Loading [MathJax]/jax/output/CommonHTML/jax.js
Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 4 Issue 1

On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions

Rama Shanker,1 Hagos Fesshaye2

1Department of Statistics, Eritrea Institute of Technology, Eritrea
2Department of Economics, College of Business and Economics, Eritrea

Correspondence: Rama Shanker, Department of Statistics, Eritrea Institute of Technology, Asmara, Eritrea

Received: May 25, 2016 | Published: July 7, 2016

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. Biom Biostat Int J. 2016;4(1):28-38. DOI: 10.15406/bbij.2016.04.00087

Download PDF

Abstract

The modeling and statistical analysis of lifetime data are crucial for statisticians and research workers in almost all applied sciences including engineering, medical sciences/biological sciences, insurance, finance, amongst others. One parameter lifetime distributions that are popular in Statistics literature for modeling lifetime data are exponential and Lindley distributions. An extensive study has been carried out by Shanker et al.1 for modeling lifetime data using Lindley and exponential distributions and observed that there are many lifetime data where these distributions are not suitable from theoretical and applied point of view. Recently Shanker2,3 has introduced one parameter Lifetime distributions namely “Aradhana distribution” and “Sujatha distribution” for modeling lifetime data.

In the present paper the interrelationships and comparative studies of Aradhana, Sujatha, Lindley and exponential distributions have been made to model lifetime data. The relationships, their distributional properties and estimation of parameter have been discussed. The applications and goodness of fit of these distributions for modeling lifetime data through various examples from engineering, medical science and other fields have also been discussed and explained.

Keywords: aradhana distribution, sujatha distribution, lindley distribution, exponential distribution, statistical properties, estimation of parameter, goodness of fit

Introduction

The time to the occurrence of event of interest is known as lifetime or survival time or failure time in reliability analysis. The event may be failure of a piece of equipment, death of a person, development (or remission) of symptoms of disease, health code violation (or compliance). The modeling and statistical analysis of lifetime data are crucial for statisticians and research workers in almost all applied sciences including engineering, medical science/biological science, insurance and finance, amongst others.

Shanker2,3 has introduced one parameter continuous distributions named, “Aradhana distribution” and “Sujatha distribution”for modeling lifetime data from engineering and medical science and studied its various mathematical properties, estimation of its parameter, and its applications. A number of continuous distributions for modeling lifetime data have been introduced in statistical literature including exponential, Lindley, gamma, lognormal and Weibull, amongst others. The exponential, Lindley and the Weibull distributions are more popular in practice than the gamma and the lognormal distributions because the survival functions of the gamma and the lognormal distributions cannot be expressed in closed forms and both require numerical integration. Though Aradhana, Sujatha, Lindley and exponential distributions are of one parameter, Aradhana, Sujatha and Lindley distributions have advantage over the exponential distribution that the exponential distribution has constant hazard rate and mean residual life function whereas the Aradhana, Sujatha, and Lindley distributions have increasing hazard rate and decreasing mean residual life function. Further, Aradhana and Sujatha distributions of Shanker2,3 have flexibility over both Lindley and exponential distributions.

Aradhana, sujatha, lindley and exponential distributions

Shanker2 introduced a new one parameter continuous distribution named, ‘Aradhana distribution’ for modeling lifetime data from engineering and medical science. This distribution is a three- component mixture of an exponential (θ)  distribution, a gamma (2,θ) distribution and a gamma (3,θ) distribution with their mixing proportions θ2θ2+2θ+2  , 2θθ2+2θ+2  and 2θ2+2θ+2  respectively. It has been shown by Shanker2 that Aradhana distribution is flexible than the Lindley distribution for modeling lifetime data in reliability and in terms of its hazard rate shapes and it gives better fit than Akash, Shanker, Lindley and exponential distributions in modeling lifetime data. Shanker2 has discussed its various mathematical and statistical properties including its shape, moment generating function, moments, skewness, kurtosis, hazard rate function, mean residual life function, stochastic orderings, mean deviations, distribution of order statistics, Bonferroni and Lorenz curves, Renyi entropy measure, stress-strength reliability, amongst others. Shanker4 has also obtained a Poisson mixture of Aradhana distribution named, “Poisson-Aradhana distribution (PAD)”for modeling count data.

Shanker3 introduced another one parameter continuous distribution named, ‘Sujatha distribution’ for modeling lifetime data from engineering and medical science. This distribution is also a three-component mixture of an exponential (θ)  distribution, a gamma (2,θ) distribution and a gamma (3,θ) distribution with their mixing proportions θ2θ2+θ+2 , θθ2+θ+2 and 2θ2+θ+2 respectively. It has been shown by Shanker3 that Sujatha distribution is flexible than the Lindley distribution for modeling lifetime data in reliability and in terms of its hazard rate shapes and it gives better fit than Lindley and exponential distributions in modeling lifetime data. Shanker3 has discussed its various mathematical and statistical properties including its shape, moment generating function, moments, skewness, kurtosis, hazard rate function, mean residual life function, stochastic orderings, mean deviations, distribution of order statistics, Bonferroni and Lorenz curves, Renyi entropy measure, stress-strength reliability, amongst others. Shanker5 has also obtained a Poisson mixture of Sujatha distribution named, “Poisson-Sujatha distribution (PSD)”for modeling count data.

The Lindley distribution is a two-component mixture of an exponential (θ) distribution and a gamma (2,θ)  distribution with their mixing proportions θθ+1  and 1θ+1 respectively and is given by Lindley6 in the context of Bayesian Statistics as a counter example of fiducial Statistics. A detailed study about its various mathematical properties, estimation of parameter and application showing the superiority of Lindley distribution over exponential distribution for the waiting times before service of the bank customers has been done by Ghitany et al.7. The Lindley distribution has been generalized, extended, mixed, modified and its detailed applications in reliability and other fields of knowledge by different researchers including Sankaran,8 Zakerzadeh & Dolati,9 Nadarajah et al.,10 Deniz & Ojeda,11 Bakouch et al.,12 Shanker & Mishra,13,14,15 Shanker & Amanuel,16 Ghitany et al.,17 Shanker et al.,1,18-21 are some among others.

In statistical literature, exponential distribution was the first widely used lifetime distribution model in areas ranging from studies on the lifetimes of manufactured items to research involving survival or remission times in chronic diseases. The main reason for its wide usefulness and applicability as lifetime model is partly because of the availability of simple statistical methods for it and partly because it appeared suitable for representing the lifetimes of many phenomenons such as various types of manufactured items.

Let T be a continuous random variable representing the lifetimes of individuals in some population. The expressions for probability density function, f(t) , cumulative distribution function, F(t) , hazard rate function, h(t) , mean residual life function, m(t) , mean μ1 , variance μ2 , coefficient of variation (C.V.), coefficient of Skewness (β1) , coefficient of Kurtosis (β2) , and index of dispersion (γ)  of Aradhana and Sujatha distributions are summarized in Table 1 and of Lindley and exponential distributions in Table 2.

A table of values for coefficient of variation (C.V.), coefficient of Skewness (β1) , coefficient of Kurtosis (β2) , and index of dispersion (γ)  for Aradhana, Sujatha and Lindley distributions for various values of their parameter for comparative study are summarized in the Table 3.

The condition under which Aradhana, Sujatha, Lindley and exponential distributions are Over-dispersion (μ<σ2) , equi-dispersion (μ=σ2)  and under-dispersion (μ>σ2)  of Aradhana, Sujatha, Lindley and exponential distributions for varying values of their parameter θ are presented in Table 4.

Graphs of coefficient of variation (C.V), coefficient of skewness ( β1 ) coefficient of kurtosis ( β2 ) and index of dispersion ( γ ) for Aradhana, Sujatha, and Lindley distributions are presented for varying values of their parameter θ  in Figure 1.

Estimation of parameter

Estimate of the parameter of Aradhana distribution

Let (t1,t2,t3,...,tn)  be a random sample from Aradhana distribution. The maximum likelihood estimate (MLE) ˆθ  of θ  and the method of moment estimate (MOME) ˜θ of θ  is the solution of the following cubic equation

ˉtθ3+(2ˉt1)θ2+2(ˉt2)θ6=0 .

Estimate of the parameter of Sujatha distribution

Let (t1,t2,t3,...,tn)  be random sample from Sujatha distribution. The maximum likelihood estimate (MLE) ˆθ  of θ  and the method of moment estimate (MOME) ˜θ of θ  is the solution of the following cubic equation

  ˉtθ3+(ˉt1)θ2+2(ˉt1)θ6=0

Estimate of the parameter of Lindley distribution

Let (t1,t2,....,tn)  be a random sample of size n  from Lindley distribution. The MLE ˆθ  of θ  and MOME ˜θ of θ  is given by ˆθ=(ˉt1)+(ˉt1)2+8ˉt2ˉt;ˉt>0 , where ˉt is the sample mean.

Estimate of the parameter of Exponential distribution

Let (t1,t2,....,tn)  be a random sample of size n  from exponential distribution. The MLE ˆθ  of θ  and MOME ˜θ of θ  is given by ˆθ=1ˉt , where ˉt is the sample mean.

Applications and goodness of fit

In this section the goodness of fit test of Aradhana, Sujatha, Lindley and exponential distributions for following sixteen real lifetime data- sets using maximum likelihood estimate have been discussed.

In order to compare Aradhana, Sujatha, Lindley and exponential distributions, 2lnL , AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected), BIC (Bayesian Information Criterion), K-S Statistics ( Kolmogorov-Smirnov Statistics) for all sixteen real lifetime data- sets have been computed and presented in Table 5. The formulae for computing AIC, AICC, BIC, and K-S Statistics are as follows:

AIC=2lnL+2k , AICC=AIC+2k(k+1)(nk1) , BIC=2lnL+klnn  and

D=Supx|Fn(x)F0(x)| , where k = number of parameters, n = the sample size and Fn(x) is the empirical distribution function. The best distribution is the distribution corresponding to lower values of 2lnL , AIC, AICC, BIC, and K-S statistics.

The best fitting has been shown by making -2ln L, AIC, AICC, BIC, and K-S Statistics in bold

Concluding remarks

In this paper an attempt has been made to find the suitability of Aradhana, Sujatha, Lindley and exponential distributions for modeling real lifetime data from engineering, medical science and other fields. Firstly a table for values of the various characteristics of Aradhana, Sujatha, Lindley and exponential distributions has been presented for different values of their parameter which reflects their nature and behavior. The condition under which Aradhana, Sujatha, Lindley and exponential distributions are over-dispersed, equi-dispersed, and under-dispersed has been given. Several lifetime data from medical science, engineering and other fields of knowledge have been fitted using Aradhana, Sujatha, Lindley and exponential distributions to study the advantages and disadvantages of these distributions. The goodness of fit test of these distributions using Kolmogorov-Smirnov tests indicate that each has advantages and disadvantages for modeling lifetime data.

Aradhana Distribution

Sujatha Distribution

f(t)=θ3θ2+2θ+2(1+t)2eθt

f(t)=θ3θ2+θ+2(1+t+t2)eθt

F(t)=1[1+θt(θt+2θ+2)θ2+2θ+2]eθt

F(t)=1[1+θt(θt+θ+2)θ2+θ+2]eθt

h(t)=θ3(1+t)2θt(θt+2θ+2)+(θ2+2θ+2)

h(t)=θ3(1+t+t2)θ2(1+t+t2)+2θt+θ+2

m(t)=θ2t2+2θt(θ+2)+(θ2+4θ+6)θ[θt(θt+2θ+2)+(θ2+2θ+2)]

m(t)=θ2(t2+t+1)+2θ(t+1)+6θ[(θ2+θ+2)+θt(θt+θ+2)]

μ1=θ2+4θ+6θ(θ2+2θ+2)

μ1=θ2+2θ+6θ(θ2+θ+2)

μ2=θ4+8θ3+24θ2+24θ+12θ2(θ2+2θ+2)2

μ2=θ4+4θ3+18θ2+12θ+12θ2(θ2+θ+2)2

C.V=σμ1=θ4+8θ3+24θ2+24θ+12θ2+4θ+6

C.V=σμ1=θ4+4θ3+18θ2+12θ+12θ2+2θ+6

β1=2(θ6+12θ5+54θ4+100θ3+108θ2+72θ+24)(θ4+8θ3+24θ2+24θ+12)3/2

β1=2(θ6+6θ5+36θ4+44θ3+54θ2+36θ+24)(θ4+4θ3+18θ2+12θ+12)3/2

β2=3(3θ8+48θ7+304θ6+944θ5+1816θ4+2304θ3+1920θ2+960θ+240)(θ4+8θ3+24θ2+24θ+12)2

β2=3(3θ8+24θ7+172θ6+376θ5+736θ4+864θ3+912θ2+480θ+240)(θ4+4θ3+18θ2+12θ+12)2

γ=σ2μ1=θ4+8θ3+24θ2+24θ+12θ(θ2+2θ+2)(θ2+4θ+6)

γ=σ2μ1=θ4+4θ3+18θ2+12θ+12θ(θ2+θ+2)(θ2+2θ+6)

Table 1 Characteristics of Aradhana and Sujatha Distributions

Lindley Distribution

Exponential Distribution

f(t)=θ2θ+1(1+t)eθt

f(t)=θeθt

F(t)=1θ+1+θtθ+1eθt

F(t)=1eθt

h(t)=θ2(1+t)θ+1+θt

h(t)=θ

m(t)=θ+2+θtθ(θ+1+θt)

m(t)=1θ

μ1=θ+2θ(θ+1)

μ1=1θ

μ2=θ2+4θ+2θ2(θ+1)2

μ2=1θ2

C.V=σμ1=θ2+4θ+2θ+2

C.V=σμ1=1

β1=2(θ3+6θ2+6θ+2)(θ2+4θ+2)3/2

 

β1=2

β2=3(3θ4+24θ3+44θ2+32θ+8)(θ2+4θ+2)2

β2=9

γ=σ2μ1=θ2+4θ+2θ(θ+1)(θ+2)

γ=σ2μ1=1θ

Table 2 Characteristics of Lindley and Exponential Distributions

Values of θ for Aradhana Distribution

0.01

0.05

0.1

0.3

0.5

1

1.5

2

μ1'

299.000

59.001

29.005

9.033

5.077

2.200

1.310

0.900

μ2

29999.990

1199.954

299.914

33.143

11.763

2.760

1.134

0.590

CV

0.579

0.587

0.597

0.637

0.676

0.755

0.813

0.853

β1

1.155

1.155

1.155

1.167

1.193

1.295

1.402

1.496

β2

5.000

5.000

5.001

5.024

5.087

5.381

5.758

6.135

γ

100.334

20.338

10.340

3.669

2.317

1.255

0.865

0.656

Values of θ  for Sujatha Distribution

0.01

0.05

0.1

0.3

0.5

1

1.5

2

μ1'

299.493

59.464

29.431

9.331

5.273

2.250

1.304

0.875

μ2

30000.737

1200.69

300.624

33.722

12.198

2.938

1.197

0.609

CV

0.578

0.583

0.589

0.622

0.662

0.762

0.839

0.892

β1

1.155

1.154

1.151

1.140

1.146

1.248

1.397

1.536

β2

5.000

4.998

4.992

4.955

4.945

5.170

5.656

6.215

γ

100.172

20.192

10.214

3.614

2.313

1.306

0.918

0.696

Values of θ  for Lindley Distribution

0.01

0.05

0.1

0.3

0.5

1

1.5

2

μ1'

199.010

39.048

19.091

5.897

3.333

1.500

0.933

0.667

μ2

19999.020

799.093

199.174

21.631

7.556

1.750

0.729

0.389

CV

0.711

0.724

0.739

0.789

0.825

0.882

0.915

0.935

β1

1.414

1.417

1.422

1.464

1.512

1.620

1.699

1.756

β2

6.000

6.007

6.025

6.162

6.343

6.796

7.173

7.469

γ

100.493

20.465

10.433

3.668

2.267

1.167

0.781

0.583

Table 3 Values of μ1 , μ2 ,C.V, β1 , β2 and γ  of Aradhana, Sujatha and Lindley distributions for varying values of the parameter θ

SD: Standard Deviation; BMI: Body Mass Index; WC: Waist Circumference; AC: Abdominal Circumference; HC: Hip Circumference; RER: Respiratory Exchange Ratio; HR: Hear Rate.

Distribution

Over-Dispersion (μ<σ2)

Equi-Dispersion (μ=σ2)

Under-Dispersion (μ>σ2)

Aradhana

θ<1.283826505

θ=1.283826505

θ>1.283826505

Sujatha

θ<1.364271174

θ=1.364271174

θ>1.364271174

Lindley

θ<1.170086487

θ=1.170086487

θ>1.170086487

Exponential

θ<1

θ=1

θ>1

Table 4 Over-dispersion, equi-dispersion and under-dispersion of Aradhana, Sujatha, Lindley and exponential distributions for varying values of their parameter θ

Figure 1 Graphs of coefficient of variation (C.V), coefficient of skewness ( β1 ) coefficient of kurtosis ( β2 ) and index of dispersion ( γ ) for Aradhana, Sujatha, and Lindley distributions are for varying values of their parameter θ .

Model

Parameter Estimate

-2ln L

AIC

AICC

BIC

K-S Statistic

Data 1

Aradhana

1.346393

149.88

151.88

151.94

154.02

0.345

Sujatha

1.350050

154.81

156.81

156.87

158.95

0.349

Lindley

0.996116

162.56

164.56

164.62

166.70

0.371

Exponential

0.663647

177.66

179.66

179.73

181.80

0.402

Data 2

Aradhana

0.043272

952.58

954.58

954.62

957.18

0.186

Sujatha

0.043566

951.78

953.78

953.97

954.91

0.185

Lindley

0.028859

983.11

985.11

985.15

987.71

0.242

Exponential

0.014635

1044.87

1046.87

1046.91

1049.48

0.357

Data 3

Aradhana

0.040968

227.28

229.28

229.47

230.41

0.108

Sujatha

0.041232

227.17

229.17

229.36

230.30

0.107

Lindley

0.027321

231.47

233.47

233.66

234.61

0.149

Exponential

0.013845

242.87

244.87

245.06

246.01

0.263

Data 4

Aradhana

0.013454

1255.26

1257.26

1257.30

1259.86

0.069

Sujatha

0.013484

1255.54

1257.54

1257.58

1260.14

0.070

Lindley

0.00897

1251.34

1253.34

1253.38

1255.95

0.098

Exponential

0.004505

1280.52

1282.52

1282.56

1285.12

0.190

Data 5

Aradhana

0.029756

794.28

796.28

796.34

798.56

0.182

Sujatha

0.029898

794.48

796.48

796.54

798.77

0.183

Lindley

0.019841

789.04

791.04

791.10

793.32

0.133

Exponential

0.010018

806.88

808.88

808.94

811.16

0.198

Data 6

Aradhana

0.115577

989.49

991.49

991.52

994.39

0.399

Sujatha

0.117453

985.69

987.69

987.72

990.59

0.396

Lindley

0.077247

1041.64

1043.64

1043.68

1046.54

0.448

Exponential

0.04006

1130.26

1132.26

1132.29

1135.16

0.525

Data 7

Aradhana

0.013206

801.83

803.83

803.90

805.89

0.297

Sujatha

0.013234

802.84

804.84

804.91

806.90

0.298

Lindley

0.008804

763.75

765.75

765.82

767.81

0.245

Exponential

0.004421

744.87

746.87

746.94

748.93

0.166

Data 8

Aradhana

0.013364

608.87

610.87

610.96

612.65

0.278

Sujatha

0.013394

609.39

611.39

611.48

613.17

0.279

Lindley

0.008910

579.16

581.16

581.26

582.95

0.219

Exponential

0.004475

564.02

566.02

566.11

567.80

0.145

Data 9

Aradhana

0.290304

874.71

876.71

876.74

879.56

0.179

Sujatha

0.298963

879.82

881.82

881.85

884.67

0.187

Lindley

0.196045

839.06

841.06

841.09

843.91

0.116

Exponential

0.106773

828.68

830.68

830.72

833.54

0.077

Data 10

Aradhana

0.049506

350.55

352.55

352.69

353.95

0.415

Sujatha

0.049887

352.47

354.47

354.61

355.87

0.418

Lindley

0.033021

323.27

325.27

325.42

326.67

0.345

Exponential

0.016779

305.26

307.26

307.40

308.66

0.213

Data 11

Aradhana

1.132874

116.06

118.06

118.18

119.59

0.169

Sujatha

1.146073

115.54

117.54

117.66

119.07

0.164

Lindley

0.823821

112.61

114.61

114.73

116.13

0.133

Exponential

0.532081

110.91

112.91

113.03

114.43

0.089

Data 12

Aradhana

0.276551

638.34

640.34

640.38

642.94

0.080

Sujatha

0.284621

639.64

641.64

641.68

644.24

0.088

Lindley

0.186571

638.07

640.07

640.12

642.68

0.058

Exponential

0.101245

658.04

660.04

660.08

662.65

0.163

Data 13

Aradhana

0.024537

193.60

195.60

195.91

196.31

0.453

Sujatha

0.024634

193.94

195.94

196.25

196.65

0.454

Lindley

0.01636

181.34

183.34

183.65

184.05

0.386

Exponential

0.008246

173.94

175.94

176.25

176.65

0.277

Data 14

Aradhana

1.123193

56.37

58.37

58.59

59.36

0.302

Sujatha

1.136745

57.50

59.50

59.72

60.49

0.309

Lindley

0.816118

60.50

62.50

62.72

63.49

0.341

Exponential

0.526316

65.67

67.67

67.90

68.67

0.389

Data 15

Aradhana

0.094318

242.23

244.23

244.37

245.66

0.274

Sujatha

0.095610

241.50

243.50

243.64

244.93

0.270

Lindley

0.062988

253.99

255.99

256.13

257.42

0.333

Exponential

0.032455

274.53

276.53

276.67

277.96

0.426

Data 16

Aradhana

0.917023

219.90

221.90

221.96

224.13

0.350

Sujatha

0.936119

221.61

223.61

223.67

225.84

0.362

Lindley

0.659000

238.38

240.38

240.44

242.61

0.390

Exponential

0.407941

261.74

263.74

263.80

265.97

0.434

Table 5 MLE’s, -2ln L, AIC, AICC, BIC, K-S Statistics of the fitted distributions of Data sets 1-16

0.55

0.93

1.25

1.36

1.49

1.52

1.58

1.61

1.64

1.68

1.73

1.81

2.00

0.74

1.04

1.27

1.39

1.49

1.53

1.59

1.61

1.66

1.68

1.76

1.82

2.01

0.77

1.11

1.28

1.42

1.50

1.54

1.60

1.62

1.66

1.69

1.76

1.84

2.24

0.81

1.13

1.29

1.48

1.50

1.55

1.61

1.62

1.66

1.70

1.77

1.84

0.84

1.24

1.30

1.48

1.51

1.55

1.61

1.63

1.67

1.70

1.78

1.89

Data Set 1: The data set represents the strength of 1.5cm glass fibers measured at the National Physical Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are taken from Smith & Naylor.22

5

25

31

32

34

35

38

39

39

40

42

43

43

43

44

44

47

47

48

49

49

49

51

54

55

55

55

56

56

56

58

59

59

59

59

59

63

63

64

64

65

65

65

66

66

66

66

66

67

67

67

68

69

69

69

69

71

71

72

73

73

73

74

74

76

76

77

77

77

77

77

77

79

79

80

81

83

83

84

86

86

87

90

91

92

92

92

92

93

94

97

98

98

99

101

103

105

109

136

147

Data Set 2: The data is given by Birnbaum & Saunders23 on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data ( × ) are presented below (after subtracting 65).

17.88

28.92

33.00

41.52

42.12

45.60

48.80

51.84

51.96

54.12

55.56

67.80

68.44

68.64

68.88

84.12

93.12

98.64

105.12

105.84

127.92

128.04

173.40

Data Set 3: The data set is from Lawless.24 The data given arose in tests on endurance of deep groove ball bearings. The data are the number of million revolutions before failure for each of the 23 ball bearings in the life tests.

86

146

251

653

98

249

400

292

131

169

175

176

76

264

15

364

195

262

88

264

157

220

42

321

180

198

38

20

61

121

282

224

149

180

325

250

196

90

229

166

38

337

65

151

341

40

40

135

597

246

211

180

93

315

353

571

124

279

81

186

497

182

423

185

229

400

338

290

398

71

246

185

188

568

55

55

61

244

20

284

393

396

203

829

239

236

286

194

277

143

198

264

105

203

124

137

135

350

193

188

Data Set 4: The data is from Picciotto25 and arose in test on the cycle at which the Yarn failed. The data are the number of cycles until failure of the yarn.

12

15

22

24

24

32

32

33

34

38

38

43

44

48

52

53

54

54

55

56

57

58

58

59

60

60

60

60

61

62

63

65

65

67

68

70

70

72

73

75

76

76

81

83

84

85

87

91

95

96

98

99

109

110

121

127

129

131

143

146

146

175

175

211

233

258

258

263

297

341

341

376

Data Set 5: This data represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal.26

19(16),

20(15),

21(14),

22(9),

23(12),

24(10),

25(6),

26(9),

27(8),

28(5),

29(6),

30(4),

31(3),

32(4),

33,

34,

35(4),

36(2),

37(2),

39

42

44

Data Set 6: This data is related with behavioral sciences, collected by Balakrishnan et al.27 The scale “General Rating of Affective Symptoms for Preschoolers (GRASP)” measures behavioral and emotional problems of children, which can be classified with depressive condition or not according to this scale. A study conducted by the authors in a city located at the south part of Chile has allowed collecting real data corresponding to the scores of the GRASP scale of children with frequency in parenthesis.

6.53

7

10.42

14.48

16.1

22.7

34

41.55

42

45.28

49.4

53.62

63

64

83

84

91

108

112

129

133

133

139

140

140

146

149

154

157

160

160

165

146

149

154

157

160

160

165

173

176

218

225

241

248

273

277

297

405

417

420

440

523

583

594

1101

1146

1417

Data Set 7: The data set reported by Efron.28 represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using radiotherapy (RT

12.20

23.56

23.74

25.87

31.98

37

41.35

47.38

55.46

58.36

63.47

68.46

78.26

74.47

81.43

84

92

94

110

112

119

127

130

133

140

146

155

159

173

179

194

195

209

249

281

319

339

432

469

519

633

725

817

1776

Data Set 8: The data set reported by Efron28 represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using a combination of radiotherapy and chemotherapy (RT+CT).

0.08

2.09

3.48

4.87

6.94

8.66

13.11

23.63

0.20

2.23

3.52

4.98

6.97

9.02

13.29

0.40

2.26

3.57

5.06

7.09

9.22

13.80

25.74

0.50

2.46

3.64

5.09

7.26

9.47

14.24

25.82

0.51

2.54

3.70

5.17

7.28

9.74

14.76

6.31

0.81

2.62

3.82

5.32

7.32

10.06

14.77

32.15

2.64

3.88

5.32

7.39

10.34

14.83

34.26

0.90

2.69

4.18

5.34

7.59

10.66

15.96

36.66

1.05

2.69

4.23

5.41

7.62

10.75

16.62

43.01

1.19

2.75

4.26

5.41

7.63

17.12

46.12

1.26

2.83

4.33

5.49

7.66

11.25

17.14

79.05

1.35

2.87

5.62

7.87

11.64

17.36

1.40

3.02

4.34

5.71

7.93

11.79

18.1

1.46

4.40

5.85

8.26

11.98

19.13

1.76

3.25

4.50

6.25

8.37

12.02

2.02

3.31

4.51

6.54

8.53

12.03

20.28

2.02

3.36

6.76

12.07

21.73

2.07

3.36

6.93

8.65

12.63

22.69

Data set 9: This data set represents remission times (in months) of a random sample of 128 bladder cancer patients reported in Lee & Wang.29

23

261

87

7

120

14

62

47

225

71

246

21

42

20

5

12

120

11

3

14

71

11

14

11

16

90

1

16

52

95

Data Set 10: This data set is given by Linhart & Zucchini,30 which represents the failure times of the air conditioning system of an airplane.

5.1

1.2

1.3

0.6

0.5

2.4

0.5

1.1

8

0.8

0.4

0.6

0.9

0.4

2

0.5

5.3

3.2

2.7

2.9

2.5

2.3

1

0.2

0.1

0.1

1.8

0.9

2

4

6.8

1.2

0.4

0.2

Data Set 11: This data set used by Bhaumik et al.,31 is vinyl chloride data obtained from clean upgradient monitoring wells in mg/l.

0.8,

0.8,

1.3,

1.5,

1.8,

1.9,

1.9,

2.1,

2.6,

2.7,

2.9,

3.1,

3.2,

3.3,

3.5,

3.6,

4.0,

4.1,

4.2,

4.2,

4.3,

4.3,

4.4,

4.4,

4.6,

4.7,

4.7,

4.8,

4.9,

4.9,

5.0,

5.3,

5.5,

5.7,

5.7,

6.1,

6.2,

6.2,

6.2,

6.3,

6.7,

6.9,

7.1,

7.1,

7.1,

7.1,

7.4,

7.6,

7.7,

8.0,

8.2,

8.6,

8.6,

8.6,

8.8,

8.8,

8.9,

8.9,

9.5,

9.6,

9.7,

9.8,

10.7,

10.9,

11.0,

11.0,

11.1,

11.2,

11.2,

11.5,

11.9,

12.4,

12.5,

12.9,

13.0,

13.1,

13.3,

13.6,

13.7,

13.9,

14.1,

15.4,

15.4,

17.3,

17.3,

18.1,

18.2,

18.4,

18.9,

19.0,

19.9,

20.6,

21.3,

21.4,

21.9,

23.0,

27.0,

31.6,

33.1,

38.5

Data set 12: This data set represents the waiting times (in minutes) before service of 100 Bank customers and examined and analyzed by Ghitany et al.7 for fitting the Lindley6 distribution.

74

57

48

29

502

12

70

21

29

386

59

27

153

26

326

Data Set 13: This data is for the times between successive failures of air conditioning equipment in a Boeing 720 airplane, Proschan.32

1.1

1.4

1.3

1.7

1.9

1.8

1.6

2.2

1.7

2.7

4.1

1.8

1.5

1.2

1.4

3

1.7

2.3

1.6

2

Data set 14: This data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross & Clark.33

18.83

20.8

21.657

23.03

23.23

24.05

24.321

25.5

25.52

25.8

26.69

26.77

26.78

27.05

27.67

29.9

31.11

33.2

33.73

33.76

33.89

34.76

35.75

35.91

36.98

37.08

37.09

39.58

44.045

45.29

45.381

Data Set 15: This data set is the strength data of glass of the aircraft window reported by Fuller et al.34

1.312

1.314

1.479

1.552

1.700

1.803

1.861

1.865

1.944

1.958

1.966

1.997

2.006

2.021

2.027

2.055

2.063

2.098

2.140

2.179

2.224

2.240

2.253

2.270

2.272

2.274

2.301

2.301

2.359

2.382

2.382

2.426

2.434

2.435

2.478

2.490

2.511

2.514

2.535

2.554

2.566

2.570

2.586

2.629

2.633

2.642

2.648

2.684

2.697

2.726

2.770

2.773

2.800

2.809

2.818

2.821

2.848

2.880

2.954

3.012

3.067

3.084

3.090

3.096

3.128

3.233

3.433

3.585

3.858

Data Set 16: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm.35

Acknowledgments

None.

Conflicts of interest

Authors declare that there are no conflicts of interests.

References

  1. Shanker R, Hagos F, Sujatha S. On modeling of lifetime data using exponential and Lindley distributions. Biometrics & Biostatistics International Journal. 2015;2(5):1–9.
  2. Shanker R. Aradhana distribution and Its Applications. International Journal of Statistics and Applications. 2016a;6(1):23–34.
  3. Shanker R. Sujatha distribution and Its Applications. To appear in “Statistics in Transition new Series”. 2016b:17(3).
  4. Shanker R. The discrete Poisson-Aradhana distribution. Communicated. 2016c.
  5. Shanker R. The discrete Poisson-Sujatha distribution. International Journal of Probability and Statistics. 2016d;5(1):1–9.
  6. Lindley DV. Fiducial distributions and Bayes’ Theorem. Journal of the Royal Statistical Society Series. 1958B;20(1):102–107.
  7. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its Applications. Mathematics and Computers in Simulation. 2008;78(4):493–506.
  8. Sankaran M. The discrete Poisson-Lindley distribution. Biometrics. 1970;26(1):145–149.
  9. Zakerzadeh H, Dolati A. Generalized Lindley distribution. Journal of Mathematical extension. 2009;3(2):13–25.
  10. Nadarajah S, Bakouch HS, Tahmasbi R. A generalized Lindley distribution. Sankhya B. 2011;73(2):331–359.
  11. Deniz EG, Ojeda EC. The discrete Lindley distribution-Properties and Applications. Journal of Statistical Computation and Simulation. 2011;81(11):1405–1416.
  12. Bakouch SH, Al-Zahrani BM, Al-Shomrani AA, et al. An extended Lindley distribution. Journal of Korean Statistical Society. 2012;41(1):75–85.
  13. Shanker R, Mishra A. A quasi Lindley distribution. African journal of Mathematics and Computer Science Research. 2013a;6(4): 64–71.
  14. Shanker R, Mishra A. A two- parameter Lindley distribution. Statistics in transition new series. 2013b;14(1):45–56.
  15. Shanker R, Mishra A. A quasi Poisson-Lindley distribution. To appear in, “Journal of Indian Statistical Association”. 2016.
  16. Shanker R, Amanuel AG. A new quasi Lindley distribution. International Journal of Statistics and systems. 2013;8(2):143–156.
  17. Ghitany M, Al-Mutairi D, Balakrishnan N, Al-Enezi I. Power Lindley distribution and associated inference. Computational Statistics and Data Analysis. 2013;64:20–33.
  18. Shanker R, Sharma S, Shanker R. A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics. 2013;4:363–368.
  19. Shanker R, Hagos F, Sharma S. On Two Parameter Lindley distribution and Its Applications to model lifetime data. Biometrics & Biostatistics International Journal. 2016a;3(1):1–8.
  20. Shanker R, Hagos F, Sharma S. On quasi Lindley distribution and Its Applications to model lifetime data. International Journal of Statistical distributions and Applications. 2016 b;2(1):1–7.
  21. Shanker R, Hagos F, Sujatha S. On modeling of Lifetimes data using one parameter Akash, Lindley and exponential distributions. Biometrics & Biostatistics International Journal. 2016c;3(2):1–10.
  22. Smith RL, Naylor JC. A comparison of Maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Applied Statistics. 1987;36(3):358–369.
  23. Birnbaum ZW, Saunders SC. Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability. 1969;6(2):328–347.
  24. Lawless JF. Statistical models and methods for lifetime data, John Wiley and Sons, New York, USA; 1982.
  25. Picciotto R. Tensile fatigue characteristics of a sized polyester/viscose yarn and their effect on weaving performance, Master thesis, North Carolina State, University of Raleigh, USA; 1970.
  26. Bjerkedal T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. Am J Hyg. 1960;72(1):130–148.
  27. Balakrishnan N, Victor L, Antonio S. A mixture model based on Birnhaum-Saunders Distributions, A study conducted by Authors regarding the Scores of the GRASP (General Rating of Affective Symptoms for Preschoolers), in a city located at South Part of the Chile; 2010.
  28. Efron B. Logistic regression, survival analysis and the Kaplan-Meier curve. Journal of the American Statistical Association 1988;83(402):414–425.
  29. Lee ET, Wang JW. Statistical methods for survival data analysis, 3rd edition, John Wiley and Sons, New York, USA; 2003.
  30. Linhart H, Zucchini W. Model Selection. John Wiley, New York, USA; 1986.
  31. Bhaumik DK, Kapur K, Gibbons RD. Testing Parameters of a Gamma Distribution for Small Samples. Technometrics. 2009;51(3):326–334.
  32. Proschan F. Theoretical explanation of observed decreasing failure rate. Technometrics. 1963;5(3):375–383.
  33. Gross AJ, Clark VA. Survival Distributions: Reliability Applications in the Biometrical Sciences. John Wiley, New York, USA; 1975.
  34. Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study. SPIE Proceedings. 1994;2286:419–430.
  35. Bader MG, Priest AM. Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Kawata K Umekawa S, editors. Progress in Science in Engineering Composites. ICCM-IV, Tokyo; 1982. p. 1129–1136.
Creative Commons Attribution License

©2016 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.