Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 9 Issue 5

Truncated akash distribution: properties and applications

Kamlesh Kumar Shukla,1 Rama Shanker2

1Department of Statistics, Mainefhi College of Science, Eritrea
2Department of Statistics, Assam University, Silcher, India

Correspondence: Kamlesh Kumar Shukla, Department of Statistics, Mainefhi College of Science, State of Eritrea

Received: August 07, 2020 | Published: October 26, 2020

Citation: Shukla KK, Shanker R. Truncated akash distribution: properties and applications. Biom Biostat Int J. 2020;9(5):179-184. DOI: 10.15406/bbij.2020.09.00317

Download PDF

Abstract

In this paper, Truncated Akash distribution has been proposed. Its mean and variance have been derived. Nature of cumulative distribution and hazard rate functions have been derived and presented graphically. Its moments including Coefficient of Variation, Skenwness, Kurtosis and Index of dispersion have been derived. Maximum likelihood method of estimation has been used to estimate the parameter of proposed model. It has been applied on three data sets and compares its superiority over one parameter exponential, Lindley, Akash, Ishita and truncated Lindley distribution.

Keywords: akash distribution, pranav distribution, maximum likelihood estimation, moments, hazard rate

Introduction

In the recent past decades, life time modeling has been becoming popular in distribution theory, where many statisticians are involved in introducing new models. Some of the life time models are very popular and applied in biological, engineering and agricultural areas, such as Lindley distribution of Lindley,1 weighted Lindley distribution introduced by Ghitany, Atieh, and Nadarajah,2 Akash distribution suggested by Shanker,3 Ishita distribution proposed by Shanker and Shukla,4 Pranav distribution introduced by Shukla,5 are some among others and extension of above mentioned distribution has also been becoming popular in different areas of statistics.

Shanker3 proposed Akash distribution convex combination of exponential and gamma distributions which is defined by its pdf and cdf

f 1 ( y;θ )= θ 3 θ 2 +2 ( 1+ y 2 ) e θy ;y>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaauyrcLbsaca WGMbWcdaWgaaqaaKqzadGaaGymaaWcbeaakmaabmaabaqcLbsacaWG 5bGaai4oaiabeI7aXbGccaGLOaGaayzkaaqcLbsacqGH9aqpkmaala aabaqcLbsacqaH4oqCkmaaCaaaleqabaqcLbmacaaIZaaaaaGcbaqc LbsacqaH4oqCkmaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaey4kaS IaaGOmaaaakmaabmaabaqcLbsacaaIXaGaey4kaSIaamyEaOWaaWba aSqabeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiaadwgakm aaCaaaleqabaqcLbmacqGHsislcqaH4oqCcaWG5baaaKqzGeGaaGPa VlaaykW7caaMc8UaaGPaVlaacUdacaWG5bGaeyOpa4JaaGimaiaacY cacaaMc8UaaGPaVlabeI7aXjabg6da+iaaicdaaaa@6C06@     (1.1)

F 2 ( y;θ )=1[ 1+ θy( θy+2 ) θ 2 +2 ] e θy ;y>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadMhacaGG7aGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaaGymaiabgkHiTmaadmaabaGaaGymaiabgU caRmaalaaabaGaeqiUdeNaamyEamaabmaabaGaeqiUdeNaamyEaiab gUcaRiaaikdaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaaaaaGaay5waiaaw2faaiaadwgadaah aaWcbeqaaiabgkHiTiabeI7aXjaadMhaaaGccaaMc8UaaGPaVlaayk W7caGG7aGaamyEaiabg6da+iaaicdacaGGSaGaeqiUdeNaeyOpa4Ja aGimaaaa@61F4@     (1.2)

The rth moment about origin μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3D10@ of Akash distribution obtained by Shanker is

μ r = r!{ θ 2 +( r+1 )( r+2 ) } θ r ( θ 2 +2 ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaamOCaiaacgcadaGadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRmaabmaabaGaamOCaiabgUcaRiaaigdaaiaa wIcacaGLPaaadaqadaqaaiaadkhacqGHRaWkcaaIYaaacaGLOaGaay zkaaaacaGL7bGaayzFaaaabaGaeqiUde3aaWbaaSqabeaacaWGYbaa aOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIYaaacaGLOaGaayzkaaaaaiaaykW7caaMc8UaaGPaVlaacUdacaWG YbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaai Olaiaac6cacaGGUaaaaa@6424@     (1.3)

Shanker3 has discussed in details about its mathematical and statistical properties, estimation of parameters and applications to model lifetime data from engineering and biomedical engineering.

Truncated type of distribution are more effective for modeling life time data because its limits used as bound either upper or lower or both according to the given data. Truncated normal distribution is proposed by Johnson, Kotz, and Balakrishnan.6 It has wide application in economics and statistics. Many researchers have been proposed truncated type of distribution and applied in different areas of statistics, especially in censor data such as truncated Weibull distribution of Zange and Xie,12 truncated Lomax distribution of Aryuyuen and Bodhisuwan,8 truncated Pareto distribution of Janinetti and Ferraro,9 truncated Lindley distribution of Singh, Singh, and Sharma.10 Truncated version of a continuous distribution can be defined as:

Definition1. Let X be a random variable distributed according to some pdf g(x;θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaaaaa@3CC5@  and cdf G(x;θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaaaaa@3CA5@ , where θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  is a parameter vector of X. Let X lies within the interval [a,b] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUfacaWGHb GaaiilaiaadkgacaGGDbaaaa@3B4B@ , where <axb< MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiabg6 HiLkabgYda8iaadggacqGHKjYOcaWG4bGaeyizImQaamOyaiabgYda 8iabg6HiLcaa@4319@ , then X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiwaa aa@3757@ , conditional on axb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHKj YOcaWG4bGaeyizImQaamOyaaaa@3D42@  is distributed as truncated distribution. The pdf of truncated distribution as reported by Singh, Singh, and Sharma10 defined by:

f(x;θ)=g(x/axb;θ)= g(x;θ) G(b;θ)G(a;θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaGaeyypa0Jaam4zaiaacIcacaWG 4bGaai4laiaadggacqGHKjYOcaWG4bGaeyizImQaamOyaiaacUdacq aH4oqCcaGGPaGaeyypa0ZaaSaaaeaacaWGNbGaaiikaiaadIhacaGG 7aGaeqiUdeNaaiykaaqaaiaadEeacaGGOaGaamOyaiaacUdacqaH4o qCcaGGPaGaeyOeI0Iaam4raiaacIcacaWGHbGaai4oaiabeI7aXjaa cMcaaaaaaa@5D23@       (1.3)

where f(x;θ)=g(x;θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaGaeyypa0Jaam4zaiaacIcacaWG 4bGaai4oaiabeI7aXjaacMcaaaa@4381@  for all axb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHKj YOcaWG4bGaeyizImQaamOyaaaa@3D42@  and f(x;θ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaGaeyypa0JaaGimaaaa@3E84@  elsewhere.

Note that f(x;θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaaaaa@3CC4@  in fact is a pdf of X on interval [a,b] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUfacaWGHb GaaiilaiaadkgacaGGDbaaaa@3B4B@ . We have            

f(x;θ)= a b f(x;θ) dx= 1 G(b;θ)G(a;θ) a b g(x;θ) dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaGaeyypa0Zaa8qCaeaacaWGMbGa aiikaiaadIhacaGG7aGaeqiUdeNaaiykaaWcbaGaamyyaaqaaiaadk gaa0Gaey4kIipakiaadsgacaWG4bGaeyypa0ZaaSaaaeaacaaIXaaa baGaam4raiaacIcacaWGIbGaai4oaiabeI7aXjaacMcacqGHsislca WGhbGaaiikaiaadggacaGG7aGaeqiUdeNaaiykaaaadaWdXbqaaiaa dEgacaGGOaGaamiEaiaacUdacqaH4oqCcaGGPaaaleaacaWGHbaaba GaamOyaaqdcqGHRiI8aOGaamizaiaadIhaaaa@6342@

1 G(b;θ)G(a;θ) G(b;θ)G(a;θ)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaadEeacaGGOaGaamOyaiaacUdacqaH4oqCcaGGPaGaeyOe I0Iaam4raiaacIcacaWGHbGaai4oaiabeI7aXjaacMcaaaGaam4rai aacIcacaWGIbGaai4oaiabeI7aXjaacMcacqGHsislcaWGhbGaaiik aiaadggacaGG7aGaeqiUdeNaaiykaiabg2da9iaaigdaaaa@5176@    (1.4)

The cdf of truncated distribution is given by

F(x;θ)= a x f(x;θ)dx= G(x;θ)G(a;θ) G(b;θ)G(a;θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaGaeyypa0Zaa8qCaeaacaWGMbGa aiikaiaadIhacaGG7aGaeqiUdeNaaiykaiaadsgacaWG4bGaeyypa0 daleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaWGhbGa aiikaiaadIhacaGG7aGaeqiUdeNaaiykaiabgkHiTiaadEeacaGGOa GaamyyaiaacUdacqaH4oqCcaGGPaaabaGaam4raiaacIcacaWGIbGa ai4oaiabeI7aXjaacMcacqGHsislcaWGhbGaaiikaiaadggacaGG7a GaeqiUdeNaaiykaaaaaaa@62A4@       (1.5)

The main objective of this paper is to propose new truncated distribution using Akash distribution, which is called as truncated Akash distribution. It has been divided in seven sections. Introduction about the paper is described in the first section. In the second section, truncated Akash distribution has been derived. Behavior of hazard rate has been presented in third section Statistical properties including its moment have been discussed in the fourth section.. Estimation of parameters of the proposed distribution has been discussed in the fifth section. Its application and comparative study with one parameter life time distribution have been illustrated in the section sixth. Finally the conclusion of the paper has been given in the seventh section.

Truncated akash distribution

In this section, pdf and cdf of new truncated distribution is proposed and named Truncated Akash distribution, using (1.3) & (1.4) of definition1 and from (1.1) & (1.2), which is defined as:

Definition 2: Let X be random variable which is distributed as Truncated Akash distribution (TAD) with location parameters a,b  and scale θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  and denoted by TAD (a,b,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGHb GaaiilaiaadkgacaGGSaGaeqiUdeNaaiykaaaa@3D4A@ . The pdf and cdf of X are respectively:

f(x;θ)= θ 3 ( x 2 +1) e θx aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaGaeyypa0ZaaSaaaeaacqaH4oqC daahaaWcbeqaaiaaiodaaaGccaGGOaGaamiEamaaCaaaleqabaGaaG OmaaaakiabgUcaRiaaigdacaGGPaGaamyzamaaCaaaleqabaGaeyOe I0IaeqiUdeNaamiEaaaaaOqaaiaadggacqaH4oqCcaGGOaGaamyyai abeI7aXjabgUcaRiaaikdacaGGPaGaamyzamaaCaaaleqabaGaeyOe I0IaeqiUdeNaamyyaaaakiabgkHiTiaadkgacqaH4oqCcaGGOaGaam OyaiabeI7aXjabgUcaRiaaikdacaGGPaGaamyzamaaCaaaleqabaGa eyOeI0IaeqiUdeNaamOyaaaakiabgUcaRiaacIcacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaiykaiaacIcacaWGLbWa aWbaaSqabeaacqGHsislcqaH4oqCcaWGHbaaaOGaeyOeI0Iaamyzam aaCaaaleqabaGaeyOeI0IaeqiUdeNaamOyaaaakiaacMcaaaaaaa@76EA@      (2.1)

F(x;θ)= aθ(aθ+2) e θa xθ(xθ+2) e θx +( θ 2 +2)( e θa e θx ) aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiEaiaacUdacqaH4oqCcaGGPaGaeyypa0ZaaSaaaeaacaWGHbGa eqiUdeNaaiikaiaadggacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadw gadaahaaWcbeqaaiabgkHiTiabeI7aXjaadggaaaGccqGHsislcaWG 4bGaeqiUdeNaaiikaiaadIhacqaH4oqCcqGHRaWkcaaIYaGaaiykai aadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaGccqGHRaWk caGGOaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmai aacMcacaGGOaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPa VlaadggaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcqaH4o qCcaaMc8UaamiEaaaakiaacMcaaeaacaWGHbGaeqiUdeNaaiikaiaa dggacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadwgadaahaaWcbeqaai abgkHiTiabeI7aXjaadggaaaGccqGHsislcaWGIbGaeqiUdeNaaiik aiaadkgacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaadkgaaaGccqGHRaWkcaGGOaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaacMcacaGGOaGaam yzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPaVlaadggaaaGccqGH sislcaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8UaamOyaa aakiaacMcaaaaaaa@9DBC@      (2.2)

where <axb< MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiabg6 HiLkabgYda8iaadggacqGHKjYOcaWG4bGaeyizImQaamOyaiabgYda 8iabg6HiLcaa@4319@ , and θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaicdaaaa@3A86@

Performance of pdf and cdf of TAD for varying values of parameters has been illustrated in the figure 1&2 respectively.

Figure 1 pdf plots of TAD for varying values of parameters.

Figure 2 cdf plots of TAD for varying values of parameter.

Survival and hazard function

The survival function S(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaGGOa GaamiEaiaacMcaaaa@3A3C@  and the hazard function h(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgacaGGOa GaamiEaiaacMcaaaa@3A51@  of TAD are defined as

S(x)=1F(x)= xθ(xθ+2) e θx bθ(bθ+2) e θb +( θ 2 +2)( e θx e θb ) aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaGGOa GaamiEaiaacMcacqGH9aqpcaaIXaGaeyOeI0IaamOraiaacIcacaWG 4bGaaiykaiabg2da9maalaaabaGaamiEaiabeI7aXjaacIcacaWG4b GaeqiUdeNaey4kaSIaaGOmaiaacMcacaWGLbWaaWbaaSqabeaacqGH sislcqaH4oqCcaWG4baaaOGaeyOeI0IaamOyaiabeI7aXjaacIcaca WGIbGaeqiUdeNaey4kaSIaaGOmaiaacMcacaWGLbWaaWbaaSqabeaa cqGHsislcqaH4oqCcaWGIbaaaOGaey4kaSIaaiikaiabeI7aXnaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaikdacaGGPaGaaiikaiaadwga daahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaGccqGHsislcaWGLb WaaWbaaSqabeaacqGHsislcqaH4oqCcaWGIbaaaOGaaiykaaqaaiaa dggacqaH4oqCcaGGOaGaamyyaiabeI7aXjabgUcaRiaaikdacaGGPa GaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamyyaaaakiabgkHi TiaadkgacqaH4oqCcaGGOaGaamOyaiabeI7aXjabgUcaRiaaikdaca GGPaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamOyaaaakiab gUcaRiaacIcacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIYaGaaiykaiaacIcacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqC caWGHbaaaOGaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0IaeqiUde NaamOyaaaakiaacMcaaaaaaa@9AFB@

h(x)= f(x) S(x) = θ 3 ( x 2 +1) e θx xθ(xθ+2) e θx bθ(bθ+2) e θb +( θ 2 +2)( e θx e θb ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgacaGGOa GaamiEaiaacMcacqGH9aqpdaWcaaqaaiaadAgacaGGOaGaamiEaiaa cMcaaeaacaWGtbGaaiikaiaadIhacaGGPaaaaiabg2da9maalaaaba GaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaaiikaiaadIhadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIXaGaaiykaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaadIhaaaaakeaacaWG4bGaeqiUdeNaaiik aiaadIhacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaadIhaaaGccqGHsislcaWGIbGaeqiUdeNa aiikaiaadkgacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadwgadaahaa WcbeqaaiabgkHiTiabeI7aXjaadkgaaaGccqGHRaWkcaGGOaGaeqiU de3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaacMcacaGGOa GaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaakiabgkHi TiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadkgaaaGccaGGPa aaaaaa@7C58@

It is obvious that h(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgacaGGOa GaamiEaiaacMcaaaa@3A51@ is independent from parameter a. Behavior of hazard function of TAD for varying values of parameter is presented in figure 3.

Figure 3 h(x) plots of TAD for varying values of parameter.

Moments and Mathematical Properties

Theorem: Suppose X follows doubly TAD ( θ,a,b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiaadggacaGGSaGaamOyaaGaayjkaiaawMcaaaaa@3D7A@ . Then the th moment about origin μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3D10@  of TAD is   

μ r = θ 2 { γ( r+1,θb )γ( r+1,θa ) }+{ γ( r+2,θb )γ( r+2,θa ) } θ r ( aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaiWaaeaacq aHZoWzdaqadaqaaiaadkhacqGHRaWkcaaIXaGaaiilaiabeI7aXjaa dkgaaiaawIcacaGLPaaacqGHsislcqaHZoWzdaqadaqaaiaadkhacq GHRaWkcaaIXaGaaiilaiabeI7aXjaadggaaiaawIcacaGLPaaaaiaa wUhacaGL9baacqGHRaWkdaGadaqaaiabeo7aNnaabmaabaGaamOCai abgUcaRiaaikdacaGGSaGaeqiUdeNaamOyaaGaayjkaiaawMcaaiab gkHiTiabeo7aNnaabmaabaGaamOCaiabgUcaRiaaikdacaGGSaGaeq iUdeNaamyyaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeI7a XnaaCaaaleqabaGaamOCaaaakmaabmaabaGaamyyaiabeI7aXjaacI cacaWGHbGaeqiUdeNaey4kaSIaaGOmaiaacMcacaWGLbWaaWbaaSqa beaacqGHsislcqaH4oqCcaWGHbaaaOGaeyOeI0IaamOyaiabeI7aXj aacIcacaWGIbGaeqiUdeNaey4kaSIaaGOmaiaacMcacaWGLbWaaWba aSqabeaacqGHsislcqaH4oqCcaWGIbaaaOGaey4kaSIaaiikaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaGGPaGaaiik aiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadggaaaGccqGHsi slcaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWGIbaaaOGaaiyk aaGaayjkaiaawMcaaaaacaaMc8UaaGPaVlaacUdacaWGYbGaeyypa0 JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaiOlaiaac6ca caGGUaaaaa@A989@

Proof: Considering   K={ aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeacqGH9a qpdaGadaqaaiaadggacqaH4oqCcaGGOaGaamyyaiabeI7aXjabgUca RiaaikdacaGGPaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaam yyaaaakiabgkHiTiaadkgacqaH4oqCcaGGOaGaamOyaiabeI7aXjab gUcaRiaaikdacaGGPaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUde NaamOyaaaakiabgUcaRiaacIcacqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIYaGaaiykaiaacIcacaWGLbWaaWbaaSqabeaacq GHsislcqaH4oqCcaWGHbaaaOGaeyOeI0IaamyzamaaCaaaleqabaGa eyOeI0IaeqiUdeNaamOyaaaakiaacMcaaiaawUhacaGL9baaaaa@67D4@

in (1.6), we have

μ r = θ 3 K a b x r ( 1+ x 2 ) e θx dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaam4saa aadaWdXbqaaiaadIhadaahaaWcbeqaaiaadkhaaaGcdaqadaqaaiaa igdacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaay zkaaaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOGaaGPaVlaadwga daahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaGccaWGKbGaamiEaa aa@5553@

= θ 3 K [ a b e θx x r dx+ a b e θx x r+2 dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaam4saaaadaWa daqaamaapehabaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaam iEaaaakiaadIhadaahaaWcbeqaaiaadkhaaaGccaWGKbGaamiEaiab gUcaRmaapehabaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaam iEaaaakiaadIhadaahaaWcbeqaaiaadkhacqGHRaWkcaaIYaaaaOGa amizaiaadIhaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdaaleaaca WGHbaabaGaamOyaaqdcqGHRiI8aOGaaGPaVdGaay5waiaaw2faaaaa @5BB5@

Taking  u=θx,x= u θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpcqaH4oqCcaWG4bGaaiilaiaadIhacqGH9aqpdaWcaaqaaiaadwha aeaacqaH4oqCaaaaaa@4134@

θ 3 K [ 1 θ r+1 { 0 θb e u x r du 0 θa e u x r du }+ 1 θ r+2 { 0 θb e u u r+2 du 0 θa e u x r+2 du } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaam4saaaadaWadaabaeqa baWaaSaaaeaacaaIXaaabaGaeqiUde3aaWbaaSqabeaacaWGYbGaey 4kaSIaaGymaaaaaaGcdaGadaqaamaapehabaGaamyzamaaCaaaleqa baGaeyOeI0IaamyDaaaakiaadIhadaahaaWcbeqaaiaadkhaaaGcca WGKbGaamyDaaWcbaGaaGimaaqaaiabeI7aXjaadkgaa0Gaey4kIipa kiabgkHiTmaapehabaGaamyzamaaCaaaleqabaGaeyOeI0IaamyDaa aakiaadIhadaahaaWcbeqaaiaadkhaaaGccaWGKbGaamyDaaWcbaGa aGimaaqaaiabeI7aXjaadggaa0Gaey4kIipaaOGaay5Eaiaaw2haai abgUcaRaqaamaalaaabaGaaGymaaqaaiabeI7aXnaaCaaaleqabaGa amOCaiabgUcaRiaaikdaaaaaaOWaaiWaaeaadaWdXbqaaiaadwgada ahaaWcbeqaaiabgkHiTiaadwhaaaGccaWG1bWaaWbaaSqabeaacaWG YbGaey4kaSIaaGOmaaaakiaadsgacaWG1bGaeyOeI0Yaa8qCaeaaca WGLbWaaWbaaSqabeaacqGHsislcaWG1baaaOGaamiEamaaCaaaleqa baGaamOCaiabgUcaRiaaikdaaaGccaWGKbGaamyDaaWcbaGaaGimaa qaaiabeI7aXjaadggaa0Gaey4kIipaaSqaaiaaicdaaeaacqaH4oqC caWGIbaaniabgUIiYdaakiaawUhacaGL9baacaaMc8oaaiaawUfaca GLDbaaaaa@8680@

Where γ(α,z)= 0 z e x x α1 dx ,α>0,x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjaacI cacqaHXoqycaGGSaGaamOEaiaacMcacqGH9aqpdaWdXbqaaiaadwga daahaaWcbeqaaiabgkHiTiaadIhaaaGccaWG4bWaaWbaaSqabeaacq aHXoqycqGHsislcaaIXaaaaOGaamizaiaadIhaaSqaaiaaicdaaeaa caWG6baaniabgUIiYdGccaGGSaGaeqySdeMaeyOpa4JaaGimaiaacY cacaWG4bGaeyOpa4JaaGimaaaa@537A@  is the lower incomplete gamma function

θ 3 K [ γ(r+1,θb)γ(r+1,θa) θ r+1 + γ(r+3,θb)γ(r+3,θa) θ r+3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaam4saaaadaWadaqaamaa laaabaGaeq4SdCMaaiikaiaadkhacqGHRaWkcaaIXaGaaiilaiabeI 7aXjaadkgacaGGPaGaeyOeI0Iaeq4SdCMaaiikaiaadkhacqGHRaWk caaIXaGaaiilaiabeI7aXjaadggacaGGPaaabaGaeqiUde3aaWbaaS qabeaacaWGYbGaey4kaSIaaGymaaaaaaGccqGHRaWkdaWcaaqaaiab eo7aNjaacIcacaWGYbGaey4kaSIaaG4maiaacYcacqaH4oqCcaWGIb GaaiykaiabgkHiTiabeo7aNjaacIcacaWGYbGaey4kaSIaaG4maiaa cYcacqaH4oqCcaWGHbGaaiykaaqaaiabeI7aXnaaCaaaleqabaGaam OCaiabgUcaRiaaiodaaaaaaaGccaGLBbGaayzxaaaaaa@6BF0@

1 K [ θ 2 { γ(r+1,θb)γ(r+1,θa) }+{ γ(r+3,θb)γ(r+3,θa) } θ r ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaadUeaaaWaamWaaeaadaWcaaqaaiabeI7aXnaaCaaaleqa baGaaGOmaaaakmaacmaabaGaeq4SdCMaaiikaiaadkhacqGHRaWkca aIXaGaaiilaiabeI7aXjaadkgacaGGPaGaeyOeI0Iaeq4SdCMaaiik aiaadkhacqGHRaWkcaaIXaGaaiilaiabeI7aXjaadggacaGGPaaaca GL7bGaayzFaaGaey4kaSYaaiWaaeaacqaHZoWzcaGGOaGaamOCaiab gUcaRiaaiodacaGGSaGaeqiUdeNaamOyaiaacMcacqGHsislcqaHZo WzcaGGOaGaamOCaiabgUcaRiaaiodacaGGSaGaeqiUdeNaamyyaiaa cMcaaiaawUhacaGL9baaaeaacqaH4oqCdaahaaWcbeqaaiaadkhaaa aaaaGccaGLBbGaayzxaaaaaa@6ADC@

θ 2 { γ( r+1,θb )γ( r+1,θa ) }+{ γ( r+2,θb )γ( r+2,θa ) } θ r ( aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOWaaiWaaeaacqaHZoWzdaqadaqa aiaadkhacqGHRaWkcaaIXaGaaiilaiabeI7aXjaadkgaaiaawIcaca GLPaaacqGHsislcqaHZoWzdaqadaqaaiaadkhacqGHRaWkcaaIXaGa aiilaiabeI7aXjaadggaaiaawIcacaGLPaaaaiaawUhacaGL9baacq GHRaWkdaGadaqaaiabeo7aNnaabmaabaGaamOCaiabgUcaRiaaikda caGGSaGaeqiUdeNaamOyaaGaayjkaiaawMcaaiabgkHiTiabeo7aNn aabmaabaGaamOCaiabgUcaRiaaikdacaGGSaGaeqiUdeNaamyyaaGa ayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaaleqaba GaamOCaaaakmaabmaabaGaamyyaiabeI7aXjaacIcacaWGHbGaeqiU deNaey4kaSIaaGOmaiaacMcacaWGLbWaaWbaaSqabeaacqGHsislcq aH4oqCcaWGHbaaaOGaeyOeI0IaamOyaiabeI7aXjaacIcacaWGIbGa eqiUdeNaey4kaSIaaGOmaiaacMcacaWGLbWaaWbaaSqabeaacqGHsi slcqaH4oqCcaWGIbaaaOGaey4kaSIaaiikaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaikdacaGGPaGaaiikaiaadwgadaahaa WcbeqaaiabgkHiTiabeI7aXjaadggaaaGccqGHsislcaWGLbWaaWba aSqabeaacqGHsislcqaH4oqCcaWGIbaaaOGaaiykaaGaayjkaiaawM caaaaaaaa@9655@   (4.1)

Now putting r=1,2 in (4.1), mean and variance can be obtained as

μ 1 ' = θ 2 { γ(2,θb)γ(2,θa) }+{ γ(4,θb)γ(4,θa) } θ( aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaaIXaaabaGaai4jaaaakiabg2da9maalaaabaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOWaaiWaaeaacqaHZoWzcaGGOaGaaGOmai aacYcacqaH4oqCcaWGIbGaaiykaiabgkHiTiabeo7aNjaacIcacaaI YaGaaiilaiabeI7aXjaadggacaGGPaaacaGL7bGaayzFaaGaey4kaS YaaiWaaeaacqaHZoWzcaGGOaGaaGinaiaacYcacqaH4oqCcaWGIbGa aiykaiabgkHiTiabeo7aNjaacIcacaaI0aGaaiilaiabeI7aXjaadg gacaGGPaaacaGL7bGaayzFaaaabaGaeqiUde3aaeWaaeaacaWGHbGa eqiUdeNaaiikaiaadggacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadw gadaahaaWcbeqaaiabgkHiTiabeI7aXjaadggaaaGccqGHsislcaWG IbGaeqiUdeNaaiikaiaadkgacqaH4oqCcqGHRaWkcaaIYaGaaiykai aadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadkgaaaGccqGHRaWk caGGOaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmai aacMcacaGGOaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamyy aaaakiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadk gaaaGccaGGPaaacaGLOaGaayzkaaaaaaaa@9162@

μ 2 ' = θ 2 { γ(3,θb)γ(3,θa) }+{ γ(5,θb)γ(5,θa) } θ 2 ( aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaaIYaaabaGaai4jaaaakiabg2da9maalaaabaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOWaaiWaaeaacqaHZoWzcaGGOaGaaG4mai aacYcacqaH4oqCcaWGIbGaaiykaiabgkHiTiabeo7aNjaacIcacaaI ZaGaaiilaiabeI7aXjaadggacaGGPaaacaGL7bGaayzFaaGaey4kaS YaaiWaaeaacqaHZoWzcaGGOaGaaGynaiaacYcacqaH4oqCcaWGIbGa aiykaiabgkHiTiabeo7aNjaacIcacaaI1aGaaiilaiabeI7aXjaadg gacaGGPaaacaGL7bGaayzFaaaabaGaeqiUde3aaWbaaSqabeaacaaI YaaaaOWaaeWaaeaacaWGHbGaeqiUdeNaaiikaiaadggacqaH4oqCcq GHRaWkcaaIYaGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiabeI7a XjaadggaaaGccqGHsislcaWGIbGaeqiUdeNaaiikaiaadkgacqaH4o qCcqGHRaWkcaaIYaGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiab eI7aXjaadkgaaaGccqGHRaWkcaGGOaGaeqiUde3aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGOmaiaacMcacaGGOaGaamyzamaaCaaaleqa baGaeyOeI0IaeqiUdeNaamyyaaaakiabgkHiTiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaadkgaaaGccaGGPaaacaGLOaGaayzkaaaa aaaa@925A@

Variance  μ 2 = μ 2 ' ( μ 1 ' ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9iabeY7aTnaaDaaaleaacaaIYaaa baGaai4jaaaakiabgkHiTiaacIcacqaH8oqBdaqhaaWcbaGaaGymaa qaaiaacEcaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@4492@  

Similarly rest two moment of origin as well as coefficient of variation, coefficient of skewness, coefficient of kurtosis and Index of dispersion can be obtained, substituting r=3,4 in the equation (4.1), which are as follows:

μ 3 ' = θ 4 { γ(4,θb)γ(4,θa) }+{ γ(6,θb)γ(6,θa) } θ 3 ( aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaaIZaaabaGaai4jaaaakiabg2da9maalaaabaGaeqiUde3a aWbaaSqabeaacaaI0aaaaOWaaiWaaeaacqaHZoWzcaGGOaGaaGinai aacYcacqaH4oqCcaWGIbGaaiykaiabgkHiTiabeo7aNjaacIcacaaI 0aGaaiilaiabeI7aXjaadggacaGGPaaacaGL7bGaayzFaaGaey4kaS YaaiWaaeaacqaHZoWzcaGGOaGaaGOnaiaacYcacqaH4oqCcaWGIbGa aiykaiabgkHiTiabeo7aNjaacIcacaaI2aGaaiilaiabeI7aXjaadg gacaGGPaaacaGL7bGaayzFaaaabaGaeqiUde3aaWbaaSqabeaacaaI ZaaaaOWaaeWaaeaacaWGHbGaeqiUdeNaaiikaiaadggacqaH4oqCcq GHRaWkcaaIYaGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiabeI7a XjaadggaaaGccqGHsislcaWGIbGaeqiUdeNaaiikaiaadkgacqaH4o qCcqGHRaWkcaaIYaGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiab eI7aXjaadkgaaaGccqGHRaWkcaGGOaGaeqiUde3aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGOmaiaacMcacaGGOaGaamyzamaaCaaaleqa baGaeyOeI0IaeqiUdeNaamyyaaaakiabgkHiTiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaadkgaaaGccaGGPaaacaGLOaGaayzkaaaa aaaa@9262@

μ 4 ' = θ 4 { γ(5,θb)γ(5,θa) }+{ γ(8,θb)γ(8,θa) } θ 4 ( ( a 3 θ 3 +3 a 2 θ 2 +6aθ+ θ 4 +6) e θa ( b 3 θ 3 +3 b 2 θ 2 +6bθ+ θ 4 +6) e θb ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaaI0aaabaGaai4jaaaakiabg2da9maalaaabaGaeqiUde3a aWbaaSqabeaacaaI0aaaaOWaaiWaaeaacqaHZoWzcaGGOaGaaGynai aacYcacqaH4oqCcaWGIbGaaiykaiabgkHiTiabeo7aNjaacIcacaaI 1aGaaiilaiabeI7aXjaadggacaGGPaaacaGL7bGaayzFaaGaey4kaS YaaiWaaeaacqaHZoWzcaGGOaGaaGioaiaacYcacqaH4oqCcaWGIbGa aiykaiabgkHiTiabeo7aNjaacIcacaaI4aGaaiilaiabeI7aXjaadg gacaGGPaaacaGL7bGaayzFaaaabaGaeqiUde3aaWbaaSqabeaacaaI 0aaaaOWaaeWaaqaabeqaaiaacIcacaWGHbWaaWbaaSqabeaacaaIZa aaaOGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiaa dggadaahaaWcbeqaaiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaI2aGaamyyaiabeI7aXjabgUcaRiabeI7aXnaa CaaaleqabaGaaGinaaaakiabgUcaRiaaiAdacaGGPaGaamyzamaaCa aaleqabaGaeyOeI0IaeqiUdeNaamyyaaaakiabgkHiTaqaaiaacIca caWGIbWaaWbaaSqabeaacaaIZaaaaOGaeqiUde3aaWbaaSqabeaaca aIZaaaaOGaey4kaSIaaG4maiaadkgadaahaaWcbeqaaiaaikdaaaGc cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaamOyai abeI7aXjabgUcaRiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUca RiaaiAdacaGGPaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaam OyaaaaaaGccaGLOaGaayzkaaaaaaaa@9ACD@

Coefficient of Variation= ( μ 2 ' ( μ 1 ' ) 2 ) 1/2 μ 1 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaae WaaeaacqaH8oqBdaqhaaWcbaGaaGOmaaqaaiaacEcaaaGccqGHsisl caGGOaGaeqiVd02aa0baaSqaaiaaigdaaeaacaGGNaaaaOGaaiykam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGymaiaac+cacaaIYaaaaaGcbaGaeqiVd02aa0baaSqaaiaaigdaae aacaGGNaaaaaaaaaa@4831@ , Coefficient of Skweness=  ( μ 3 ' +3 μ 2 ' μ 1 ' ( μ 1 ' ) 2 ) ( μ 2 ' ( μ 1 ' ) 2 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaae WaaeaacqaH8oqBdaqhaaWcbaGaaG4maaqaaiaacEcaaaGccqGHRaWk caaIZaGaeqiVd02aa0baaSqaaiaaikdaaeaacaGGNaaaaOGaeqiVd0 2aa0baaSqaaiaaigdaaeaacaGGNaaaaOGaeyOeI0IaaiikaiabeY7a TnaaDaaaleaacaaIXaaabaGaai4jaaaakiaacMcadaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaaaeaacaGGOaGaeqiVd02aa0baaSqa aiaaikdaaeaacaGGNaaaaOGaeyOeI0IaaiikaiabeY7aTnaaDaaale aacaaIXaaabaGaai4jaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGc caGGPaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaaaaaaa@5860@ , Coefficient of Kurtosis=   ( μ 4 ' 4 μ 3 ' μ 1 ' +6 μ 2 ' ( μ 1 ' ) 2 3 ( μ 1 ' ) 4 ) ( μ 2 ' ( μ 1 ' ) 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaae WaaeaacqaH8oqBdaqhaaWcbaGaaGinaaqaaiaacEcaaaGccqGHsisl caaI0aGaeqiVd02aa0baaSqaaiaaiodaaeaacaGGNaaaaOGaeqiVd0 2aa0baaSqaaiaaigdaaeaacaGGNaaaaOGaey4kaSIaaGOnaiabeY7a TnaaDaaaleaacaaIYaaabaGaai4jaaaakiaacIcacqaH8oqBdaqhaa WcbaGaaGymaaqaaiaacEcaaaGccaGGPaWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaaG4maiaacIcacqaH8oqBdaqhaaWcbaGaaGymaaqaai aacEcaaaGccaGGPaWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzk aaaabaGaaiikaiabeY7aTnaaDaaaleaacaaIYaaabaGaai4jaaaaki abgkHiTiaacIcacqaH8oqBdaqhaaWcbaGaaGymaaqaaiaacEcaaaGc caGGPaWaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaaG Omaaaaaaaaaa@6252@ ,

Index of dispersion= ( μ 2 ' ( μ 1 ' ) 2 ) μ 1 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaae WaaeaacqaH8oqBdaqhaaWcbaGaaGOmaaqaaiaacEcaaaGccqGHsisl caGGOaGaeqiVd02aa0baaSqaaiaaigdaaeaacaGGNaaaaOGaaiykam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiabeY7aTnaa DaaaleaacaaIXaaabaGaai4jaaaaaaaaaa@45D0@ , However, they can be easily obtained.

Maximum Likelihood Method Estimation

Let ( x 1 , x 2 , x 3 ,.., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaGPaVlaaykW7 caGGSaGaamiEamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaa aa@4DF0@  be a random sample of size  from (1.1). The likelihood function, L of TAD is given by

L= ( θ 3 aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) ) n i=1 n ( 1+ x i 2 ) e nθ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGH9a qpdaqadaqaamaalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGc baGaamyyaiabeI7aXjaacIcacaWGHbGaeqiUdeNaey4kaSIaaGOmai aacMcacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWGHbaaaOGa eyOeI0IaamOyaiabeI7aXjaacIcacaWGIbGaeqiUdeNaey4kaSIaaG OmaiaacMcacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWGIbaa aOGaey4kaSIaaiikaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaikdacaGGPaGaaiikaiaadwgadaahaaWcbeqaaiabgkHiTiab eI7aXjaadggaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcq aH4oqCcaWGIbaaaOGaaiykaaaaaiaawIcacaGLPaaadaahaaWcbeqa aiaad6gaaaGcdaqeWbqaamaabmaabaGaaGymaiabgUcaRiaadIhada WgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaaikdaaaaakiaawIca caGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHpi s1aOGaaGPaVlaadwgadaahaaWcbeqaaiabgkHiTiaad6gacaaMc8Ua eqiUdeNaaGPaVlqadIhagaqeaaaaaaa@818B@

The  log likelihood function is thus obtained as 

lnL=nln( θ 3 aθ(aθ+2) e θa bθ(bθ+2) e θb +( θ 2 +2)( e θa e θb ) )+ i=1 n ln( 1+ x i 2 ) nθ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaamitaiabg2da9iaad6gaciGGSbGaaiOBamaabmaabaWaaSaaaeaa cqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacaWGHbGaeqiUdeNaai ikaiaadggacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadwgadaahaaWc beqaaiabgkHiTiabeI7aXjaadggaaaGccqGHsislcaWGIbGaeqiUde NaaiikaiaadkgacqaH4oqCcqGHRaWkcaaIYaGaaiykaiaadwgadaah aaWcbeqaaiabgkHiTiabeI7aXjaadkgaaaGccqGHRaWkcaGGOaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaacMcacaGG OaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamyyaaaakiabgk HiTiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadkgaaaGccaGG PaaaaaGaayjkaiaawMcaaiabgUcaRmaaqahabaGaciiBaiaac6gada qadaqaaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaadMgaaeqaaOWa aWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaleaacaWGPbGaey ypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabgkHiTiaad6gacaaM c8UaeqiUdeNaaGPaVlqadIhagaqeaaaa@8551@

Taking a ^ =min( x 1 , x 2 , x 3 ,.., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadggagaqcai abg2da9iGac2gacaGGPbGaaiOBamaabmaabaGaamiEamaaBaaaleaa caaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIYaaabe aakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZaaabeaakiaacYca caaMc8UaaGPaVlaac6cacaGGUaGaaGPaVlaacYcacaWG4bWaaSbaaS qaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5133@ , b ^ =max( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkgagaqcai abg2da9iGac2gacaGGHbGaaiiEamaabmaabaGaamiEamaaBaaaleaa caaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIYaaabe aakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZaaabeaakiaacYca caaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7caaMc8Uaaiilai aadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaaa@5373@ , the maximum likelihood estimate θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaaaaa@3986@ of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  is the solution of the log-likelihood equation logL θ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpcaaIWaaaaa@4101@ . It is obvious that logL θ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpcaaIWaaaaa@4101@  will not be in closed form and hence some numerical optimization technique can be used e the equation for θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ . In this paper the nonlinear method available in R software has been used to find the MLE of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ .

Applications on Life time data

In this section, TAD has been applied to three datasets using maximum likelihood estimates. Parameter  is estimated whereas another parameters a, and b are considered as lowest and highest values of data. i. e. a ^ =min( x 1 , x 2 , x 3 ,.., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadggagaqcai abg2da9iGac2gacaGGPbGaaiOBamaabmaabaGaamiEamaaBaaaleaa caaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIYaaabe aakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZaaabeaakiaacYca caaMc8UaaGPaVlaac6cacaGGUaGaaGPaVlaacYcacaWG4bWaaSbaaS qaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5133@ and b ^ =max( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkgagaqcai abg2da9iGac2gacaGGHbGaaiiEamaabmaabaGaamiEamaaBaaaleaa caaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIYaaabe aakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZaaabeaakiaacYca caaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7caaMc8Uaaiilai aadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaaa@5373@ . Goodness of fit has been decided using Akaike information criteria (AIC), Bayesian Information criteria (BIC) and Kolmogorov Simonov test (KS) values respectively, which are calculated for each distribution and also compared with p-value and given in the table 1,2 &3. As we know that best goodness of fit of the distribution can be decided on the basis of minimum value of KS, AIC and BIC.

Distributions

ML Estimates

Standard Errors

2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaaIYaGaciiBaiaac6gacaWGmbaaaa@3AE3@  

AIC

BIC

K-S

p-value

TAD

θ ^ =0.03917 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIZaGaaGyo aiaaigdacaaI3aaaaa@40CB@  

0.00303

939.13

941.13

942.05

0.153

0.017

TLD

θ ^ =0.02199 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpqaaaaaaaaaWdbiaaicdacaGGUaGaaGim aiaaikdacaaIXaGaaGyoaiaaiMdaaaa@40EC@  

0.00273

958.88

960.88

962.31

0.186

0.001

Akash

θ ^ =0.04387 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI0aGaaG4m aiaaiIdacaaI3aaaaa@40CD@  

0.00253

950.97

952.97

954.40

0.194

0.001

Ishita

θ ^ =0.04390 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI0aGaaG4m aiaaiMdacaaIWaaaaa@40C7@  

0.002533

950.92

9952.92

954.35

0.194

0.001

Lindley

θ ^ =0.02886 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIYaGaaGio aiaaiIdacaaI2aaaaa@40CF@  

0.002038

983.10

985.10

986.54

0.252

0.000

Exponential

θ ^ =0.01463 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaGaaGin aiaaiAdacaaIZaaaaa@40C5@  

0.001457

1044.87

1046.87

1048.30

0.336

0.000

Table 1 MLE’s, Standard Errors, - 2ln L, AIC, BIC, K-S and p-values of the fitted distributions for data set-5

Distributions

ML Estimates

Standard Errors

2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaaIYaGaciiBaiaac6gacaWGmbaaaa@3AE3@  

AIC

BIC

K-S

p-value

TAD

θ ^ =0.08776 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI4aGaaG4n aiaaiEdacaaI2aaaaa@40D3@  

0.024241

201.96

203.96

205.58

0.112

0.786

TLD

θ ^ =0.05392 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpqaaaaaaaaaWdbiaaicdacaGGUaGaaGim aiaaiwdacaaIZaGaaGyoaiaaikdaaaa@40EA@  

0.023917

202.18

204.18

205.61

0.117

0.738

Akash

θ ^ =0.09706 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI5aGaaG4n aiaaicdacaaI2aaaaa@40CD@  

0.01004

240.68

242.68

242.67

0.298

0.005

Ishita

θ ^ =0.097328 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI5aGaaG4n aiaaiodacaaIYaGaaGioaaaa@418E@  

0.01008

240.48

242.48

243.48

0.297

0.006

Lindley

θ ^ =0.06299 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI2aGaaGOm aiaaiMdacaaI5aaaaa@40D1@  

0.00800

253.98

255.98

256.98

0.365

0.000

Exponential

θ ^ =0.032452 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIZaGaaGOm aiaaisdacaaI1aGaaGOmaaaa@4181@  

0.00582

274.52

276.52

277.52

0.458

0.000

Table 2 MLE’s, Standard Errors, - 2ln L, AIC, BIC, K-S and p-values of the fitted distributions for data set-2

Distributions

ML Estimates

Standard Errors

2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaaIYaGaciiBaiaac6gacaWGmbaaaa@3AE3@  

AIC

BIC

K-S

p-value

TAD

θ ^ =0.70314 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaiEdacaaIWaGaaG4m aiaaigdacaaI0aaaaa@40C6@  

0.18671

110.76

112.76

114.68

0.152

0.079

TLD

θ ^ =0.28986 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpqaaaaaaaaaWdbiaaicdacaGGUaGaaGOm aiaaiIdacaaI5aGaaGioaiaaiAdaaaa@40F8@  

0.184873

112.19

114.19

115.63

0.157

0.065

Akash

θ ^ =0.96472 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI2aGaaGin aiaaiEdacaaIYaaaaa@40D3@  

0.06460

224.27

226.27

227.27

0.362

0.000

Ishita

θ ^ =0.93156 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaiMdacaaIZaGaaGym aiaaiwdacaaI2aaaaa@40CF@  

0.05602

223.14

225.14

226.13

0.330

0.000

Lindley

θ ^ =0.65450 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaiAdacaaI1aGaaGin aiaaiwdacaaIWaaaaa@40CB@  

0.05803

238.38

240.38

241.37

0.401

0.000

Exponential

θ ^ =0.40794 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaGaeq iUdehacaGLcmaacqGH9aqpcaaIWaGaaiOlaiaaisdacaaIWaGaaG4n aiaaiMdacaaI0aaaaa@40CF@  

0.04911

261.73

263.73

264.73

0.448

0.000

Table 3 MLE’s, Standard Errors, - 2ln L, AIC, BIC, K-S and p-values of the fitted distributions for data set-3

Data Set 1: The data is given by Birnbaum and Saunders11 on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 100 observations with maximum stress per cycle 31,000 psi. The data () are presented below (after subtracting 65).

Data Set 2: This data set is the strength data of glass of the aircraft window reported by Fuller, Frieman, Quinn, Quinn, and Carter:12

Data Set 3: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm, Bader and Priest:13

Fitted plots of the considered distributions are presented in Figure 4, 5 and 6, respectively.

Figure 4 Fitted plots of distributions for the dataset-1.

Figure 5 Fitted plot of distributions for data set-2.

Figure 6 Fitted plot of distribution for data set-3.

Conclusions

In this paper, truncated Akash distribution (TAD) has been proposed. Its statistical properties including survival function and hazard rate have been discussed. Its moments including Coefficient of variation, Skewness, Kurtosis and Index of dispersion have derived. Maximum likelihood method has been used for estimation of its parameter. Goodness of fit of TAD has been discussed with three life time datasets and compared with truncated Lindley, Akash, Ishita, Lindley and exponential distributions. It has been observed that TAD gives good fit over TLD (truncated Lindley Distribution), Akash, Ishita, Lindley and exponential distribution.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Lindley DV. Fiducial distributions and Bayes’ Theorem. Journal of the Royal Statistical Society, Series B. 1958;20(1):102–107.
  2. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its Applications. Mathematics Computing and Simulation. 2008;78(4):493– 506.
  3. Shanker R. Akash distribution and its application. International Journal of Probability and Statistics. 2015;4(3):65–75.
  4. Shanker R, Shukla KK. Ishita distribution and its applications. Biometrics & Biostatistics International Journal. 2017;5:1–9.
  5. Shukla KK. Pranav distribution with Properties and Applications. Biometrics and Biostatistics International Journal. 2018;7(3):244–254.
  6. Johnson NL, Kotz S, Balakrishnan N. Continuous univariate distributions. New York, USA: Wiley; 1994. p. 784.
  7. Zange Z, Xie M. On the upper truncated Weibull distribution and its reliability implications. Reliability Engineering & System Safety. 2011;96(1):194–200.
  8. Aryuyuen S, Bodhisuwan W. The truncated power Lomax distribution: Properties and applications. Walailak Journal of Science and Technology. 2018;16:655–668.
  9. Zaninetti L, Ferraro M. On the truncated Pareto distribution with applications. Central European Journal of Physics. 2008;6:1–6.
  10. Singh SK, Singh U, Sharma VK. The truncated Lindley distribution: Inference and application. Journal of Statistics Applications & Probability. 2014;3(2):219–228.
  11. Birnbaum ZW, Saunders SC. Estimation for a family of life distribution with applications to fatigue. Journal of Applied Probability. 1969; 6(2):328–347.
  12. Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study. SPIE Proc. 1994;2286:419–430.
  13. Bader MG, Hriest AM. Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Kawata K, Umekawa S, editors. Progressin Science in Engineering Composites. Tokyo, Japan: ICCM–IV. 1982;1129–1136.
Creative Commons Attribution License

©2020 Shukla, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.