Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 13 Issue 5

A compound of exponential and Komal distributions with properties and application

Dr. Rama Shanker, Mousumi Ray

Correspondence: Dr. Rama Shanker, Department of Statistics, Assam University, Silchar, India

Received: October 28, 2024 | Published: November 22, 2024

Citation: Ray M, Shanker R. A compound of exponential and Komal distributions with properties and application. Biom Biostat Int J. 2024;13(5):147-152 DOI: 10.15406/bbij.2024.13.00425

Download PDF

Abstract

In this paper exponential-Komal distribution, the compound of exponential distribution with Komal distribution has been proposed. The key feature of the proposed compound distribution is that it doesn't have a moment generating function or moments which might seem like a limitation, but this distribution can be very much useful for modelling data from biomedical sciences and engineering of heavy tailed behaviour. Important statistical properties of the distribution have been studied. The estimation of its parameter has been discussed using maximum likelihood method. Goodness of fit of the proposed distribution has been explained with an example of real life data having decreasing failure rate. The fit has been found quite satisfactory over exponential, Lindley, Shanker, Komal, exponential-Lindley and exponential-Shanker distributions.

Keywords: lifetime distribution, statistical properties, stress-strength reliability, maximum likelihood estimation, goodness of fit.

Introduction

In the realm of distribution theory one parameter exponential distribution and Lindley distribution given by Lindley1 are popular. Both exponential and Lindley distributions are useful for modelling different types of random events, particularly those that involve waiting times, failure times, or life spans, but Lindley provides more flexibility when the assumptions of the exponential model are too strict. A comparative study of exponential and Lindley distribution done by Shanker et al2 found that in certain datasets exponential outshines while in others, the Lindley offers a more precise fit and also there were some datasets where both the distributions aren’t provides optimal fit. Highlighting the need for more flexible models, Shanker3 proposed a new one parameter lifetime distribution named Shanker distribution which provides much better fit than both exponential and Lindley distributions. Shanker4 proposed another one parameter lifetime distribution called Komal distribution which provides much better fit than Shanker, exponential and Lindley distributions. The Komal distribution is defined by its probability density function (pdf) and cumulative distribution function (cdf)

f( x,a )= a 2 a 2 +a+1 ( 1+a+x ) e ax ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaaadaqadaqa aiaaigdacqGHRaWkcaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaai aadwgadaahaaWcbeqaaiabgkHiTiaadggacaWG4baaaOGaai4oaiaa dIhacqGH+aGpcaaIWaGaaiilaiaadggacqGH+aGpcaaIWaaaaa@5442@   (1)

F( x,a )=1[ 1+ ax a 2 +a+1 ] e ax ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9iaaigda cqGHsisldaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadggacaWG4b aabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggacqGH RaWkcaaIXaaaaaGaay5waiaaw2faaiaadwgadaahaaWcbeqaaiabgk HiTiaadggacaaMc8UaamiEaaaakiaacUdacaWG4bGaeyOpa4JaaGim aiaacYcacaWGHbGaeyOpa4JaaGimaaaa@5503@   (2)

Komal distribution is a two- component mixture of exponential ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaaGaayjkaiaawMcaaaaa@38CB@  distribution and a gamma ( 2,a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG OmaiaacYcacaWGHbaacaGLOaGaayzkaaaaaa@3A37@  distribution with mixing proportion a( a+1 ) a 2 +a+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yyamaabmaabaGaamyyaiabgUcaRiaaigdaaiaawIcacaGLPaaaaeaa caWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyaiabgUcaRi aaigdaaaaaaa@409C@  and 1 a 2 +a+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGa ey4kaSIaaGymaaaaaaa@3C65@ respectively. Recently, Shanker et al5,6 derived the weighted version and the power version of Komal distribution respectively.

Belhamra et al7 proposed the compound of exponential and Lindley distribution and named exponential-Lindley distribution (E-LD) having pdf and cdf

f( x,a )= a 2 ( 2+a+x ) ( a+1 ) ( a+x ) 3 ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaaGPaVlaadggadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaaik dacqGHRaWkcaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaaiaaykW7 aeaadaqadaqaaiaadggacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaae WaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaamaaCaaaleqa baGaaG4maaaaaaGccaGG7aGaamiEaiabg6da+iaaicdacaGGSaGaam yyaiabg6da+iaaicdaaaa@5778@   (3)

F( x,a )= x a+x + ax ( a+1 ) ( a+x ) 2 ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaamiEaaqaaiaadggacqGHRaWkcaWG4baaaiabgUcaRmaalaaaba GaamyyaiaadIhaaeaadaqadaqaaiaadggacqGHRaWkcaaIXaaacaGL OaGaayzkaaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaaGccaGG7aGaamiEaiabg6da+iaa icdacaGGSaGaamyyaiabg6da+iaaicdaaaa@5313@   (4)

Recently, Ray and Shanker8 proposed a compound distribution namely exponential-Shanker distribution (E-SD) and discussed its various statistical properties, estimation of parameter and application for engineering data and showed that it provides much closer fit than other compound distributions. The E-SD is defined by its pdf and cdf

f( x,a )= a 2 ( a 2 +ax+2 ) ( a 2 +1 ) ( a+x ) 3 ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaaGPaVlaadggadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadg gadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGaamiEaiabgUca RiaaikdaaiaawIcacaGLPaaacaaMc8oabaWaaeWaaeaacaWGHbWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaayjkaiaawMcaamaa bmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWcbe qaaiaaiodaaaaaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiilaiaa dggacqGH+aGpcaaIWaaaaa@5A44@   (5)

F( x,a )= x a+x + ax ( a 2 +1 ) ( a+x ) 2 ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaamiEaaqaaiaadggacqGHRaWkcaWG4baaaiabgUcaRmaalaaaba GaamyyaiaadIhaaeaadaqadaqaaiaadggadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWGHbGaey 4kaSIaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGc caGG7aGaamiEaiabg6da+iaaicdacaGGSaGaamyyaiabg6da+iaaic daaaa@5406@   (6)

Both the E-LD and the E-SD is a particular cases of gamma- Lindley distribution (G-LD) of Abdi et al9 and gamma-Shanker distribution (G-SD) by Ray and Shanker10 respectively.

The main purpose for introducing the compound of exponential and Komal distribution are that the compound distributions are much useful for the study of heterogeneous population which is the reality of present real life situations and to examine its fit over other compound distributions. Further, as we know that Komal distribution provides much closer fit than exponential, Lindley and Shanker distributions, it is expected that the compound of exponential and Komal would provide much closer fit over the compound of exponential and Lindley distributions and the compound of exponential and Shanker distributions. Statistical properties, estimation of parameter and application of the proposed distribution have been discussed. One of the most important advantages of compounding exponential and Komal distribution is that the hazard rate for exponential distribution is constant but the hazard rate for the compound of exponential and Komal distributions is not constant but it is decreasing. Further, although the moment generating function and the moments of the proposed distribution do not exist, but the distribution is very much useful to model data of heavy tailed behaviour.

Exponential - Komal distribution

The pdf and the cdf of the compound of exponential and Komal distribution named exponential-Komal distribution (E-KD) are obtained as

f( x,a )= a 2 [ ( a+x )( 1+a )+2 ] ( a 2 +a+1 ) ( a+x ) 3 ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaaGPaVlaadggadaahaaWcbeqaaiaaikdaaaGcdaWadaqaamaabm aabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaqadaqaaiaa igdacqGHRaWkcaWGHbaacaGLOaGaayzkaaGaey4kaSIaaGOmaaGaay 5waiaaw2faaiaaykW7aeaadaqadaqaaiaadggadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaGaayjkaiaawMcaam aabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWc beqaaiaaiodaaaaaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiilai aadggacqGH+aGpcaaIWaaaaa@6031@   (7)

F( x,a )= x[ a( a+x )( a+1 )+( x+2a ) ] ( a+x ) 2 ( a 2 +a+1 ) ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaamiEamaadmaabaGaamyyamaabmaabaGaamyyaiabgUcaRiaadI haaiaawIcacaGLPaaadaqadaqaaiaadggacqGHRaWkcaaIXaaacaGL OaGaayzkaaGaey4kaSYaaeWaaeaacaWG4bGaey4kaSIaaGOmaiaadg gaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaadaqadaqaaiaadgga cqGHRaWkcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaO WaaeWaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyy aiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaai4oaiaadIhacqGH+a GpcaaIWaGaaiilaiaadggacqGH+aGpcaaIWaaaaa@6152@   (8)

The shapes of the pdf and the cdf of E-KD for varying values of parameter are shown in the following 1and 2 respectively. For better visualization of the plots of cdf we used 3D plots of the same in the 3.

Figure 1 Pdf of E-KD for some selected values of parameter.

Figure 2 Cdf of E-KD for some selected values of parameter.

Figure 3 3D plots of cdf of E-KD for some selected values of parameter.

Theorem 1: The pdf of E-KD distribution is decreasing for .

Proof: We have,

f( x,a )= a 2 [ ( a+x )( 1+a )+2 ] ( a 2 +a+1 ) ( a+x ) 3 ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaaGPaVlaadggadaahaaWcbeqaaiaaikdaaaGcdaWadaqaamaabm aabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaqadaqaaiaa igdacqGHRaWkcaWGHbaacaGLOaGaayzkaaGaey4kaSIaaGOmaaGaay 5waiaaw2faaiaaykW7aeaadaqadaqaaiaadggadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaGaayjkaiaawMcaam aabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWc beqaaiaaiodaaaaaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiilai aadggacqGH+aGpcaaIWaaaaa@6031@   

logf( x,a )=C+log[ ( a+x )( 1+a )+2 ]3log( a+x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadAgadaqadaqaaiaadIhacaGGSaGaamyyaaGaayjkaiaa wMcaaiabg2da9iaaboeacqGHRaWkciGGSbGaai4BaiaacEgadaWada qaamaabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaqa daqaaiaaigdacqGHRaWkcaWGHbaacaGLOaGaayzkaaGaey4kaSIaaG OmaaGaay5waiaaw2faaiabgkHiTiaaiodaciGGSbGaai4BaiaacEga daqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaaaaa@5863@  ,

Where, C is a constant. We have

d dx logf( x,a )= 2[ ( a+x )( 1+a )+3 ] ( a+x )[ ( a+x )( 1+a )+2 ] <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaaiGacYgacaGGVbGaai4zaiaadAgadaqa daqaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maala aabaGaeyOeI0IaaGOmamaadmaabaWaaeWaaeaacaWGHbGaey4kaSIa amiEaaGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiaadggaai aawIcacaGLPaaacqGHRaWkcaaIZaaacaGLBbGaayzxaaaabaWaaeWa aeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaamaadmaabaWaae WaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaamaabmaabaGa aGymaiabgUcaRiaadggaaiaawIcacaGLPaaacqGHRaWkcaaIYaaaca GLBbGaayzxaaaaaiabgYda8iaaicdaaaa@61B2@  

For a0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHLj YScaaIWaaaaa@39C2@ , d dx logf( x,a )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaaiGacYgacaGGVbGaai4zaiaadAgadaqa daqaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabgYda8iaaic daaaa@42D0@  and this means that f( x,a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaaaa@3B63@  is decreasing for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@3759@ .

Hazard function and reversed hazard function

The hazard function and the reversed hazard function are two important functions of a distribution. The reliability (survival) function of E-KD can be obtained by

R( x )= a[ ( a+x )( a 2 +a+1 )x ] ( a+x ) 2 ( a 2 +a+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadggadaWa daqaamaabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaada qadaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGa ey4kaSIaaGymaaGaayjkaiaawMcaaiabgkHiTiaadIhaaiaawUfaca GLDbaaaeaadaqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGHbWaaWbaaSqabe aacaaIYaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaaiaawIcacaGL Paaaaaaaaa@56AE@   (9)

The corresponding hazard function and reversed hazard function of E-KD are obtained as

h( x )= a[ ( a+x )( 1+a )+2 ] ( a+x )[ ( a+x )( a 2 +a+1 )x ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadggadaWa daqaamaabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaada qadaqaaiaaigdacqGHRaWkcaWGHbaacaGLOaGaayzkaaGaey4kaSIa aGOmaaGaay5waiaaw2faaaqaamaabmaabaGaamyyaiabgUcaRiaadI haaiaawIcacaGLPaaadaWadaqaamaabmaabaGaamyyaiabgUcaRiaa dIhaaiaawIcacaGLPaaadaqadaqaaiaadggadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaGaayjkaiaawMcaaiab gkHiTiaadIhaaiaawUfacaGLDbaaaaaaaa@5AF4@   (10)

r( x )= a 2 [ ( a+x )( 1+a )+2 ] x( a+x )[ a( a+x )( 1+a )+( x+2a ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadggadaah aaWcbeqaaiaaikdaaaGcdaWadaqaamaabmaabaGaamyyaiabgUcaRi aadIhaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkcaWGHbaa caGLOaGaayzkaaGaey4kaSIaaGOmaaGaay5waiaaw2faaaqaaiaadI hadaqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaamWa aeaacaWGHbWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaacqGH RaWkdaqadaqaaiaadIhacqGHRaWkcaaIYaGaamyyaaGaayjkaiaawM caaaGaay5waiaaw2faaaaaaaa@5F1B@   (11)

The behavior of h( x )= H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaaqaaaaaaaaaWdbiabg2da9iaabcca caWGibaaaa@3C65@ when x0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGHsg IRcaaIWaaaaa@3A00@  and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGHsg IRcqGHEisPaaa@3AB7@ , respectively are

lim x0 h( x )= a( 1+a )+2 a( a 2 +a+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaaGimaaqabaGccaWG ObWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaaca WGHbWaaeWaaeaacaaIXaGaey4kaSIaamyyaaGaayjkaiaawMcaaiab gUcaRiaaikdaaeaacaWGHbWaaeWaaeaacaWGHbWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaaiaawIcacaGLPaaa aaaaaa@4FD9@   and lim x h( x )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaeyOhIukabeaakiaa dIgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@42FD@

lim x0 r( x )= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaaGimaaqabaGccaWG YbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaeyOhIukaaa@4307@   and lim x r( x )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaeyOhIukabeaakiaa dkhadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@4307@ .

The shapes of the hazard function and the reversed hazard function of E-KD for varying values of parameter are shown in the following 4 and 6 respectively. Also, for better visualization of the plots of the hazard function and the reversed hazard function, we used 3D plots of the same in the 5 and 7 respectively.

Figure 4 Hazard function of E-KD for some parameter values.

Figure 5 3D Plots of hazard function of E-KD for some parameter values.

Figure 6 Reversed hazard function of E-KD for some parameter values.

Figure 7 3D Plots of reversed hazard function of E-KD for some parameter values.

Theorem 2: The hazard function of the E-KD is decreasing

Proof: We have

f( x,a )= a 2 [ ( a+x )( 1+a )+2 ] ( a 2 +a+1 ) ( a+x ) 3 ;x>0,a>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGGSaGaamyyaaGaayjkaiaawMcaaiabg2da9maalaaa baGaaGPaVlaadggadaahaaWcbeqaaiaaikdaaaGcdaWadaqaamaabm aabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaqadaqaaiaa igdacqGHRaWkcaWGHbaacaGLOaGaayzkaaGaey4kaSIaaGOmaaGaay 5waiaaw2faaiaaykW7aeaadaqadaqaaiaadggadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaGaayjkaiaawMcaam aabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWc beqaaiaaiodaaaaaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiilai aadggacqGH+aGpcaaIWaaaaa@6031@  

f ( x,a )= 2a[ ( 1+a )( a+x )+3 ] ( a+x ) 4 ( a 2 +a+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAgagaqbam aabmaabaGaamiEaiaacYcacaWGHbaacaGLOaGaayzkaaGaeyypa0Za aSaaaeaacqGHsislcaaIYaGaamyyamaadmaabaWaaeWaaeaacaaIXa Gaey4kaSIaamyyaaGaayjkaiaawMcaamaabmaabaGaamyyaiabgUca RiaadIhaaiaawIcacaGLPaaacqGHRaWkcaaIZaaacaGLBbGaayzxaa GaaGPaVdqaamaabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGL PaaadaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiaadggadaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaGaayjkaiaa wMcaaaaaaaa@5894@  

Now, suppose that

ξ( x )= f ( x,a ) f( x,a ) = 2[ ( a+x )( 1+a )+3 ] a( a+x )[ ( a+x )( 1+a )+2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naabm aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGa bmOzayaafaWaaeWaaeaacaWG4bGaaiilaiaadggaaiaawIcacaGLPa aaaeaacaWGMbWaaeWaaeaacaWG4bGaaiilaiaadggaaiaawIcacaGL PaaaaaGaeyypa0ZaaSaaaeaacaaIYaWaamWaaeaadaqadaqaaiaadg gacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4k aSIaamyyaaGaayjkaiaawMcaaiabgUcaRiaaiodaaiaawUfacaGLDb aaaeaacaWGHbWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaa wMcaamaadmaabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkai aawMcaamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaa cqGHRaWkcaaIYaaacaGLBbGaayzxaaaaaaaa@659D@  .

This gives

ϕ ( x )= 2[ ( a+x )( 1+a ){ ( a+x )( 1+a )+6 }+6 ] a ( a+x ) 2 [ ( a+x )( 1+a )+2 ] <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbew9aMzaafa WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqGH sislcaaIYaWaamWaaeaadaqadaqaaiaadggacqGHRaWkcaWG4baaca GLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyaaGaayjkaiaa wMcaamaacmaabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkai aawMcaamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaa cqGHRaWkcaaI2aaacaGL7bGaayzFaaGaey4kaSIaaGOnaaGaay5wai aaw2faaaqaaiaadggadaqadaqaaiaadggacqGHRaWkcaWG4baacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaamWaaeaadaqadaqaai aadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaeWaaeaacaaIXaGa ey4kaSIaamyyaaGaayjkaiaawMcaaiabgUcaRiaaikdaaiaawUfaca GLDbaaaaGaeyipaWJaaGimaaaa@695F@  

Theorem 3: The reversed hazard function of the E-KD is decreasing

Proof: We have,

r( x )= a 2 [ ( a+x )( 1+a )+2 ] x( a+x )[ a( a+x )( 1+a )+( x+2a ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadggadaah aaWcbeqaaiaaikdaaaGcdaWadaqaamaabmaabaGaamyyaiabgUcaRi aadIhaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkcaWGHbaa caGLOaGaayzkaaGaey4kaSIaaGOmaaGaay5waiaaw2faaaqaaiaadI hadaqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaamWa aeaacaWGHbWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaacqGH RaWkdaqadaqaaiaadIhacqGHRaWkcaaIYaGaamyyaaGaayjkaiaawM caaaGaay5waiaaw2faaaaaaaa@5F1B@  

This gives d dx logr( x )= [ 3a( 1+a )+2 ] { ( a+x )( 1+a )+2 }{ a( a+x )( 1+a )+x+2a } 1 ( a+x ) 1 x <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaaiGacYgacaGGVbGaai4zaiaadkhadaqa daqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaam aadmaabaGaaG4maiaadggadaqadaqaaiaaigdacqGHRaWkcaWGHbaa caGLOaGaayzkaaGaey4kaSIaaGOmaaGaay5waiaaw2faaaqaamaacm aabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaamaa bmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaacqGHRaWkca aIYaaacaGL7bGaayzFaaWaaiWaaeaacaWGHbWaaeWaaeaacaWGHbGa ey4kaSIaamiEaaGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRi aadggaaiaawIcacaGLPaaacqGHRaWkcaWG4bGaey4kaSIaaGOmaiaa dggaaiaawUhacaGL9baaaaGaeyOeI0YaaSaaaeaacaaIXaaabaWaae WaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaaaaacqGHsisl daWcaaqaaiaaigdaaeaacaWG4baaaiabgYda8iaaicdaaaa@7140@

  for all a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggaaaa@3742@

Quantiles and moments

The pth quantiles x p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiCaaqabaaaaa@387A@  of E-KD defined by F( x p )=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaa8BGaamOram aabmaabaGaamiEamaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMca aiabg2da9iaadchaaaa@3DD8@ , is the root of the equation

x p [ a( a+ x p )( a+1 )+( x p +2a ) ] ( a+ x p ) 2 ( a 2 +a+1 ) =p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iEamaaBaaaleaacaWGWbaabeaakmaadmaabaGaamyyamaabmaabaGa amyyaiabgUcaRiaadIhadaWgaaWcbaGaamiCaaqabaaakiaawIcaca GLPaaadaqadaqaaiaadggacqGHRaWkcaaIXaaacaGLOaGaayzkaaGa ey4kaSYaaeWaaeaacaWG4bWaaSbaaSqaaiaadchaaeqaaOGaey4kaS IaaGOmaiaadggaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaadaqa daqaaiaadggacqGHRaWkcaWG4bWaaSbaaSqaaiaadchaaeqaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGHbWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaai aawIcacaGLPaaaaaGaeyypa0JaamiCaaaa@5B36@  

This gives

x p = 2a [ ( 1+ a x p ){ p( 1+ a x p )( a 2 +a+1 )a( a+1 ) }1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiCaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaWGHbaabaWa amWaaeaadaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadggaaeaaca WG4bWaaSbaaSqaaiaadchaaeqaaaaaaOGaayjkaiaawMcaamaacmaa baGaamiCamaabmaabaGaaGymaiabgUcaRmaalaaabaGaamyyaaqaai aadIhadaWgaaWcbaGaamiCaaqabaaaaaGccaGLOaGaayzkaaWaaeWa aeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyaiabgU caRiaaigdaaiaawIcacaGLPaaacqGHsislcaWGHbWaaeWaaeaacaWG HbGaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabgk HiTiaaigdaaiaawUfacaGLDbaaaaaaaa@5B2A@   (12)

It should be noted that this x p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiCaaqabaaaaa@387A@  may be used to generate E-KD random variates. Further, the median of E-KD can be obtained from above equation by taking p= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@39DE@ .

The moments and the moment generating function of E-KD do not exit and it has been shown mathematically in the following theorems 4 and 5 respectively.

Theorem 4: The moments of the E-KD does not exist.

Proof: The r th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaahaa WcbeqaaiaadshacaWGObaaaaaa@3966@  moment of E-KD is given by

E( X r )= 0 x r f( x,a )dx= a 2 a 2 +a+1 0 x r { ( a+x )( 1+a )+2 } ( a+x ) 3 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawIcacaGLPaaacqGH 9aqpdaWdXaqaaiaadIhadaahaaWcbeqaaiaadkhaaaaabaGaaGimaa qaaiabg6HiLcqdcqGHRiI8aOGaamOzamaabmaabaGaamiEaiaacYca caWGHbaacaGLOaGaayzkaaGaamizaiaadIhacqGH9aqpdaWcaaqaai aadggadaahaaWcbeqaaiaaikdaaaaakeaacaWGHbWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaaaWaa8qmaeaaca WG4bWaaWbaaSqabeaacaWGYbaaaaqaaiaaicdaaeaacqGHEisPa0Ga ey4kIipakmaalaaabaWaaiWaaeaadaqadaqaaiaadggacqGHRaWkca WG4baacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyaaGa ayjkaiaawMcaaiabgUcaRiaaikdaaiaawUhacaGL9baacaaMc8oaba WaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaamaaCaaa leqabaGaaG4maaaaaaGccaWGKbGaamiEaaaa@6CAE@  

= 1+a a 2 +a+1 0 x r ( 1+ x a ) 2 dx+ 2 a( a 2 +a+1 ) 0 x r ( 1+ x a ) 3 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaiabgUcaRiaadggaaeaacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaaaWaa8qmaeaadaWcaa qaaiaadIhadaahaaWcbeqaaiaadkhaaaaakeaadaqadaqaaiaaigda cqGHRaWkdaWcaaqaaiaadIhaaeaacaWGHbaaaaGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaGccaWGKbGaamiEaiabgUcaRmaalaaa baGaaGOmaaqaaiaadggadaqadaqaaiaadggadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa daWdXaqaamaalaaabaGaamiEamaaCaaaleqabaGaamOCaaaaaOqaam aabmaabaGaaGymaiabgUcaRmaalaaabaGaamiEaaqaaiaadggaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaakiaadsgacaWG4b aaleaacaaIWaaabaGaeyOhIukaniabgUIiYdaaleaacaaIWaaabaGa eyOhIukaniabgUIiYdaaaa@6591@

Let, x a =z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iEaaqaaiaadggaaaGaeyypa0JaamOEaaaa@3A54@ . As x0,z0andasx,z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGHsg IRcaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caWG6bGaeyOK H4QaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caqGHbGaaeOBaiaabs gacaaMc8UaaGPaVlaaykW7caaMc8UaamyyaiaadohacaaMc8UaaGPa VlaaykW7caaMc8UaamiEaiabgkziUkabg6HiLkaacYcacaaMc8UaaG PaVlaaykW7caaMc8UaamOEaiabgkziUkabg6HiLcaa@6B35@  we have

E( X r )= ( 1+a ) a r+1 ( a 2 +a+1 ) 0 z r ( 1+z ) 2 dz+ 2 a r ( a 2 +a+1 ) 0 z r ( 1+z ) 3 dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawIcacaGLPaaacqGH 9aqpdaWcaaqaamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcaca GLPaaacaWGHbWaaWbaaSqabeaacaWGYbGaey4kaSIaaGymaaaaaOqa amaabmaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadg gacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaamaapedabaWaaSaaaeaa caWG6bWaaWbaaSqabeaacaWGYbaaaaGcbaWaaeWaaeaacaaIXaGaey 4kaSIaamOEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGc caWGKbGaamOEaiabgUcaRmaalaaabaGaaGOmaiaadggadaahaaWcbe qaaiaadkhaaaaakeaadaqadaqaaiaadggadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaGaayjkaiaawMcaaaaada WdXaqaamaalaaabaGaamOEamaaCaaaleqabaGaamOCaaaaaOqaamaa bmaabaGaaGymaiabgUcaRiaadQhaaiaawIcacaGLPaaadaahaaWcbe qaaiaaiodaaaaaaOGaamizaiaadQhaaSqaaiaaicdaaeaacqGHEisP a0Gaey4kIipaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaa@7000@

Using beta integral of second kind 0 x a1 ( 1+x ) a+b dx=B( a,b );a>0,b>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapedabaWaaS aaaeaacaWG4bWaaWbaaSqabeaacaWGHbGaeyOeI0IaaGymaaaaaOqa amaabmaabaGaaGymaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaa WcbeqaaiaadggacqGHRaWkcaWGIbaaaaaaaeaacaaIWaaabaGaeyOh IukaniabgUIiYdGccaWGKbGaamiEaiabg2da9iaadkeadaqadaqaai aadggacaGGSaGaamOyaaGaayjkaiaawMcaaiaacUdacaaMc8UaaGPa VlaaykW7caaMc8Uaamyyaiabg6da+iaaicdacaGGSaGaamOyaiabg6 da+iaaicdaaaa@5A25@ , we get

E( X r )= a r+1 ( a 2 +a+1 ) [ ( 1+a ){ B( r+1,1r ) }+ 2 a { B( r+1,2r ) } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiaadggadaahaaWcbeqaaiaadkhacqGHRaWkcaaIXa aaaaGcbaWaaeWaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4k aSIaamyyaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaWaamWaaeaada qadaqaaiaaigdacqGHRaWkcaWGHbaacaGLOaGaayzkaaWaaiWaaeaa caWGcbWaaeWaaeaacaWGYbGaey4kaSIaaGymaiaacYcacaaIXaGaey OeI0IaamOCaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabgUcaRmaa laaabaGaaGOmaaqaaiaadggaaaWaaiWaaeaacaWGcbWaaeWaaeaaca WGYbGaey4kaSIaaGymaiaacYcacaaIYaGaeyOeI0IaamOCaaGaayjk aiaawMcaaaGaay5Eaiaaw2haaaGaay5waiaaw2faaaaa@63A3@

Here the range is 1<r<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaig dacqGH8aapcaWGYbGaeyipaWJaaGymaaaa@3BBE@  but r1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHLj YScaaIXaaaaa@39D4@  . Hence E( X r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawIcacaGLPaaaaaa@3ABA@  does not exist.

Theorem 5: The moment generating function of the E-KD does not exist.

Proof: E( e tX )= 0 e tx f( x,a )dx= a 2 ( a 2 +a+1 ) 0 e tx [ ( a+x )( 1+a )+2 ] ( a+x ) 3 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiaadwgadaahaaWcbeqaaiaadshacaWGybaaaaGccaGLOaGaayzk aaGaeyypa0Zaa8qmaeaacaWGLbWaaWbaaSqabeaacaWG0bGaamiEaa aaaeaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWGMbWaaeWaaeaa caWG4bGaaiilaiaadggaaiaawIcacaGLPaaacaWGKbGaamiEaiabg2 da9maalaaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaa baGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggacqGHRa WkcaaIXaaacaGLOaGaayzkaaaaamaapedabaGaamyzamaaCaaaleqa baGaamiDaiaadIhaaaaabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aO WaaSaaaeaadaWadaqaamaabmaabaGaamyyaiabgUcaRiaadIhaaiaa wIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkcaWGHbaacaGLOaGaay zkaaGaey4kaSIaaGOmaaGaay5waiaaw2faaiaaykW7aeaadaqadaqa aiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaaca aIZaaaaaaakiaadsgacaWG4baaaa@70BC@

= a 2 a 2 +a+1 [ ( 1+a ) 0 e tx ( a+x ) 2 dx+2 0 e tx ( a+x ) 3 dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaaadaWada qaamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaadaWd XaqaamaalaaabaGaamyzamaaCaaaleqabaGaamiDaiaadIhaaaaake aadaqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaaakiaadsgacaWG4bGaey4kaSIaaGOmamaape dabaWaaSaaaeaacaWGLbWaaWbaaSqabeaacaWG0bGaamiEaaaaaOqa amaabmaabaGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaa WcbeqaaiaaiodaaaaaaOGaamizaiaadIhaaSqaaiaaicdaaeaacqGH EisPa0Gaey4kIipaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaO Gaay5waiaaw2faaaaa@6374@  

Now, we have

0 e tx ( a+x ) 2 dx = [ e tx ( a+x ) ] 0 +t 0 e tx a+x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapedabaWaaS aaaeaacaWGLbWaaWbaaSqabeaacaWG0bGaamiEaaaaaOqaamaabmaa baGaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaaaOGaamizaiaadIhaaSqaaiaaicdaaeaacqGHEisPa0Ga ey4kIipakiabg2da9maadmaabaWaaSaaaeaacaWGLbWaaWbaaSqabe aacaWG0bGaamiEaaaaaOqaaiabgkHiTmaabmaabaGaamyyaiabgUca RiaadIhaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaWaaSbaaSqaai aaicdaaeqaaOWaaWbaaSqabeaacqGHEisPaaGccqGHRaWkcaWG0bWa a8qmaeaadaWcaaqaaiaadwgadaahaaWcbeqaaiaadshacaWG4baaaa GcbaGaamyyaiabgUcaRiaadIhaaaGaamizaiaadIhaaSqaaiaaicda aeaacqGHEisPa0Gaey4kIipaaaa@60FB@  

= lim x [ e tx ( a+x ) ]+ 1 a +t 0 a e tx a+x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maaxa babaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaeyOhIuka beaakmaadmaabaGaeyOeI0YaaSaaaeaacaWGLbWaaWbaaSqabeaaca WG0bGaamiEaaaaaOqaamaabmaabaGaamyyaiabgUcaRiaadIhaaiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaGaey4kaSYaaSaaaeaacaaIXa aabaGaamyyaaaacqGHRaWkcaWG0bWaa8qmaeaadaWcaaqaaiaadwga daahaaWcbeqaaiaadshacaWG4baaaaGcbaGaamyyaiabgUcaRiaadI haaaGaamizaiaadIhaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdaa aa@592D@  

=+t 0 a e tx a+x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iabgk HiTiabg6HiLkabgUcaRiaadshadaWdXaqaamaalaaabaGaamyzamaa CaaaleqabaGaamiDaiaadIhaaaaakeaacaWGHbGaey4kaSIaamiEaa aacaWGKbGaamiEaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipaaaa@4736@  

At, lim x e tx a+x = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaeyOhIukabeaakmaa laaabaGaamyzamaaCaaaleqabaGaamiDaiaadIhaaaaakeaacaWGHb Gaey4kaSIaamiEaaaacqGH9aqpcqGHEisPaaa@462D@ integral function is unbounded in the neighborhood of , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg6HiLcaa@37CD@  so 0 e tx a+x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapedabaWaaS aaaeaacaWGLbWaaWbaaSqabeaacaWG0bGaamiEaaaaaOqaaiaadgga cqGHRaWkcaWG4baaaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aO GaamizaiaadIhaaaa@428C@  is divergent . This means that moment generating function does not exist

Entropies

Renyi entropy

Renyi entropy, proposed by Renyi11 measures the variation of uncertainty in the distribution. The Renyi entropy is defined as

e( η )= 1 1η log[ 0 f η ( x )dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaqada qaaiabeE7aObGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa aiaaigdacqGHsislcqaH3oaAaaGaciiBaiaac+gacaGGNbWaamWaae aadaWdXaqaaiaadAgadaahaaWcbeqaaiabeE7aObaakmaabmaabaGa amiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleaacaaIWaaabaGaey OhIukaniabgUIiYdaakiaawUfacaGLDbaaaaa@4FFA@   Where 0<η<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH8a apcqaH3oaAcqGH8aapcaaIXaaaaa@3B85@  

= 1 1η log[ 0 ( a 2 ( ( a+x )( 1+a )+2 ) ( a 2 +a+1 ) ( a+x ) 3 ) η dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaaigdacqGHsislcqaH3oaAaaGaciiBaiaac+ga caGGNbWaamWaaeaadaWdXaqaamaabmaabaWaaSaaaeaacaWGHbWaaW baaSqabeaacaaIYaaaaOWaaeWaaeaadaqadaqaaiaadggacqGHRaWk caWG4baacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyaa GaayjkaiaawMcaaiabgUcaRiaaikdaaiaawIcacaGLPaaaaeaadaqa daqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGaey 4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaamyyaiabgUcaRiaa dIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacqaH3oaAaaGccaWGKbGaamiEaaWcbaGa aGimaaqaaiabg6HiLcqdcqGHRiI8aaGccaGLBbGaayzxaaaaaa@6366@   

= 1 1η log[ ( a 2 a 2 +a+1 ) η 0 ( 1+a ( a+x ) 2 + 2 ( a+x ) 3 ) η dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaaigdacqGHsislcqaH3oaAaaGaciiBaiaac+ga caGGNbWaamWaaeaadaqadaqaamaalaaabaGaamyyamaaCaaaleqaba GaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWGHbGaey4kaSIaaGymaaaaaiaawIcacaGLPaaadaahaaWcbeqaai abeE7aObaakmaapedabaWaaeWaaeaadaWcaaqaaiaaigdacqGHRaWk caWGHbaabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaikda aeaadaqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaW baaSqabeaacaaIZaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa eq4TdGgaaOGaamizaiaadIhaaSqaaiaaicdaaeaacqGHEisPa0Gaey 4kIipaaOGaay5waiaaw2faaaaa@634A@   (13)

 Applying binomial expansion ( a+b ) n = k=0 n ( n k ) a k b nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaiabgUcaRiaadkgaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6ga aaGccqGH9aqpdaaeWbqaamaabmaaeaqabeaacaWGUbaabaGaam4Aaa aacaGLOaGaayzkaaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6ga a0GaeyyeIuoakiaaykW7caWGHbWaaWbaaSqabeaacaWGRbaaaOGaam OyamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaaaa@4DA2@  , we get

e( η )= 1 1η log[ ( a 2 a 2 +a+1 ) η 0 m=0 η ( η m ) ( ( 1+a ) ( a+x ) 2 ) m ( 2 ( a+x ) 3 ) ηm dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaqada qaaiabeE7aObGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa aiaaigdacqGHsislcqaH3oaAaaGaciiBaiaac+gacaGGNbWaamWaae aadaqadaqaamaalaaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqa aiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGaey4kaS IaaGymaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabeE7aObaakmaa pedabaWaaabCaeaadaqadaabaeqabaGaeq4TdGgabaGaamyBaaaaca GLOaGaayzkaaaaleaacaWGTbGaeyypa0JaaGimaaqaaiabeE7aObqd cqGHris5aOWaaeWaaeaadaWcaaqaamaabmaabaGaaGymaiabgUcaRi aadggaaiaawIcacaGLPaaaaeaadaqadaqaaiaadggacqGHRaWkcaWG 4baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkai aawMcaamaaCaaaleqabaGaamyBaaaakmaabmaabaWaaSaaaeaacaaI YaaabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaam aaCaaaleqabaGaaG4maaaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiabeE7aOjabgkHiTiaad2gaaaGccaWGKbGaamiEaaWcbaGaaGimaa qaaiabg6HiLcqdcqGHRiI8aaGccaGLBbGaayzxaaaaaa@7779@   Where, 2 β+x <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaaqaaiabek7aIjabgUcaRiaadIhaaaGaeyipaWJaaGymaaaa@3C67@  

= η 1η log( a 2 a 2 +a+1 )+ 1 1η [ m=0 η ( η m ) 2 ηm ( 1+a ) m ( 3ηm1 ) a ( 3η2m1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeq4TdGgabaGaaGymaiabgkHiTiabeE7aObaaciGGSbGaai4B aiaacEgadaqadaqaamaalaaabaGaamyyamaaCaaaleqabaGaaGOmaa aaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGa ey4kaSIaaGymaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaig daaeaacaaIXaGaeyOeI0Iaeq4TdGgaamaadmaabaWaaabCaeaadaqa daabaeqabaGaeq4TdGgabaGaamyBaaaacaGLOaGaayzkaaaaleaaca WGTbGaeyypa0JaaGimaaqaaiabeE7aObqdcqGHris5aOGaaGPaVpaa laaabaGaaGOmamaaCaaaleqabaGaeq4TdGMaeyOeI0IaamyBaaaakm aabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaadaahaaWc beqaaiaad2gaaaaakeaadaqadaqaaiaaiodacqaH3oaAcqGHsislca WGTbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaaykW7caWGHbWaaWba aSqabeaadaqadaqaaiaaiodacqaH3oaAcqGHsislcaaIYaGaamyBai abgkHiTiaaigdaaiaawIcacaGLPaaaaaaaaaGccaGLBbGaayzxaaaa aa@7761@   (14)

Tsallis entropy

Tsallis12 introduced entropy called Tsallis entropy for generalizing the standard statistical mechanics which is defined as

S λ = 1 1λ log[ 1 0 f λ ( x )dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaeq4UdWgabeaakiabg2da9maalaaabaGaaGymaaqaaiaaigda cqGHsislcqaH7oaBaaGaciiBaiaac+gacaGGNbWaamWaaeaacaaIXa GaeyOeI0Yaa8qmaeaacaWGMbWaaWbaaSqabeaacqaH7oaBaaGcdaqa daqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbaGaaGimaa qaamaaCaaameqabaGaeyOhIukaaaqdcqGHRiI8aaGccaGLBbGaayzx aaaaaa@5083@  

= 1 1λ log[ 1 ( a 2 a 2 +a+1 ) λ 0 ( 1+a ( a+x ) 2 + 2 ( a+x ) 3 ) λ dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaaigdacqGHsislcqaH7oaBaaGaciiBaiaac+ga caGGNbWaamWaaeaacaaIXaGaeyOeI0YaaeWaaeaadaWcaaqaaiaadg gadaahaaWcbeqaaiaaikdaaaaakeaacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaaaaacaGLOaGaayzkaa WaaWbaaSqabeaacqaH7oaBaaGcdaWdXaqaamaabmaabaWaaSaaaeaa caaIXaGaey4kaSIaamyyaaqaamaabmaabaGaamyyaiabgUcaRiaadI haaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYa aSaaaeaacaaIYaaabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaay jkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaakiaawIcacaGLPaaa daahaaWcbeqaaiabeU7aSbaakiaadsgacaWG4baaleaacaaIWaaaba GaeyOhIukaniabgUIiYdaakiaawUfacaGLDbaaaaa@650A@   (15)

 Applying binomial expansion ( a+b ) n = k=0 n ( n k ) a k b nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaiabgUcaRiaadkgaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6ga aaGccqGH9aqpdaaeWbqaamaabmaaeaqabeaacaWGUbaabaGaam4Aaa aacaGLOaGaayzkaaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6ga a0GaeyyeIuoakiaaykW7caWGHbWaaWbaaSqabeaacaWGRbaaaOGaam OyamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaaaa@4DA2@  , we get

S λ = 1 1λ [ 1 ( a 2 a 2 +a+1 ) λ m=0 λ ( λ m ) 2 λm ( 1+a ) m ( 3λm1 ) a ( 3λ2m1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaeq4UdWgabeaakiabg2da9maalaaabaGaaGymaaqaaiaaigda cqGHsislcqaH7oaBaaWaamWaaeaacaaIXaGaeyOeI0YaaeWaaeaada WcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaWGHbWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaaaaaca GLOaGaayzkaaWaaWbaaSqabeaacqaH7oaBaaGcdaaeWbqaamaabmaa eaqabeaacqaH7oaBaeaacaWGTbaaaiaawIcacaGLPaaaaSqaaiaad2 gacqGH9aqpcaaIWaaabaGaeq4UdWganiabggHiLdGcdaWcaaqaaiaa ikdadaahaaWcbeqaaiabeU7aSjabgkHiTiaad2gaaaGcdaqadaqaai aaigdacqGHRaWkcaWGHbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWG TbaaaaGcbaWaaeWaaeaacaaIZaGaeq4UdWMaeyOeI0IaamyBaiabgk HiTiaaigdaaiaawIcacaGLPaaacaWGHbWaaWbaaSqabeaadaqadaqa aiaaiodacqaH7oaBcqGHsislcaaIYaGaamyBaiabgkHiTiaaigdaai aawIcacaGLPaaaaaaaaaGccaGLBbGaayzxaaaaaa@720E@  (16)

Extreme order statistics

Let, X 1:n ,..., X n:n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaiaacQdacaWGUbaabeaakiaacYcacaGGUaGaaiOlaiaa c6cacaGGSaGaamiwamaaBaaaleaacaWGUbGaaiOoaiaad6gaaeqaaa aa@40FE@ be the order statistics of a random sample of size n from the E-KD (a) distribution with distribution function F(x). The cdf of the minimum order statistic X 1:n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaiaacQdacaWGUbaabeaaaaa@39D1@ is given by

F X 1:n ( x )=1 [ 1F( x ) ] n =1 [ a[ ( a+x )( a 2 +a+1 )x ] ( a+x ) 2 ( a 2 +a+1 ) ] n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiwamaaBaaameaacaaIXaGaaiOoaiaad6gaaeqaaaWcbeaa kmaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaigdacqGHsi sldaWadaqaaiaaigdacqGHsislcaWGgbWaaeWaaeaacaWG4baacaGL OaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGUbaaaOGaey ypa0JaaGymaiabgkHiTmaadmaabaWaaSaaaeaacaWGHbWaamWaaeaa daqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaeWaae aacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyaiabgUca RiaaigdaaiaawIcacaGLPaaacqGHsislcaWG4baacaGLBbGaayzxaa aabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakmaabmaabaGaamyyamaaCaaaleqabaGaaG OmaaaakiabgUcaRiaadggacqGHRaWkcaaIXaaacaGLOaGaayzkaaaa aaGaay5waiaaw2faamaaCaaaleqabaGaamOBaaaaaaa@69D6@  

The cdf of the maximum order statistic X n:n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaamOBaiaacQdacaWGUbaabeaaaaa@3A09@ is given by

F X n:n ( x )= [ F( x ) ] n = [ x[ a( a+x )( a+1 )+( x+2a ) ] ( a+x ) 2 ( a 2 +a+1 ) ] n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiwamaaBaaameaacaWGUbGaaiOoaiaad6gaaeqaaaWcbeaa kmaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maadmaabaGaam OramaabmaabaGaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2faamaa CaaaleqabaGaamOBaaaakiabg2da9maadmaabaWaaSaaaeaacaWG4b WaamWaaeaacaWGHbWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjk aiaawMcaamaabmaabaGaamyyaiabgUcaRiaaigdaaiaawIcacaGLPa aacqGHRaWkdaqadaqaaiaadIhacqGHRaWkcaaIYaGaamyyaaGaayjk aiaawMcaaaGaay5waiaaw2faaaqaamaabmaabaGaamyyaiabgUcaRi aadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcdaqadaqa aiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGaey4kaS IaaGymaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaadaahaaWcbeqa aiaad6gaaaaaaa@675A@   

Stochastic orderings

Stochastic ordering is used to compare two lifetime distributions to examine how one variable is greater than the other.

A random variable X is said to be smaller than a random variable Y in the

  1. Stochastic order ( X st Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiablQNiWnaaBaaaleaacaWGZbGaamiDaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3D64@ if F X ( x ) F Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGgbWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG5baaca GLOaGaayzkaaaaaa@40EC@ for all x
  2. Hazard rate order ( X hr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiablQNiWnaaBaaaleaacaWGObGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3D57@ if h X ( x ) h Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGObWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG5baaca GLOaGaayzkaaaaaa@4130@ for all x

iii. Mean residual life order ( X mrl Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiablQNiWnaaBaaaleaacaWGTbGaamOCaiaadYgaaeqaaOGaamyw aaGaayjkaiaawMcaaaaa@3E4D@  if m X ( x ) m Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGTbWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG5baaca GLOaGaayzkaaaaaa@413A@  for all x

  1. Likelihood ratio order ( X lr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiablQNiWnaaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3D5B@ if f X ( x ) f Y ( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OzamaaBaaaleaacaWGybaabeaakmaabmaabaGaamiEaaGaayjkaiaa wMcaaaqaaiaadAgadaWgaaWcbaGaamywaaqabaGcdaqadaqaaiaadM faaiaawIcacaGLPaaaaaaaaa@3F56@ decrease in x

The following results due to Shaked and Shanthikumar13 are well known for establishing stochastic ordering of distributions:

X lr YX hr YX mrl Y X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiwai ablQNiWnaaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbGaeyO0H4Ta amiwaiablQNiWnaaBaaaleaacaWGObGaamOCaaqabaGccaWGzbGaey O0H4TaamiwaiablQNiWnaaBaaaleaacaWGTbGaamOCaiaadYgaaeqa aOGaamywaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgoDiFdqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamiwaiablQNiWnaaBaaaleaacaWGZbGaamiDaa qabaGccaWGzbaaaaa@9CD1@  

Theorem 6: Let X 1 E-KD( a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaa46Gaamiwam aaBaaaleaacaaIXaaabeaakiablYJi6iaabweacaqGTaGaae4saiaa bseadaqadaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaaaaa@4089@ and X 2 E-KD( a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGOmaaqabaGccqWI8iIocaqGfbGaaeylaiaabUeacaqGebWa aeWaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaa aaaa@3FC2@ .If a 1 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccqGHKjYOcaWGHbWaaSbaaSqaaiaaikdaaeqa aaaa@3BB6@  then X 1 lr X 2 X 1 hr X 2 X 1 st X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaaqabaGccqWI6jcCdaWgaaWcbaGaamiBaiaadkhaaeqa aOGaamiwamaaBaaaleaacaaIYaaabeaakiabgkDiElaadIfadaWgaa WcbaGaaGymaaqabaGccqWI6jcCdaWgaaWcbaGaamiAaiaadkhaaeqa aOGaamiwamaaBaaaleaacaaIYaaabeaakiabgkDiElaadIfadaWgaa WcbaGaaGymaaqabaGccqWI6jcCdaWgaaWcbaGaam4Caiaadshaaeqa aOGaamiwamaaBaaaleaacaaIYaaabeaaaaa@5119@ .

Proof: We have

f X 1 ( x ) f X 2 ( x ) = a 1 2 ( a 2 +x ) 3 ( a 2 2 + a 2 +1 )[ ( a 1 +x )( 1+ a 1 )+2 ] a 2 2 ( a 1 +x ) 3 ( a 1 2 + a 1 +1 )[ ( a 2 +x )( 1+ a 2 )+2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OzamaaBaaaleaacaWGybWaaSbaaWqaaiaaigdaaeqaaaWcbeaakmaa bmaabaGaamiEaaGaayjkaiaawMcaaaqaaiaadAgadaWgaaWcbaGaam iwamaaBaaameaacaaIYaaabeaaaSqabaGcdaqadaqaaiaadIhaaiaa wIcacaGLPaaaaaGaeyypa0ZaaSaaaeaacaWGHbWaaSbaaSqaaiaaig daaeqaaOWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGHbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamiEaaGaayjkaiaawMcaamaaCa aaleqabaGaaG4maaaakmaabmaabaGaamyyamaaBaaaleaacaaIYaaa beaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaWaamWaaeaa daqadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4b aacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyamaaBaaa leaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaaikdaaiaawU facaGLDbaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqa beaacaaIYaaaaOWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaa kmaabmaabaGaamyyamaaBaaaleaacaaIXaaabeaakmaaCaaaleqaba GaaGOmaaaakiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaaIXaaacaGLOaGaayzkaaWaamWaaeaadaqadaqaaiaadggada WgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG4baacaGLOaGaayzkaaWa aeWaaeaacaaIXaGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaaaO GaayjkaiaawMcaaiabgUcaRiaaikdaaiaawUfacaGLDbaaaaaaaa@815B@  

 Let, φ( x )= f X 1 ( x ) f X 2 ( x ) = a 1 2 ( a 2 +x ) 3 ( a 2 2 + a 2 +1 )[ ( a 1 +x )( 1+ a 1 )+2 ] a 2 2 ( a 1 +x ) 3 ( a 1 2 + a 1 +1 )[ ( a 2 +x )( 1+ a 2 )+2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQnaabm aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamOzamaa BaaaleaacaWGybWaaSbaaWqaaiaaigdaaeqaaaWcbeaakmaabmaaba GaamiEaaGaayjkaiaawMcaaaqaaiaadAgadaWgaaWcbaGaamiwamaa BaaameaacaaIYaaabeaaaSqabaGcdaqadaqaaiaadIhaaiaawIcaca GLPaaaaaGaeyypa0ZaaSaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqa aOWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGHbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamiEaaGaayjkaiaawMcaamaaCaaaleqa baGaaG4maaaakmaabmaabaGaamyyamaaBaaaleaacaaIYaaabeaakm aaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaWaamWaaeaadaqada qaaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4baacaGL OaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyamaaBaaaleaaca aIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaaikdaaiaawUfacaGL DbaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaaca aIYaaaaOWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakmaabm aabaGaamyyamaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGOm aaaakiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWkca aIXaaacaGLOaGaayzkaaWaamWaaeaadaqadaqaaiaadggadaWgaaWc baGaaGOmaaqabaGccqGHRaWkcaWG4baacaGLOaGaayzkaaWaaeWaae aacaaIXaGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaaaOGaayjk aiaawMcaaiabgUcaRiaaikdaaiaawUfacaGLDbaaaaaaaa@86A4@

dlogφ( x ) dx =( 3 a 2 +x 1+ a 2 ( a 2 +x )( 1+ a 2 )+2 )( 3 a 1 +x 1+ a 1 ( a 1 +x )( 1+ a 1 )+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGVbGaai4zaiabeA8aQnaabmaabaGaamiEaaGaayjk aiaawMcaaaqaaiaadsgacaWG4baaaiabg2da9maabmaabaWaaSaaae aacaaIZaaabaGaamyyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaa dIhaaaGaeyOeI0YaaSaaaeaacaaIXaGaey4kaSIaamyyamaaBaaale aacaaIYaaabeaaaOqaamaabmaabaGaamyyamaaBaaaleaacaaIYaaa beaakiabgUcaRiaadIhaaiaawIcacaGLPaaadaqadaqaaiaaigdacq GHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGa ey4kaSIaaGOmaaaaaiaawIcacaGLPaaacqGHsisldaqadaqaamaala aabaGaaG4maaqaaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWG4baaaiabgkHiTmaalaaabaGaaGymaiabgUcaRiaadggadaWgaa WcbaGaaGymaaqabaaakeaadaqadaqaaiaadggadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWG4baacaGLOaGaayzkaaWaaeWaaeaacaaIXa Gaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMca aiabgUcaRiaaikdaaaaacaGLOaGaayzkaaaaaa@6EF3@  

=ψ( a 2 )ψ( a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iabeI 8a5naabmaabaGaamyyamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaiabgkHiTiabeI8a5naabmaabaGaamyyamaaBaaaleaacaaIXa aabeaaaOGaayjkaiaawMcaaaaa@42AC@  ,

Where,

ψ( a )=( 3 a+x 1+a ( a+x )( 1+a )+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naabm aabaGaamyyaaGaayjkaiaawMcaaiabg2da9maabmaabaWaaSaaaeaa caaIZaaabaGaamyyaiabgUcaRiaadIhaaaGaeyOeI0YaaSaaaeaaca aIXaGaey4kaSIaamyyaaqaamaabmaabaGaamyyaiabgUcaRiaadIha aiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkcaWGHbaacaGLOa GaayzkaaGaey4kaSIaaGOmaaaaaiaawIcacaGLPaaaaaa@4E32@  

d da ψ( a )= 3 ( a+x ) 2 1+2a+ a 2 { ( a+x )( 1+a )+2 } 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWGHbaaaiabeI8a5naabmaabaGaamyyaaGaayjk aiaawMcaaiabg2da9maalaaabaGaeyOeI0IaaG4maaqaamaabmaaba GaamyyaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaaaOGaeyOeI0YaaSaaaeaacaaIXaGaey4kaSIaaGOmaiaadg gacqGHRaWkcaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaWaaiWaaeaa daqadaqaaiaadggacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaeWaae aacaaIXaGaey4kaSIaamyyaaGaayjkaiaawMcaaiabgUcaRiaaikda aiaawUhacaGL9baadaahaaWcbeqaaiaaikdaaaaaaOGaeyipaWJaaG imaaaa@5B33@  

For a 1 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccqGHKjYOcaWGHbWaaSbaaSqaaiaaikdaaeqa aaaa@3BB6@ , d dx log( f X 1 ( x ) f X 2 ( x ) )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaaiGacYgacaGGVbGaai4zamaabmaabaWa aSaaaeaacaWGMbWaaSbaaSqaaiaadIfadaWgaaadbaGaaGymaaqaba aaleqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaaabaGaamOzamaa BaaaleaacaWGybWaaSbaaWqaaiaaikdaaeqaaaWcbeaakmaabmaaba GaamiEaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaacqGH8aapcaaI Waaaaa@4A51@ .This means that X 1 lr X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaaqabaGccqWI6jcCdaWgaaWcbaGaamiBaiaadkhaaeqa aOGaamiwamaaBaaaleaacaaIYaaabeaaaaa@3DAA@  and hence X 1 hr X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaaqabaGccqWI6jcCdaWgaaWcbaGaamiAaiaadkhaaeqa aOGaamiwamaaBaaaleaacaaIYaaabeaaaaa@3DA6@  and X 1 st X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaaqabaGccqWI6jcCdaWgaaWcbaGaam4Caiaadshaaeqa aOGaamiwamaaBaaaleaacaaIYaaabeaaaaa@3DB3@  .

Estimation of parameters

Let ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bWaaS baaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@420E@ be the observed values of a random sample ( X 1 , X 2 ,..., X n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwamaaBaaaleaacaaIXaaabeaakiaacYcacaWGybWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGybWaaS baaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@41AE@ from the E-KD. Then the Likelihood function is given by

L( a )= ( a 2 a 2 +a+1 ) n i=1 n [ ( a+ x i )( 1+a )+2 ] i=1 n ( a+ x i ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaiaadggaaiaawIcacaGLPaaacqGH9aqpdaqadaqaamaalaaabaGa amyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaWGHbGaey4kaSIaaGymaaaaaiaawIcacaGL PaaadaahaaWcbeqaaiaad6gaaaGcdaWcaaqaamaarahabaWaamWaae aadaqadaqaaiaadggacqGHRaWkcaWG4bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyaaGaay jkaiaawMcaaiabgUcaRiaaikdaaiaawUfacaGLDbaaaSqaaiaadMga cqGH9aqpcaaIXaaabaGaamOBaaqdcqGHpis1aaGcbaWaaebCaeaada qadaqaaiaadggacqGHRaWkcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHpis1aaaaaaa@639B@   (17)

The log-likelihood function of E-KD is thus obtained as

logL( a )=2nloganlog( a 2 +a+1 )+ i=1 n log[ ( a+ x i )( 1+a )+2 ] 3 i=1 n log( a+ x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeadaqadaqaaiaadggaaiaawIcacaGLPaaacqGH9aqp caaIYaGaamOBaiGacYgacaGGVbGaai4zaiaadggacqGHsislcaWGUb GaciiBaiaac+gacaGGNbWaaeWaaeaacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamyyaiabgUcaRiaaigdaaiaawIcacaGLPaaacq GHRaWkdaaeWbqaaiGacYgacaGGVbGaai4zamaadmaabaWaaeWaaeaa caWGHbGaey4kaSIaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPaaa cqGHRaWkcaaIYaaacaGLBbGaayzxaaaaleaacaWGPbGaeyypa0JaaG ymaaqaaiaad6gaa0GaeyyeIuoakiabgkHiTiaaiodadaaeWbqaaiGa cYgacaGGVbGaai4zamaabmaabaGaamyyaiabgUcaRiaadIhadaWgaa WcbaGaamyAaaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqp caaIXaaabaGaamOBaaqdcqGHris5aaaa@74CC@   (18)

The maximum likelihood estimate of the parameter  is the solution of the following log-likelihood equation

logL( a ) a = 2n a n( 2a+1 ) ( a 2 +a+1 ) + i=1 n (1+a) ( a+ x i )( 1+a ) 3 i=1 n 1 ( a+ x i ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitamaabmaabaGaamyyaaGaayjk aiaawMcaaaqaaiabgkGi2kaadggaaaGaeyypa0ZaaSaaaeaacaaIYa GaamOBaaqaaiaadggaaaGaeyOeI0YaaSaaaeaacaWGUbWaaeWaaeaa caaIYaGaamyyaiabgUcaRiaaigdaaiaawIcacaGLPaaaaeaadaqada qaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbGaey4k aSIaaGymaaGaayjkaiaawMcaaaaacqGHRaWkdaaeWbqaamaalaaaba GaaiikaiaaigdacqGHRaWkcaWGHbGaaiykaaqaamaabmaabaGaamyy aiabgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa aadaqadaqaaiaaigdacqGHRaWkcaWGHbaacaGLOaGaayzkaaaaaaWc baGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGHsi slcaaIZaWaaabCaeaadaWcaaqaaiaaigdaaeaadaqadaqaaiaadgga cqGHRaWkcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa aaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGc cqGH9aqpcaaIWaaaaa@7527@   (19)

It can be easily shown that the maximum likelihood estimate will satisfy the second order sufficient condition of maximum likelihood estimator. For, we have

2 logL( a ) a 2 = 2n a 2 + n( 2 a 2 +2a1 ) ( a 2 +a+1 ) + i=1 n ( 1+a )( x1 ) [ ( a+x )( 1+a )+2 ] 2 +3 i=1 n 1 ( a+ x i ) 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit amaabmaabaGaamyyaaGaayjkaiaawMcaaaqaaiabgkGi2kaadggada ahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacqGHsislcaaI YaGaamOBaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaS YaaSaaaeaacaWGUbWaaeWaaeaacaaIYaGaamyyamaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaikdacaWGHbGaeyOeI0IaaGymaaGaayjkai aawMcaaaqaamaabmaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiab gUcaRiaadggacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaiabgUcaRm aaqahabaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcaWGHbaacaGL OaGaayzkaaWaaeWaaeaacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawM caaaqaamaadmaabaWaaeWaaeaacaWGHbGaey4kaSIaamiEaaGaayjk aiaawMcaamaabmaabaGaaGymaiabgUcaRiaadggaaiaawIcacaGLPa aacqGHRaWkcaaIYaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaa aaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaki abgUcaRiaaiodadaaeWbqaamaalaaabaGaaGymaaqaamaabmaabaGa amyyaiabgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaaaaqaaiaadMgacqGH9aqpcaaI XaaabaGaamOBaaqdcqGHris5aOGaeyipaWJaaGimaaaa@84DD@  (20)

 

Estimation of the stress-strength parameter R=P( X>Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGqbWaaeWaaeaacaWGybGaeyOpa4JaamywaaGaayjkaiaawMca aaaa@3D5A@

In reliability, the stress-strength model describes the life of a component which has a random strength X subjected to a random stress Y.The component fails at the instant if the stress applied to it exceeds its strength, and the component will function satisfactory whenever,X>Y. In this section our objective is to estimate R=P( X>Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGqbWaaeWaaeaacaWGybGaeyOpa4JaamywaaGaayjkaiaawMca aaaa@3D5A@  when XE-KD( a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqWI8i IocaqGfbGaaeylaiaabUeacaqGebWaaeWaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3ECF@  and YE-KD( a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacqWI8i IocaqGfbGaaeylaiaabUeacaqGebWaaeWaaeaacaWGHbWaaSbaaSqa aiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3ED1@  and X and Y  are independently distributed. Thus, the stress- strength parameter is given by

R=P( X>Y )= 0 P( X>Y|Y=y ) f Y ( y )dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGqbWaaeWaaeaacaWGybGaeyOpa4JaamywaaGaayjkaiaawMca aiabg2da9maapedabaGaamiuamaabmaabaGaamiwaiabg6da+iaadM facaGG8bGaamywaiabg2da9iaadMhaaiaawIcacaGLPaaaaSqaaiaa icdaaeaacqGHEisPa0Gaey4kIipakiaadAgadaWgaaWcbaGaamywaa qabaGcdaqadaqaaiaadMhaaiaawIcacaGLPaaacaWGKbGaamyEaaaa @522E@  

= 0 [ 1 F X ( y ) ] f Y ( y )dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maape dabaWaamWaaeaacaaIXaGaeyOeI0IaamOramaaBaaaleaacaWGybaa beaakmaabmaabaGaamyEaaGaayjkaiaawMcaaaGaay5waiaaw2faaa WcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamOzamaaBaaaleaa caWGzbaabeaakmaabmaabaGaamyEaaGaayjkaiaawMcaaiaadsgaca WG5baaaa@4A2C@  

=1 0 a 1 a 2 2 ( a 1 2 + a 1 +1 )( a 2 2 + a 2 +1 ) [ ( a 1 +y )( a 1 2 + a 1 +1 )y ]{ ( a 2 +y )( 1+ a 2 )+2 } ( a 1 +y ) 2 ( a 2 +y ) 3 dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaaig dacqGHsisldaWdXaqaamaalaaabaGaamyyamaaBaaaleaacaaIXaaa beaakiaadggadaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaik daaaaakeaadaqadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGcdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaamyyamaa BaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRi aadggadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIXaaacaGLOaGa ayzkaaaaamaalaaabaWaamWaaeaadaqadaqaaiaadggadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWG5baacaGLOaGaayzkaaWaaeWaaeaa caWGHbWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaigda aiaawIcacaGLPaaacqGHsislcaWG5baacaGLBbGaayzxaaWaaiWaae aadaqadaqaaiaadggadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG 5baacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyamaaBa aaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaaikdaaiaa wUhacaGL9baaaeaadaqadaqaaiaadggadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWG5baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aOWaaeWaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam yEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaabaGaaGim aaqaaiabg6HiLcqdcqGHRiI8aOGaamizaiaadMhaaaa@818C@  = H ( a 1 , a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyamaaBaaaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaa ikdaaeqaaaGccaGLOaGaayzkaaaaaa@3C44@

Let, ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bWaaS baaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@420E@ be the observed value of a random sample of size  from E-KD ( a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaa@39BC@ and ( y 1 , y 2 ,..., y m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG5bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG5bWaaS baaSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaaaaa@4210@  be the observed value of a random sample of size m from E-KD ( a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@39BD@ .

The log-likelihood functions of a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaaaaa@3829@ and a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGOmaaqabaaaaa@382A@  is given by

logL( a 1 , a 2 )=2nlog( a 1 )nlog( a 1 2 + a 1 +1 )+ i=1 n log[ ( a 1 + x i )( 1+ a 1 )+2 ] 3 i=1 n log( a 1 + x i ) +2mlog( a 2 )mlog( a 2 2 + a 2 +1 )+ i=1 m log [ ( a 2 + y i )( 1+ a 2 )+2 ]3 i=1 m log( a 2 + y i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaciiBai aac+gacaGGNbGaamitamaabmaabaGaamyyamaaBaaaleaacaaIXaaa beaakiaacYcacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaay zkaaGaeyypa0JaaGOmaiaad6gaciGGSbGaai4BaiaacEgadaqadaqa aiaadggadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHsi slcaWGUbGaciiBaiaac+gacaGGNbWaaeWaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyam aaBaaaleaacaaIXaaabeaakiabgUcaRiaaigdaaiaawIcacaGLPaaa cqGHRaWkdaaeWbqaaiGacYgacaGGVbGaai4zamaadmaabaWaaeWaae aacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaa leaacaWGPbaabeaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgU caRiaadggadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH RaWkcaaIYaaacaGLBbGaayzxaaaaleaacaWGPbGaeyypa0JaaGymaa qaaiaad6gaa0GaeyyeIuoakiabgkHiTiaaiodadaaeWbqaaiGacYga caGGVbGaai4zamaabmaabaGaamyyamaaBaaaleaacaaIXaaabeaaki abgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa aSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcba GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaIYaGaamyBai GacYgacaGGVbGaai4zamaabmaabaGaamyyamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaiabgkHiTiaad2gaciGGSbGaai4BaiaacE gadaqadaqaaiaadggadaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRmaaqahabaGaciiBaiaa c+gacaGGNbaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad2gaa0Gaey yeIuoakmaadmaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaamyEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLPaaacqGHRaWkcaaIYaaacaGLBbGaayzxaaGaey OeI0IaaG4mamaaqahabaGaciiBaiaac+gacaGGNbWaaeWaaeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyEamaaBaaaleaaca WGPbaabeaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabg2da9iaaigda aeaacaWGTbaaniabggHiLdaaaaa@EBB3@

The maximum likelihood estimates of and  are the solutions of following log-likelihood equations

a 1 ( logL( a 1 , a 2 ) )= 2n a 1 n( 2 a 1 +1 ) ( a 1 2 + a 1 +1 ) + i=1 n ( 1+2 a 1 + x i ) ( a 1 +x )( 1+ a 1 )+2 3 i=1 n 1 ( a 1 + x i ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaamyyamaaBaaaleaacaaIXaaabeaaaaGcdaqa daqaaiGacYgacaGGVbGaai4zaiaadYeadaqadaqaaiaadggadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamyyamaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaG Omaiaad6gaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaaakiabgkHi TmaalaaabaGaamOBamaabmaabaGaaGOmaiaadggadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaWaaeWaaeaa caWGHbWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaigda aiaawIcacaGLPaaaaaGaey4kaSYaaabCaeaadaWcaaqaamaabmaaba GaaGymaiabgUcaRiaaikdacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaa qaamaabmaabaGaamyyamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dIhaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkcaWGHbWaaS baaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaaGOmaaaa aSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaey OeI0IaaG4mamaaqahabaWaaSaaaeaacaaIXaaabaWaaeWaaeaacaWG HbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaaca WGPbaabeaaaOGaayjkaiaawMcaaaaaaSqaaiaadMgacqGH9aqpcaaI XaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaGimaaaa@870B@

a 2 ( logL( a 1 , a 2 ) )= 2m a 2 n( 2 a 2 +1 ) ( a 2 2 + a 2 +1 ) + i=1 m 1+2 a 2 + y i ( a 2 +y )( 1+ a 2 )+2 3 i=1 m 1 ( a 2 + y i ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaamyyamaaBaaaleaacaaIYaaabeaaaaGcdaqa daqaaiGacYgacaGGVbGaai4zaiaadYeadaqadaqaaiaadggadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamyyamaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaG Omaiaad2gaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaakiabgkHi TmaalaaabaGaamOBamaabmaabaGaaGOmaiaadggadaWgaaWcbaGaaG OmaaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaWaaeWaaeaa caWGHbWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaigda aiaawIcacaGLPaaaaaGaey4kaSYaaabCaeaadaWcaaqaaiaaigdacq GHRaWkcaaIYaGaamyyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaa dMhadaWgaaWcbaGaamyAaaqabaaakeaadaqadaqaaiaadggadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkcaWG5baacaGLOaGaayzkaaWaaeWa aeaacaaIXaGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiabgUcaRiaaikdaaaaaleaacaWGPbGaeyypa0JaaGym aaqaaiaad2gaa0GaeyyeIuoakiabgkHiTiaaiodadaaeWbqaamaala aabaGaaGymaaqaamaabmaabaGaamyyamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadMhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa aaaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad2gaa0GaeyyeIuoa kiabg2da9iaaicdaaaa@858B@

Solving these non-linear equations using any iterative methods available in R packages we can obtain the MLEs of the parameters as ( a ^ 1 , a ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGabm yyayaajaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiqadggagaqcamaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@3C64@  and hence the MLE of R can thus be obtained as

R ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaqcai abg2da9aaa@3849@   H ( a ^ 1 , a ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGabm yyayaajaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiqadggagaqcamaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@3C64@ .

A simulation study

This section contains a simulation study to examine the consistency of maximum likelihood estimator of the parameter of the E-KD. The mean, bias (B), MSE and variance of the MLE’s are computed using the formulae

Mean= 1 n i=1 n H ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdH8qqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGLb Gaamyyaiaad6gacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbaaamaa qahabaGabmisayaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacq GH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@4410@ , B= 1 n i=1 n ( H ^ i H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdH8qqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpdaWcaaqaaiaaigdaaeaacaWGUbaaamaaqahabaWaaeWaaeaaceWG ibGbaKaadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWGibaacaGLOa GaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Gaeyye Iuoaaaa@449A@ , MSE= 1 n i=1 n ( H ^ i H ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdH8qqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGtb Gaamyraiabg2da9maalaaabaGaaGymaaqaaiaad6gaaaWaaabCaeaa daqadaqaaiqadIeagaqcamaaBaaaleaacaWGPbaabeaakiabgkHiTi aadIeaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamyA aiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@4724@ , Variance=MSE B 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdH8qqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacaWGHb GaamOCaiaadMgacaWGHbGaamOBaiaadogacaWGLbGaaGPaVlabg2da 9iaad2eacaWGtbGaamyraiabgkHiTiaadkeadaahaaWcbeqaaiaaik daaaaaaa@44DA@  

Where, H=( a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdH8qqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqGH9a qpdaqadaqaaiaadggaaiaawIcacaGLPaaaaaa@3A29@ and H ^ =( a ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdH8qqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcai abg2da9maabmaabaGabmyyayaajaaacaGLOaGaayzkaaaaaa@3A49@ .

The simulation results of E-KD have been presented in table 1 using acceptance-rejection method of simulation.

Parameters

Sample Size

Mean

Bias

MSE

Variance

a ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaaja aaaa@36EC@

20

1.482652

-0.0173482

0.000865

0.000564

40

1.486166

-0.0138335

0.000719

0.0005279

60

1.484523

-0.0154774

0.000537

0.0002981

80

1.482652

-0.0114015

0.000468

0.0003381

100

1.482957

-0.0100429

0.000444

0.000344

Table 1 The mean, biases, MSE and variances of E-KD for a=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdH8qqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpcaaIXaGaaiOlaiaaiwdaaaa@39FF@

Application

This section deals with the goodness of fit of E-KD over E-LD, E-SD, Shanker, Komal, Lindley and exponential distributions. The applications and the goodness of fit have been presented with one real dataset relating to failure times of 50 components. The summary of the dataset is presented in table 2. The total time to test (TTT) plots and Violin plot of the dataset related to failure times and simulated dataset are given in 8 and 9 respectively. The goodness of fit of the considered distributions for the dataset is provided in table3. The fitted plots of the considered distributions for the dataset are given in 10. The dataset is as follows:

Figure 8 TTT-plot of dataset and simulated dataset related to failure times of E-KD.

Figure 9 Violin-plot of the dataset related to failure times and simulated data of E-KD respectively.

Figure 10 Fitted plots of distributions for the dataset 1.

Dataset 1: The following extreme skewed to right data, discussed by Murthy et al14 presents the failure times of 50 components and the observations are:

 0.036, 0.058, 0.061, 0.074, 0.078, 0.086, 0.102, 0.103, 0.114, 0.116, 0.148, 0.183, 0.192, 0.254, 0.262, 0.379, 0.381, 0.538, 0.570, 0.574, 0.590, 0.618, 0.645, 0.961, 1.228, 1.600, 2.006, 2.054, 2.804, 3.058, 3.076, 3.147, 3.625, 3.704, 3.931, 4.073, 4.393, 4.534, 4.893, 6.274, 6.816, 7.896, 7.904, 8.022, 9.337, 10.940, 11.020, 13.880, 14.730, 15.080

Min

1st Qu.     

Median

Mean

Variance

3rd Qu.

Max

0.036

0.2075

1.414

3.343

17.48477

4.4988

15.08

Table 2 Summary of the dataset 1

Distributions

ML estimates and standard error a ^ ( S.E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaaja WaaeWaaeaacaqGtbGaaeOlaiaabweaaiaawIcacaGLPaaaaaa@3AC4@

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmaiGacYgacaGGVbGaai4zaiaadYeaaaa@3B40@  

AIC

K-S

P- value

E-KD

1.4566 (0.2932)

211.9573

213.9573

0.1423

0.3202

E-SD

1.5819 (0.2822)

212.1365

214.1365

0.1614

0.1887

E-LD

1.7208 (0.3529)

212.3744

214.3744

0.2769

0.0009

KD

0.4847 (0.0483)

234.9971

236.9971

0.3093

0.0003

SD

0.5713 (0.0509)

249.9203

251.9203

0.3454

0

LD

0.4987 (0.0513)

240.3559

242.3559

0.3469

0

ED

0.2991(0.0423)

220.6857

222.6857

0.28

0.0097

Table 3 Goodness of fit of E-KD along with other distributions for dataset 1

Concluding remarks

In this paper, we introduced exponential-Komal distribution (E-KD) by compounding exponential distribution with Komal distribution. Several key characteristics of this distribution have been thoroughly explored, including its shape, hazard and reversed hazard functions, quantile function, Rényi entropy, Tsallis entropy and stress-strength reliability. Maximum Likelihood estimation has been discussed for estimating its parameter. The goodness of fit of E-KD over E-LD, E-SD, Komal distribution, Shanker distribution, Lindley distribution and exponential distribution shows that E-KD gives much closer fit than these distributions for the dataset related to failure times of 50 components.The proposed distribution is very much useful for modelling data from biomedical sciences and engineering having heavy tailed behaviour.

Acknowledgments

Authors are grateful to the editor in chief of the Journal and the anonymous reviewer for some fruitful comments which improved the quality of the paper.

Conflict of interests

The authors declare that there are no conflicts of interest.

References

  1. Lindley DV. Fiducial distribution and Bayes’ theorem. J R Statist Soc.1958;20(1):102–107.
  2. Shanker R, Hagos F, Sujatha S. On modelling of lifetimes data using exponential and lindley distributions, Biom biostat int. 2015;2(5):140–147.
  3. Shanker R. Shanker distribution and its applications, International Journal of Statistics and Applications, 2015;5(6):338–348.
  4. Shanker R. Komal distribution with properties and application in survival analysis. Biom Biostat Int J. 2023;12(2):40–44.
  5. Shanker R, Ray M, Prodhani HR. Weighted Komal distribution with properties Shanker and applications, Int J Statist and Relia Eng. 2023a;10(3):591–603.
  6. Shanker R, Ray M, Prodhani H R. Power komal distribution with properties and application in reliability engineering. Relia Theo App. 2023b;18(4):541–551.
  7. Belhara T, Zeghdoudi H, Raman V. A new compound exponential lindley distribution application and comparison. Int J Agri Statist sci. 2022;18(2):755–766.
  8.  Ray M, Shanker R. A compound of exponential and Shanker distribution with an application. J Sci R. 2023a;67(4):39–46.
  9. Abdi M, Asgharzadeh A, Bakouch HS, et al. A new compound Gamma and Lindley distribution with application to failure data. Austrian J Statist. 2019;48:54–75.
  10. Ray M, Shanker R. A compound of Gamma and Shanker distribution. Relia Theo App. 2023b;18(2):87–99.
  11. Renyi A. On measure of entropy and information. In: proceeding of the fourth Berkeley symposium on mathematical statistics and probability. Contribution to the theory of Statistics, Berkeley, California: University of California Press. 1961;(1):547–561.
  12. Tsallis C. Possible generalization of Boltzmann- Gibbs statistics. J Statist Phy. 1988;52(1-2):479–487.
  13. Shaked M, Shanthikumar JG. Stochastic orders and their applications. Academic Press New Work.1994.
  14. Murthy D N P, Xie M, Jiang R. Weibull models. John Wiley & Sons Inc, Hoboken. 2004:416.
Creative Commons Attribution License

©2024 Ray, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.