates of parameters. The goodness of fit of the proposed distribution has been explained with a real lifetime data.

Keywords: Adya distribution, moments, reliability properties, maximum likelihood estimation, application

Introduction

As we know that the basic purpose of distribution theory is to determine a reasonable distributional model for the data arising from different fields of knowledge. And once the distributional model of the data is determined, characterization of distribution, computation of confidence intervals of parameters and critical regions for hypothesis tests can easily be done. It has been observed that the discrete or continuous data that we are getting are stochastic in nature and the existing distributions are not able to explain the true nature of data and this is the reasons for the search for new distributions. Further, it has been observed that many times the true nature of data can be better explained by weighted distribution with appropriate weight function. The concept of weighted distributions was firstly introduced by Fisher1 to model ascertainment biases which were later reformulated by Rao2 in a unifying theory for problems where the observations fall in the category of non-experimental, non-replicated and non-random. When observations are recorded by an investigator in the nature according to some stochastic model, the distribution of the recorded observations will not have the original distribution unless every observation is given an equal chance of being recorded. For instance, let the original observation x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaaaaa@38F1@  comes from a distribution having probability density function (pdf) f( x,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaaGPaVdaa@3E70@ , where θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  may be a parameter vector and the observation x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ is recorded according to a probability re-weighted by weight function w( x,α )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhacaGGSaGaeqySdegacaGLOaGaayzkaaGaaGPaVlaaykW7 cqGH+aGpcaaIWaaaaa@41B7@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@  being a new parameter vector, then x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ comes from a distribution having pdf

f w ( x;θ,α )= w( x;α )f( x;θ ) E( W( X,α ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4DaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaam4Damaabm aabaGaamiEaiaacUdacqaHXoqyaiaawIcacaGLPaaacaWGMbWaaeWa aeaacaWG4bGaai4oaiabeI7aXbGaayjkaiaawMcaaaqaaiaadweada qadaqaaiaadEfadaqadaqaaiaadIfacaGGSaGaeqySdegacaGLOaGa ayzkaaaacaGLOaGaayzkaaaaaaaa@5535@   (1.1)

Note that such types of distribution are known as weighted distributions. The weighted distributions with weight function w( x,α )=x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhacaGGSaGaeqySdegacaGLOaGaayzkaaGaeyypa0JaamiE aiaaykW7caaMc8oaaa@41F8@ are called length biased distributions or simple size-biased distributions. Patil et al.3,4 have examined some general probability models leading to weighted probability distributions and their applications and showed the occurrence of w( x;α )=x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhacaGG7aGaeqySdegacaGLOaGaayzkaaGaeyypa0JaamiE aaaa@3EF1@  in a natural way in problems relating to sampling.

The study of weighted distributions is useful in distribution theory because it provides a new understanding of the existing standard probability distributions and it provides methods for extending existing standard probability distributions for modeling lifetime data due to introduction of additional parameter in the model which creates flexibility in their behavior. Weighted distributions occur in modeling datasets having clustered sampling, heterogeneity, and extraneous variation.

Shanker et al.5 introduced a one parameter lifetime distribution named Adya distribution (AD) having pdf and cdf

f 1 ( x;θ )= θ 3 θ 4 +2 θ 2 +2 ( θ+x ) 2 e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdehacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaio daaaaakeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI YaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaaaada qadaqaaiabeI7aXjabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCca WG4baaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaacUdacaWG4bGaeyOp a4JaaGimaiaacYcacaaMc8UaaGPaVlabeI7aXjabg6da+iaaicdaaa a@65EF@   (1.2)

F 1 ( x,θ )=1[ 1+ θx( θx+2 θ 2 +2 ) θ 4 +2 θ 2 +2 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGGSaGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaaGymaiabgkHiTmaadmaabaGaaGymaiabgU caRmaalaaabaGaeqiUdeNaamiEamaabmaabaGaeqiUdeNaamiEaiab gUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIYaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaikdaaaaacaGLBbGaayzxaaGaamyzamaaCaaaleqabaGaeyOe I0IaeqiUdeNaaGPaVlaadIhaaaGccaaMc8UaaGPaVlaacUdacaWG4b GaeyOpa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaaaaa@6A6F@   (1.3)

Obviously Adya distribution is a convex combination of an exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@ distribution, a gamma ( 2,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG OmaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BB9@ distribution and a gamma ( 3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG 4maiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBA@ distribution with their mixing proportions θ 4 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaWbaaSqabeaacaaI0aaaaaGcbaGaeqiUde3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdaaaaaaa@4259@ , 2 θ 2 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaiabeI7aXnaaCaaaleqabaGaaGOmaaaaaOqaaiabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaaaaaaa@4313@ and 2 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikda cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaaaaaa@406A@ , respectively.

Shanker et al.5 discussed its statistical properties including coefficient of variation, skewness, kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean deviations from the mean and the median, Bonferroni and Lorenz curves, stress-strength reliability along with estimation of parameter using maximum likelihood estimation and applications to model lifetime data from engineering and biomedical sciences.

The main purpose of the present paper is to derive weighted version of Adya distribution and discuss its important statistical properties. Its statistical properties including behaviour of pdf, cdf, hazard rate function, mean residual life function and moments based descriptive measures. Maximum likelihood estimation has been discussed to estimate parameters of the distribution. The simulation study to know the performance of maximum likelihood estimates is presented. Finally, an application of the proposed weighted Adya distribution has been presented to test its goodness of fit with other distributions.

Weighted Adya distribution

Considering the weight function w( x;α )= x α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhacaGG7aGaeqySdegacaGLOaGaayzkaaGaeyypa0JaamiE amaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaaaaa@4265@ in (1.1) and using the pdf of Adya distribution from (1.2), the pdf of weighted Adya distribution (WAD) can be expressed as

f 2 ( x;θ,α )= θ α+2 θ 4 +2 θ 2 α+α( α+1 ) x α1 Γ( α ) ( θ+x ) 2 e θx ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3aaW baaSqabeaacqaHXoqycqGHRaWkcaaIYaaaaaGcbaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiab eg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaaWaaSaaaeaacaWG4b WaaWbaaSqabeaacqaHXoqycqGHsislcaaIXaaaaaGcbaGaeu4KdC0a aeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaWaaeWaaeaacqaH4oqCcq GHRaWkcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa amyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaakiaaykW7ca aMc8UaaGPaVlaaykW7caGG7aGaamiEaiabg6da+iaaicdacaGGSaGa aGPaVlaaykW7cqaH4oqCcqGH+aGpcaaIWaGaaiilaiabeg7aHjabg6 da+iaaicdaaaa@80BD@ , (2.1)

 where Γ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B9E@ is the complete gamma function defined as

Γ( α )= 0 e y y α1 dy;y>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdegacaGLOaGaayzkaaGaeyypa0Zaa8qCaeaacaWGLbWa aWbaaSqabeaacqGHsislcaWG5baaaaqaaiaaicdaaeaacqGHEisPa0 Gaey4kIipakiaadMhadaahaaWcbeqaaiabeg7aHjabgkHiTiaaigda aaGccaWGKbGaamyEaiaaykW7caaMc8Uaai4oaiaadMhacqGH+aGpca aIWaGaaiilaiabeg7aHjabg6da+iaaicdaaaa@5542@   (2.2)

It can be easily shown that Adya distribution is a particular case of WAD at α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A6E@ . Like Adya distribution, the pdf of Weighted Adya distribution can be easily expressed as a convex combination of gamma ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaa@3C9C@ , gamma ( θ,α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaaa@3E39@  and gamma ( θ,α+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaaaaa@3E3A@ distributions. We have

  f 2 ( x;θ,α )= p 1 g 1 ( x;θ,α )+ p 2 g 2 ( x;θ,α+1 )+( 1 p 1 p 2 ) g 3 ( x;θ,α+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9iaadchadaWgaaWcbaGaaG ymaaqabaGccaaMc8Uaam4zamaaBaaaleaacaaIXaaabeaakmaabmaa baGaamiEaiaacUdacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzkaa Gaey4kaSIaamiCamaaBaaaleaacaaIYaaabeaakiaaykW7caWGNbWa aSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4bGaai4oaiabeI7aXj aacYcacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacaaIXaGaeyOeI0IaamiCamaaBaaaleaacaaIXaaabeaaki abgkHiTiaadchadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa caaMc8Uaam4zamaaBaaaleaacaaIZaaabeaakmaabmaabaGaamiEai aacUdacqaH4oqCcaGGSaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaa wMcaaaaa@720B@ , (2.3)

 where

  p 1 = θ 4 θ 4 +2 θ 2 α+α( α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqa baGaaGinaaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgU caRiaaykW7caaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaeqyS deMaaGPaVlabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaG ymaaGaayjkaiaawMcaaaaaaaa@4FA2@ , p 2 = 2 θ 2 α θ 4 +2 θ 2 α+α( α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqaH4oqCdaah aaWcbeqaaiaaikdaaaGccaaMc8UaeqySdegabaGaeqiUde3aaWbaaS qabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGa aGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiabeg 7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaaa@51FC@

  g 1 ( x;θ,α )= θ α Γ( α ) e θx x α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3aaW baaSqabeaacqaHXoqyaaaakeaacqqHtoWrdaqadaqaaiabeg7aHbGa ayjkaiaawMcaaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaMc8Uaeq iUdeNaaGPaVlaadIhaaaGccaWG4bWaaWbaaSqabeaacqaHXoqycqGH sislcaaIXaaaaaaa@55AF@ , g 2 ( x;θ,α+1 )= θ α+1 Γ( α+1 ) e θx x α+11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacqGH9aqpdaWcaa qaaiabeI7aXnaaCaaaleqabaGaeqySdeMaey4kaSIaaGymaaaaaOqa aiabfo5ahnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawM caaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaMc8UaeqiUdeNaaGPa VlaadIhaaaGccaWG4bWaaWbaaSqabeaacqaHXoqycqGHRaWkcaaIXa GaeyOeI0IaaGymaaaaaaa@5C24@  and

  g 3 ( x;θ,α+2 )= θ α+2 Γ( α+2 ) e θx x α+21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaacqGH9aqpdaWcaa qaaiabeI7aXnaaCaaaleqabaGaeqySdeMaey4kaSIaaGOmaaaaaOqa aiabfo5ahnaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawM caaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaMc8UaeqiUdeNaaGPa VlaadIhaaaGccaWG4bWaaWbaaSqabeaacqaHXoqycqGHRaWkcaaIYa GaeyOeI0IaaGymaaaaaaa@5C29@ .

The survival (reliability) function of WAD can be obtained as

S( x;θ,α )=P( X>x )= x f 3 ( t;θ,α ) dt= θ α+2 [ θ 4 +2 θ 2 α+α( α+1 ) ]Γ( α ) x t α1 ( θ 2 +2θt+ t 2 ) e θt dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaadcfadaqadaqaaiaadIfacqGH+aGpcaWG4baacaGLOa GaayzkaaGaeyypa0Zaa8qCaeaacaWGMbWaaSbaaSqaaiaaiodaaeqa aOWaaeWaaeaacaWG0bGaai4oaiabeI7aXjaacYcacqaHXoqyaiaawI cacaGLPaaaaSqaaiaadIhaaeaacqGHEisPa0Gaey4kIipakiaaykW7 caWGKbGaaGPaVlaadshacqGH9aqpdaWcaaqaaiabeI7aXnaaCaaale qabaGaeqySdeMaey4kaSIaaGOmaaaaaOqaamaadmaabaGaeqiUde3a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaale qabaGaaGOmaaaakiaaykW7cqaHXoqycaaMc8Uaey4kaSIaeqySde2a aeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGLBb GaayzxaaGaeu4KdC0aaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaWa a8qCaeaacaWG0bWaaWbaaSqabeaacqaHXoqycqGHsislcaaIXaaaaa qaaiaadIhaaeaacqGHEisPa0Gaey4kIipakmaabmaabaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7aXjaadshacq GHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGa aGPaVlaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG0b aaaOGaamizaiaaykW7caWG0baaaa@98F8@  

  = [ θ 4 +2 θ 2 α+α( α+1 ) ]Γ( α,θx )+ ( θx ) α ( θx+2 θ 2 +α+1 ) e θx [ θ 4 +2 θ 2 α+α( α+1 ) ]Γ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaWaamWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWk caaIYaGaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaaaakiaaykW7cq aHXoqycqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigda aiaawIcacaGLPaaaaiaawUfacaGLDbaacqqHtoWrdaqadaqaaiabeg 7aHjaacYcacqaH4oqCcaWG4baacaGLOaGaayzkaaGaey4kaSYaaeWa aeaacqaH4oqCcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacqaHXo qyaaGcdaqadaqaaiabeI7aXjaaykW7caWG4bGaey4kaSIaaGOmaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjabgUcaRi aaigdaaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGHsislcqaH 4oqCcaaMc8UaamiEaaaaaOqaamaadmaabaGaeqiUde3aaWbaaSqabe aacaaI0aaaaOGaey4kaSIaaGOmaiaaykW7cqaH4oqCdaahaaWcbeqa aiaaikdaaaGccaaMc8UaeqySdeMaey4kaSIaeqySde2aaeWaaeaacq aHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa eu4KdC0aaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaaaaa@89D1@ , (2.5)

 where Γ( α,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdeMaaiilaiaadQhaaiaawIcacaGLPaaaaaa@3D4D@  the upper incomplete gamma function defined as

Γ( α,z )= z e y y α1 dy;y0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaabm aabaGaeqySdeMaaiilaiaadQhaaiaawIcacaGLPaaacqGH9aqpdaWd XbqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMhaaaGccaWG5bWaaW baaSqabeaacqaHXoqycqGHsislcaaIXaaaaOGaaGPaVlaadsgacaWG 5bGaaGPaVlaaykW7caaMc8Uaai4oaiaadMhacqGHLjYScaaIWaGaai ilaiabeg7aHjabg6da+iaaicdaaSqaaiaadQhaaeaacqGHEisPa0Ga ey4kIipaaaa@5B15@   (2.6)

Thus, the cdf of WAD can thus be given by

F 1 ( x;θ,α )=1S( x;θ,α ) =1 [ θ 4 +2 θ 2 α+α( α+1 ) ]Γ( α,θx )+ ( θx ) α ( θx+2 θ 2 +α+1 ) e θx [ θ 4 +2 θ 2 α+α( α+1 ) ]Γ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOram aaBaaaleaacaaIXaaabeaakmaabmaabaGaamiEaiaacUdacqaH4oqC caGGSaGaeqySdegacaGLOaGaayzkaaGaeyypa0JaaGymaiabgkHiTi aadofadaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGa ayjkaiaawMcaaaqaaiabg2da9iaaigdacqGHsisldaWcaaqaamaadm aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiaa ykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccaaMc8UaeqySdeMaey 4kaSIaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGa ayzkaaaacaGLBbGaayzxaaGaeu4KdC0aaeWaaeaacqaHXoqycaGGSa GaeqiUdeNaamiEaaGaayjkaiaawMcaaiabgUcaRmaabmaabaGaeqiU deNaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaeqySdegaaOWaae WaaeaacqaH4oqCcaaMc8UaamiEaiabgUcaRiaaikdacqaH4oqCdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPa VlaadIhaaaaakeaadaWadaqaaiabeI7aXnaaCaaaleqabaGaaGinaa aakiabgUcaRiaaikdacaaMc8UaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaaGPaVlabeg7aHjabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey 4kaSIaaGymaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabfo5ahnaa bmaabaGaeqySdegacaGLOaGaayzkaaaaaaaaaa@9F56@

Graphs of the pdf and the cdf of WAD for varying values of the parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@477E@ are shown in Figures 1 & 2 respectively.

Figure 1 pdf of WAD for varying values of θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Figure 2 cdf of WAD for varying values of θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Moments based measures

The r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36ED@ th moment about origin μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3D10@ of WAD can be obtained as

μ r =E( X r )= Γ( α+r ) Γ( α ) θ 4 +2( α+r ) θ 2 +( α+r )( α+r+1 ) θ r { θ 4 +2 θ 2 α+α( α+1 ) } ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaadweadaqadaqaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawI cacaGLPaaacqGH9aqpdaWcaaqaaiabfo5ahnaabmaabaGaeqySdeMa ey4kaSIaamOCaaGaayjkaiaawMcaaaqaaiabfo5ahnaabmaabaGaeq ySdegacaGLOaGaayzkaaaaaiaaykW7daWcaaqaaiabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdadaqadaqaaiabeg7aHjabgU caRiaadkhaaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkdaqadaqaaiabeg7aHjabgUcaRiaadkhaaiaawIcaca GLPaaadaqadaqaaiabeg7aHjabgUcaRiaadkhacqGHRaWkcaaIXaaa caGLOaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaacaWGYbaaaOWaai WaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGa eqiUde3aaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey4kaSIaeqySde 2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGL 7bGaayzFaaaaaiaacUdacaWGYbGaeyypa0JaaGymaiaacYcacaaIYa GaaiilaiaaiodacaGGSaGaaiOlaiaac6cacaGGUaaaaa@8694@   (3.1)

The first four moments about origin of WAD thus can be obtained as

μ 1 = α{ θ 4 +2( α+1 ) θ 2 +( α+1 )( α+2 ) } θ{ θ 4 +2 θ 2 α+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaiWaaeaacqaH4oqCdaahaaWcbeqaaiaais daaaGccqGHRaWkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcaaIXaaa caGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRmaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMca amaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay 5Eaiaaw2haaaqaaiabeI7aXnaacmaabaGaeqiUde3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjab gUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaGaaGPaVd aa@703D@  

μ 2 = α( α+1 ){ θ 4 +2( α+2 ) θ 2 +( α+2 )( α+3 ) } θ 2 { θ 4 +2 θ 2 α+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGc cqGHRaWkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOa GaayzkaaGaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUca RmaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaamaabm aabaGaeqySdeMaey4kaSIaaG4maaGaayjkaiaawMcaaaGaay5Eaiaa w2haaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaacmaabaGaeq iUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqyda qadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUha caGL9baaaaaaaa@758B@  

μ 3 = α( α+1 )( α+2 ){ θ 4 +2( α+3 ) θ 2 +( α+3 )( α+4 ) } θ 3 { θ 4 +2 θ 2 α+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRa WkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcaaIZaaacaGLOaGaayzk aaGaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabm aabaGaeqySdeMaey4kaSIaaG4maaGaayjkaiaawMcaamaabmaabaGa eqySdeMaey4kaSIaaGinaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaa qaaiabeI7aXnaaCaaaleqabaGaaG4maaaakmaacmaabaGaeqiUde3a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaale qabaGaaGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqa aiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9b aaaaaaaa@7939@  

μ 4 = α( α+1 )( α+2 )( α+3 ){ θ 4 +2( α+4 ) θ 2 +( α+4 )( α+5 ) } θ 4 { θ 4 +2 θ 2 α+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIZaaacaGLOaGaayzkaa WaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI YaWaaeWaaeaacqaHXoqycqGHRaWkcaaI0aaacaGLOaGaayzkaaGaaG PaVlabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGa eqySdeMaey4kaSIaaGinaaGaayjkaiaawMcaamaabmaabaGaeqySde Maey4kaSIaaGynaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiab eI7aXnaaCaaaleqabaGaaGinaaaakmaacmaabaGaeqiUde3aaWbaaS qabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGa aGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiabeg 7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaaa aa@7E05@  .

Using the relationship between central moments and moments about origin, the central moments of WAD can be obtained as

μ 2 = α{ θ 8 +( 4α+4 ) θ 6 +( 6 α 2 +12α+6 ) θ 4 +( 4 α 3 +12 α 2 +8α ) θ 2 +( α 4 +4 α 3 +5 α 2 +2α ) } θ 2 { θ 2 +2 θ 2 α+α( α+1 ) } 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqySde2aaiWaaeaa cqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkdaqadaqaaiaais dacqaHXoqycqGHRaWkcaaI0aaacaGLOaGaayzkaaGaeqiUde3aaWba aSqabeaacaaI2aaaaOGaey4kaSYaaeWaaeaacaaI2aGaeqySde2aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacqaHXoqycqGH RaWkcaaI2aaacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaI0a aaaOGaey4kaSYaaeWaaeaacaaI0aGaeqySde2aaWbaaSqabeaacaaI ZaaaaOGaey4kaSIaaGymaiaaikdacqaHXoqydaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaI4aGaeqySdegacaGLOaGaayzkaaGaaGPaVlab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaeqySde 2aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGinaiabeg7aHnaaCaaa leqabaGaaG4maaaakiabgUcaRiaaiwdacqaHXoqydaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzkaaaacaGL 7bGaayzFaaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaiWaae aacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiU de3aaWbaaSqabeaacaaIYaaaaOGaaGPaVlabeg7aHjaaykW7cqGHRa WkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGL PaaaaiaawUhacaGL9baadaahaaWcbeqaaiaaikdaaaaaaaaa@93D0@  

μ 3 = 2α{ θ 12 +( 6α+6 ) θ 10 +( 15 α 2 +27α+12 ) θ 8 +( 20 α 3 +50 α 2 +30α ) θ 6 +( 15 α 4 +48 α 3 +39 α 2 +6α ) θ 4 +( 6 α 5 +24 α 4 +30 α 3 +12 α 2 ) θ 2 +( α 6 +5 α 5 +9 α 4 +7 α 3 +2 α 2 ) } θ 3 { θ 2 +2 θ 2 α+α( α+1 ) } 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmaiabeg7aHnaa cmaaeaqabeaacqaH4oqCdaahaaWcbeqaaiaaigdacaaIYaaaaOGaey 4kaSYaaeWaaeaacaaI2aGaeqySdeMaey4kaSIaaGOnaaGaayjkaiaa wMcaaiabeI7aXnaaCaaaleqabaGaaGymaiaaicdaaaGccqGHRaWkda qadaqaaiaaigdacaaI1aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGOmaiaaiEdacqaHXoqycqGHRaWkcaaIXaGaaGOmaaGaay jkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGioaaaakiabgUcaRmaa bmaabaGaaGOmaiaaicdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaaI1aGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaiodacaaIWaGaeqySdegacaGLOaGaayzkaaGaeqiUde3aaW baaSqabeaacaaI2aaaaaGcbaGaey4kaSYaaeWaaeaacaaIXaGaaGyn aiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaisdacaaI4a GaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiaaiMda cqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeqySde gacaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaaleqabaGaaGinaaaa kiabgUcaRmaabmaabaGaaGOnaiabeg7aHnaaCaaaleqabaGaaGynaa aakiabgUcaRiaaikdacaaI0aGaeqySde2aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaG4maiaaicdacqaHXoqydaahaaWcbeqaaiaaiodaaa GccqGHRaWkcaaIXaGaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaa aakeaacqGHRaWkdaqadaqaaiabeg7aHnaaCaaaleqabaGaaGOnaaaa kiabgUcaRiaaiwdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRa WkcaaI5aGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG4n aiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdacqaHXo qydaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaGaay5Eaiaa w2haaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakmaacmaabaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqyda qadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUha caGL9baadaahaaWcbeqaaiaaiodaaaaaaOGaaGPaVdaa@CD3A@  

μ 4 = 3α{ ( α+2 ) θ 16 +( 8 α 2 +24α+16 ) θ 14 +( 28 α 3 +112 α 2 +124α+40 ) θ 12 +( 56 α 4 +280 α 3 +416 α 2 +192α ) θ 10 +( 70 α 5 +420 α 4 +782 α 3 +488 α 2 +56α ) θ 8 +( 56 α 6 +392 α 5 +888 α 4 +760 α 3 +208 α 2 ) θ 6 +( 28 α 7 +224 α 6 +608 α 5 +696 α 4 +324 α 3 +40 α 2 ) θ 2 +( 8 α 8 +72 α 7 +232 α 6 +344 α 5 +240 α 4 +64 α 3 )θ +( α 9 +10 α 8 +38 α 7 +72 α 6 +73 α 5 +38 α 4 +8 α 3 ) } θ 4 { θ 2 +2θα+α( α+1 ) } 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaG4maiabeg7aHnaa cmaaeaqabeaadaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcaca GLPaaacqaH4oqCdaahaaWcbeqaaiaaigdacaaI2aaaaOGaey4kaSYa aeWaaeaacaaI4aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiaaisdacqaHXoqycqGHRaWkcaaIXaGaaGOnaaGaayjkaiaa wMcaaiabeI7aXnaaCaaaleqabaGaaGymaiaaisdaaaGccqGHRaWkda qadaqaaiaaikdacaaI4aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGa ey4kaSIaaGymaiaaigdacaaIYaGaeqySde2aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGymaiaaikdacaaI0aGaeqySdeMaey4kaSIaaGin aiaaicdaaiaawIcacaGLPaaacaaMc8UaeqiUde3aaWbaaSqabeaaca aIXaGaaGOmaaaaaOqaaiabgUcaRmaabmaabaGaaGynaiaaiAdacqaH XoqydaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaGioaiaaic dacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0aGaaGym aiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXa GaaGyoaiaaikdacqaHXoqyaiaawIcacaGLPaaacaaMc8UaeqiUde3a aWbaaSqabeaacaaIXaGaaGimaaaakiabgUcaRmaabmaabaGaaG4nai aaicdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI0aGa aGOmaiaaicdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGHRaWkca aI3aGaaGioaiaaikdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGH RaWkcaaI0aGaaGioaiaaiIdacqaHXoqydaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaI1aGaaGOnaiabeg7aHbGaayjkaiaawMcaaiaaykW7 cqaH4oqCdaahaaWcbeqaaiaaiIdaaaaakeaacqGHRaWkdaqadaqaai aaiwdacaaI2aGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIa aG4maiaaiMdacaaIYaGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaey 4kaSIaaGioaiaaiIdacaaI4aGaeqySde2aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaG4naiaaiAdacaaIWaGaeqySde2aaWbaaSqabeaaca aIZaaaaOGaey4kaSIaaGOmaiaaicdacaaI4aGaeqySde2aaWbaaSqa beaacaaIYaaaaaGccaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaale qabaGaaGOnaaaaaOqaaiabgUcaRmaabmaabaGaaGOmaiaaiIdacqaH XoqydaahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaIYaGaaGOmaiaais dacqaHXoqydaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI2aGaaGim aiaaiIdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI2a GaaGyoaiaaiAdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGHRaWk caaIZaGaaGOmaiaaisdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaaI0aGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaaake aacqGHRaWkdaqadaqaaiaaiIdacqaHXoqydaahaaWcbeqaaiaaiIda aaGccqGHRaWkcaaI3aGaaGOmaiabeg7aHnaaCaaaleqabaGaaG4naa aakiabgUcaRiaaikdacaaIZaGaaGOmaiabeg7aHnaaCaaaleqabaGa aGOnaaaakiabgUcaRiaaiodacaaI0aGaaGinaiabeg7aHnaaCaaale qabaGaaGynaaaakiabgUcaRiaaikdacaaI0aGaaGimaiabeg7aHnaa CaaaleqabaGaaGinaaaakiabgUcaRiaaiAdacaaI0aGaeqySde2aaW baaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGaaGPaVlabeI7aXbqa aiabgUcaRmaabmaabaGaeqySde2aaWbaaSqabeaacaaI5aaaaOGaey 4kaSIaaGymaiaaicdacqaHXoqydaahaaWcbeqaaiaaiIdaaaGccqGH RaWkcaaIZaGaaGioaiabeg7aHnaaCaaaleqabaGaaG4naaaakiabgU caRiaaiEdacaaIYaGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey4k aSIaaG4naiaaiodacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRa WkcaaIZaGaaGioaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUca RiaaiIdacqaHXoqydaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPa aaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaa kmaacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG OmaiabeI7aXjaaykW7cqaHXoqycaaMc8Uaey4kaSIaeqySde2aaeWa aeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGL7bGaay zFaaWaaWbaaSqabeaacaaI0aaaaaaakiaaykW7aaa@51AF@

Thus the coefficient of variation (C.V), coefficient of skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3B39@ , coefficient of kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3B2A@ , and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3A3E@ of WAD are obtained as

C.V.= σ μ 1 = θ 8 +( 4α+4 ) θ 6 +( 6 α 2 +12α+6 ) θ 4 +( 4 α 3 +12 α 2 +8α ) θ 2 +( α 4 +4 α 3 +5 α 2 +2α ) α { θ 4 +2( α+1 ) θ 2 +( α+1 )( α+2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiaac6cacqGH9aqpdaWcaaqaaiabeo8aZbqaaiabeY7aTnaa BaaaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaacq GH9aqpdaWcaaqaamaakaaabaGaeqiUde3aaWbaaSqabeaacaaI4aaa aOGaey4kaSYaaeWaaeaacaaI0aGaeqySdeMaey4kaSIaaGinaaGaay jkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRmaa bmaabaGaaGOnaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaigdacaaIYaGaeqySdeMaey4kaSIaaGOnaaGaayjkaiaawMcaaiab eI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaabaGaaGinai abeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdacaaIYaGa eqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGioaiabeg7aHb GaayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkdaqadaqaaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgU caRiaaisdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI 1aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg 7aHbGaayjkaiaawMcaaaWcbeaaaOqaamaakaaabaGaeqySdegaleqa aOWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkca aIYaWaaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGa aGPaVlabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaaba GaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeqyS deMaey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaaaa a@9C19@  

β 1 = μ 3 μ 2 3/2 = 2{ θ 12 +( 6α+6 ) θ 10 +( 15 α 2 +27α+12 ) θ 8 +( 20 α 3 +50 α 2 +30α ) θ 6 +( 15 α 4 +48 α 3 +39 α 2 +6α ) θ 4 +( 6 α 5 +24 α 4 +30 α 3 +12 α 2 ) θ 2 +( α 6 +5 α 5 +9 α 4 +7 α 3 +2 α 2 ) } α { θ 8 +( 4α+4 ) θ 6 +( 6 α 2 +12α+6 ) θ 4 +( 4 α 3 +12 α 2 +8α ) θ 2 +( α 4 +4 α 3 +5 α 2 +2α ) } 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaaca aIYaaabeaakmaaCaaaleqabaWaaSGbaeaacaaIZaaabaGaaGOmaaaa aaaaaOGaeyypa0ZaaSaaaeaacaaIYaWaaiWaaqaabeqaaiabeI7aXn aaCaaaleqabaGaaGymaiaaikdaaaGccqGHRaWkdaqadaqaaiaaiAda cqaHXoqycqGHRaWkcaaI2aaacaGLOaGaayzkaaGaeqiUde3aaWbaaS qabeaacaaIXaGaaGimaaaakiabgUcaRmaabmaabaGaaGymaiaaiwda cqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaG4nai abeg7aHjabgUcaRiaaigdacaaIYaaacaGLOaGaayzkaaGaeqiUde3a aWbaaSqabeaacaaI4aaaaOGaey4kaSYaaeWaaeaacaaIYaGaaGimai abeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiwdacaaIWaGa eqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maiaaicdacq aHXoqyaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaiAdaaaaa keaacqGHRaWkdaqadaqaaiaaigdacaaI1aGaeqySde2aaWbaaSqabe aacaaI0aaaaOGaey4kaSIaaGinaiaaiIdacqaHXoqydaahaaWcbeqa aiaaiodaaaGccqGHRaWkcaaIZaGaaGyoaiabeg7aHnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaiAdacqaHXoqyaiaawIcacaGLPaaacaaM c8UaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaaca aI2aGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGOmaiaa isdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIZaGaaG imaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdacaaI YaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaaG PaVlabeI7aXnaaCaaaleqabaGaaGOmaaaaaOqaaiabgUcaRmaabmaa baGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGynaiabeg 7aHnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaiMdacqaHXoqydaah aaWcbeqaaiaaisdaaaGccqGHRaWkcaaI3aGaeqySde2aaWbaaSqabe aacaaIZaaaaOGaey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaaaacaGL7bGaayzFaaaabaWaaOaaaeaacq aHXoqyaSqabaGcdaGadaqaaiabeI7aXnaaCaaaleqabaGaaGioaaaa kiabgUcaRmaabmaabaGaaGinaiabeg7aHjabgUcaRiaaisdaaiaawI cacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkdaqa daqaaiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIXaGaaGOmaiabeg7aHjabgUcaRiaaiAdaaiaawIcacaGLPaaacqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqaaiaaisdacq aHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGOmaiab eg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiIdacqaHXoqyai aawIcacaGLPaaacaaMc8UaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSYaaeWaaeaacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGHRa WkcaaI0aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGyn aiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXo qyaiaawIcacaGLPaaaaiaawUhacaGL9baadaahaaWcbeqaamaalyaa baGaaG4maaqaaiaaikdaaaaaaaaaaaa@FD3E@  

β 2 = μ 4 μ 2 2 = 3{ ( α+2 ) θ 16 +( 8 α 2 +24α+16 ) θ 14 +( 28 α 3 +112 α 2 +124α+40 ) θ 12 +( 56 α 4 +280 α 3 +416 α 2 +192α ) θ 10 +( 70 α 5 +420 α 4 +782 α 3 +488 α 2 +56α ) θ 8 +( 56 α 6 +392 α 5 +888 α 4 +760 α 3 +208 α 2 ) θ 6 +( 28 α 7 +224 α 6 +608 α 5 +696 α 4 +324 α 3 +40 α 2 ) θ 2 +( 8 α 8 +72 α 7 +232 α 6 +344 α 5 +240 α 4 +64 α 3 )θ +( α 9 +10 α 8 +38 α 7 +72 α 6 +73 α 5 +38 α 4 +8 α 3 ) } α { θ 8 +( 4α+4 ) θ 6 +( 6 α 2 +12α+6 ) θ 4 +( 4 α 3 +12 α 2 +8α ) θ 2 +( α 4 +4 α 3 +5 α 2 +2α ) } 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaGaaG4mamaacmaa eaqabeaadaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPa aacqaH4oqCdaahaaWcbeqaaiaaigdacaaI2aaaaOGaey4kaSYaaeWa aeaacaaI4aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG OmaiaaisdacqaHXoqycqGHRaWkcaaIXaGaaGOnaaGaayjkaiaawMca aiabeI7aXnaaCaaaleqabaGaaGymaiaaisdaaaGccqGHRaWkdaqada qaaiaaikdacaaI4aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4k aSIaaGymaiaaigdacaaIYaGaeqySde2aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGymaiaaikdacaaI0aGaeqySdeMaey4kaSIaaGinaiaa icdaaiaawIcacaGLPaaacaaMc8UaeqiUde3aaWbaaSqabeaacaaIXa GaaGOmaaaaaOqaaiabgUcaRmaabmaabaGaaGynaiaaiAdacqaHXoqy daahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaGioaiaaicdacq aHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0aGaaGymaiaa iAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaG yoaiaaikdacqaHXoqyaiaawIcacaGLPaaacaaMc8UaeqiUde3aaWba aSqabeaacaaIXaGaaGimaaaakiabgUcaRmaabmaabaGaaG4naiaaic dacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI0aGaaGOm aiaaicdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI3a GaaGioaiaaikdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWk caaI0aGaaGioaiaaiIdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI1aGaaGOnaiabeg7aHbGaayjkaiaawMcaaiaaykW7cqaH 4oqCdaahaaWcbeqaaiaaiIdaaaaakeaacqGHRaWkdaqadaqaaiaaiw dacaaI2aGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaG4m aiaaiMdacaaIYaGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaey4kaS IaaGioaiaaiIdacaaI4aGaeqySde2aaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaG4naiaaiAdacaaIWaGaeqySde2aaWbaaSqabeaacaaIZa aaaOGaey4kaSIaaGOmaiaaicdacaaI4aGaeqySde2aaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaaleqaba GaaGOnaaaaaOqaaiabgUcaRmaabmaabaGaaGOmaiaaiIdacqaHXoqy daahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaIYaGaaGOmaiaaisdacq aHXoqydaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI2aGaaGimaiaa iIdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI2aGaaG yoaiaaiAdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI ZaGaaGOmaiaaisdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRa WkcaaI0aGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaayjk aiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacq GHRaWkdaqadaqaaiaaiIdacqaHXoqydaahaaWcbeqaaiaaiIdaaaGc cqGHRaWkcaaI3aGaaGOmaiabeg7aHnaaCaaaleqabaGaaG4naaaaki abgUcaRiaaikdacaaIZaGaaGOmaiabeg7aHnaaCaaaleqabaGaaGOn aaaakiabgUcaRiaaiodacaaI0aGaaGinaiabeg7aHnaaCaaaleqaba GaaGynaaaakiabgUcaRiaaikdacaaI0aGaaGimaiabeg7aHnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaiAdacaaI0aGaeqySde2aaWbaaS qabeaacaaIZaaaaaGccaGLOaGaayzkaaGaaGPaVlabeI7aXbqaaiab gUcaRmaabmaabaGaeqySde2aaWbaaSqabeaacaaI5aaaaOGaey4kaS IaaGymaiaaicdacqaHXoqydaahaaWcbeqaaiaaiIdaaaGccqGHRaWk caaIZaGaaGioaiabeg7aHnaaCaaaleqabaGaaG4naaaakiabgUcaRi aaiEdacaaIYaGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIa aG4naiaaiodacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqGHRaWkca aIZaGaaGioaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa iIdacqaHXoqydaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaaaa Gaay5Eaiaaw2haaaqaaiabeg7aHnaacmaabaGaeqiUde3aaWbaaSqa beaacaaI4aaaaOGaey4kaSYaaeWaaeaacaaI0aGaeqySdeMaey4kaS IaaGinaaGaayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOnaaaa kiabgUcaRmaabmaabaGaaGOnaiabeg7aHnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaigdacaaIYaGaeqySdeMaey4kaSIaaGOnaaGaayjk aiaawMcaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRmaabm aabaGaaGinaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaa igdacaaIYaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG ioaiabeg7aHbGaayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkdaqadaqaaiabeg7aHnaaCaaaleqabaGaaG inaaaakiabgUcaRiaaisdacqaHXoqydaahaaWcbeqaaiaaiodaaaGc cqGHRaWkcaaI1aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiabeg7aHbGaayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaa leqabaGaaGOmaaaaaaGccaaMc8oaaa@80D4@  

γ= σ 2 μ 1 = { θ 8 +( 4α+4 ) θ 6 +( 6 α 2 +12α+6 ) θ 4 +( 4 α 3 +12 α 2 +8α ) θ 2 +( α 4 +4 α 3 +5 α 2 +2α ) } θ{ θ 4 +2 θ 2 α+α( α+1 ) }{ θ 4 +2( α+1 ) θ 2 +( α+1 )( α+2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGcbaGaeqiV d02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaa aaaiabg2da9maalaaabaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaa iIdaaaGccqGHRaWkdaqadaqaaiaaisdacqaHXoqycqGHRaWkcaaI0a aacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4k aSYaaeWaaeaacaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGymaiaaikdacqaHXoqycqGHRaWkcaaI2aaacaGLOaGaayzk aaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaaca aI0aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaiaa ikdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI4aGaeq ySdegacaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRmaabmaabaGaeqySde2aaWbaaSqabeaacaaI0aaaaO Gaey4kaSIaaGinaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUca RiaaiwdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYa GaeqySdegacaGLOaGaayzkaaaacaGL7bGaayzFaaaabaGaeqiUde3a aiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYa GaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaaaakiabeg7aHjabgUca Riabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawM caaaGaay5Eaiaaw2haamaacmaabaGaeqiUde3aaWbaaSqabeaacaaI 0aaaaOGaey4kaSIaaGOmamaabmaabaGaeqySdeMaey4kaSIaaGymaa GaayjkaiaawMcaaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkdaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPa aadaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaaaiaa wUhacaGL9baaaaaaaa@B13D@ .

It should be noted that these moments of WAD reduce to the corresponding moments of Adya distribution at α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A6E@ . Behaviors of coefficient of variation (C.V), coefficient of Skewness (S.K), coefficient of kurtosis (S.K.) and index of dispersion (I.D) of WAD are drawn for varying values of parameters  and are shown in Figures 3–6 respectively.

Figure 3Graphs of C.V of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Figure 4 Graphs of C.S of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Figure 5 Graphs of C.K of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Figure 6 Graphs of I.D of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Moment generating function

The moment generating function of WAD can be obtained as

M X ( t )= j=0 t j j! μ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGH 9aqpdaaeWbqaamaalaaabaGaamiDamaaCaaaleqabaGaamOAaaaaaO qaaiaadQgacaGGHaaaaaWcbaGaamOAaiabg2da9iaaicdaaeaacqGH EisPa0GaeyyeIuoakiaaykW7cqaH8oqBdaWgaaWcbaGaamOAaaqaba GcdaahaaWcbeqaaOGamai4gkdiIcaaaaa@4E2F@  .

= j=0 t j j! Γ( α+j ) Γ( α ) θ 4 +2( α+j ) θ 2 +( α+j )( α+j+1 ) θ j { θ 4 +2 θ 2 α+α( α+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maaqa habaWaaSaaaeaacaWG0bWaaWbaaSqabeaacaWGQbaaaaGcbaGaamOA aiaacgcaaaaaleaacaWGQbGaeyypa0JaaGimaaqaaiabg6HiLcqdcq GHris5aOGaaGPaVpaalaaabaGaeu4KdC0aaeWaaeaacqaHXoqycqGH RaWkcaWGQbaacaGLOaGaayzkaaaabaGaeu4KdC0aaeWaaeaacqaHXo qyaiaawIcacaGLPaaaaaGaaGPaVpaalaaabaGaeqiUde3aaWbaaSqa beaacaaI0aaaaOGaey4kaSIaaGOmamaabmaabaGaeqySdeMaey4kaS IaamOAaaGaayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOmaaaa kiabgUcaRmaabmaabaGaeqySdeMaey4kaSIaamOAaaGaayjkaiaawM caamaabmaabaGaeqySdeMaey4kaSIaamOAaiabgUcaRiaaigdaaiaa wIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaadQgaaaGcdaGada qaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqaHXoqycqGHRaWkcqaHXoqyda qadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUha caGL9baaaaaaaa@7DAA@  .

= 1 { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α ) j=0 t j j! Γ( α+j ){ θ 4 +2( α+j ) θ 2 +( α+j )( α+j+1 ) } θ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaamaacmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabeg 7aHjabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGa ayjkaiaawMcaaaGaay5Eaiaaw2haaiabfo5ahnaabmaabaGaeqySde gacaGLOaGaayzkaaaaamaaqahabaWaaSaaaeaacaWG0bWaaWbaaSqa beaacaWGQbaaaaGcbaGaamOAaiaacgcaaaaaleaacaWGQbGaeyypa0 JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaaGPaVpaalaaabaGaeu4K dC0aaeWaaeaacqaHXoqycqGHRaWkcaWGQbaacaGLOaGaayzkaaWaai WaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaWa aeWaaeaacqaHXoqycqGHRaWkcaWGQbaacaGLOaGaayzkaaGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacqaHXoqycqGH RaWkcaWGQbaacaGLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkca WGQbGaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqa aiabeI7aXnaaCaaaleqabaGaamOAaaaaaaaaaa@7F01@

It can be easily verified that the coefficient of t j j! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iDamaaCaaaleqabaGaamOAaaaaaOqaaiaadQgacaGGHaaaaaaa@3AD1@  in M X ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@3B75@ gives the same μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3D10@ as given by (3.1).

Harmonic mean

The harmonic mean of WAD can be obtained as

HM=E( 1 X )= θ α+2 { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α ) 0 1 x x α1 ( θ+x ) 2 e θx dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaWGnb Gaeyypa0JaamyramaabmaabaWaaSaaaeaacaaIXaaabaGaamiwaaaa aiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqaba GaeqySdeMaey4kaSIaaGOmaaaaaOqaamaacmaabaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiab eg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baacq qHtoWrdaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaadaWdXbqaamaa laaabaGaaGymaaqaaiaadIhaaaaaleaacaaIWaaabaGaeyOhIukani abgUIiYdGccaaMc8UaamiEamaaCaaaleqabaGaeqySdeMaeyOeI0Ia aGymaaaakmaabmaabaGaeqiUdeNaey4kaSIaamiEaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiaadwgadaahaaWcbeqaaiabgkHi TiabeI7aXjaadIhaaaGccaaMc8UaamizaiaadIhaaaa@76C0@  

= θ α+2 { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α ) 0 x α2 ( θ 2 +2θx+ x 2 ) e θx dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIYaaaaaGc baWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkca aIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaaGPaVlabeg7aHjab gUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkai aawMcaaaGaay5Eaiaaw2haaiabfo5ahnaabmaabaGaeqySdegacaGL OaGaayzkaaaaamaapehabaGaamiEamaaCaaaleqabaGaeqySdeMaey OeI0IaaGOmaaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGOmaiabeI7aXjaadIhacqGHRaWkcaWG4bWaaWbaaS qabeaacaaIYaaaaaGccaGLOaGaayzkaaGaamyzamaaCaaaleqabaGa eyOeI0IaeqiUdeNaamiEaaaakiaaykW7caWGKbGaamiEaaWcbaGaaG imaaqaaiabg6HiLcqdcqGHRiI8aaaa@7208@   

= θ α+2 { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α ) [ θ 2 0 e θx x α11 dx+2θ 0 e θx x α1 dx+ 0 e θx x α+11 dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIYaaaaaGc baWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkca aIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaaGPaVlabeg7aHjab gUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkai aawMcaaaGaay5Eaiaaw2haaiabfo5ahnaabmaabaGaeqySdegacaGL OaGaayzkaaaaamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaO Waa8qCaeaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baa aOGaamiEamaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaiabgkHiTi aaigdaaaaabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamizaiaa dIhacqGHRaWkcaaIYaGaeqiUde3aa8qCaeaacaWGLbWaaWbaaSqabe aacqGHsislcqaH4oqCcaWG4baaaOGaamiEamaaCaaaleqabaGaeqyS deMaeyOeI0IaaGymaaaaaeaacaaIWaaabaGaeyOhIukaniabgUIiYd GccaWGKbGaamiEaiabgUcaRmaapehabaGaamyzamaaCaaaleqabaGa eyOeI0IaeqiUdeNaamiEaaaakiaadIhadaahaaWcbeqaaiabeg7aHj abgUcaRiaaigdacqGHsislcaaIXaaaaaqaaiaaicdaaeaacqGHEisP a0Gaey4kIipakiaadsgacaWG4baacaGLBbGaayzxaaaaaa@9088@  

= θ α+2 { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α ) [ θ 2 Γ( α1 ) θ α1 +2θ Γ( α ) θ α + Γ( α+1 ) θ α+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIYaaaaaGc baWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkca aIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaaGPaVlabeg7aHjab gUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkai aawMcaaaGaay5Eaiaaw2haaiabfo5ahnaabmaabaGaeqySdegacaGL OaGaayzkaaaaamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaO WaaSaaaeaacqqHtoWrdaqadaqaaiabeg7aHjabgkHiTiaaigdaaiaa wIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiabeg7aHjabgkHiTi aaigdaaaaaaOGaey4kaSIaaGOmaiabeI7aXnaalaaabaGaeu4KdC0a aeWaaeaacqaHXoqyaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbe qaaiabeg7aHbaaaaGccqGHRaWkdaWcaaqaaiabfo5ahnaabmaabaGa eqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaqaaiabeI7aXnaaCa aaleqabaGaeqySdeMaey4kaSIaaGymaaaaaaaakiaawUfacaGLDbaa caaMc8oaaa@7EDB@

   = θ{ θ 4 Γ( α1 )2 θ 2 Γ( α )+Γ( α+1 ) } { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α ) ;α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGc cqqHtoWrdaqadaqaaiabeg7aHjabgkHiTiaaigdaaiaawIcacaGLPa aacaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaeu4KdC0aaeWa aeaacqaHXoqyaiaawIcacaGLPaaacqGHRaWkcqqHtoWrdaqadaqaai abeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baa aeaadaGadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRi aaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccaaMc8UaeqySdeMa ey4kaSIaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOa GaayzkaaaacaGL7bGaayzFaaGaeu4KdC0aaeWaaeaacqaHXoqyaiaa wIcacaGLPaaaaaGaai4oaiabeg7aHjabgwMiZkaaigdaaaa@70F4@ .

Reliability measures

There are some important reliability measures of a distribution namely, the hazard rate function, reverse hazard rate function, Mills ratio and inverse Mills ratio, the mean residual life function and Stochastic ordering. In this section these reliability measures for WAD have been discussed.

Hazard rate function

The hazard (or instantaneous failure rate function) plays a crucial role in reliability and survival analysis, as it defines the conditional probability of failure of an item in the next very small units of time Δx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaadI haaaa@3972@ , given that it did not fail before x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ . Suppose X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ is a random variable with cdf F( x )=P( Xx ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGqbWaaeWaaeaacaWG ybGaeyizImQaamiEaaGaayjkaiaawMcaaaaa@4152@ . If F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A5F@  is absolutely continuous, then the random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@  has a probability density function f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A7F@ . The hazard rate (HR) function h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A81@  of X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@  is defined as

h( x )= f( x ) 1F( x ) = f( x ) S( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadAgadaqa daqaaiaadIhaaiaawIcacaGLPaaaaeaacaaIXaGaeyOeI0IaamOram aabmaabaGaamiEaaGaayjkaiaawMcaaaaacqGH9aqpdaWcaaqaaiaa dAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaacaWGtbWaaeWaae aacaWG4baacaGLOaGaayzkaaaaaaaa@4BE6@   

The hazard (or failure rate) function, h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@3969@ of WAD can be obtained as

h( x;θ,α )= f 3 ( x;θ,α ) S( x;θ,α ) = θ α+2 x α1 ( θ+x ) 2 e θx { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α,θx )+ ( θx ) α ( θx+2 θ 2 +α+1 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaamOzamaaBaaaleaacaaIZaaabeaakmaabm aabaGaamiEaiaacUdacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzk aaaabaGaam4uamaabmaabaGaamiEaiaacUdacqaH4oqCcaGGSaGaeq ySdegacaGLOaGaayzkaaaaaiaaykW7cqGH9aqpdaWcaaqaaiabeI7a XnaaCaaaleqabaGaeqySdeMaey4kaSIaaGOmaaaakiaadIhadaahaa Wcbeqaaiabeg7aHjabgkHiTiaaigdaaaGcdaqadaqaaiabeI7aXjab gUcaRiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcca WGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baaaaGcbaWaaiWa aeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey4kaSIaeqySde2a aeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGL7b GaayzFaaGaeu4KdC0aaeWaaeaacqaHXoqycaGGSaGaeqiUdeNaamiE aaGaayjkaiaawMcaaiabgUcaRmaabmaabaGaeqiUdeNaamiEaaGaay jkaiaawMcaamaaCaaaleqabaGaeqySdegaaOWaaeWaaeaacqaH4oqC caWG4bGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacaWGLbWa aWbaaSqabeaacqGHsislcqaH4oqCcaWG4baaaaaakiaaykW7aaa@9C99@  .

Graphs of h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A81@ of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ are shown in Figure 7. It is obvious that for varying values of parameters, the shapes of hazard rate function of WAD are changing and it can be used for data of various nature.

Figure 7 h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A81@ of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Reverse hazard rate function

A function closely related to the hazard rate function is the reverse hazard rate function which was firstly introduced by Barlow et al. It is the dual of the hazard rate function and is defined as

r( x )= f( x ) F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadAgadaqa daqaaiaadIhaaiaawIcacaGLPaaaaeaacaWGgbWaaeWaaeaacaWG4b aacaGLOaGaayzkaaaaaaaa@4263@  .

Thus, the corresponding reverse hazard rate function of WAD can be obtained as

  r( x )= θ α+2 x α1 ( θ+x ) 2 e θx { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α )[ { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α,θx )+ ( θx ) α ( θx+2 θ 2 +α+1 ) e θx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaeqySdeMaey4kaSIaaGOmaaaakiaadIhadaahaaWcbe qaaiabeg7aHjabgkHiTiaaigdaaaGcdaqadaqaaiabeI7aXjabgUca RiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGLb WaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baaaaGcbaWaaiWaaeaa cqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaaGPaVlabeg7aHjaaykW7cqGHRaWk cqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPa aaaiaawUhacaGL9baacqqHtoWrdaqadaqaaiabeg7aHbGaayjkaiaa wMcaaiabgkHiTmaadmaabaWaaiWaaeaacqaH4oqCdaahaaWcbeqaai aaisdaaaGccqGHRaWkcaaIYaGaaGPaVlabeI7aXnaaCaaaleqabaGa aGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiabeg 7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baacqqH toWrdaqadaqaaiabeg7aHjaacYcacqaH4oqCcaWG4baacaGLOaGaay zkaaGaey4kaSYaaeWaaeaacqaH4oqCcaWG4baacaGLOaGaayzkaaWa aWbaaSqabeaacqaHXoqyaaGcdaqadaqaaiabeI7aXjaaykW7caWG4b Gaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUca Riabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacaWGLbWaaWbaaS qabeaacqGHsislcqaH4oqCcaaMc8UaamiEaaaaaOGaay5waiaaw2fa aaaaaaa@A522@ .

Mills ratio and inverse mills ratio

 The Mills ratio is defined as the ratio of the complementary cdf to the pdf of a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ and is denoted as m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A86@  and defined as

  m( x )= 1F( x ) f( x ) = S( x ) f( x ) = { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α,θx )+ ( θx ) α ( θx+2 θ 2 +α+1 ) e θx θ α+2 x α1 ( θ+x ) 2 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdacqGH sislcaWGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaabaGaamOzam aabmaabaGaamiEaaGaayjkaiaawMcaaaaacqGH9aqpdaWcaaqaaiaa dofadaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaacaWGMbWaaeWaae aacaWG4baacaGLOaGaayzkaaaaaiabg2da9maalaaabaWaaiWaaeaa cqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey4kaSIaeqySde2aaeWa aeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGL7bGaay zFaaGaeu4KdC0aaeWaaeaacqaHXoqycaGGSaGaeqiUdeNaamiEaaGa ayjkaiaawMcaaiabgUcaRmaabmaabaGaeqiUdeNaamiEaaGaayjkai aawMcaamaaCaaaleqabaGaeqySdegaaOWaaeWaaeaacqaH4oqCcaWG 4bGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacaWGLbWaaWba aSqabeaacqGHsislcqaH4oqCcaWG4baaaaGcbaGaeqiUde3aaWbaaS qabeaacqaHXoqycqGHRaWkcaaIYaaaaOGaamiEamaaCaaaleqabaGa eqySdeMaeyOeI0IaaGymaaaakmaabmaabaGaeqiUdeNaey4kaSIaam iEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaadwgadaah aaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaaaaaaa@93BF@ .

It is also related to the hazard rate function as

m( x )= 1 h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa caWGObWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaaaaa@3FCA@  

The inverse Mills ratio is the ratio of the pdf to the complementary cdf of a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ .

Mean residual life function

The mean residual life function m( x )=E( Xx|X>x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaaeWaaeaacaWG ybGaeyOeI0IaamiEaiaacYhacaWGybGaeyOpa4JaamiEaaGaayjkai aawMcaaaaa@4488@  of WAD can be obtained as

m( x;θ,α )= 1 S( x;θ,α ) x t f 1 ( t;θ,α ) dtx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaaGymaaqaaiaadofadaqadaqaaiaadIhaca GG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaadaWdXbqa aiaadshacaaMc8UaamOzamaaBaaaleaacaaIXaaabeaakmaabmaaba GaamiDaiaacUdacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzkaaaa leaacaWG4baabaGaeyOhIukaniabgUIiYdGccaaMc8Uaamizaiaayk W7caWG0bGaeyOeI0IaamiEaaaa@60A6@  

= 1 S( x;θ,α ) [ θ α+2 { θ 4 +2 θ 2 α+α( α+1 ) }Γ( α ) x t α ( θ+2θt+ t 2 ) e θt dt ]x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaadofadaqadaqaaiaadIhacaGG7aGaeqiUdeNa aiilaiabeg7aHbGaayjkaiaawMcaaaaadaWadaqaamaalaaabaGaeq iUde3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIYaaaaaGcbaWaaiWa aeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaeqySdeMaaGPaVlabgUcaRiab eg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaa Gaay5Eaiaaw2haaiabfo5ahnaabmaabaGaeqySdegacaGLOaGaayzk aaaaamaapehabaGaamiDamaaCaaaleqabaGaeqySdegaaaqaaiaadI haaeaacqGHEisPa0Gaey4kIipakmaabmaabaGaeqiUdeNaey4kaSIa aGOmaiabeI7aXjaadshacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaGaaGPaVlaadwgadaahaaWcbeqaaiabgkHi TiabeI7aXjaaykW7caWG0baaaOGaamizaiaaykW7caWG0baacaGLBb GaayzxaaGaeyOeI0IaamiEaaaa@7F6F@  

                                   = ( θx ) α [ θx+ θ 4 +2( α+1 ) θ 2 +( α+1 )( α+2 ) ] e θx +[ α θ 4 +α( α+1 )( 2 θ 2 +α+2 )θx{ θ 4 +2 θ 2 α+α( α+1 ) } ]Γ( α,θx ) θ[ ( θx ) α ( θx+2 θ 2 +α+1 ) e θx +{ θ 4 +2 θ 2 α+α( α+1 ) }Γ( α,θx ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aaeaqabeaacaaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaacqaH4oqC caWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacqaHXoqyaaGcdaWada qaaiabeI7aXjaaykW7caWG4bGaey4kaSIaeqiUde3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGOmamaabmaabaGaeqySdeMaey4kaSIaaG ymaaGaayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRmaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaam aabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5w aiaaw2faaiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaykW7ca WG4baaaaGcbaGaey4kaSYaamWaaeaacqaHXoqycaaMc8UaeqiUde3a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGPaVlabeg7aHnaabmaaba GaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaaGOm aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjabgU caRiaaikdaaiaawIcacaGLPaaacqGHsislcqaH4oqCcaaMc8UaamiE amaacmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG OmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabeg7aHjabgUcaRiab eg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaa Gaay5Eaiaaw2haaaGaay5waiaaw2faaiabfo5ahnaabmaabaGaeqyS deMaaiilaiabeI7aXjaadIhaaiaawIcacaGLPaaaaaqaaiabeI7aXn aadmaabaWaaeWaaeaacqaH4oqCcaWG4baacaGLOaGaayzkaaWaaWba aSqabeaacqaHXoqyaaGcdaqadaqaaiabeI7aXjaaykW7caWG4bGaey 4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiab eg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacaWGLbWaaWbaaSqabe aacqGHsislcqaH4oqCcaaMc8UaamiEaaaakiabgUcaRmaacmaabaGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabeg7aHjabgUcaRiabeg7aHnaabmaa baGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eaiaaw2 haaiabfo5ahnaabmaabaGaeqySdeMaaiilaiabeI7aXjaadIhaaiaa wIcacaGLPaaaaiaawUfacaGLDbaaaaaaaa@DAA7@

It can be easily shown that m( 0;θ,α )= α{ θ 4 +2( α+1 ) θ 2 +( α+1 )( α+2 ) } θ{ θ 4 +2 θ 2 α+α( α+1 ) } = μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaaicdacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaeqySde2aaiWaaeaacqaH4oqCdaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWk caaIXaaacaGLOaGaayzkaaGaaGPaVlabeI7aXnaaCaaaleqabaGaaG OmaaaakiabgUcaRmaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjk aiaawMcaamaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawM caaaGaay5Eaiaaw2haaaqaaiabeI7aXnaacmaabaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaqadaqaaiab eg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baaaa GaaGPaVlabg2da9iabeY7aTnaaBaaaleaacaaIXaaabeaakmaaCaaa leqabaGccWaGGBOmGikaaaaa@793C@ .

Graphs of m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A86@ of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@  are shown in Figure 8.

Figure 8 m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A86@ of WAD for varying values of parameters θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ .

Stochastic ordering

The stochastic ordering of positive continuous random variables is an important tool for judging their comparative behavior. A random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ is said to be smaller than a random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfaaaa@37EC@ in the

  1. stochastic order ( X st Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGZbGaamiDaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3E2E@ if F X ( x ) F Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGgbWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaaa@419D@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@
  2. hazard rate order ( X hr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGObGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3E21@ if h X ( x ) h Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGObWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaaa@41E1@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@
  3. mean residual life order ( X mrl Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGTbGaamOCaiaadYgaaeqaaOGaamyw aaGaayjkaiaawMcaaaaa@3F17@ if m X ( x ) m Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH KjYOcaWGTbWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaaa@41DA@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@
  4. Likelihood ratio order ( X lr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3E25@ if f X ( x ) f Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OzamaaBaaaleaacaWGybaabeaakmaabmaabaGaamiEaaGaayjkaiaa wMcaaaqaaiaadAgadaWgaaWcbaGaamywaaqabaGcdaqadaqaaiaadI haaiaawIcacaGLPaaaaaaaaa@4027@ decreases in x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ .

The following interrelationships due to Shaked & Shanthikumar6 are well known for establishing stochastic ordering of distributions

X lr YX hr YX mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaiabgkDiElaadIfa cqGHKjYOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaiabgkDiEl aadIfacqGHKjYOdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaa dMfaaaa@4D60@   

X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaey 40H8naleaacaWGybGaeyizIm6aaSbaaWqaaiaadohacaWG0baabeaa liaadMfaaeqaaaaa@3F3F@  

It can be easily shown that WAD is ordered with respect to the strongest ‘likelihood ratio’ ordering. The stochastic ordering of WAD has been explained in the following theorem:

Theorem: Suppose X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqWI8i Ioaaa@3914@ WAD ( θ 1 , α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabeg7aHnaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaaaa@3E7E@  and Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacqWI8i Ioaaa@3915@  WAD ( θ 2 , α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaikdaaeqaaOGaaiilaiabeg7aHnaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaaaa@3E80@ . If α 1 α 2 and θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIXaaabeaakiabgsMiJkabeg7aHnaaBaaaleaacaaIYaaa beaakiaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGzaVlaaygW7ca aMb8UaaGPaVlaaykW7cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGH +aGpcqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaa@51B7@  (or α 1 < α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIXaaabeaakiabgYda8iabeg7aHnaaBaaaleaacaaIYaaa beaaaaa@3D29@ ; θ 1 θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabgwMiZkabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3E19@  ), then X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3C9C@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3C98@ , X mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3D8E@ and X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3CA5@ .

Proof: We have

f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) =[ θ 1 α 1 +2 { θ 2 4 +2 θ 2 2 α 2 + α 2 ( α 2 +1 ) }Γ( α 2 ) θ 2 α 2 +2 { θ 1 4 +2 θ 1 2 α 1 + α 1 ( α 1 +1 ) }Γ( α 1 ) ] ( θ 1 +x θ 2 +x ) 2 x α 1 α 2 e ( θ 1 θ 2 )x ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaleaaleaaca WGMbWaaSbaaWqaaiaadIfaaeqaaSWaaeWaaeaacaWG4bGaai4oaiab eI7aXnaaBaaameaacaaIXaaabeaaliaacYcacqaHXoqydaWgaaadba GaaGymaaqabaaaliaawIcacaGLPaaaaeaacaWGMbWaaSbaaWqaaiaa dMfaaeqaaSWaaeWaaeaacaWG4bGaai4oaiabeI7aXnaaBaaameaaca aIYaaabeaaliaacYcacqaHXoqydaWgaaadbaGaaGOmaaqabaaaliaa wIcacaGLPaaaaaGccqGH9aqpdaWadaqaamaalaaabaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacqaHXoqydaWgaaadbaGa aGymaaqabaWccqGHRaWkcaaIYaaaaOWaaiWaaeaacqaH4oqCdaWgaa WcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI YaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYa aaaOGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqySde2a aSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacqaHXoqydaWgaaWcbaGaaG OmaaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGL7bGaayzF aaGaeu4KdC0aaeWaaeaacqaHXoqydaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaah aaWcbeqaaiabeg7aHnaaBaaameaacaaIYaaabeaaliabgUcaRiaaik daaaGcdaGadaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakmaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaWgaaWcbaGaaG ymaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqaHXoqydaWgaaWcbaGa aGymaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGymaaqabaGcda qadaqaaiabeg7aHnaaBaaaleaacaaIXaaabeaakiabgUcaRiaaigda aiaawIcacaGLPaaaaiaawUhacaGL9baacqqHtoWrdaqadaqaaiabeg 7aHnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaaaiaawUfa caGLDbaacaaMc8UaaGPaVpaabmaabaWaaSaaaeaacqaH4oqCdaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaWG4baabaGaeqiUde3aaSbaaSqa aiaaikdaaeqaaOGaey4kaSIaamiEaaaaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacqaHXoqydaWgaaad baGaaGymaaqabaWccqGHsislcqaHXoqydaWgaaadbaGaaGOmaaqaba aaaOGaaGPaVlaaykW7caWGLbWaaWbaaSqabeaacqGHsisldaqadaqa aiabeI7aXnaaBaaameaacaaIXaaabeaaliabgkHiTiabeI7aXnaaBa aameaacaaIYaaabeaaaSGaayjkaiaawMcaaiaadIhaaaGccaGG7aGa amiEaiabg6da+iaaicdaaaa@BE91@   

Now, taking logarithm both sides, we get

log f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) =log[ θ 1 α 1 +2 { θ 2 4 +2 θ 2 2 α 2 + α 2 ( α 2 +1 ) }Γ( α 2 ) θ 2 α 2 +2 { θ 1 4 +2 θ 1 2 α 1 + α 1 ( α 1 +1 ) }Γ( α 1 ) ]+2log( θ 1 +x θ 2 +x )+( α 1 α 2 )logx( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zamaaleaaleaacaWGMbWaaSbaaWqaaiaadIfaaeqaaSWaaeWa aeaacaWG4bGaai4oaiabeI7aXnaaBaaameaacaaIXaaabeaaliaacY cacqaHXoqydaWgaaadbaGaaGymaaqabaaaliaawIcacaGLPaaaaeaa caWGMbWaaSbaaWqaaiaadMfaaeqaaSWaaeWaaeaacaWG4bGaai4oai abeI7aXnaaBaaameaacaaIYaaabeaaliaacYcacqaHXoqydaWgaaad baGaaGOmaaqabaaaliaawIcacaGLPaaaaaGccqGH9aqpciGGSbGaai 4BaiaacEgadaWadaqaamaalaaabaGaeqiUde3aaSbaaSqaaiaaigda aeqaaOWaaWbaaSqabeaacqaHXoqydaWgaaadbaGaaGymaaqabaWccq GHRaWkcaaIYaaaaOWaaiWaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqa baGcdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaeqySde2a aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaik daaeqaaOWaaeWaaeaacqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqGH RaWkcaaIXaaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeu4KdC0aae WaaeaacqaHXoqydaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa aeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiabeg 7aHnaaBaaameaacaaIYaaabeaaliabgUcaRiaaikdaaaGcdaGadaqa aiabeI7aXnaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGinaa aakiabgUcaRiaaikdacqaH4oqCdaWgaaWcbaGaaGymaaqabaGcdaah aaWcbeqaaiaaikdaaaGccqaHXoqydaWgaaWcbaGaaGymaaqabaGccq GHRaWkcqaHXoqydaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiabeg7a HnaaBaaaleaacaaIXaaabeaakiabgUcaRiaaigdaaiaawIcacaGLPa aaaiaawUhacaGL9baacqqHtoWrdaqadaqaaiabeg7aHnaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGLDbaacaaMc8 Uaey4kaSIaaGOmaiGacYgacaGGVbGaai4zamaabmaabaWaaSaaaeaa cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4baabaGaeq iUde3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiEaaaaaiaawIca caGLPaaacqGHRaWkdaqadaqaaiabeg7aHnaaBaaaleaacaaIXaaabe aakiabgkHiTiabeg7aHnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaiGacYgacaGGVbGaai4zaiaadIhacqGHsisldaqadaqaaiabeI 7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI7aXnaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaiaadIhaaaa@C373@  

 This gives d dx ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) = 2( θ 2 θ 1 ) ( θ 1 +x )( θ 2 +x ) + α 1 α 2 x ( θ 1 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaaiGacYgacaGGUbWaaSqaaSqaaiaadAga daWgaaadbaGaamiwaaqabaWcdaqadaqaaiaadIhacaGG7aGaeqiUde 3aaSbaaWqaaiaaigdaaeqaaSGaaiilaiabeg7aHnaaBaaameaacaaI XaaabeaaaSGaayjkaiaawMcaaaqaaiaadAgadaWgaaadbaGaamywaa qabaWcdaqadaqaaiaadIhacaGG7aGaeqiUde3aaSbaaWqaaiaaikda aeqaaSGaaiilaiabeg7aHnaaBaaameaacaaIYaaabeaaaSGaayjkai aawMcaaaaakiabg2da9maalaaabaGaaGOmamaabmaabaGaeqiUde3a aSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqiUde3aaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacqaH4oqCdaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWG4baacaGLOaGaayzkaaWaaeWaae aacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG4baacaGL OaGaayzkaaaaaiabgUcaRmaalaaabaGaeqySde2aaSbaaSqaaiaaig daaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaaikdaaeqaaaGcbaGa amiEaaaacqGHsisldaqadaqaaiabeI7aXnaaBaaaleaacaaIXaaabe aakiabgkHiTiabeI7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaaaa@78BF@  .

Thus for α 1 α 2 and θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIXaaabeaakiabgsMiJkabeg7aHnaaBaaaleaacaaIYaaa beaakiaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGzaVlaaygW7ca aMb8UaaGPaVlaaykW7cqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGH +aGpcqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaa@51B7@  (or α 1 < α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIXaaabeaakiabgYda8iabeg7aHnaaBaaaleaacaaIYaaa beaaaaa@3D29@  and θ 1 θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabgwMiZkabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3E19@  ), d dx ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaaiGacYgacaGGUbWaaSqaaSqaaiaadAga daWgaaadbaGaamiwaaqabaWcdaqadaqaaiaadIhacaGG7aGaeqiUde 3aaSbaaWqaaiaaigdaaeqaaSGaaiilaiabeg7aHnaaBaaameaacaaI XaaabeaaaSGaayjkaiaawMcaaaqaaiaadAgadaWgaaadbaGaamywaa qabaWcdaqadaqaaiaadIhacaGG7aGaeqiUde3aaSbaaWqaaiaaikda aeqaaSGaaiilaiabeg7aHnaaBaaameaacaaIYaaabeaaaSGaayjkai aawMcaaaaakiabgYda8iaaicdaaaa@5418@ . This means that X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3C9C@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3C98@ , X mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3D8E@ and X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3CA5@ .

Maximum likelihood estimation

Suppose ( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7 caaMc8UaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca GLPaaaaaa@4EA2@  be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3801@  from WAD. The log-likelihood function, logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeaaaa@3AAF@ of WAD can be obtained as

logL= i=1 n log f 2 ( x i ;θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacqGH9aqpdaaeWbqaaiGacYgacaGGVbGaai4zaiaa dAgadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadIhadaWgaaWcba GaamyAaaqabaGccaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaa wMcaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLd aaaa@4EB4@  

=n[ ( α+2 )logθlog( θ 4 +2 θ 2 α+ α 2 +α )logΓ( α ) ]+( α1 ) i=1 n log( x i ) +2 i=1 n log( θ+ x i ) nθ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaad6 gadaWadaqaamaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaa wMcaaiGacYgacaGGVbGaai4zaiabeI7aXjabgkHiTiGacYgacaGGVb Gaai4zamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4k aSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiaaykW7cqaHXo qycqGHRaWkcqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH XoqyaiaawIcacaGLPaaacqGHsislciGGSbGaai4BaiaacEgacqqHto Wrdaqadaqaaiabeg7aHbGaayjkaiaawMcaaaGaay5waiaaw2faaiab gUcaRmaabmaabaGaeqySdeMaeyOeI0IaaGymaaGaayjkaiaawMcaam aaqahabaGaciiBaiaac+gacaGGNbWaaeWaaeaacaWG4bWaaSbaaSqa aiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaG ymaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRiaaikdadaaeWbqaaiGa cYgacaGGVbGaai4zamaabmaabaGaeqiUdeNaey4kaSIaamiEamaaBa aaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabg2da 9iaaigdaaeaacaWGUbaaniabggHiLdGccqGHsislcaWGUbGaaGPaVl abeI7aXjaaykW7ceWG4bGbaebaaaa@8C62@  

The maximum likelihood estimates (MLE’s) ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaaMc8UaaGPaVlaacYcacaaMc8UaaGPaVlqbeg7aHzaa jaaacaGLOaGaayzkaaaaaa@42E8@  of the parameters ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaGPaVlaaykW7caGGSaGaaGPaVlaaykW7cqaHXoqyaiaawIca caGLPaaaaaa@42C8@  of WAD are the solutions of the following log likelihood equations

logL θ = n( α+2 ) θ 4n( θ 3 +θα ) θ 4 +2 θ 2 α+ α 2 +α +2 i=1 n 1 θ+ x i n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpdaWcaaqaaiaad6gadaqadaqaaiabeg7aHjabgUcaRiaaik daaiaawIcacaGLPaaaaeaacqaH4oqCaaGaeyOeI0YaaSaaaeaacaaI 0aGaamOBamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey 4kaSIaeqiUdeNaeqySdegacaGLOaGaayzkaaaabaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiaaykW7cqaHXoqycqGHRaWkcqaHXoqydaahaaWcbeqa aiaaikdaaaGccqGHRaWkcqaHXoqyaaGaey4kaSIaaGOmamaaqahaba WaaSaaaeaacaaIXaaabaGaeqiUdeNaey4kaSIaamiEamaaBaaaleaa caWGPbaabeaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaani abggHiLdGccqGHsislcaWGUbGaaGPaVlaaykW7ceWG4bGbaebacqGH 9aqpcaaIWaaaaa@77B5@   

logL α =nlnθ n( 2 θ 2 +2α+1 ) θ 4 +2 θ 2 α+ α 2 +α nψ( α )+ i=1 n log( x i ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeg7aHbaa cqGH9aqpcaWGUbGaciiBaiaac6gacqaH4oqCcqGHsisldaWcaaqaai aad6gadaqadaqaaiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIYaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaa qaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccaaMc8UaeqySdeMaey4kaSIaeq ySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqySdegaaiabgkHi Tiaad6gacaaMc8UaaGPaVlabeI8a5naabmaabaGaeqySdegacaGLOa GaayzkaaGaey4kaSYaaabCaeaaciGGSbGaai4BaiaacEgadaqadaqa aiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaSqaai aadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaeyypa0Ja aGimaaaa@797C@   

 where ψ( α )= d dα logΓ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naabm aabaGaeqySdegacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGKbaa baGaamizaiabeg7aHbaaciGGSbGaai4BaiaacEgacqqHtoWrdaqada qaaiabeg7aHbGaayjkaiaawMcaaaaa@47EB@ is the digamma function.

Since these two log likelihood equations cannot be expressed in closed forms, they cannot be solved analytically. However, these two log likelihood equations can be solved using R-software.

A simulation study

In this section, a simulation study has been carried to check the performance of maximum likelihood estimates by taking sample sizes (n=20, 40, 60, 80) for values of θ=0.5,1.0,1.5,2.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaicdacaGGUaGaaGynaiaacYcacaaIXaGaaiOlaiaaicdacaGG SaGaaGymaiaac6cacaaI1aGaaiilaiaaikdacaGGUaGaaGimaaaa@4480@  and α=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaicdacaGGUaGaaGynaaaa@3CFB@  & 1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaI1aaaaa@395A@ . Acceptance and rejection method is used to generate random number for data simulation using R-software. The process was repeated 1,000 times for the calculation of Average Bias error (ABE) and MSE (Mean square error) of parameters θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@  and are presented in Tables1 & 2 respectively. For the WAD decreasing trend has been observed in ABE and MSE as the sample size increases and this shows that the performance of maximum likelihood estimators is quite good and consistent.

n

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@  

ABE( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@ )

MSE ( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@ )

ABE ( α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39CA@ )

MSE ( α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39CA@ )

20

0.5

-0.0037

0.0003

-0.0560

0.0007

20

1.0

-0.0287

0.01649

-0.0310

0.0193

20

1.5

-0.0537

0.0577

-0.0560

0.0628

20

2.0

-0.0787

0.1239

-0.0810

0.1313

40

0.5

0.0022

0.0002

-0.0225

0.0003

40

1.0

-0.0103

0.0042

-0.0099

0.0039

40

1.5

-0.0227

0.0207

-0.02249

0.0202

40

2.0

-0.0353

0.0497

-0.0349

0.0489

60

0.5

0.001

0.0006

-0.0142

0.0003

60

1.0

-0.0073

0.0032

-0.0059

0.0021

60

1.5

-0.0156

0.0147

-0.0142

0.0121

60

2.0

-0.0239

0.0345

-0.0225

0.0305

80

0.5

0.0001

0.0000

-0.0117

0.0004

80

1.0

-0.0061

0.0030

-0.0055

0.0024

80

1.5

-0.0124

0.0123

-0.0117

0.0111

80

2.0

-0.0186

0.0277

-0.0180

0.0360

Table 1 ABE and MSE of parameters at fixed value α=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaicdacaGGUaGaaGynaaaa@3CFB@

n

  θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@

  ABE( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@ )

MSE ( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@ )

ABE ( α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39CA@ )

 MSE ( α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39CA@ )

20

0.5

  0.0298

0.0177

 0.0052

0.0608

20

1.0

  0.0048

0.0005

 0.0302

0.0182

20

1.5

 -0.0202

0.0081

 0.0052

0.0005

20

2.0

 -0.0452

0.0408

-0.0198

0.0078

40

0.5

 0.0166

0.0112

 0.0162

0.0678

40

1.0

 0.0041

0.0007

 0.0287

0.0329

40

1.5

 -0.0084

0.0028

 0.0162

0.0104

40

2.0

 -0.0208

0.0174

 0.0036

0.0005

60

0.5

 0.0084

0.0094

 0.0067

0.0329

60

1.0

 0.0001

0.0000

 0.0151

0.0136

60

1.5

 -0.0082

0.0040

 0.0067

0.0027

60

2.0

 -0.0165

0.0164

 -0.0015

0.0001

80

0.5

 0.0070

0.0039

 0.0066

0.0293

80

1.0

 0.0007

0.0004

 0.0129

0.0133

80

1.5

 -0.0055

0.0024

 0.0066

0.0035

80

2.0

 -0.0117

0.0109

 0.0004

0.0001

Table 2 ABE and MSE of parameters at fixed value α=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaicdacaGGUaGaaGynaaaa@3CFB@

A numerical example

In this section application and the goodness of fit of WAD has been discussed with the following real lifetime data relating to the lifetime of a certain device reported by Sylwia7 and the observations are 0.0094, 0.0500, 0.4064, 4.6307, 5.1741, 5.8808, 6.3348, 7.1645, 7.2316, 8.2604, 9.2662, 9.3812, 9.5223, 9.8783, 9.9346, 10.0192, 10.4077, 10.4791, 11.0760, 11.3250, 11.5284, 11.9226, 12.0294, 12.0740, 12.1835, 12.3549, 12.5381, 12.8049, 13.4615, 13.8530.

For this data set, WAD has been fitted along with one parameter exponential and Adya distributions and two-parameter distributions including weighted Lindley distribution (WLD) introduced by Ghitany et al.,8 quasi Lindley distribution (QLD) of Shanker & Mishra,9 a two-parameter Lindley distribution (TPLD-I) of Shanker & Mishra,10 a two-parameter Lindley distribution (TPLD-II) of Shanker et al.11 and Weibull distribution introduced by Weibull.12 The pdf and cdf of the considered distributions: WLD, Weibull, TPLD-I, TPLD-II, QLD and exponential distribution are given in Table 3. The ML estimates, values of 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3C89@ , Akaike Information criteria (AIC), K-S statistics and p-value of the fitted distributions are presented in Table 4. The AIC and K-S Statistics are computed using the following formulae: AIC=2lnL+2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGjb Gaam4qaiabg2da9iabgkHiTiaaikdaciGGSbGaaiOBaiaadYeacqGH RaWkcaaIYaGaam4Aaaaa@415C@  and K-S= Sup x | F n ( x ) F 0 ( x ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabUeacaqGTa Gaae4uaiabg2da9maaxababaGaae4uaiaabwhacaqGWbaaleaacaWG 4baabeaakmaaemaabaGaamOramaaBaaaleaacaWGUbaabeaakmaabm aabaGaamiEaaGaayjkaiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGa aGimaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawEa7ca GLiWoaaaa@4B33@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaaaa@37FE@  = the number of parameters, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3801@  = the sample size , F n ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@3B88@ is the empirical (sample) cumulative distribution function, and F 0 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGimaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@3B4F@  is the theoretical cumulative distribution function. The best distribution is the distribution corresponding to lower values of 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3B6C@ , AIC, and K-S statistics.

Distributions

Pdf

Cdf

WLD

f( x;θ,α )= θ α+1 θ+α x α1 Γ( α+1 ) ( 1+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacqaHXoqycqGHRa WkcaaIXaaaaaGcbaGaeqiUdeNaey4kaSIaeqySdegaamaalaaabaGa amiEamaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaaaOqaaiabfo 5ahnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaaa daqadaqaaiaaigdacqGHRaWkcaWG4baacaGLOaGaayzkaaGaaGPaVl aadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4baaaaaa @617E@   F( x;θ,α )=1 ( θ+α )Γ( α,θx )+ ( θx ) α e θx ( θ+α )Γ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsisldaWcaaqaamaabmaabaGaeqiUdeNaey 4kaSIaeqySdegacaGLOaGaayzkaaGaeu4KdC0aaeWaaeaacqaHXoqy caGGSaGaeqiUdeNaaGPaVlaadIhaaiaawIcacaGLPaaacqGHRaWkda qadaqaaiabeI7aXjaaykW7caWG4baacaGLOaGaayzkaaWaaWbaaSqa beaacqaHXoqyaaGccaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCca aMc8UaamiEaaaaaOqaamaabmaabaGaeqiUdeNaey4kaSIaeqySdega caGLOaGaayzkaaGaeu4KdC0aaeWaaeaacqaHXoqyaiaawIcacaGLPa aaaaaaaa@6B57@  

Weibull

f( x;θ,α )=θα x α1 e θ x α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iabeI7aXjaaykW7cqaHXoqycaaMc8UaamiEamaaCaaale qabaGaeqySdeMaeyOeI0IaaGymaaaakiaaykW7caWGLbWaaWbaaSqa beaacqGHsislcqaH4oqCcaaMc8UaamiEamaaCaaameqabaGaeqySde gaaaaaaaa@55E6@   F( x;θ,α )=1 e θ x α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcq aH4oqCcaWG4bWaaWbaaWqabeaacqaHXoqyaaaaaOGaaGPaVdaa@4B07@  

TPLD-I

f( x;θ,α )= θ 2 θα+1 ( α+x ) e θx ;x>0,θ>0,θα>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaaGcba GaeqiUdeNaaGPaVlabeg7aHjabgUcaRiaaigdaaaWaaeWaaeaacqaH XoqycqGHRaWkcaWG4baacaGLOaGaayzkaaGaaGPaVlaadwgadaahaa WcbeqaaiabgkHiTiaaykW7cqaH4oqCcaaMc8UaamiEaaaakiaacUda caWG4bGaeyOpa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaGaai ilaiabeI7aXjabeg7aHjabg6da+iabgkHiTiaaigdaaaa@6760@   F( x;θ,α )=1( 1+ θx αθ+1 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsisldaqadaqaaiaaigdacqGHRaWkdaWcaa qaaiabeI7aXjaaykW7caWG4baabaGaeqySdeMaaGPaVlabeI7aXjab gUcaRiaaigdaaaaacaGLOaGaayzkaaGaaGPaVlaadwgadaahaaWcbe qaaiabgkHiTiaaykW7cqaH4oqCcaaMc8UaamiEaaaaaaa@5A37@  

TPLD-II

f( x;θ,α )= θ 2 θ+α ( 1+αx ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaaGcba GaeqiUdeNaey4kaSIaeqySdegaamaabmaabaGaaGymaiabgUcaRiab eg7aHjaaykW7caWG4baacaGLOaGaayzkaaGaaGPaVlaadwgadaahaa WcbeqaaiabgkHiTiaaykW7cqaH4oqCcaaMc8UaamiEaaaaaaa@58FB@ ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUdacaWG4b GaeyOpa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaGaaiilaiab eg7aHjabg6da+iaaicdaaaa@43E2@   F( x;θ,α )=1( 1+ αθx θ+α ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsisldaqadaqaaiaaigdacqGHRaWkdaWcaa qaaiabeg7aHjaaykW7cqaH4oqCcaaMc8UaamiEaaqaaiabeI7aXjab gUcaRiabeg7aHbaaaiaawIcacaGLPaaacaaMc8UaamyzamaaCaaale qabaGaeyOeI0IaaGPaVlabeI7aXjaaykW7caWG4baaaaaa@5B1B@  

QLD

F( x;θ,α )=1( 1+ αθx θ+α ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsisldaqadaqaaiaaigdacqGHRaWkdaWcaa qaaiabeg7aHjaaykW7cqaH4oqCcaaMc8UaamiEaaqaaiabeI7aXjab gUcaRiabeg7aHbaaaiaawIcacaGLPaaacaaMc8UaamyzamaaCaaale qabaGaeyOeI0IaaGPaVlabeI7aXjaaykW7caWG4baaaaaa@5B1B@   F( x;θ,α )=1( 1+ θx α+1 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsisldaqadaqaaiaaigdacqGHRaWkdaWcaa qaaiabeI7aXjaaykW7caWG4baabaGaeqySdeMaey4kaSIaaGymaaaa aiaawIcacaGLPaaacaaMc8UaamyzamaaCaaaleqabaGaeyOeI0IaaG PaVlabeI7aXjaaykW7caWG4baaaaaa@56F6@  

Exponential (ED)

f( x;θ )=θ e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaeqiU deNaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaaaaa@4584@   F( x;θ )=1 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaa GccaaMc8oaaa@46EB@  

Table 3 The pdf and the cdf of fitted distributions

Distribution

ML Estimates

2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3C89@  

AIC

K-S

P-value

θ

α

WAD

0.2303

0.132

179.31

183.31

0.276

0.010

WLD

0.1733

0.7537

183

187

0.281

0.012

Weibull

0.0258

1.6168

185.45

189.45

0.278

0.014

TPLD-I

0.2001

1.1774

183.74

187.74

0.275

0.016

TPLD-II

0.2002

0.849

183.74

187.74

0.275

0.016

QLD

0.2001

0.2356

183.74

187.74

0.275

0.016

AD

0.3314

-------

187.43

189.43

0.338

0.001

Exponential

0.1106

--------

192.09

194.09

0.314

0.004

Table 4 MLE’s, - 2ln L, AIC, K-S statistics and p-values of the fitted distributions

 

The variance-covariance matrix and the 95% confidence intervals (CI’s) of the ML estimates of the parameters θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ of WAD are presented in Table 5. From the goodness of fit in Table 4 and the fitted plots of the distribution for the considered datasets in Figure 9 shows that WAD gives much closure fit as compared to other considered distributions.

Parameters

Variance-covariance matrix

95 % CI

 

  θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@39F1@                                          α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@39DA@

Lower                    Upper

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@39F1@  

0.001109402             0.00279572

0.17450148         0.3121785

α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@39DA@  

0.002795720             0.01862830

0.01988068         0.6389076

Table 5 Variance-Covariance matrix and 95% confidence intervals (CI’s) of the ME estimates ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGaaGPaVlqbeg7aHzaajaaacaGLOaGaayzkaaaa aa@3F64@ of parameters ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaa@3DB9@ for the given dataset

 

The profile of likelihood estimates of parameters θ ^ and α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja GaaGPaVlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaaykW7 caaMc8UafqySdeMbaKaaaaa@4681@  of WAD for the given dataset is shown in Figure 9. Also, the fitted plots of the considered dataset for WAD are shown in Figure 10.

Figure 9 Profile of the likelihood estimates θandα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaayk W7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPa Vlabeg7aHbaa@4661@ of WAD for the given dataset.

Figure 10 Fitted plots of the two-parameter distributions for the given dataset.

Concluding remarks

In this paper a two-parameter weighted Adya distribution (WAD) which includes one parameter Adya distribution as special case has been suggested for modeling lifetime data. Some of its properties including shapes of probability density function, moments-based measures including coefficients of variation, skewness, kurtosis, and index of dispersion; hazard rate function, mean residual life function and stochastic ordering have been studied. Method of maximum likelihood estimation has been discussed for estimating the parameters. The simulation study has been presented to know the performance of parameters. The goodness of the proposed distribution has been explained with a real lifetime data and the fit has been found to be quite satisfactory over one parameter and two parameter lifetime distributions.

Acknowledgments

None.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Funding

None.

References

  1. Fisher RA. The effects of methods of ascertainment upon the estimation of frequencies. Ann Eugenics. 1934;6:13–25.
  2. Rao CR. On discrete distributions arising out of methods of ascertainment. Patil GP, editor. Classical and contagious discrete distributions. Calcutta: Statistical Publishing Society; 1965:320–332.
  3. Patil GP, Rao CR. The weighted distributions: A survey and their applications. Krishnaiah PR, editor. In applications of Statistics: Amsterdam: North Holland Publications Co; 1977.
  4. Patil GP, Rao CR. Weighted distributions and size-biased sampling with applications to wild-life populations and human families. Biometrics. 1978;34:179–189.
  5. Shanker R, Shukla KK, Ranjan A, et al. Adya distribution with properties and application. Biom Biostat Int J. 2021;10(3):81–88.
  6. Shaked M, Shanthikumar JG. Stochastic orders and their applications. New York: Academic Press; 1994.
  7. Sylwia KB. Makeham's generalized distribution. Computational Methods in Science and Technology. 2007;13(2):113–120.
  8. Ghitany ME, Alqallaf F, Al Mutairi DK, et al. A two-parameter weighted Lindley distribution and its applications to survival data. Mathematics and Computers in simulation. 2011;81(6):1190–1201.
  9. Shanker R Mishra A. A Quasi Lindley distribution. African Journal of Mathematics and Computer Science Research. 2013(a);6(4):64–71.
  10. Shanker R, Mishra A. A two-parameter Lindley distribution. Statistics in Transition new Series. 2013b;14(1):45–56.
  11. Shanker R, Sharma S, Shanker R. A two parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics. 2013;4(2):363–368.
  12. Weibull W. A statistical distribution of wide applicability. Journal of Applied Mathematics. 1951;18:293–297.
Creative Commons Attribution License

©2023 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.