Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 7 Issue 4

The effect of gravity on the evolution of life on earth based on general relativity and the low of free fall

Tibor Endre Nagy,1 Erzsébet Szolnoki2

1University of Debrecen, Hungary
2Gábor Kátai Hospital, Hungary

Correspondence: Tibor Endre Nagy, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela u. 2-26, 4031 Debrecen, Hungary

Received: December 01, 2023 | Published: December 14, 2023

Citation: Nagy TE, Szolnoki E. The effect of gravity on the evolution of life on earth based on general relativity and the low of free fall. Aeron Aero Open Access J. 2023;7(4):150-168. DOI: 10.15406/aaoaj.2023.07.00186

Download PDF

Abstract

The radius of the universe can be determined by combining the Einstein formulas, which determine the degree of gravitational redshift and describe the angle of refraction of a beam of light running along celestial bodies. The relationship between the two equations is made by the ratio of the total angle to the angle of deflection of the beam of light passing by the Earth according to the rules of Euclidean geometry (2∙π/α). The so-called Darwinian evolutionary distances measured from the color changes of the respiratory pigments of biological creatures (in connection with the phase of their circulation) can be paralleled with this. It is possible to measure these to the radius of the universe determined in this way. During the nearly 4-billion-year uninterrupted process of Darwinian evolution, living organisms presumably adapted to surface gravity during mutations as well as to any other environmental factor. In this way, they can accelerate continuously along the imaginary straight line from the origin of life to the appearance of the human race, i.e., within the short evolutionary distance, due to the attractive effect of gravity. During the free fall from the past to the present, the curvature of space-time may gradually appear in their physiological processes and anatomical structure. Specifically in their circulatory system, the rate of evolution would correspond to the most qualitatively advanced level, i.e., the velocity of human blood circulation. In this way, the evolution accelerating to almost the speed of light is reduced to 5.23 cm/s due to an enormous time dilation (as a proportion of angles; α/2/π). With this average human blood flow velocity, together with data from cardiac and circulatory procedures, a toroidal, or even more refined, ‘interlocking figure 8 model’ can be constructed. It reflects the dimensions, flow and pressure conditions of the pulmonary and systemic circulation, as well as the work of the heart.

Keywords: high redshift galaxies, Earth's gravity, general relativity, Euclidean geometry, Newton's law of universal gravitation, free fall, Darwinian evolution, circulation-respiration, blood/lymph, respiratory pigments, color formation

Introduction

The radius and age of the universe can be determined from information obtained from stellar evolution data (14.6±1.7 billion years),1 as well as from the redshift of the light of galaxies (13.8±0.038 billion years).2–5 The difference of a few billion years between the two methods can be eliminated if the gravitational refractive index of the cosmos is taken into account and the universe is considered to be three-dimensional.6

However, this latter method, based on the shift in the frequency of visible light, provides an opportunity to compare physical and biological systems. The time interval required for the development of an individual in the Darwinian evolutionary process7,8 can be measured by comparing the red shift created in the gravitational and accelerating systems9,10 with the shift of the reflection color band related to respiration and circulation appearing on the surface of biological creatures.11

The distances to the radius of the universe can be estimated from the color change of the respiratory pigments based on the Einstein gravitation field equations.12 The Darwinian evolutionary time intervals obtained by dividing the evolutionary distances comparable to the radius of the cosmos by the speed of light are the same as the geological time scale based on the radioisotope method.13,14 The gradual development of the pulmonary and systemic circulation15 can occur in parallel with the passage of time. The blood vessel system that gradually returns to itself assumes a curved four-dimensional space-time structure,16,17 which may result from the constantly present gravity of the earth's surface.

Such a complex, highly organized system that includes all branches of physics can only be imagined in biological individuals in the universe on habitable planets, mostly on Earth. This can only happen in living creatures, if those changes are constantly being recorded in the genetic information system.18,19 The increasingly organized structure coded in this way is then inherited in a staggered form in proportion to time. This accumulation of gravitational effects may occur in the case of repeated mutations,20,21 that occur during the adaptation of individuals to the environment. In this way, the curvature of the space-time structure can reach a maximum in the circulation at an increasingly advanced degree. From the origin of life, through the open and then closed blood circulation of mollusks, insects, fish, amphibians, reptiles, birds, mammals, to the appearance of human blood circulation and respiration, it can reach a high degree from which it can no longer develop.22 The pulmonary and cellular respiration, which develops in parallel with the development of the two, three, or four-cavity hearts, then reflects the color phenomena from which the evolutionary time intervals can be derived (blue-red).

However, the projection of the physical space-time curvature can also appear in living beings in a special form. Such can be the structure of the pulmonary vascular system taken from medical practice and revealed during radiological examinations with contrast material (computed tomography pulmonary angiogram /CTPA/)23,24 the arterial system spreading in all directions in the chest and the venous vascular system converging from the sprawling periphery. This spatial arrangement is also typical of systemic circulation, but in a less conspicuous form.25

Determination of the size and age of the universe

Based on the general relativity, it is known that behind the shift in the frequency of visible light in the direction of red light, there is also a time shift. In the presence of acceleration, or a gravitational field, or both, a change in the frequency of light occurs. Taking this information into account, even in a rapidly expanding universe, a specific, accurate time interval pointing in the direction of the past can be calculated based on the laws of modern physics. This shift to a smaller frequency of the spectrum line26 is demonstrated by the original Einsteinian formula:

ν= ν 0 ( 1+ Φ c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaeqyVd42aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaMc8Ua aGymaiabgUcaRmaalaaabaGaeuOPdyeabaGaam4yamaaCaaaleqaba GaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@4373@   (1)

Where ν is the changed frequency, νo is the initial frequency, c is the speed of light and Φ is the gravitation potential difference.

The gravitation potential difference (Φ) is equal to the product of the acceleration of free fall (g) and the distance (h) between two points of different gravitational potential: Φ = g.h.26 Therefore:

ν= ν 0 ( 1+ gh c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaeqyVd42aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaMc8Ua aGymaiabgUcaRmaalaaabaGaam4zaiabgwSixlaadIgaaeaacaWGJb WaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@461C@   (2)

If we equate the redshift of the light measured in distant galaxies27 with the acceleration of the Earth (as a component of our galaxy), then the above formula can be applied to this case as well. In this way, taking into account a redshift of 3.14 and knowing the Earth's surface gravity, a distance (h) can be calculated that points towards the origin of the universe. This distance can be called the “short evolving distance” (hpast, present), which is as follows:

h past,present = ν ν 0 ν 0 c 2 g Earth,stand MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGWbGaamyyaiaadohacaWG0bGaaiilaiaadchacaWGYbGa amyzaiaadohacaWGLbGaamOBaiaadshaaeqaaOGaeyypa0ZaaSaaae aacqaH9oGBcqGHsislcqaH9oGBdaWgaaWcbaGaaGimaaqabaaakeaa cqaH9oGBdaWgaaWcbaGaaGimaaqabaaaaOGaeyyXIC9aaSaaaeaaca WGJbWaaWbaaSqabeaacaaIYaaaaaGcbaGaam4zamaaBaaaleaacaWG fbGaamyyaiaadkhacaWG0bGaamiAaiaacYcacaWGZbGaciiDaiaacg gacaGGUbGaamizaaqabaaaaaaa@5A81@   (3)

Where hpast, present is the unknown distance between two points of a gravitational field, (ν-νo)/νo = 3.141592653 is the redshift of the Earth as a component of high redshifted Milky Way Galaxy, c is the speed of light (2.99792458•108 m•s-1) and g is the standard gravity of the Earth (9.80665 m•s-2). (See reference after Equation 6.)

Numerically:

h past,present =3.1416 8.9875 10 16 m 2 s 2 9.80665m s 2 =2.879 10 16 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGWbGaamyyaiaadohacaWG0bGaaiilaiaadchacaWGYbGa amyzaiaadohacaWGLbGaamOBaiaadshaaeqaaOGaeyypa0JaaG4mai aac6cacaaIXaGaaGinaiaaigdacaaI2aGaeyyXIC9aaSaaaeaacaaI 4aGaaiOlaiaaiMdacaaI4aGaaG4naiaaiwdacqGHflY1caaIXaGaaG imamaaCaaaleqabaGaaGymaiaaiAdaaaGccaWGTbWaaWbaaSqabeaa caaIYaaaaOGaeyyXICTaam4CamaaCaaaleqabaGaeyOeI0IaaGOmaa aaaOqaaiaaiMdacaGGUaGaaGioaiaaicdacaaI2aGaaGOnaiaaiwda caWGTbGaeyyXICTaam4CamaaCaaaleqabaGaeyOeI0IaaGOmaaaaaa GccqGH9aqpcaaMc8UaaGOmaiaac6cacaaI4aGaaG4naiaaiMdacqGH flY1caaIXaGaaGimamaaCaaaleqabaGaaGymaiaaiAdaaaGccaaMc8 UaamyBaaaa@7465@   (4)

This distance depends both upon the ratio of the shift of the spectrum line, which matches to the motion of the Earth, and of the gravity of Earth (Figure 1). The “short evolving distance” (hpast, present) can be given by the ratio of the entire plane angle (2∙π) and the deviating angle (α) of a light beam passing near the Earth’s surface caused by the gravitational field: h/α=H/2∙π-1.28 With the ratio calculated from the known “short evolving distance” (h) and the known two angles (α, 2∙π), an enormous unknown distance can be calculated which might be termed ”long evolving distance” (Hpast, present = Huniverse) (Figure 2).

Figures 1&2. Relationship between the entire plane angle (2∙π) represented by the expanding universe (with the Earth in the center) and the deviating angle (α) of a light beam (c) passing through the gravitational field of the Earth’s surface (g). When the Earth is in motion (n•α) (as a component of our high redshifted galaxy) along h, from A to B (Figure 1), or is comparatively static (α) while in orbit (Figure 2).

The deviation angle (α) of a light beam, which passes near a celestial body’s surface, in this case the Earth, according to Einstein’s equation26 is:

α= 2GM c 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0ZaaSaaaeaacaaIYaGaeyyXICTaam4raiabgwSixlaad2eaaeaa caWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyyXICTaamOuaaaaaaa@4496@   (5)

Therefore:

H universe = ν ν 0 ν 0 c 2 g Earth,stand 2π c 2 R Earth,mean 2G M Earth MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzaaqabaGccqGH9aqpdaWcaaqaaiabe27aUjabgkHiTiabe27aUn aaBaaaleaacaaIWaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIWaaa beaaaaGccqGHflY1daWcaaqaaiaadogadaahaaWcbeqaaiaaikdaaa aakeaacaWGNbWaaSbaaSqaaiaadweacaWGHbGaamOCaiaadshacaWG ObGaaiilaiaadohaciGG0bGaaiyyaiaac6gacaWGKbaabeaaaaGccq GHflY1daWcaaqaaiaaikdacqGHflY1cqaHapaCcqGHflY1caWGJbWa aWbaaSqabeaacaaIYaaaaOGaeyyXICTaamOuamaaBaaaleaacaWGfb GaamyyaiaadkhacaWG0bGaamiAaiaacYcacaWGTbGaamyzaiaadgga caWGUbaabeaaaOqaaiaaikdacqGHflY1caWGhbGaeyyXICTaamytam aaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaaaaaaa @7A16@   (6)

Where Huniverse is the radius of the universe, (ν-νo)/νo = 3.141592653 is the redshift of the Earth (as a component of high redshifted Milky Way Galaxy), c is the speed of light (2.99792458•108 m•s-1), π is the ratio of a circle’s circumference to its diameter (3.141592653). R is the volumetric mean radius of the Earth (6.371005•106m), g is the standard gravity of the Earth (9.80665 m•s-2). G is the gravitational constant (6.673848•10-11m3•kg-1•s-2)29 and M is the mass of the Earth (5.97219•1024kg).30

Numerically:

H universe =3.141592 80.77608713 10 32 m 4 s 4 3.1415926536.371005 10 6 m 9.80665m s 2 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg =12.994509 10 25 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0df9crpepeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGib WaaSbaaSqaaiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaa dohacaWGLbaabeaakiabg2da9iaaiodacaGGUaGaaGymaiaaisdaca aIXaGaaGynaiaaiMdacaaIYaGaeyyXIC9aaSaaaeaacaaI4aGaaGim aiaac6cacaaI3aGaaG4naiaaiAdacaaIWaGaaGioaiaaiEdacaaIXa GaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaGaaGOm aaaakiaad2gadaahaaWcbeqaaiaaisdaaaGccqGHflY1caWGZbWaaW baaSqabeaacqGHsislcaaI0aaaaOGaeyyXICTaaG4maiaac6cacaaI XaGaaGinaiaaigdacaaI1aGaaGyoaiaaikdacaaI2aGaaGynaiaaio dacqGHflY1caaI2aGaaiOlaiaaiodacaaI3aGaaGymaiaaicdacaaI WaGaaGynaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI2aaaaO GaamyBaaqaaiaaiMdacaGGUaGaaGioaiaaicdacaaI2aGaaGOnaiaa iwdacaWGTbGaeyyXICTaam4CamaaCaaaleqabaGaeyOeI0IaaGOmaa aakiabgwSixlaaiAdacaGGUaGaaGOnaiaaiEdacaaIZaGaaGioaiaa isdacaaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTi aaigdacaaIXaaaaOGaamyBamaaCaaaleqabaGaaG4maaaakiabgwSi xlaadUgacaWGNbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyyXIC Taam4CamaaCaaaleqabaGaeyOeI0IaaGOmaaaakiabgwSixlaaiwda caGGUaGaaGyoaiaaiEdacaaIYaGaaGymaiaaiMdacqGHflY1caaIXa GaaGimamaaCaaaleqabaGaaGOmaiaaisdaaaGccaWGRbGaam4zaaaa aeaacqGH9aqpcaaIXaGaaGOmaiaac6cacaaI5aGaaGyoaiaaisdaca aI1aGaaGimaiaaiMdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGa aGOmaiaaiwdaaaGccaWGTbaaaaa@BA72@   (7)

The “long evolving distance” (Huniverse past, present) can be transformed into “evolving time” (Tuniverse past, present) by dividing it by the speed of light (c). When considering the large redshift ((ν-νo)/νo = 3.141592), which may be measured from farther stars, the distance equals 12.994509•1025 m, which in time (Tuniverse past, present = Huniverse past, present/c) is 4.3345010∙1017s. Since one tropical year is 3.1556926∙107s,31 this equates to 13.7355010 billion years the age of the universe according to our present knowledge.32

Determining the evolutionary time periods of humans and advanced vertebrates based on their ‘biological redshifts’

To determine the age of biological individuals, the frequencies of the reflection colors appearing in connection with the phases of respiration and circulation must be substituted into the Einstein equation. This can be used to measure the shift within the spectrum of visible light behind the time-shift associated with the general relativity.

Figures 3&4. This representation shows the method developed for determining evolutionary distances and times. The first step is to determine the value of hpast, present corresponding to the radius of the universe based on the Einstein equation (Eq.3). The second step is to determine the degree of redshift based on the color change of the blood of biological beings (humans, vertebrates). At a lower level of development, the width of the reflected color band of their blood is used for calculations to substitute it also into the Einstein formulas. The third step is to match the decreasing distances in evolution (hshort evolution distant) with the corresponding radius of the cosmos (hpast, present). Then, by multiplying the value of hpast, present or the Darwinian evolutionary short distances hshort evolution distant (hman,vert, hplants, hmollusks) by the ratio of the angles (2π/α), we can obtain the radius of the universe (Eq.6) or the Darwinian evolutionary time intervals characteristic of each species (Hman,vert, Hplants, Hmollusks; Eq.8 and Eq.10).

Hemoglobin is a component of the blood of humans and vertebrates. During pulmonary respiration, blood in the lungs becomes saturated with oxygen due to a carbon dioxide exchange. Along the visible light spectrum, this exchange results in the blue side of the spectrum being absorbed while the red is reflected, therefore the blood appears redder. This periodical colour change can be matched to a special range of the spectrum on the basis of their colour formation.33 These are approximately in frequency: blue colour (ν): 705-620.1012s-1 (mean frequency: 662.5.1012 s-1), red colour (νo): 430-390.1012 s-1 (mean frequency: 410.1012 s-1).

H evolutio n distan t man(bluered) = ν blue ν red ν red c 4 g Earth,stand π R Earth,mean G M Earth MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGLbGaamODaiaad+gacaWGSbGaamyDaiaadshacaWGPbGa am4Baiaad6gadaWgaaadbaaabeaaliaadsgacaWGPbGaam4CaiGacs hacaGGHbGaaiOBaiaadshadaWgaaadbaaabeaaliaad2gacaWGHbGa amOBaiaacIcacaWGIbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOCai aadwgacaWGKbGaaiykaaqabaGccqGH9aqpdaWcaaqaaiabe27aUnaa BaaaleaacaWGIbGaamiBaiaadwhacaWGLbaabeaakiabgkHiTiabe2 7aUnaaBaaaleaacaWGYbGaamyzaiaadsgaaeqaaaGcbaGaeqyVd42a aSbaaSqaaiaadkhacaWGLbGaamizaaqabaaaaOGaeyyXIC9aaSaaae aacaWGJbWaaWbaaSqabeaacaaI0aaaaaGcbaGaam4zamaaBaaaleaa caWGfbGaamyyaiaadkhacaWG0bGaamiAaiaacYcacaWGZbGaciiDai aacggacaGGUbGaamizaaqabaaaaOGaeyyXIC9aaSaaaeaacqaHapaC cqGHflY1caWGsbWaaSbaaSqaaiaadweacaWGHbGaamOCaiaadshaca WGObGaaiilaiaad2gacaWGLbGaamyyaiaad6gaaeqaaaGcbaGaam4r aiabgwSixlaad2eadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDai aadIgaaeqaaaaaaaa@8B92@    (8)

The colour change that occurs periodically with the phase of breathing and circulation can also be called ‘biological redshift’.

Numerically:

H evolutio n dist.man(bluered) =0.62 80.77608713 10 32 m 4 s 4 3.1415926536.371005 10 6 m 9.80665m s 2 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg =0.624.13628092 10 25 m=2.564494 10 25 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WGibWaaSbaaKqaGfaacaWGLbGaamODaiaad+gacaWGSbGaamyDaiaa dshacaWGPbGaam4Baiaad6gadaWgaaqccawaaaqabaqcbaMaamizai aadMgacaWGZbGaamiDaiaac6cacaWGTbGaamyyaiaad6gacaGGOaGa amOyaiaadYgacaWG1bGaamyzaiabgkHiTiaadkhacaWGLbGaamizai aacMcaaeqaaKaaGjabg2da9iaaicdacaGGUaGaaGOnaiaaikdacqGH flY1daWcaaqaaiaaiIdacaaIWaGaaiOlaiaaiEdacaaI3aGaaGOnai aaicdacaaI4aGaaG4naiaaigdacaaIZaGaeyyXICTaaGymaiaaicda daahaaqcbawabeaacaaIZaGaaGOmaaaajaaycaWGTbWaaWbaaKqaGf qabaGaaGinaaaajaaycqGHflY1caWGZbWaaWbaaKqaGfqabaGaeyOe I0IaaGinaaaajaaycqGHflY1caaIZaGaaiOlaiaaigdacaaI0aGaaG ymaiaaiwdacaaI5aGaaGOmaiaaiAdacaaI1aGaaG4maiabgwSixlaa iAdacaGGUaGaaG4maiaaiEdacaaIXaGaaGimaiaaicdacaaI1aGaey yXICTaaGymaiaaicdadaahaaqcbawabeaacaaI2aaaaKaaGjaad2ga aeaacaaI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aGaam yBaiabgwSixlaadohadaahaaqcbawabeaacqGHsislcaaIYaaaaKaa GjabgwSixlaaiAdacaGGUaGaaGOnaiaaiEdacaaIZaGaaGioaiaais dacaaI4aGaeyyXICTaaGymaiaaicdadaahaaqcbawabeaacqGHsisl caaIXaGaaGymaaaajaaycaWGTbWaaWbaaKqaGfqabaGaaG4maaaaja aycqGHflY1caWGRbGaam4zamaaCaaajeaybeqaaiabgkHiTiaaigda aaqcaaMaeyyXICTaam4CamaaCaaajeaybeqaaiabgkHiTiaaikdaaa qcaaMaeyyXICTaaGynaiaac6cacaaI5aGaaG4naiaaikdacaaIXaGa aGyoaiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGOmaiaais daaaqcaaMaam4AaiaadEgaaaaakeaajaaycqGH9aqpcaaIWaGaaiOl aiaaiAdacaaIYaGaeyyXICTaaGinaiaac6cacaaIXaGaaG4maiaaiA dacaaIYaGaaGioaiaaicdacaaI5aGaaGOmaiabgwSixlaaigdacaaI WaWaaWbaaKqaGfqabaGaaGOmaiaaiwdaaaqcaaMaamyBaiabg2da9i aaikdacaGGUaGaaGynaiaaiAdacaaI0aGaaGinaiaaiMdacaaI0aGa eyyXICTaaGymaiaaicdadaahaaqcbawabeaacaaIYaGaaGynaaaaja aycaWGTbaaaaa@E532@   (9)

Since one tropical year is 3.1556926∙107s31 and c=2.99792458∙108 m/s, this equates to 2.71073 billion years (T=H/c). Considering the inside and outside edge of each colour range in the blue-red, a minimum and a maximum (Tpast, present) value can be given. These are (ν-νo)/νo= (620-430)/430=0.44 i.e., 1.94 billion years and (ν-νo)/νo = (705-390)/390=0.807 i.e., 3.54 billion years, respectively, resulting in a mean frequency of 2.71 billion years.

Determining the evolutionary time periods of immature species based on the color of their blood

Hemocyanin is the respiratory lymph pigment of decapod Crustacea, stomatopod Crustacea, cephalopod, gastropod Mollusca, as well as some arachnids.33 It is blue when oxygen is attached to it and colourless when not attached. If the two ends of blue are: ν = 705•1012 s-1 and νo = 620•1012 s-1 respectively, then the ratio of their attached red shift is (ν-νo)/νo = 0.137; consequently, the evolution distance (Hpast, present) from the past towards the present.

H Evolution.dist.mollus k hemocyanin = ν ν 0 ν 0 c 4 g Earth,stand π R Earth,mean G M Earth =0.1374.136281 10 25 m=0.56667 10 25 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGib WaaSbaaSqaaiaadweacaWG2bGaam4BaiaadYgacaWG1bGaamiDaiaa dMgacaWGVbGaamOBaiaac6cacaWGKbGaamyAaiaadohacaWG0bGaai Olaiaad2gacaWGVbGaamiBaiaadYgacaWG1bGaam4CaiaadUgadaWg aaadbaaabeaaliaadIgacaWGLbGaamyBaiaad+gacaWGJbGaamyEai aadggacaWGUbGaamyAaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacqaH 9oGBcqGHsislcqaH9oGBdaWgaaWcbaGaaGimaaqabaaakeaacqaH9o GBdaWgaaWcbaGaaGimaaqabaaaaOGaeyyXIC9aaSaaaeaacaWGJbWa aWbaaSqabeaacaaI0aaaaaGcbaGaam4zamaaBaaaleaacaWGfbGaam yyaiaadkhacaWG0bGaamiAaiaacYcacaWGZbGaciiDaiaacggacaGG UbGaamizaaqabaaaaOGaeyyXIC9aaSaaaeaacqaHapaCcqGHflY1ca WGsbWaaSbaaSqaaiaadweacaWGHbGaamOCaiaadshacaWGObGaaiil aiaad2gacaWGLbGaamyyaiaad6gaaeqaaaGcbaGaam4raiabgwSixl aad2eadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDaiaadIgaaeqa aaaaaOqaaiabg2da9iaaicdacaGGUaGaaGymaiaaiodacaaI3aGaey yXICTaaGinaiaac6cacaaIXaGaaG4maiaaiAdacaaIYaGaaGioaiaa igdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaGOmaiaaiwdaaa GccaaMc8UaamyBaiabg2da9iaaicdacaGGUaGaaGynaiaaiAdacaaI 2aGaaGOnaiaaiEdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaG OmaiaaiwdaaaGccaaMc8UaamyBaaaaaa@A920@   (10)

Since one tropical year is 3.1556926∙107s and c=2.99792458∙108 m/s, then the evolutionary time period (Tpast, present) is equal to 598.98 million years.

Hemerythrin, which is found in very few animals including sipunculids and brachiopod Lingula, turns the lymph red when bonding with oxygen,33 however, when it carries carbon dioxide it is essentially colourless. If the ratio of red shift of the two ends of red is (ν-νo)/νo= (440-390)/390 = 0.128, the evolution distance is 0.5369∙1025m. Then the evolutionary time period (Tpast, present) is 559.63 million years.

Chlorocruorin in annelids does not show any colour change within the phases of respiration and circulation, but instead only show dichroism dependent on concentration.33 Despite this, a red shift can be matched to its colour in the green range of the spectrum (ν-νo)/νo= (605-535)/535 = 0.13084, so Hpast, present is: 0.54119∙1025m. Since one tropical year is 3.1556926∙107s and c = 2.99792458∙108 m/s, the evolutionary time period of it (Tpast, present) is 572.05 million years.

The accelerating effect of Earth's gravity on Darwin's evolutionary process from the origin of life to the development of the human race

If the short and long evolutionary distances (hpast, present and Hpast, present) from the past to the present defined above are considered continuous, then we can assume that the attractive effect of gravity prevails through this distance. Based on this consideration, along the uninterrupted line, biological individuals can theoretically accelerate continuously in the constant, earth-surface-valued homogeneous gravity field, like free-falling bodies. In this way, in the Darwinian evolutionary process, the members of each species, together with their circulatory structure, can show the characteristics of inanimate, very dense, high-gravity bodies.34 By allowing biological creatures to fall freely in the Darwinian evolutionary process under constant earth’s surface gravity, vascular systems representing curved space-time evolve within them. Under the influence of gravity, along this long distance (almost one light year) the blood flowing in them accelerates almost to the speed of light. However, this extreme acceleration is reduced to the extent of the ratio of the angles (α/2∙π-1) by the gradually increasing time dilatation (Figure 5, left side).

Figure 5. This figure depicts the position of the Earth and the Darwinian evolutionary process taking place on its surface in the universe. It shows some stages of life on the surface of the earth in close correlation with the value of g accumulating in them. The distance contraction and time dilatation associated with the space-time curvature that occurs during free fall are also illustrated. It also shows the non-curved parts of the entire cosmos other than livings where there is a linear time scale. (The early universe may be an exception to this, as extreme space-time curvature may exist here.)

According to the law of free-falling bodies, the velocity of a body falling vertically in the gravity of the earth's surface is uniformly accelerating. Due to the attractive effect of gravity, the body travels greater and greater distances in equal intervals, i.e., its speed increases gradually (v2=g∙h). However, this is only possible a small distance vertically from the surface of the earth, given the square descending gravity (a good example of which is the case of the stone dropped from the Leaning Tower of Pisa /by Galileo Galilei/). Furthermore, extending this case, with a sufficiently large distance in homogeneous gravity (in the absence of resistance), the velocity of a free-falling body can take on extremely high values, which can eventually even approach the speed of light. We hypothesize that this theoretical possibility can be found in biology. In the course of Darwin's evolutionary process, a horizontal straight line can be interpreted above the surface of the Earth, within which gravity prevails continuously. In this way, during the very slow process from the origin of life to the emergence of the human species, an extremely long distance can be defined in which biological individuals can accelerate with free fall from the past to the present (Figure 5, right side). This also means the development of an increasingly advanced structural state over nearly four billion years.

From the maximum value of the short evolutionary distance (hshort evolution distance man (blue-red)) specific to more advanced vertebrates or the human species (v-v0/v0 = 0.62),11 the rate of the Darwinian evolution (vDarwinian evolution, man(blue-red)) can be determined from the law of free fall (v2 =2∙g∙h). Unlike before, the velocity (v) of free-falling bodies, including biological individuals, is used without the factor 2. In the case of movements close to the speed of light, this factor may lose its validity due to the changing space-time curvatures:

v Darwin.evol.man(bluered) = h shor t evol.dist.man(bluered) g Earth MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gacaGGUaGa amyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaamyyaiaad6gaca GGOaGaamOyaiaadYgacaWG1bGaamyzaiabgkHiTiaadkhacaWGLbGa amizaiaacMcaaeqaaOGaeyypa0ZaaOaaaeaacaWGObWaaSbaaSqaai aadohacaWGObGaam4BaiaadkhacaWG0bWaaSbaaWqaaaqabaWccaWG LbGaamODaiaad+gacaWGSbGaaiOlaiaadsgacaWGPbGaam4CaiGacs hacaGGUaGaamyBaiaadggacaWGUbGaaiikaiaadkgacaWGSbGaamyD aiaadwgacqGHsislcaWGYbGaamyzaiaadsgacaGGPaaabeaakiabgw SixlaadEgadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDaiaadIga aeqaaaqabaaaaa@7126@   (11)

Numerically:

v Darwinia n evolution,man(bluered) = 0.62 8.98755178 10 16 m 2 s 2 9.80665m s 2 9.80665m s 2 = 5.572282 10 16 m 2 s 2 =2.360568 10 8 m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WG2bWaaSbaaKqaGfaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaa d6gacaWGPbGaamyyaiaad6gadaWgaaqccawaaaqabaqcbaMaamyzai aadAhacaWGVbGaamiBaiaadwhacaWG0bGaamyAaiaad+gacaWGUbGa aiilaiaad2gacaWGHbGaamOBaiaacIcacaWGIbGaamiBaiaadwhaca WGLbGaeyOeI0IaamOCaiaadwgacaWGKbGaaiykaaqabaqcaaMaeyyp a0ZaaOaaaeaacaaIWaGaaiOlaiaaiAdacaaIYaGaeyyXIC9aaSaaae aacaaI4aGaaiOlaiaaiMdacaaI4aGaaG4naiaaiwdacaaI1aGaaGym aiaaiEdacaaI4aGaeyyXICTaaGymaiaaicdadaahaaqcbawabeaaca aIXaGaaGOnaaaajaaycaWGTbWaaWbaaKqaGfqabaGaaGOmaaaajaay cqGHflY1caWGZbWaaWbaaKqaGfqabaGaeyOeI0IaaGOmaaaaaKaaGf aacaaI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aGaamyB aiabgwSixlaadohadaahaaqcbawabeaacqGHsislcaaIYaaaaaaaja aycqGHflY1caaI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI 1aGaamyBaiabgwSixlaadohadaahaaqcbawabeaacqGHsislcaaIYa aaaaqabaaakeaajaaycqGH9aqpdaGcaaqaaiaaiwdacaGGUaGaaGyn aiaaiEdacaaIYaGaaGOmaiaaiIdacaaIYaGaeyyXICTaaGymaiaaic dadaahaaqcbawabeaacaaIXaGaaGOnaaaajaaycaWGTbWaaWbaaKqa GfqabaGaaGOmaaaajaaycqGHflY1caWGZbWaaWbaaKqaGfqabaGaey OeI0IaaGOmaaaaaeqaaKaaGjabg2da9iaaikdacaGGUaGaaG4maiaa iAdacaaIWaGaaGynaiaaiAdacaaI4aGaeyyXICTaaGymaiaaicdada ahaaqcbawabeaacaaI4aaaaKaaGnaalaaabaGaamyBaaqaaiaadoha aaaaaaa@B151@   (12)

The surface gravity of the earth (g = 9.80665 m/s2) accelerates the organisms and their blood circulation to 78.6% of the speed of light at this distance h. By reducing this value in the ratio of the angles (2.2157∙10-10), i.e., using time dilation, the velocity characteristic of the average flow rate of the human blood circulation is obtained: 5.2303 cm/s.

In higher vertebrates or in humans, cyanosis occurs in respiratory and circulatory insufficiency, or in its progression, complete blackening occurs. When breathing is permanently stopped, the speed of evolution paradoxically increases and approaches even more the speed of light. In the meantime, the individual loses its capacity to sustain life and biological death sets in.

v Darwin.evol.man(black) = h shor t evol.dist.man(black) g Earth MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gacaGGUaGa amyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaamyyaiaad6gaca GGOaGaamOyaiaadYgacaWGHbGaam4yaiaadUgacaGGPaaabeaakiab g2da9maakaaabaGaamiAamaaBaaaleaacaWGZbGaamiAaiaad+gaca WGYbGaamiDamaaBaaameaaaeqaaSGaamyzaiaadAhacaWGVbGaamiB aiaac6cacaWGKbGaamyAaiaadohacaWG0bGaaiOlaiaad2gacaWGHb GaamOBaiaacIcacaWGIbGaamiBaiaadggacaWGJbGaam4AaiaacMca aeqaaOGaeyyXICTaam4zamaaBaaaleaacaWGfbGaamyyaiaadkhaca WG0bGaamiAaaqabaaabeaaaaa@6B6C@   (13)

Simplified by g, numerically after the square root subtraction:

v Darwin.evol.man(black) = 0.92 8.98755178 10 16 m 2 s 2 9.80665m s 2 9.80665m s 2 = 8.26854763 10 16 m 2 s 2 =2.875508 10 8 m s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WG2bWaaSbaaKqaGfaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaa d6gacaGGUaGaamyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaam yyaiaad6gacaGGOaGaamOyaiaadYgacaWGHbGaam4yaiaadUgacaGG PaaabeaajaaycqGH9aqpdaGcaaqaaiaaicdacaGGUaGaaGyoaiaaik dacqGHflY1daWcaaqaaiaaiIdacaGGUaGaaGyoaiaaiIdacaaI3aGa aGynaiaaiwdacaaIXaGaaG4naiaaiIdacqGHflY1caaIXaGaaGimam aaCaaajeaybeqaaiaaigdacaaI2aaaaKaaGjaad2gadaahaaqcbawa beaacaaIYaaaaKaaGjabgwSixlaadohadaahaaqcbawabeaacqGHsi slcaaIYaaaaaqcaawaaiaaiMdacaGGUaGaaGioaiaaicdacaaI2aGa aGOnaiaaiwdacaWGTbGaeyyXICTaam4CamaaCaaajeaybeqaaiabgk HiTiaaikdaaaaaaKaaGjabgwSixlaaiMdacaGGUaGaaGioaiaaicda caaI2aGaaGOnaiaaiwdacaWGTbGaeyyXICTaam4CamaaCaaajeaybe qaaiabgkHiTiaaikdaaaaabeaaaOqaaKaaGjabg2da9maakaaabaGa aGioaiaac6cacaaIYaGaaGOnaiaaiIdacaaI1aGaaGinaiaaiEdaca aI2aGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGym aiaaiAdaaaqcaaMaamyBamaaCaaajeaybeqaaiaaikdaaaqcaaMaey yXICTaam4CamaaCaaajeaybeqaaiabgkHiTiaaikdaaaaabeaajaay cqGH9aqpcaaIYaGaaiOlaiaaiIdacaaI3aGaaGynaiaaiwdacaaIWa GaaGioaiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGioaaaa jaaycaaMc8UaamyBaiabgwSixlaadohadaahaaqcbawabeaacqGHsi slcaaIXaaaaaaaaa@AE2B@   (14)

The paradox that exists regarding the rate of evolution and the average blood circulation velocity of the biological individual is resolved by the infinitely increasing time dilation (as the redshift value reaches 1).

By reducing this value in the proportion of angles (α/2∙π-1 =2.2157∙10-10), i.e., using time dilation, the flow rate of the human blood circulation can be obtained in the case of cardio and respiratory failure: 6.371263 cm/s. This is 95.6% of the speed of light.

With the loss of life-sustaining capacity in the flow rate of the average human circulation (between 5.23 cm/s and 6.37 cm/s, or between 78.6% of the speed of light and 95.6% of the speed of light), a biological individual can die. In the animal world, this means, for example, whether a prey animal can escape from a predator chasing it or not. Does the capacity of the respiratory-circulatory system enable it to escape its pursuer under maximum physical exertion? In the case of the human race in prehistoric times, this capacity could also have a role in terms of survival. Nowadays, however, in strenuous work or in various sports, etc. it has significance. The other side of having the necessary capacity to sustain life is that, for example, in case of progression of respiratory-circulatory diseases, the individual has a certain reserve for survival (with the narrowing of range of motion).

Based on what has been said so far, more than one redshift is not possible according to the law of free fall, and there is no example of this in biology either. This limit can be clarified by the following equation. In the case of complete blackout observed at the cessation of human respiration and circulation,35,36 when the full width of the visible light spectrum is affected by the shift, i.e., between 800∙1012Hz and 400∙1012Hz respectively,11 the velocity of evolution is equal to the speed of light /(ν-νo)/νo = (800-400)/400=1/:

v= 18.98755178 10 16 m 2 s 2 =2.99792458 10 8 m s =c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2 da9maakaaabaGaaGymaiabgwSixlaaiIdacaGGUaGaaGyoaiaaiIda caaI3aGaaGynaiaaiwdacaaIXaGaaG4naiaaiIdacqGHflY1caaIXa GaaGimamaaCaaaleqabaGaaGymaiaaiAdaaaGccaWGTbWaaWbaaSqa beaacaaIYaaaaOGaeyyXICTaam4CamaaCaaaleqabaGaeyOeI0IaaG OmaaaaaeqaaOGaaGPaVlabg2da9iaaikdacaGGUaGaaGyoaiaaiMda caaI3aGaaGyoaiaaikdacaaI0aGaaGynaiaaiIdacqGHflY1caaIXa GaaGimamaaCaaaleqabaGaaGioaaaakmaaBaaaleaaaeqaaOWaaSaa aeaacaWGTbaabaGaam4CaaaacqGH9aqpcaWGJbaaaa@61D4@   (15)

Multiplying the speed of light by the ratio of the angles, the maximum velocity of the Darwinian evolutionary process is: c∙α/2∙π-1. This speed of light, reduced in proportion to the angles, corresponds to the speed of average human blood circulation, which is numerically as follows: 2.99792458∙108 m/s ∙ 2.2157∙10-10 = 6.6425cm/s.

The relationship between the mass of inanimate bodies and the mass of living creatures on the Earth's surface

The weight (W) of bodies and biological organisms located on the surface of the earth is equal to the force (F) with which they push the surface as a result of the Earth's attraction (W=F). The weight of bodies is the product of the body's mass (m) and the Earth's surface gravity (g). Newton's law of gravity states that the attractive force (F) between a body and the Earth is directly proportional to their mass (m, M) and inversely proportional to the square of the distance between them (r2). If we take the mass of the Earth at its center, this distance is equal to the radius of the Earth.37 Since W = F, not only the mass of an individual at any level of Darwinian evolution, but also the mass of a body on the surface of the Earth is dropped from the formula (only the mass of the Earth remains in Eq. 16).

W weight = F force ,so, m bod y o r livin g organism g Earth'surface = G m bod y o r livin g organism M Earth r Earth 2 ,and: g Earth'surface = G M Earth r Earth 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WGxbWaaSbaaKqaGfaacaWG3bGaamyzaiaadMgacaWGNbGaamiAaiaa dshaaeqaaKaaGjabg2da9iaadAeadaWgaaqcbawaaiaadAgacaWGVb GaamOCaiaadogacaWGLbaabeaajaaycaGGSaGaam4Caiaad+gacaGG SaGaamyBamaaBaaajeaybaaeaaaaaaaaa8qacaWGIbGaam4Baiaads gacaWG5bWaaSbaaKGaGfaaaeqaaKqaGjaad+gacaWGYbWaaSbaaKGa GfaaaeqaaKqaGjaadYgacaWGPbGaamODaiaadMgacaWGUbGaam4zam aaBaaajiaybaaabeaajeaycaWGVbGaamOCaiaadEgacaWGHbGaamOB aiaadMgacaWGZbGaamyBaaWdaeqaaKaaGjabgwSixlaadEgadaWgaa qcbawaaiaadweacaWGHbGaamOCaiaadshacaWGObGaai4jaiaadoha caWG1bGaamOCaiaadAgacaWGHbGaam4yaiaadwgaaeqaaKaaGjabg2 da9aGcbaqcaaMaam4raiabgwSixpaalaaabaGaamyBamaaBaaajeay baWdbiaadkgacaWGVbGaamizaiaadMhadaWgaaqccawaaaqabaqcba Maam4BaiaadkhadaWgaaqccawaaaqabaqcbaMaamiBaiaadMgacaWG 2bGaamyAaiaad6gacaWGNbWaaSbaaKGaGfaaaeqaaKqaGjaad+gaca WGYbGaam4zaiaadggacaWGUbGaamyAaiaadohacaWGTbaapaqabaqc aaMaeyyXICTaamytamaaBaaajeaybaGaamyraiaadggacaWGYbGaam iDaiaadIgaaeqaaaqcaawaaiaadkhadaWgaaqcbawaaiaadweacaWG HbGaamOCaiaadshacaWGObaabeaajaaydaahaaqcbawabeaacaaIYa aaaaaajaaycaGGSaGaamyyaiaad6gacaWGKbGaaiOoaiaadEgadaWg aaqcbawaaiaadweacaWGHbGaamOCaiaadshacaWGObGaai4jaiaado hacaWG1bGaamOCaiaadAgacaWGHbGaam4yaiaadwgaaeqaaKaaGjab g2da9maalaaabaGaam4raiabgwSixlaad2eadaWgaaqcbawaaiaadw eacaWGHbGaamOCaiaadshacaWGObaabeaaaKaaGfaacaWGYbWaaSba aKqaGfaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaqcaa2aaW baaKqaGfqabaGaaGOmaaaaaaaaaaa@C192@   (16)

Where G is the gravitational constant (6.673848•10-11m3•kg-1•s-2).

The reflection of Earth's parameters in the body structure of living creatures

Assuming that for some reason the value of the Earth's mass (M) in Eq.16 would gradually increase, the force of the gravitational field (gmaximum) on the Earth's surface would increase due to direct proportionality, while its radius (r) would remain unchanged. On the right side of the formula, a decrease in the value of the Earth's radius (rminimum) in the denominator would result in an increase in the value of the Earth's surface gravity (gsubmaximal). As a third possibility, if the Earth's mass increased and its radius decreased along with it, an even stronger gravitational field could be detected (gmaximum).

These theoretical possibilities would be realized under the following cardinal conditions:

  1. The Earth's surface gravity field or gravitational waves emitted by the Earth are absorbed by biological individuals.
  2. These absorptions are made possible by mutations occurring during the evolutionary process of living creatures.
  3. During the development of living beings, through mutations, the effects of the gravitational field increase step by step, causing changes in the structure of their bodies.

If these conditions are fulfilled, from the point of view of biological individuals, this would mean that the mass of the Earth would appear multiplied after each gravitational absorption and behind them. In addition, the radius of the Earth could also decrease if the mass of the Earth remained unchanged. From the point of view of living beings, this would mean a fictitious increase in the mass of the earth, a decrease in the radius of the earth, or even a combination of both. In this way, the original formula (Eq.16) does not change, but is reevaluated. In the case of an uninterrupted evolutionary process, in an extreme case, this would lead to the point where the level of the gravitational field on the earth's surface (gmaximum) could approach the values around black holes.

The relationship between the law of free fall and the factors determining gravity

According to the law of freely falling bodies, the speed of a body falling vertically in the gravity of the earth's surface (ideally assumed to be homogeneous in the case of a small difference in level) accelerates uniformly. Due to the attractive effect of gravity, the body travels more and more distances at equal times.37 Finally, theoretically, at a sufficient distance, in the case of homogeneous gravity, it could reach extremely high values (in the absence of resistance), even approaching the speed of light.

Applying this consideration to the Darwinian evolutionary process and extending it to the law of free fall (v2=g∙h) valid on the earth's surface, the definition of the horizontal section from the past to the present can form the basis of our studies. Accordingly, applying the law to the attraction in the direction of a horizontal line that can be drawn along the surface of the Earth, we can make the following statements.

The distance (hshort evolution distance, man (blue-red)) in homogenous gravity (gEarth) can be related to the distance contraction associated with time dilatation known from general relativity. Then the speed of Darwinian evolution (vDarwinian evolution, man (blue-red)) is the same as Equation 11.

The implementation of the combination of the law describing free fall,37 and the general relativity,9 can be done through the involvement of biological systems, which can actually mean the merging of the two disciplines.

In the following, the applicability of the idea can be confirmed in the light of changes in the mass of the Earth. In this way, increasing the distance hshort evolution distance, man (blue-red) by the ratio of the angles (2∙π/α) to H:

v Darwin.evol.man(bluered) = h shor t evol.dist.man(bluered) 2π α g Earth MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gacaGGUaGa amyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaamyyaiaad6gaca GGOaGaamOyaiaadYgacaWG1bGaamyzaiabgkHiTiaadkhacaWGLbGa amizaiaacMcaaeqaaOGaeyypa0ZaaOaaaeaacaWGObWaaSbaaSqaai aadohacaWGObGaam4BaiaadkhacaWG0bWaaSbaaWqaaaqabaWccaWG LbGaamODaiaad+gacaWGSbGaaiOlaiaadsgacaWGPbGaam4CaiGacs hacaGGUaGaamyBaiaadggacaWGUbGaaiikaiaadkgacaWGSbGaamyD aiaadwgacqGHsislcaWGYbGaamyzaiaadsgacaGGPaaabeaakiabgw SixpaalaaabaGaaGOmaiabgwSixlabec8aWbqaaiabeg7aHbaacqGH flY1caWGNbWaaSbaaSqaaiaadweacaWGHbGaamOCaiaadshacaWGOb aabeaaaeqaaaaa@79E3@   (17)

And:

v Darwin.evol.man(bluered) = H lon g evol.dist.man(bluered) g Earth MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gacaGGUaGa amyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaamyyaiaad6gaca GGOaGaamOyaiaadYgacaWG1bGaamyzaiabgkHiTiaadkhacaWGLbGa amizaiaacMcaaeqaaOGaeyypa0ZaaOaaaeaacaWGibWaaSbaaSqaai aadYgacaWGVbGaamOBaiaadEgadaWgaaadbaaabeaaliaadwgacaWG 2bGaam4BaiaadYgacaGGUaGaamizaiaadMgacaWGZbGaciiDaiaac6 cacaWGTbGaamyyaiaad6gacaGGOaGaamOyaiaadYgacaWG1bGaamyz aiabgkHiTiaadkhacaWGLbGaamizaiaacMcaaeqaaOGaeyyXICTaam 4zamaaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaaa beaaaaa@7002@   (18)

After squaring both sides of the equation, the mass of the Earth (MEarth) and radius of the Earth (rEarth) values can be obtained from the Newtonian formula:

v Darwinia n evolution,man(bluered) 2 = H lon g evolutio n distance,man(bluered) G M Earth r Earth 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadAhada WgaaqcbawaaiaadseacaWGHbGaamOCaiaadEhacaWGPbGaamOBaiaa dMgacaWGHbGaamOBamaaBaaajiaybaaabeaajeaycaWGLbGaamODai aad+gacaWGSbGaamyDaiaadshacaWGPbGaam4Baiaad6gacaGGSaGa amyBaiaadggacaWGUbGaaiikaiaadkgacaWGSbGaamyDaiaadwgacq GHsislcaWGYbGaamyzaiaadsgacaGGPaaabeaajaaydaahaaqcbawa beaacaaIYaaaaKaaGjabg2da9iaadIeadaWgaaqcbawaaiaadYgaca WGVbGaamOBaiaadEgadaWgaaqccawaaaqabaqcbaMaamyzaiaadAha caWGVbGaamiBaiaadwhacaWG0bGaamyAaiaad+gacaWGUbWaaSbaaK GaGfaaaeqaaKqaGjaadsgacaWGPbGaam4CaiGacshacaGGHbGaaiOB aiaadogacaWGLbGaaiilaiaad2gacaWGHbGaamOBaiaacIcacaWGIb GaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadwgacaWGKbGaaiyk aaqabaqcaaMaeyyXIC9aaSaaaeaacaWGhbGaeyyXICTaamytamaaBa aajeaybaGaaeyraiaabggacaqGYbGaaeiDaiaabIgaaeqaaaqcaawa aiaadkhadaWgaaqcbawaaabaaaaaaaaapeGaamyraiaadggacaWGYb GaamiDaiaadIgaa8aabeaajaaydaahaaqcbawabeaacaaIYaaaaaaa aaa@9079@   (19)

Where H and r2 are perpendicular to each other in this sense.

So:past000present MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaad+ gacaGG6aGaamiCaiaadggacaWGZbGaamiDaiabgwSixlabgwSixlab gwSixlabgwSixlabgwSixlabgkziUkabgkci3kabgkci3kabgkci3k abgkci3kaaicdacaaIWaGaaGimaiablwziIjaadchacaWGYbGaamyz aiaadohacaWGLbGaamOBaiaadshaaaa@5A3B@

Nevertheless, the extension pointing from the past to the present, i.e., perpendicular to the time axis, can be interpreted in 3 dimensions from all directions (obliquely and perpendicularly) around the biological individual. Regardless of the fact that this line (evolutionary distance) was originally defined in 2 dimensions parallel to the Earth's surface. This lateral, gradually increasing expansion is embodied in the blood circulation of biological individuals and applies to all its points, with which continuity is realized in their internal spatial structure. This is also manifested in a kind of increase in mass from less developed structures to more developed ones, starting from single-celled ones through multi-celled ones to mammals.

If the distance, which is increased in proportion to the angles (Hlong evolution distance, man (blue-red)), is put into the free fall formula (Eq.20), the resulting mass (MEarth) will be smaller.

M Earth = v Darwinia n evolution,man(bluered) 2 r Earth 2 H lon g evolutio n distance,man(bluered) G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaqGfbGaaeyyaiaabkhacaqG0bGaaeiAaaqabaGccqGH9aqp daWcaaqaaiaadAhadaWgaaWcbaGaamiraiaadggacaWGYbGaam4Dai aadMgacaWGUbGaamyAaiaadggacaWGUbWaaSbaaWqaaaqabaWccaWG LbGaamODaiaad+gacaWGSbGaamyDaiaadshacaWGPbGaam4Baiaad6 gacaGGSaGaamyBaiaadggacaWGUbGaaiikaiaadkgacaWGSbGaamyD aiaadwgacqGHsislcaWGYbGaamyzaiaadsgacaGGPaaabeaakmaaCa aaleqabaGaaGOmaaaakiabgwSixlaadkhadaWgaaWcbaaeaaaaaaaa a8qacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaWdaeqaaOWaaWbaaS qabeaacaaIYaaaaaGcbaGaamisamaaBaaaleaacaWGSbGaam4Baiaa d6gacaWGNbWaaSbaaWqaaaqabaWccaWGLbGaamODaiaad+gacaWGSb GaamyDaiaadshacaWGPbGaam4Baiaad6gadaWgaaadbaaabeaaliaa dsgacaWGPbGaam4CaiGacshacaGGHbGaaiOBaiaadogacaWGLbGaai ilaiaad2gacaWGHbGaamOBaiaacIcacaWGIbGaamiBaiaadwhacaWG LbGaeyOeI0IaamOCaiaadwgacaWGKbGaaiykaaqabaGccqGHflY1ca WGhbaaaaaa@89D5@   (20)

If the long evolutionary distance (Hlong evolution distance man (blue-red)) calculated from Einstein's formula with a redshift of (ν-νo)/νo = 0.62 characteristic of humans is inserted into Newton's formula, a version of the Earth's mass that is 10 orders of magnitude smaller is obtained. In this case, a relativistic mass reduction occurs compared to the original mass. Numerically:

M Earth = ( 2.360568 10 8 m s 1 ) 2 ( 6.371005 10 6 m ) 2 2.564494 10 25 m6.673848 10 11 m 3 k g 1 s 2 =13.2151143 10 14 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaad2eada WgaaqcbawaaiaabweacaqGHbGaaeOCaiaabshacaqGObaabeaajaay cqGH9aqpdaWcaaqaamaabmaabaGaaGOmaiaac6cacaaIZaGaaGOnai aaicdacaaI1aGaaGOnaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaa jeaybeqaaiaaiIdaaaqcaaMaaGPaVlaad2gacqGHflY1caWGZbWaaW baaKqaGfqabaGaeyOeI0IaaGymaaaaaKaaGjaawIcacaGLPaaadaah aaqcbawabeaacaaIYaaaaKaaGjabgwSixpaabmaabaGaaGOnaiaac6 cacaaIZaGaaG4naiaaigdacaaIWaGaaGimaiaaiwdacqGHflY1caaI XaGaaGimamaaCaaajeaybeqaaiaaiAdaaaqcaaMaamyBaaGaayjkai aawMcaamaaCaaajeaybeqaaiaaikdaaaaajaaybaGaaGOmaiaac6ca caaI1aGaaGOnaiaaisdacaaI0aGaaGyoaiaaisdacqGHflY1caaIXa GaaGimamaaCaaajeaybeqaaiaaikdacaaI1aaaaKaaGjaad2gacqGH flY1caaI2aGaaiOlaiaaiAdacaaI3aGaaG4maiaaiIdacaaI0aGaaG ioaiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaeyOeI0IaaGym aiaaigdaaaqcaaMaamyBamaaCaaajeaybeqaaiaaiodaaaqcaaMaey yXICTaam4AaiaadEgadaahaaqcbawabeaacqGHsislcaaIXaaaaKaa GjabgwSixlaadohadaahaaqcbawabeaacqGHsislcaaIYaaaaaaaja aycqGH9aqpcaaIXaGaaG4maiaac6cacaaIYaGaaGymaiaaiwdacaaI XaGaaGymaiaaisdacaaIZaGaeyyXICTaaGymaiaaicdadaahaaqcba wabeaacaaIXaGaaGinaaaajaaycaWGRbGaam4zaaaa@A273@   (21)

Magnified in the ratio of the angles, this mass will be equal to the original mass of the Earth (13.2151143∙1014kg ∙ 4.513249∙109 = 5.96431∙1024kg). The difference between the two masses can be understood as a relativistic mass increase, which results from the properties inherent in Newton's and Einstein's formulas. Therefore, the missing mass must be made up afterwards by increasing the ratio of the angles.

As a check, considering the opposite case, in which a short evolutionary distance (hshort evolution distance, man(blue-red)) calculated from Einstein's formula with a redshift of (ν-νo)/νo = 0.62 is inserted into Newton's formula, the mass of the Earth (MEarth) can be obtained with high accuracy.

M Earth = v Darwinia n evolution,man(bluered) 2 r Earth 2 h shor t evolutio n distance,man(bluered) G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaqGfbGaaeyyaiaabkhacaqG0bGaaeiAaaqabaGccqGH9aqp daWcaaqaaiaadAhadaWgaaWcbaGaamiraiaadggacaWGYbGaam4Dai aadMgacaWGUbGaamyAaiaadggacaWGUbWaaSbaaWqaaaqabaWccaWG LbGaamODaiaad+gacaWGSbGaamyDaiaadshacaWGPbGaam4Baiaad6 gacaGGSaGaamyBaiaadggacaWGUbGaaiikaiaadkgacaWGSbGaamyD aiaadwgacqGHsislcaWGYbGaamyzaiaadsgacaGGPaaabeaakmaaCa aaleqabaGaaGOmaaaakiabgwSixlaadkhadaWgaaWcbaaeaaaaaaaa a8qacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaWdaeqaaOWaaWbaaS qabeaacaaIYaaaaaGcbaGaamiAamaaBaaaleaacaWGZbGaamiAaiaa d+gacaWGYbGaamiDamaaBaaameaaaeqaaSGaamyzaiaadAhacaWGVb GaamiBaiaadwhacaWG0bGaamyAaiaad+gacaWGUbWaaSbaaWqaaaqa baWccaWGKbGaamyAaiaadohaciGG0bGaaiyyaiaac6gacaWGJbGaam yzaiaacYcacaWGTbGaamyyaiaad6gacaGGOaGaamOyaiaadYgacaWG 1bGaamyzaiabgkHiTiaadkhacaWGLbGaamizaiaacMcaaeqaaOGaey yXICTaam4raaaaaaa@8AFA@   (22)

Numerically:

M Earth = ( 2.360568 10 8 m s 1 ) 2 ( 6.371005 10 6 m ) 2 0.56821464 10 16 m6.673848 10 11 m 3 k g 1 s 2 =59.6430978 10 23 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaad2eada WgaaqcbawaaiaabweacaqGHbGaaeOCaiaabshacaqGObaabeaajaay cqGH9aqpdaWcaaqaamaabmaabaGaaGOmaiaac6cacaaIZaGaaGOnai aaicdacaaI1aGaaGOnaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaa jeaybeqaaiaaiIdaaaqcaaMaaGPaVlaad2gacqGHflY1caWGZbWaaW baaKqaGfqabaGaeyOeI0IaaGymaaaaaKaaGjaawIcacaGLPaaadaah aaqcbawabeaacaaIYaaaaKaaGjabgwSixpaabmaabaGaaGOnaiaac6 cacaaIZaGaaG4naiaaigdacaaIWaGaaGimaiaaiwdacqGHflY1caaI XaGaaGimamaaCaaajeaybeqaaiaaiAdaaaqcaaMaamyBaaGaayjkai aawMcaamaaCaaajeaybeqaaiaaikdaaaaajaaybaGaaeimaiaab6ca caqG1aGaaeOnaiaabIdacaqGYaGaaeymaiaabsdacaqG2aGaaeinai abgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGymaiaaiAdaaaqc aaMaaGPaVlaad2gacqGHflY1caaI2aGaaiOlaiaaiAdacaaI3aGaaG 4maiaaiIdacaaI0aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaKqa GfqabaGaeyOeI0IaaGymaiaaigdaaaqcaaMaamyBamaaCaaajeaybe qaaiaaiodaaaqcaaMaeyyXICTaam4AaiaadEgadaahaaqcbawabeaa cqGHsislcaaIXaaaaKaaGjabgwSixlaadohadaahaaqcbawabeaacq GHsislcaaIYaaaaaaajaaycqGH9aqpcaqG1aGaaeyoaiaab6cacaqG 2aGaaeinaiaabodacaqGWaGaaeyoaiaabEdacaqG4aGaeyyXICTaaG ymaiaaicdadaahaaqcbawabeaacaaIYaGaaG4maaaajaaycaWGRbGa am4zaaaa@A513@   (23)

In this case, relativistic mass reduction does not occur compared to the original mass. When using the combined Einstein formula (before the combination with the law of free fall), however, it can be observed that a distance dilation is created between h and H, which is accompanied by a time contraction.

The relationship between the liquid flow laws describing the average human circulation and the equation containing a combination of general relativity and Newton's law of universal gravitation

Now let us consider the case of how much mass we get by substituting the radius of human blood circulation into the formula containing a combination of general relativity and Newtonian gravity (Eq.20) instead of the radius of the Earth. To do this, however, we must first consider some laws of fluid flow.

There are two fundamental laws regarding the flow of fluids. One expresses the flow intensity (Eq.24 left side) the other is the law of continuity (Eq.24 right side). Using them (separately but also together), the intensity (I), length (s), radius (r) and cross-sectional area (A) of the circulating fluid as well as the flow rate (v) can be determined theoretically with the knowledge of the appropriate members. Since:

I= V 2π t 2π = A s 2π t 2π an d I=Av MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9maalaaabaGaamOvamaaBaaaleaacaaIYaGaeqiWdahabeaaaOqa aiaadshadaWgaaWcbaGaaGOmaiabec8aWbqabaaaaOGaeyypa0ZaaS aaaeaacaWGbbGaeyyXICTaam4CamaaBaaaleaacaaIYaGaeqiWdaha beaaaOqaaiaadshadaWgaaWcbaGaaGOmaiabec8aWbqabaaaaOGaaG PaVlaaykW7daWgaaWcbaaabeaakiaadggacaWGUbGaamizamaaBaaa leaaaeqaaOGaaGPaVlaadMeacqGH9aqpcaWGbbGaeyyXICTaamODaa aa@5830@   (24)

Equation 24 on the left has two unknowns, i.e., A and s are unknown. Thus, even if V and t are known, the cross section and path cannot be calculated. Equation 24 on the right also has two unknowns, since even if the intensity can be calculated based on the formula on the left of Eq.24, A and v cannot be determined separately. However, combining the two equations does not give us the opportunity to calculate A and s either. In fact, only intensity can be accurately determined. According to them, the following limited possibilities exist.

Equating the two formulas (Eq.24 left and right) based on the intensity (I) and the flow cross-sectional area (A):

A s 2π t 2π =Av,so, s 2π t 2π = v ,and s 2π =v t 2π ,moreover:A= I t 2π s 2π , and:A= I v ,so: I t 2π s 2π = I v , and : t 2π s 2π = 1 v , and: v t 2π = s 2π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayda WcaaqaaiaadgeacqGHflY1caWGZbWaaSbaaKqaGfaacaaIYaGaeqiW dahabeaaaKaaGfaacaWG0bWaaSbaaKqaGfaacaaIYaGaeqiWdahabe aaaaqcaaMaaGPaVlabg2da9iaadgeacqGHflY1caWG2bGaaGPaVlaa cYcacaWGZbGaam4BaiaacYcadaWcaaqaaiaadohadaWgaaqcbawaai aaikdacqaHapaCaeqaaaqcaawaaiaadshadaWgaaqcbawaaiaaikda cqaHapaCaeqaaaaajaaycaaMc8Uaeyypa0JaamODamaaBaaajeayba aabeaajaaycaGGSaGaaGPaVlaaykW7caWGHbGaamOBaiaadsgacaaM c8Uaam4CamaaBaaajeaybaGaaGOmaiabec8aWbqabaqcaaMaaGPaVl abg2da9iaadAhacqGHflY1caWG0bWaaSbaaKqaGfaacaaIYaGaeqiW dahabeaajaaycaGGSaGaamyBaiaad+gacaWGYbGaamyzaiaad+gaca WG2bGaamyzaiaadkhacaGG6aGaamyqaiabg2da9maalaaabaGaamys aiabgwSixlaadshadaWgaaqcbawaaiaaikdacqaHapaCaeqaaaqcaa waaiaadohadaWgaaqcbawaaiaaikdacqaHapaCaeqaaaaajaaycaGG SaaakeaajaaycaWGHbGaamOBaiaadsgacaGG6aGaamyqaiabg2da9m aalaaabaGaamysaaqaaiaadAhaaaGaaGPaVlaaykW7caGGSaGaaGPa VlaaykW7caWGZbGaam4BaiaacQdacaaMc8+aaSbaaKqaGfaaaeqaaK aaGnaalaaabaGaamysaiabgwSixlaadshadaWgaaqcbawaaiaaikda cqaHapaCaeqaaaqcaawaaiaadohadaWgaaqcbawaaiaaikdacqaHap aCaeqaaaaajaaycaaMc8Uaeyypa0ZaaSaaaeaacaWGjbaabaGaamOD aaaacaaMc8UaaiilamaaBaaajeaybaaabeaajaaycaWGHbGaamOBai aadsgacaGG6aWaaSbaaKqaGfaaaeqaaKaaGnaalaaabaGaamiDamaa BaaajeaybaGaaGOmaiabec8aWbqabaaajaaybaGaam4CamaaBaaaje aybaGaaGOmaiabec8aWbqabaaaaKaaGjaaykW7cqGH9aqpdaWcaaqa aiaaigdaaeaacaWG2baaaiaacYcadaWgaaqcbawaaaqabaqcaaMaam yyaiaad6gacaWGKbGaaiOoaiaaykW7daWgaaqcbawaaaqabaqcaaMa amODaiaaykW7cqGHflY1caWG0bWaaSbaaKqaGfaacaaIYaGaeqiWda habeaajaaycqGH9aqpcaWGZbWaaSbaaKqaGfaacaaIYaGaeqiWdaha beaaaaaa@D7F1@   (25)

Considering the previous case (Eq.24, left), which is better known from medical physiology, the data concerning the intensity of the flowing fluids (I) corresponds to the volume (V) per unit time (t). This value is the same as the concept of cardiac output (CO) determined on the basis of blood circulation tests.38 Based on these, the intensity as a physical parameter corresponds to the value known from internal medicine as cardiac output (I = CO), also due to the same dimensions. According to these, in a 70 kg healthy person, the end-diastolic volume (EDV) of the heart is 120 mL and the end-systolic volume (ESV) is 50 mL. The difference between the two equals the stroke volume (sv), which is thus 70 mL. In this way, the circulating blood volume per minute, i.e., the minute volume, is 4.2 Liters/minute (60/minute x 70 mL=4200 mL/minute) with a heart rate of 60/minute. Because this value is the product of heart rate and stroke volume (CO=HR∙sv or CO=n∙sv). However, this value may change if the data is applied to half a minute or 25 s. The circulating blood volume (CO) is therefore the following for 25 or 30 seconds or 1 minute:

I 1 = V 2π t 2π(25s) =C O 25s = n 25 sv t 2π(25s) = 25 70 mL t 2π(25s) = 1750mL t 2π(25s) =1750mL/25s=1.75L/25 s ,and: I 2 = V 2π t 2π(30s) =C O 30s(1/2min) = n 30 sv t 2π(30s) = 30 70 mL t 2π(30s) = 2100mL t 2π(30s) =2.1L/0.5 min ,moreover: I= V 2π t 2π(60s) =C O 1min = n 60 sv t 2π(60s) = 60 70 mL t 2π(1min) = 6070mL 1min = 4200mL 1min =4.2L/1min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WGjbWaaSbaaKqaGfaacaaIXaaabeaajaaycqGH9aqpdaWcaaqaaiaa dAfadaWgaaqcbawaaiaaikdacqaHapaCaeqaaaqcaawaaiaadshada WgaaqcbawaaiaaikdacqaHapaCcaGGOaGaaGOmaiaaiwdacaWGZbGa aiykaaqabaaaaKaaGjabg2da9iaadoeacaWGpbWaaSbaaKqaGfaaca aIYaGaaGynaiaadohaaeqaaKaaGjabg2da9maalaaabaGaamOBamaa BaaajeaybaGaaGOmaiaaiwdaaeqaaKaaGjabgwSixlaadohacaWG2b aabaGaamiDamaaBaaajeaybaGaaGOmaiabec8aWjaacIcacaaIYaGa aGynaiaadohacaGGPaaabeaaaaqcaaMaeyypa0ZaaSaaaeaacaaIYa GaaGynaiabgwSixlaaiEdacaaIWaWaaSbaaKqaGfaaaeqaaKaaGjaa d2gacaWGmbaabaGaamiDamaaBaaajeaybaGaaGOmaiabec8aWjaacI cacaaIYaGaaGynaiaadohacaGGPaaabeaaaaqcaaMaeyypa0ZaaSaa aeaacaaIXaGaaG4naiaaiwdacaaIWaGaamyBaiaadYeaaeaacaWG0b WaaSbaaKqaGfaacaaIYaGaeqiWdaNaaiikaiaaikdacaaI1aGaam4C aiaacMcaaeqaaaaajaaycqGH9aqpcaaIXaGaaG4naiaaiwdacaaIWa GaamyBaiaadYeacaGGVaGaaGOmaiaaiwdacaWGZbGaeyypa0JaaGym aiaac6cacaaI3aGaaGynaiaadYeacaGGVaGaaGOmaiaaiwdacaWGZb WaaSbaaKqaGfaaaeqaaKaaGjaacYcacaWGHbGaamOBaiaadsgacaGG 6aaabaGaamysamaaBaaajeaybaGaaGOmaaqabaqcaaMaeyypa0ZaaS aaaeaacaWGwbWaaSbaaKqaGfaacaaIYaGaeqiWdahabeaaaKaaGfaa caWG0bWaaSbaaKqaGfaacaaIYaGaeqiWdaNaaiikaiaaiodacaaIWa Gaam4CaiaacMcaaeqaaaaajaaycqGH9aqpcaWGdbGaam4tamaaBaaa jeaybaGaaG4maiaaicdacaWGZbGaaiikaiaaigdacaGGVaGaaGOmai Gac2gacaGGPbGaaiOBaiaacMcaaeqaaKaaGjabg2da9maalaaabaGa amOBamaaBaaajeaybaGaaG4maiaaicdaaeqaaKaaGjabgwSixlaado hacaWG2baabaGaamiDamaaBaaajeaybaGaaGOmaiabec8aWjaacIca caaIZaGaaGimaiaadohacaGGPaaabeaaaaqcaaMaeyypa0ZaaSaaae aacaaIZaGaaGimaiabgwSixlaaiEdacaaIWaWaaSbaaKqaGfaaaeqa aKaaGjaad2gacaWGmbaabaGaamiDamaaBaaajeaybaGaaGOmaiabec 8aWjaacIcacaaIZaGaaGimaiaadohacaGGPaaabeaaaaqcaaMaeyyp a0ZaaSaaaeaacaaIYaGaaGymaiaaicdacaaIWaGaamyBaiaadYeaae aacaWG0bWaaSbaaKqaGfaacaaIYaGaeqiWdaNaaiikaiaaiodacaaI WaGaam4CaiaacMcaaeqaaaaajaaycqGH9aqpcaaIYaGaaiOlaiaaig dacaWGmbGaai4laiaaicdacaGGUaGaaGynaiGac2gacaGGPbGaaiOB amaaBaaajeaybaaabeaajaaycaGGSaGaamyBaiaad+gacaWGYbGaam yzaiaad+gacaWG2bGaamyzaiaadkhacaGG6aaakeaajaaycaWGjbGa eyypa0ZaaSaaaeaacaWGwbWaaSbaaKqaGfaacaaIYaGaeqiWdahabe aaaKaaGfaacaWG0bWaaSbaaKqaGfaacaaIYaGaeqiWdaNaaiikaiaa iAdacaaIWaGaam4CaiaacMcaaeqaaaaajaaycqGH9aqpcaWGdbGaam 4tamaaBaaajeaybaGaaGymaiGac2gacaGGPbGaaiOBaaqabaqcaaMa eyypa0ZaaSaaaeaacaWGUbWaaSbaaKqaGfaacaaI2aGaaGimaaqaba qcaaMaeyyXICTaam4CaiaadAhaaeaacaWG0bWaaSbaaKqaGfaacaaI YaGaeqiWdaNaaiikaiaaiAdacaaIWaGaam4CaiaacMcaaeqaaaaaja aycqGH9aqpdaWcaaqaaiaaiAdacaaIWaGaeyyXICTaaG4naiaaicda daWgaaqcbawaaaqabaqcaaMaamyBaiaadYeaaeaacaWG0bWaaSbaaK qaGfaacaaIYaGaeqiWdaNaaiikaiaaigdaciGGTbGaaiyAaiaac6ga caGGPaaabeaaaaqcaaMaeyypa0ZaaSaaaeaacaaI2aGaaGimaiabgw SixlaaiEdacaaIWaGaamyBaiaadYeaaeaacaqGXaGaciyBaiaacMga caGGUbaaaiabg2da9maalaaabaGaaGinaiaaikdacaaIWaGaaGimai aad2gacaWGmbaabaGaaeymaiaab2gacaqGPbGaaeOBaaaacqGH9aqp caqG0aGaaeOlaiaaikdacaWGmbGaai4laiaaigdaciGGTbGaaiyAai aac6gaaaaa@48DC@   (26)

During 25, 30, or 60 seconds (60 contractions in 60 seconds, i.e., with a heart rate of 60/1minute), the cardiac output is 1.75 L/min, 2.1 L/min, or 4.2 L/min, respectively. The first two CO values increase when projected at a heart rate of 60/min, the third remains unchanged. By dividing each CO by the ratio 25s/60s=0.41666 and 30s/60s=0.5 and 60s/60s=1, the result will be 4.2 L/min respectively (1.75 L/min/0.4166=4.2 L/min, 2.1 L/min/0.5=4.2 L/min, 4.2 L/min/1=4.2 L/min).

Projecting these CO values onto a heart rate of 72 contractions in 60 seconds, i.e., with a heart rate of 72/1minute, considering their ratios (25/72=0.3472, 30/72=0.4166, and 60/72=0.8333), the CO value will be higher than the previous ones. In this way, the output of the heart will be 1.75L/0.3472=5.04 L/min and 2.1L/0.4166=5.04 L/min, as well as 4.2L/0.833=5.4 L/min, which agrees with our knowledge of cardiology.38

These are well-measurable but variable quantities, which can increase significantly under submaximal physical load (6-8 L/min).

In case of an extreme degree of load, which means an increase in static or dynamic work performed against the gravitational field, the work of the heart and the related performance increase. After reaching a limit value, CO reaches its highest value in case of maximum heart rate. For example, in the case of a relatively young adult male long-distance runner (from a starting value of 43/min), if the heart rate increases to a value of 170-175/min, the CO is as follows. As 25s/170=0.147, 30s/170=0.1764, 60s/170=0.3529, therefore 1.75L/min/0.147=11.9L/min, 2.1L/min/0.1764=11.9, 4.2L/min/0.353=11.9 L/min. An increase in heart rate increases the speed of blood circulation in direct proportion. The single turnaround time will therefore be smaller.

This maximum performance is a vital outcome in the animal world, a characteristic of selection in the Darwinian sense. Since the chosen prey can become a victim and die (the weaker one is selected), or the chasing animal obtains food, in this way, gaining energy to continue living (the stronger one survives).

However, cardiac output is only a special value that does not express the quantitative parameters and qualitative characteristics of the whole blood flow. Therefore, this should be supplemented, the following considerations are necessary.

The law of continuity of flowing fluids, which is another obligatory law, gives intensity (Eq.24 right side) as the product of the flow cross section area (A) and the flow rate (v). However, neither the cross-section area through which the blood would flow nor its flow rate is known. The situation is further complicated by the fact that, according to the law of continuity, A and v can change, while the intensity (in the sense of conservation of energy) remains unchanged. With a smaller cross-sectional area, the flow rate may increase, while with a larger cross-sectional area it may decrease (see also Bernoulli’s law). Therefore, since this flow formula is two unknowns, an average flow rate (v) would be needed to calculate an average cross-sectional area. One velocity determination approach is as follows. Given that the flow velocity in the capillaries is approximately 1 mm/s39–41 and that the main artery (aorta) is 1m/s,42,43 the average velocity should be somewhere in the middle, i.e., between cm and decimeter. This would mean an average of approximately 5 cm/s or 0.5 dm/s.44

On the other hand, the other, much more accurate speed determination option is the value obtained from the degree of color change (blue-red)11 of biological creatures. This would fit more organically into the flow conditions of the entire human blood circulation and would provide more accurate data than before for the interpretation of the processes. For this, we can use the velocity of Darwinian evolution, which was previously determined from the law of free fall (Eq.11 and Eq.12). From this rate determined by higher vertebrates or human blue-red color change, the average blood flow rate can then be calculated. To do this, account must be taken of the time delay that occurs during the free fall of bodies, in this case blood, traveling at high speed during free fall. The degree of time dilatation resulting from general relativity is known and specifically corresponds to the ratio of angles (α/2∙π-1). With this ratio, the two velocity values (near the speed of light and the average human blood flow rate) can be matched and converted into each other.

In medicine, the one-time revolution of the human circulation can be determined by dye dilution,45 thermo-dilution,46 or radioisotope methods.47 In healthy adults, the blood volume turnover time is on average 25-30 seconds at rest.48,49 Based on this time interval (t) and the reduced flow rate in relation to the angles (α/2∙π-1) (vDarwinian evolution, man(blue-red) reduced by 2π/α), the size of the average circulation can be determined.

The mean human circulation velocity (v) is the product of Darwinian evolution velocity /vDarwinian evolution, man(blue-red)/ (2.360568•108m/s, Eq.12) and the ratio of α/2∙π-1(0.22156987•10-9), which is 5.230307 cm/s. For a single turnaround time of 25 seconds, the tube length is as follows (see Eq.25):

s 1 =v t 2π,1 =5.2 10 2 m s 25 s= 1.3 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaaykW7cqGH9aqpcaWG2bGaeyyXICTaamiD amaaBaaaleaacaaIYaGaeqiWdaNaaiilaiaaigdaaeqaaOGaeyypa0 deaaaaaaaaa8qacaaI1aGaaiOlaiaaikdacqGHflY1caaIXaGaaGim a8aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaOWaaSaaaeaacaWGTb aabaGaam4CaaaacqGHflY1caaIYaGaaGynaiaabccacaWGZbGaeyyp a0JaaGymaiaac6cacaaIZaWdamaaBaaaleaaaeqaaOWdbiaad2gaaa a@57AB@   (27)

For a single turnaround time of 30 s, the tube length (s2) is:

s 2 =v t 2π,2 =5.2 10 2 m s 30 s= 1.56 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaaabeaakiaaykW7cqGH9aqpcaWG2bGaeyyXICTaamiD amaaBaaaleaacaaIYaGaeqiWdaNaaiilaiaaikdaaeqaaOGaeyypa0 deaaaaaaaaa8qacaaI1aGaaiOlaiaaikdacqGHflY1caaIXaGaaGim a8aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaOWdamaalaaabaGaam yBaaqaaiaadohaaaWdbiabgwSixlaaiodacaaIWaGaaeiiaiaadoha cqGH9aqpcaaIXaGaaiOlaiaaiwdacaaI2aWdamaaBaaaleaaaeqaaO Wdbiaad2gaaaa@588A@   (28)

For an average human blood circulation of round and circular cross-section (torus), the circumference (C) and radius (r) are as follows:

C torus =2 r torus π , s o , r torus = C torus 2π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWG0bGaam4BaiaadkhacaWG1bGaam4CaaqabaGccqGH9aqp caaIYaGaeyyXICTaamOCamaaBaaaleaacaWG0bGaam4Baiaadkhaca WG1bGaam4CaaqabaGccqGHflY1cqaHapaCdaWgaaWcbaaabeaakiaa cYcadaWgaaWcbaaabeaakiaadohacaWGVbWaaSbaaSqaaaqabaGcca GGSaWaaSbaaSqaaaqabaGccaWGYbWaaSbaaSqaaiaadshacaWGVbGa amOCaiaadwhacaWGZbaabeaakiabg2da9maalaaabaGaam4qamaaBa aaleaacaWG0bGaam4BaiaadkhacaWG1bGaam4CaaqabaaakeaacaaI YaGaeyyXICTaeqiWdahaaaaa@5FB5@   (29)

Since the perimeter (C1) is equal to the length (s1), the radius (r1) of the torus is:

r 1torus = s 1 2π = 1.3 m 6.2831853 =20.69cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaGaamiDaiaad+gacaWGYbGaamyDaiaadohaaeqaaOGa aGPaVlabg2da9maalaaabaGaam4CamaaBaaaleaacaaIXaaabeaaaO qaaiaaikdacqGHflY1cqaHapaCaaGaeyypa0ZaaSaaaeaacaaIXaGa aiOlaiaaiodadaWgaaWcbaaabeaakiaad2gaaeaacaaI2aGaaiOlai aaikdacaaI4aGaaG4maiaaigdacaaI4aGaaGynaiaaiodaaaGaeyyp a0JaaGOmaiaaicdacaGGUaGaaGOnaiaaiMdacaWGJbGaamyBaaaa@579B@   (30)

Since the circumference (C2) is equal to the length (s2), the radius (r2) of the circle is:

r 2torus = s 2 2π = 1.56 m 6.2831853 =24.828cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaGaamiDaiaad+gacaWGYbGaamyDaiaadohaaeqaaOGa aGPaVlabg2da9maalaaabaGaam4CamaaBaaaleaacaaIYaaabeaaaO qaaiaaikdacqGHflY1cqaHapaCaaGaeyypa0ZaaSaaaeaacaaIXaGa aiOlaiaaiwdacaaI2aWaaSbaaSqaaaqabaGccaWGTbaabaGaaGOnai aac6cacaaIYaGaaGioaiaaiodacaaIXaGaaGioaiaaiwdacaaIZaaa aiabg2da9iaaikdacaaI0aGaaiOlaiaaiIdacaaIYaGaaGioaiaado gacaWGTbaaaa@5920@   (31)

The biological mass (Mhuman circulation turnaround) corresponding to the physical mass of the Earth (MEarth) (Eq.22) when substituting the radius of the average human circulation (raverage human blood circulation1) in the formula of low of free fall (for a blue-red biological redshift) after rearranging will be:

M 1 human blood circ.turnaround = v Darwin.evol.man(bluered) 2 r Earth 2 H lon g evol.dist.man(bluered) G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaqGXaGaaeiiaiaabIgacaqG1bGaaeyBaiaabggacaqGUbGa aeiiaiaabkgacaqGSbGaae4Baiaab+gacaqGKbGaaeiiaiaabogaca qGPbGaaeOCaiaabogacaqGUaGaaeiDaiaabwhacaqGYbGaaeOBaiaa bggacaqGYbGaae4BaiaabwhacaqGUbGaaeizaaqabaGccqGH9aqpda WcaaqaaiaadAhadaWgaaWcbaGaamiraiaadggacaWGYbGaam4Daiaa dMgacaWGUbGaaiOlaiaadwgacaWG2bGaam4BaiaadYgacaGGUaGaam yBaiaadggacaWGUbGaaiikaiaadkgacaWGSbGaamyDaiaadwgacqGH sislcaWGYbGaamyzaiaadsgacaGGPaaabeaakmaaCaaaleqabaGaaG OmaaaakiabgwSixlaadkhadaWgaaWcbaaeaaaaaaaaa8qacaWGfbGa amyyaiaadkhacaWG0bGaamiAaaWdaeqaaOWaaWbaaSqabeaacaaIYa aaaaGcbaGaamisamaaBaaaleaacaWGSbGaam4Baiaad6gacaWGNbWa aSbaaWqaaaqabaWccaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaads gacaWGPbGaam4CaiGacshacaGGUaGaamyBaiaadggacaWGUbGaaiik aiaadkgacaWGSbGaamyDaiaadwgacqGHsislcaWGYbGaamyzaiaads gacaGGPaaabeaakiabgwSixlaadEeaaaaaaa@8FFC@   (32)

Numerically:

M 1 human blood circ.turnaround = ( 2.360568 10 8 m s 1 ) 2 (0.207m) 2 2.564494 10 25 m6.673848 10 11 m 3 k g 1 s 2 =0.0139507 10 2 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaad2eada WgaaqcbawaaiaabgdacaqGGaGaaeiAaiaabwhacaqGTbGaaeyyaiaa b6gacaqGGaGaaeOyaiaabYgacaqGVbGaae4BaiaabsgacaqGGaGaae 4yaiaabMgacaqGYbGaae4yaiaab6cacaqG0bGaaeyDaiaabkhacaqG UbGaaeyyaiaabkhacaqGVbGaaeyDaiaab6gacaqGKbaabeaajaaycq GH9aqpdaWcaaqaamaabmaabaGaaGOmaiaac6cacaaIZaGaaGOnaiaa icdacaaI1aGaaGOnaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaaje aybeqaaiaaiIdaaaqcaaMaamyBaiabgwSixlaadohadaahaaqcbawa beaacqGHsislcaaIXaaaaaqcaaMaayjkaiaawMcaamaaCaaajeaybe qaaiaaikdaaaqcaaMaeyyXICTaaiikaiaaicdacaGGUaGaaGOmaiaa icdacaaI3aGaamyBaiaacMcadaahaaqcbawabeaacaaIYaaaaaqcaa waaiaaikdacaGGUaGaaGynaiaaiAdacaaI0aGaaGinaiaaiMdacaaI 0aGaeyyXICTaaGymaiaaicdadaahaaqcbawabeaacaaIYaGaaGynaa aajaaycaWGTbGaeyyXICTaaGOnaiaac6cacaaI2aGaaG4naiaaioda caaI4aGaaGinaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaajeaybe qaaiabgkHiTiaaigdacaaIXaaaaKaaGjaad2gadaahaaqcbawabeaa caaIZaaaaKaaGjabgwSixlaadUgacaWGNbWaaWbaaKqaGfqabaGaey OeI0IaaGymaaaajaaycqGHflY1caWGZbWaaWbaaKqaGfqabaGaeyOe I0IaaGOmaaaaaaqcaaMaeyypa0JaaGimaiaac6cacaaIWaGaaGymai aaiodacaaI5aGaaGynaiaaicdacaaI3aGaeyyXICTaaGymaiaaicda daahaaqcbawabeaacaaIYaaaaKaaGjaadUgacaWGNbaaaa@ACA5@   (33)

In the case of a larger radius of human circulation (raverage human blood circulation2), when the single circulation time increases to 30 s, the value of the mass also increases:

M 2 human blood circ.turnaround = ( 2.360568 10 8 m s 1 ) 2 (0.248m) 2 2.564494 10 25 m6.673848 10 11 m 3 k g 1 s 2 =0.02002464 10 2 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaad2eada WgaaqcbawaaiaabkdacaqGGaGaaeiAaiaabwhacaqGTbGaaeyyaiaa b6gacaqGGaGaaeOyaiaabYgacaqGVbGaae4BaiaabsgacaqGGaGaae 4yaiaabMgacaqGYbGaae4yaiaab6cacaqG0bGaaeyDaiaabkhacaqG UbGaaeyyaiaabkhacaqGVbGaaeyDaiaab6gacaqGKbaabeaajaaycq GH9aqpdaWcaaqaamaabmaabaGaaGOmaiaac6cacaaIZaGaaGOnaiaa icdacaaI1aGaaGOnaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaaje aybeqaaiaaiIdaaaqcaaMaamyBaiabgwSixlaadohadaahaaqcbawa beaacqGHsislcaaIXaaaaaqcaaMaayjkaiaawMcaamaaCaaajeaybe qaaiaaikdaaaqcaaMaeyyXICTaaiikaiaaicdacaGGUaGaaGOmaiaa isdacaaI4aGaamyBaiaacMcadaahaaqcbawabeaacaaIYaaaaaqcaa waaiaaikdacaGGUaGaaGynaiaaiAdacaaI0aGaaGinaiaaiMdacaaI 0aGaeyyXICTaaGymaiaaicdadaahaaqcbawabeaacaaIYaGaaGynaa aajaaycaWGTbGaeyyXICTaaGOnaiaac6cacaaI2aGaaG4naiaaioda caaI4aGaaGinaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaajeaybe qaaiabgkHiTiaaigdacaaIXaaaaKaaGjaad2gadaahaaqcbawabeaa caaIZaaaaKaaGjabgwSixlaadUgacaWGNbWaaWbaaKqaGfqabaGaey OeI0IaaGymaaaajaaycqGHflY1caWGZbWaaWbaaKqaGfqabaGaeyOe I0IaaGOmaaaaaaqcaaMaeyypa0JaaGimaiaac6cacaaIWaGaaGOmai aaicdacaaIWaGaaGOmaiaaisdacaaI2aGaaGinaiabgwSixlaaigda caaIWaWaaWbaaKqaGfqabaGaaGOmaaaajaaycaWGRbGaam4zaaaa@AF92@   (34)

After determining the size of the average human blood circulation with the help of the laws of flow, the mass that falls on the time interval of the average human blood circulation once turning around can be determined by using Newton's law of gravity. Here, the role of the radius of the earth is taken over by the radius of the average human blood circulation. And the mass of the Earth will be correlated with the mass of the blood in one rotation, and will be reduced to its value. In this sense, a metamorphosis of the earth's parameters takes place and is thereby embodied in the parameters of human blood circulation. The reverse of this also seems to be true, that is, the parameters of human blood circulation can be transformed into those of Earth.

{In the absence of adequate data for mollusks, it is difficult to estimate their mean radius of circulation and the mass of blood volume per revolution. However, let us pick out a mollusk (gastropod Mollusca) whose tissue fluid (hemolymph) contains hemocyanin with a redshift of 0.137, for example (Eq.10). Then, based on Einstein's formulas, its short evolutionary distance (hshort evol.dist.mollusks(blue)) will be:

h shor t evolution.dist.mollusk(blue) =0.137 8.98755178 10 16 m 2 s 2 9.80665m s 2 =0.125557 10 16 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadIgada WgaaqcbawaaiaadohacaWGObGaam4BaiaadkhacaWG0bWaaSbaaKGa GfaaaeqaaKqaGjaadwgacaWG2bGaam4BaiaadYgacaWG1bGaamiDai aadMgacaWGVbGaamOBaiaac6cacaWGKbGaamyAaiaadohacaWG0bGa aiOlaiaad2gacaWGVbGaamiBaiaadYgacaWG1bGaam4CaiaadUgaca GGOaGaamOyaiaadYgacaWG1bGaamyzaiaacMcaaeqaaKaaGjabg2da 9iaaicdacaGGUaGaaGymaiaaiodacaaI3aGaeyyXIC9aaSaaaeaaca aI4aGaaiOlaiaaiMdacaaI4aGaaG4naiaaiwdacaaI1aGaaGymaiaa iEdacaaI4aGaeyyXICTaaGymaiaaicdadaahaaqcbawabeaacaaIXa GaaGOnaaaajaaycaWGTbWaaWbaaKqaGfqabaGaaGOmaaaajaaycqGH flY1caWGZbWaaWbaaKqaGfqabaGaeyOeI0IaaGOmaaaaaKaaGfaaca aI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aGaamyBaiab gwSixlaadohadaahaaqcbawabeaacqGHsislcaaIYaaaaaaajaaycq GH9aqpcaaMc8Uaaeimaiaab6cacaqGXaGaaeOmaiaabwdacaqG1aGa aeynaiaabEdacqGHflY1caaIXaGaaGimamaaCaaajeaybeqaaiaaig dacaaI2aaaaKaaGjaaykW7caWGTbaaaa@918E@   (35)

From this distance data, based on the law of free fall, the evolutionary rate (vDarwinian evolution, mollusks(blue)) of this mollusk is:

v Darwin.evol.mollusk(blue) = 0.137 8.987551 10 16 m 2 s 2 9.80665m s 2 9.80665m s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gacaGGUaGa amyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaam4BaiaadYgaca WGSbGaamyDaiaadohacaWGRbGaaiikaiaadkgacaWGSbGaamyDaiaa dwgacaGGPaaabeaakiabg2da9maakaaabaGaaGimaiaac6cacaaIXa GaaG4maiaaiEdacqGHflY1daWcaaqaaiaaiIdacaGGUaGaaGyoaiaa iIdacaaI3aGaaGynaiaaiwdacaaIXaGaeyyXICTaaGymaiaaicdada ahaaWcbeqaaiaaigdacaaI2aaaaOGaamyBamaaCaaaleqabaGaaGOm aaaakiabgwSixlaadohadaahaaWcbeqaaiabgkHiTiaaikdaaaaake aacaaI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aGaamyB aiabgwSixlaadohadaahaaWcbeqaaiabgkHiTiaaikdaaaaaaOGaey yXICTaaGyoaiaac6cacaaI4aGaaGimaiaaiAdacaaI2aGaaGynaiaa d2gacqGHflY1caWGZbWaaWbaaSqabeaacqGHsislcaaIYaaaaaqaba aaaa@7FE0@   (36)

v Darwinia n evolution,mollusk(blue) =1.109637 10 8 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gacaWGPbGa amyyaiaad6gadaWgaaadbaaabeaaliaadwgacaWG2bGaam4BaiaadY gacaWG1bGaamiDaiaadMgacaWGVbGaamOBaiaacYcacaWGTbGaam4B aiaadYgacaWGSbGaamyDaiaadohacaWGRbGaaiikaiaadkgacaWGSb GaamyDaiaadwgacaGGPaaabeaakiabg2da9iaabgdacaqGUaGaaeym aiaabcdacaqG5aGaaeOnaiaabodacaqG3aGaeyyXICTaaGymaiaaic dadaahaaWcbeqaaiaaiIdaaaGccaaMc8+aaSaaaeaacaWGTbaabaGa am4Caaaaaaa@639F@   (37)

By reducing this speed in proportion to the angles (2∙π/α), we get the following value for the average circulation speed of mollusks: 1.109637∙108m/s∙ 0.22156987∙10-9 = 0.024586 m/s = 2.4586 cm/s.}

Mass calculated from the average radius of human circulation solely according to Newton's law of universal gravitation

Using Newton's law of gravitation alone to determine mass gives a much larger value than using the combined equation (GR and Newton) for the same (see Equation 32):

m g Earth =G m M Earth r Earth 2 , so : g Earth = G M Earth r Earth 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgw SixlaadEgadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDaiaadIga aeqaaOGaeyypa0Jaam4raiabgwSixpaalaaabaGaamyBaiabgwSixl aad2eadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDaiaadIgaaeqa aaGcbaGaamOCamaaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaam iAaaqabaGcdaahaaWcbeqaaiaaikdaaaaaaOWaaSbaaSqaaaqabaGc caGGSaWaaSbaaSqaaaqabaGccaWGZbGaam4BaiaacQdadaWgaaWcba aabeaakiaadEgadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDaiaa dIgaaeqaaOGaeyypa0ZaaSaaaeaacaWGhbGaeyyXICTaamytamaaBa aaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaaakeaacaWG YbWaaSbaaSqaaiaadweacaWGHbGaamOCaiaadshacaWGObaabeaakm aaCaaaleqabaGaaGOmaaaaaaaaaa@6C9B@   (38)

Rearranging the equation to mass (MEarth), and then using the radius of the average blood circulation (raverage blood circulation) instead of the radius of the Earth, the intermediate value of M is as follows:

M Eart h intermediate = g Earth r average blood circulation 2 G ,so, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAamaaBaaameaaaeqa aSGaciyAaiaac6gacaGG0bGaamyzaiaadkhacaWGTbGaamyzaiaads gacaWGPbGaamyyaiaadshacaWGLbaabeaakiabg2da9maalaaabaGa am4zamaaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqaba GccqGHflY1qaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGHbGa amODaiaadwgacaWGYbGaamyyaiaadEgacaWGLbGaaeiiaiaadkgaca WGSbGaam4Baiaad+gacaWGKbGaaeiiaiaadogacaWGPbGaamOCaiaa dogacaWG1bGaamiBaiaadggacaWG0bGaamyAaiaad+gacaWGUbaapa qabaGcdaahaaWcbeqaaiaaikdaaaaakeaacaWGhbaaamaaBaaaleaa aeqaaOGaaiilaiaadohacaWGVbGaaiilaaaa@6D85@   (39)

M Eart h intermediate = 9.80665m s 2 ( 2.07 10 1 m ) 2 6.673848 10 11 m 3 k g 1 s 2 =6.2962948 10 9 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAamaaBaaameaaaeqa aSGaciyAaiaac6gacaGG0bGaamyzaiaadkhacaWGTbGaamyzaiaads gacaWGPbGaamyyaiaadshacaWGLbaabeaakiabg2da9maalaaabaGa aGyoaiaac6cacaaI4aGaaGimaiaaiAdacaaI2aGaaGynaiaad2gacq GHflY1caWGZbWaaWbaaSqabeaacqGHsislcaaIYaaaaOGaeyyXIC9a aeWaaeaacaaIYaGaaiOlaiaaicdacaaI3aGaeyyXICTaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGTbaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOnaiaac6cacaaI2aGaaG 4naiaaiodacaaI4aGaaGinaiaaiIdacqGHflY1caaIXaGaaGimamaa CaaaleqabaGaeyOeI0IaaGymaiaaigdaaaGccaWGTbWaaWbaaSqabe aacaaIZaaaaOGaeyyXICTaam4AaiaadEgadaahaaWcbeqaaiabgkHi TiaaigdaaaGccqGHflY1caWGZbWaaWbaaSqabeaacqGHsislcaaIYa aaaaaakiabg2da9iaaiAdacaGGUaGaaGOmaiaaiMdacaaI2aGaaGOm aiaaiMdacaaI0aGaaGioaabaaaaaaaaapeGaeyyXICTaaGymaiaaic dapaWaaWbaaSqabeaapeGaaGyoaaaakiaadUgacaWGNbaaaa@8974@   (40)

This obtained mass (6.2963∙109kg) will be 1.3987 kg (≈1.4 kg) multiplied by the ratio of the angles (2,2157∙10-10). For a larger radius of 0.248 m, M = 9∙109kg. From this mass, multiplied by the value of the widening of the time interval causing the flow rate to slow down, i.e., the ratio of α/2∙π-1, the actual mass will be 2 kg. In essence, this can also be understood as a relativistic mass decrease. Viewed from the opposite direction, this may correspond to a relativistic mass increase resulting from the combination of Einstein's and Newton's formulas.

Further, by substituting the larger blood volume (mass) value determined in a single circulation of the human bloodstream, the square of the circulation radius (raverage human blood circulation2) can be determined:

Furthermore, the square of the circulation radius (raverage human blood circulation2) can be determined by:

r 1 average human blood circulation 2 = H lon g evol.distance.man(bluered) G M human blood circulation turnaround v Darwinia n evolution,man(bluered) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGYb WaaSbaaSqaaabaaaaaaaaapeGaaGymamaaBaaameaaaeqaaSGaamyy aiaadAhacaWGLbGaamOCaiaadggacaWGNbGaamyzaiaabccacaWGOb GaamyDaiaad2gacaWGHbGaamOBaiaabccacaWGIbGaamiBaiaad+ga caWGVbGaamizaiaabccacaWGJbGaamyAaiaadkhacaWGJbGaamyDai aadYgacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOWaaWba aSqabeaacaaIYaaaaOGaeyypa0dabaGaamisamaaBaaaleaacaWGSb Gaam4Baiaad6gacaWGNbWaaSbaaWqaaaqabaWccaWGLbGaamODaiaa d+gacaWGSbGaaiOlaiaadsgacaWGPbGaam4CaiGacshacaGGHbGaai OBaiaadogacaWGLbGaaiOlaiaad2gacaWGHbGaamOBaiaacIcacaWG IbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadwgacaWGKbGaai ykaaqabaGccqGHflY1aeaadaWcaaqaaiaadEeacqGHflY1caWGnbWa aSbaaSqaaiaabIgacaqG1bGaaeyBaiaabggacaqGUbGaaeiiaiaabk gacaqGSbGaae4Baiaab+gacaqGKbGaaeiiaiaabogacaqGPbGaaeOC aiaabogacaqG1bGaaeiBaiaabggacaqG0bGaaeyAaiaab+gacaqGUb GaaeiiaiaabshacaqG1bGaaeOCaiaab6gacaqGHbGaaeOCaiaab+ga caqG1bGaaeOBaiaabsgaaeqaaaGcbaGaamODamaaBaaaleaacaWGeb GaamyyaiaadkhacaWG3bGaamyAaiaad6gacaWGPbGaamyyaiaad6ga daWgaaadbaaabeaaliaadwgacaWG2bGaam4BaiaadYgacaWG1bGaam iDaiaadMgacaWGVbGaamOBaiaacYcacaWGTbGaamyyaiaad6gacaGG OaGaamOyaiaadYgacaWG1bGaamyzaiabgkHiTiaadkhacaWGLbGaam izaiaacMcaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaaaaaa@B85D@   (41)

substituting the larger blood volume (mass) determined on the basis of its single circulation in the human blood circulation into the combined Einstein and Newton formula.

The radius of the average human circulation (raverage human blood circulation1) after square root subtraction:

r 1 average human blood circulation = 1 v Darwin.evol.man(bluered) H lon g evol.dist.man(bluered) G M human blood circ.turnaround MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGYb WaaSbaaSqaaabaaaaaaaaapeGaaGymamaaBaaameaaaeqaaSGaamyy aiaadAhacaWGLbGaamOCaiaadggacaWGNbGaamyzaiaabccacaWGOb GaamyDaiaad2gacaWGHbGaamOBaiaabccacaWGIbGaamiBaiaad+ga caWGVbGaamizaiaabccacaWGJbGaamyAaiaadkhacaWGJbGaamyDai aadYgacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOGaeyyp a0ZaaSaaaeaacaaIXaaabaGaamODamaaBaaaleaacaWGebGaamyyai aadkhacaWG3bGaamyAaiaad6gacaGGUaGaamyzaiaadAhacaWGVbGa amiBaiaac6cacaWGTbGaamyyaiaad6gacaGGOaGaamOyaiaadYgaca WG1bGaamyzaiabgkHiTiaadkhacaWGLbGaamizaiaacMcaaeqaaaaa aOqaaiabgwSixpaakaaabaGaamisamaaBaaaleaacaWGSbGaam4Bai aad6gacaWGNbWaaSbaaWqaaaqabaWccaWGLbGaamODaiaad+gacaWG SbGaaiOlaiaadsgacaWGPbGaam4CaiGacshacaGGUaGaamyBaiaadg gacaWGUbGaaiikaiaadkgacaWGSbGaamyDaiaadwgacqGHsislcaWG YbGaamyzaiaadsgacaGGPaaabeaakiabgwSixlaadEeacqGHflY1ca WGnbWaaSbaaSqaaiaabIgacaqG1bGaaeyBaiaabggacaqGUbGaaeii aiaabkgacaqGSbGaae4Baiaab+gacaqGKbGaaeiiaiaabogacaqGPb GaaeOCaiaabogacaqGUaGaaeiDaiaabwhacaqGYbGaaeOBaiaabgga caqGYbGaae4BaiaabwhacaqGUbGaaeizaaqabaaabeaaaaaa@A84D@   (42)

Numerically:

r 1 human blood circ. = 1 2.360568 10 8 m s 1 2.564494 10 25 m6.673848 10 11 m 3 kg s 2 0.01395 10 2 kg = 1 2.360568 10 8 m s 0.488625472 m 2 s = 0.2069948 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGYb WaaSbaaSqaaabaaaaaaaaapeGaaGymamaaBaaameaaaeqaaSGaamiA aiaadwhacaWGTbGaamyyaiaad6gacaqGGaGaamOyaiaadYgacaWGVb Gaam4BaiaadsgacaqGGaGaam4yaiaadMgacaWGYbGaam4yaiaac6ca a8aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdacaGGUaGaaG 4maiaaiAdacaaIWaGaaGynaiaaiAdacaaI4aGaeyyXICTaaGymaiaa icdadaahaaWcbeqaaiaaiIdaaaGccaaMc8UaamyBaiabgwSixlaado hadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaOGaeyyXICnabaWaaOaa aeaacaaIYaGaaiOlaiaaiwdacaaI2aGaaGinaiaaisdacaaI5aGaaG inaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaIYaGaaGynaaaa kiaad2gacqGHflY1caaI2aGaaiOlaiaaiAdacaaI3aGaaG4maiaaiI dacaaI0aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIXaGaaGymaaaakmaalaaabaGaamyBamaaCaaaleqabaGaaG 4maaaaaOqaaiaadUgacaWGNbGaeyyXICTaam4CamaaCaaaleqabaGa aGOmaaaaaaGccqGHflY1caaIWaGaaiOlaiaaicdacaaIXaGaaG4mai aaiMdacaaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaikda aaGccaWGRbGaam4zaaWcbeaaaOqaaiabg2da9maalaaabaGaaGymaa qaaiaaikdacaGGUaGaaG4maiaaiAdacaaIWaGaaGynaiaaiAdacaaI 4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiIdaaaGccaaMc8 +aaSaaaeaacaWGTbaabaGaam4CaaaaaaGaeyyXICTaaGimaiaac6ca caaI0aGaaGioaiaaiIdacaaI2aGaaGOmaiaaiwdacaaI0aGaaG4nai aaikdadaWcaaqaaiaad2gadaahaaWcbeqaaiaaikdaaaaakeaacaWG Zbaaaiabg2da9iaaicdacaGGUaGaaGOmaiaaicdacaaI2aGaaGyoai aaiMdacaaI0aGaaGioamaaBaaaleaaaeqaaOGaamyBaiaaykW7aaaa @B663@   (43)

Taking into account a single circulating time of 30 seconds, the radius of the average circulation (raverage human blood circulation2) will be larger:

r 2 a.human blood circ. = 1 2.360568 10 8 m s 2.564494 10 25 m6.673848 10 11 m 3 kg s 2 0.02002464 10 2 kg = 1 2.360568 10 8 m s 0.585425125 m 2 s = 0.248001 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGYb WaaSbaaSqaaabaaaaaaaaapeGaaGOmamaaBaaameaaaeqaaSGaamyy aiaac6cacaWGObGaamyDaiaad2gacaWGHbGaamOBaiaabccacaWGIb GaamiBaiaad+gacaWGVbGaamizaiaabccacaWGJbGaamyAaiaadkha caWGJbGaaiOlaaWdaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG Omaiaac6cacaaIZaGaaGOnaiaaicdacaaI1aGaaGOnaiaaiIdacqGH flY1caaIXaGaaGimamaaCaaaleqabaGaaGioaaaakiaaykW7daWcaa qaaiaad2gaaeaacaWGZbaaaaaaaeaacqGHflY1daGcaaqaaiaaikda caGGUaGaaGynaiaaiAdacaaI0aGaaGinaiaaiMdacaaI0aGaeyyXIC TaaGymaiaaicdadaahaaWcbeqaaiaaikdacaaI1aaaaOGaamyBaiab gwSixlaaiAdacaGGUaGaaGOnaiaaiEdacaaIZaGaaGioaiaaisdaca aI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaigda caaIXaaaaOWaaSaaaeaacaWGTbWaaWbaaSqabeaacaaIZaaaaaGcba Gaam4AaiaadEgacqGHflY1caWGZbWaaWbaaSqabeaacaaIYaaaaaaa kiabgwSixlaaicdacaGGUaGaaGimaiaaikdacaaIWaGaaGimaiaaik dacaaI0aGaaGOnaiaaisdacqGHflY1caaIXaGaaGimamaaCaaaleqa baGaaGOmaaaakiaadUgacaWGNbaaleqaaaGcbaGaeyypa0ZaaSaaae aacaaIXaaabaGaaGOmaiaac6cacaaIZaGaaGOnaiaaicdacaaI1aGa aGOnaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaGioaa aakiaaykW7daWcaaqaaiaad2gaaeaacaWGZbaaaaaacqGHflY1caaI WaGaaiOlaiaaiwdacaaI4aGaaGynaiaaisdacaaIYaGaaGynaiaaig dacaaIYaGaaGynamaalaaabaGaamyBamaaCaaaleqabaGaaGOmaaaa aOqaaiaadohaaaGaeyypa0JaaGimaiaac6cacaaIYaGaaGinaiaaiI dacaaIWaGaaGimaiaaigdadaWgaaWcbaaabeaakiaad2gaaaaa@B3AC@   (44)

In summary, it can be concluded that by replacing the size of the blood circulation determined by cardiologic examination methods or the blood volume of a single circulation in the law of free fall combined with general relativity, one or the other value can be obtained. This also seems to prove the usefulness of physical formulas for human blood circulation. With this extension, the law can be generalized and the application of complex physical laws in biological organisms seems to be proven. It also supports the basic concept that gravity accumulates in living creatures. Based on these, it seems that gravity is one of the driving factors in the development of living organisms during the long process of Darwinian evolution.

Where hpast, present in Darwinian evolution and raverage human circulation are considered to be perpendicular to each other, like Newtonian orbits. That is, each point of h passing through the center of the plane of the toroidal average human circulation can be such a relationship between the center of mass and the blood circulating around it. However, since the average human circulation includes all directions of space, perpendicularity is not exclusive. One thing is certain, however, that h from the past to the present always points in the direction of a more curved space-time, i.e., more advanced structure. This is ensured by the increasing gravitational effect through the series of mutations.

So far, we have only dealt with the interpretation of h in the expression below the root, but there is also H, for which we have not made any findings. We have not explained how the law of free fall can work in the case of H. This can be done by correcting H for h. In this case, we have to multiply H by the ratio of the angles (α/2∙π-1) which means a very significant distance reduction. This so-called distance contraction can be explained by time dilation derived from general relativity.

v Darwin.evol.man(bluered) = H lon g evol.dist.man(bluered) α 2π g Earth MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gacaGGUaGa amyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaamyyaiaad6gaca GGOaGaamOyaiaadYgacaWG1bGaamyzaiabgkHiTiaadkhacaWGLbGa amizaiaacMcaaeqaaOGaeyypa0ZaaOaaaeaacaWGibWaaSbaaSqaai aadYgacaWGVbGaamOBaiaadEgadaWgaaadbaaabeaaliaadwgacaWG 2bGaam4BaiaadYgacaGGUaGaamizaiaadMgacaWGZbGaciiDaiaac6 cacaWGTbGaamyyaiaad6gacaGGOaGaamOyaiaadYgacaWG1bGaamyz aiabgkHiTiaadkhacaWGLbGaamizaiaacMcaaeqaaOGaeyyXIC9aaS aaaeaacqaHXoqyaeaacaaIYaGaeyyXICTaeqiWdahaaiabgwSixlaa dEgadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDaiaadIgaaeqaaa qabaaaaa@78BE@   (45)

Numerically:

v Darwin.evol.man(bluered) = ν ν 0 ν 0 c 2 g Earth 2π c 2 R Earth 2G M Earth 2G M Earth 2πc 2 R Earth g Earth = ν ν 0 ν 0 c 2 =0.7874 c = 2.3622 10 8 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WG2bWaaSbaaKqaGfaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaa d6gacaGGUaGaamyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaam yyaiaad6gacaGGOaGaamOyaiaadYgacaWG1bGaamyzaiabgkHiTiaa dkhacaWGLbGaamizaiaacMcaaeqaaKaaGjabg2da9maakaaabaWaaS aaaeaacqaH9oGBcqGHsislcqaH9oGBdaWgaaqcbawaaiaaicdaaeqa aaqcaawaaiabe27aUnaaBaaajeaybaGaaGimaaqabaaaaKaaGjabgw SixpaalaaabaGaam4yamaaCaaajeaybeqaaiaaikdaaaaajaaybaGa am4zamaaBaaajeaybaGaamyraiaadggacaWGYbGaamiDaiaadIgaae qaaaaajaaycqGHflY1daWcaaqaaiaaikdacqGHflY1cqaHapaCcqGH flY1caWGJbWaaWbaaKqaGfqabaGaaGOmaaaajaaycqGHflY1caWGsb WaaSbaaKqaGfaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaaa jaaybaGaaGOmaiabgwSixlaadEeacqGHflY1caWGnbWaaSbaaKqaGf aacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaaaaKaaGjabgwSi xpaalaaabaGaaGOmaiabgwSixlaadEeacqGHflY1caWGnbWaaSbaaK qaGfaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaaajaaybaGa aGOmaiabgwSixlabec8aWjabgwSixlaadogacqGHflY1daahaaqcba wabeaacaaIYaaaaKaaGjaadkfadaWgaaqcbawaaiaadweacaWGHbGa amOCaiaadshacaWGObaabeaaaaqcaaMaeyyXICTaam4zamaaBaaaje aybaGaamyraiaadggacaWGYbGaamiDaiaadIgaaeqaaaqabaaakeaa jaaycqGH9aqpdaGcaaqaamaalaaabaGaeqyVd4MaeyOeI0IaeqyVd4 2aaSbaaKqaGfaacaaIWaaabeaaaKaaGfaacqaH9oGBdaWgaaqcbawa aiaaicdaaeqaaaaajaaycqGHflY1caWGJbWaaWbaaKqaGfqabaGaaG OmaaaaaeqaaKaaGjabg2da9iaabcdacaqGUaGaae4naiaabIdacaqG 3aGaaeinaiabgwSixlaadogadaWgaaqcbawaaaqabaqcaaMaaeypam aaBaaajeaybaaabeaajaaycaqGYaGaaeOlaiaabodacaqG2aGaaeOm aiaabkdacqGHflY1caqGXaGaaeimamaaCaaajeaybeqaaiaaiIdaaa qcaa2aaSaaaeaacaWGTbaabaGaam4Caaaaaaaa@D59D@   (46)

(The result is the same as in Eq.12.) In this case, for the short evolutionary distance, i.e., h, the formula works and can be used to determine the mass and size of the human bloodstream, including radius.

The decrease in the speed of light propagation near of a black hole is analogous and may correspond to the average flow rate in the human bloodstream:

v c i n blac k hole =c α 2π =c 2GM 2π c 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGJbWaaSbaaWqaaaqabaWccaWGPbGaamOBamaaBaaameaa aeqaaSGaamOyaiaadYgacaWGHbGaam4yaiaadUgadaWgaaadbaaabe aaliaadIgacaWGVbGaamiBaiaadwgaaeqaaOGaeyypa0Jaam4yaiab gwSixpaalaaabaGaeqySdegabaGaaGOmaiabgwSixlabec8aWbaacq GH9aqpcaWGJbGaeyyXIC9aaSaaaeaacaaIYaGaeyyXICTaam4raiab gwSixlaad2eaaeaacaaIYaGaeyyXICTaeqiWdaNaeyyXICTaam4yam aaCaaaleqabaGaaGOmaaaakiabgwSixlaadkfaaaaaaa@64D4@   (47)

In this way, the speed of light (c) at this time dilation is as follows:

v c a t blac k hole =c 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg 3.1415926538.98755178 10 16 m 2 s 2 6.371005 10 6 m =c0.22157 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaagbaeqabaGaam ODamaaBaaajeaybaGaam4yamaaBaaajiaybaaabeaajeaycaWGHbGa amiDamaaBaaajiaybaaabeaajeaycaWGIbGaamiBaiaadggacaWGJb Gaam4AamaaBaaajiaybaaabeaajeaycaWGObGaam4BaiaadYgacaWG LbaabeaajaaycqGH9aqpcaWGJbGaeyyXICTaaGPaVpaalaaabaGaaG Onaiaac6cacaaI2aGaaG4naiaaiodacaaI4aGaaGinaiaaiIdacqGH flY1caaIXaGaaGimamaaCaaajeaybeqaaiabgkHiTiaaigdacaaIXa aaaKaaGjaad2gadaahaaqcbawabeaacaaIZaaaaKaaGjabgwSixlaa dUgacaWGNbWaaWbaaKqaGfqabaGaeyOeI0IaaGymaaaajaaycqGHfl Y1caWGZbWaaWbaaKqaGfqabaGaeyOeI0IaaGOmaaaajaaycqGHflY1 caaI1aGaaiOlaiaaiMdacaaI3aGaaGOmaiaaigdacaaI5aGaeyyXIC TaaGymaiaaicdadaahaaqcbawabeaacaaIYaGaaGinaaaajaaycaWG RbGaam4zaaqaaiaaiodacaGGUaGaaGymaiaaisdacaaIXaGaaGynai aaiMdacaaIYaGaaGOnaiaaiwdacaaIZaGaeyyXICTaaGioaiaac6ca caaI5aGaaGioaiaaiEdacaaI1aGaaGynaiaaigdacaaI3aGaaGioai abgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGymaiaaiAdaaaqc aaMaamyBamaaCaaajeaybeqaaiaaikdaaaqcaaMaeyyXICTaam4Cam aaCaaajeaybeqaaiabgkHiTiaaikdaaaqcaaMaeyyXICTaaGOnaiaa c6cacaaIZaGaaG4naiaaigdacaaIWaGaaGimaiaaiwdacqGHflY1ca aIXaGaaGimamaaCaaajeaybeqaaiaaiAdaaaqcaaMaamyBaaaaaeaa cqGH9aqpcaWGJbGaeyyXICTaaGimaiaac6cacaaIYaGaaGOmaiaaig dacaaI1aGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGa eyOeI0IaaGyoaaaaaaaa@B86F@   (48)

This velocity corresponds to a speed of light of 6.6425 cm/s (2.99792458∙108m/s∙0.22157∙10-9=0.66425∙10-1m/s) and an average human circulation rate due to time dilation.

The time dilation and distance contraction behind the curved space-time structure

Our basic assumption that from the time of the formation of life, during the Darwinian evolutionary process on the surface of the Earth,7 the biological individual also adapts to the value of g. In this way, like adaptation to the environment, the value of surface gravity can multiply over billions of years. These effects accumulated by g can be stored in the genetic information system. In this way, stepping up, they would be fixed in deoxyribonucleic acid (DNA) at higher and higher values. One of the gravitational effects thus coded would be the curvature of space, which would correspond to the heart and circulatory system of biological creatures. These effects would therefore be hereditary, appearing in the offspring as an increasingly advanced anatomical structure. Extending the validity of Newton's law of gravity to the biology would make it possible to determine the parameters of human blood circulation. Without violating the basics of the law, the validity of data well known from the life sciences could be verified by applying it.

Figures 6&7. The representations show the parts of the universe where there are time-dilation and distance-contraction regions, and where there is a linear time scale. The part within h displays the former, and the range between h and H displays the latter. The colored circles or lines (spheres in 3 dimensions) show the evolutionary distance and time of the biological individual. Because they are located in the h range, they are also subject to space-time deflection and the associated change in time and distance.

The ratio of the angle of deflection of light passing through the Earth's surface to the total angle as a universal constant

The deviation angle (α) of a light beam, which passes near a celestial body’s surface, in this case the Earth, according to Einstein’s formula9 is:

α= 2GM c 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0ZaaSaaaeaacaaIYaGaeyyXICTaam4raiabgwSixlaad2eaaeaa caWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyyXICTaamOuaaaaaaa@4496@   (49)

The ratio of the alpha angle to the total angle can be considered as a universal constant that can be reciprocal to each other and can thus be called fα/2π or f2π/α. considering the first case:

f α/2π = α 2π = 1 2π 2GM c 2 R = GM π c 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHXoqycaGGVaGaaGOmaiabec8aWbqabaGccqGH9aqpdaWc aaqaaiabeg7aHbqaaiaaikdacqGHflY1cqaHapaCaaGaeyypa0ZaaS aaaeaacaaIXaaabaGaaGOmaiabgwSixlabec8aWbaacqGHflY1daWc aaqaaiaaikdacqGHflY1caWGhbGaeyyXICTaamytaaqaaiaadogada ahaaWcbeqaaiaaikdaaaGccqGHflY1caWGsbaaaiabg2da9maalaaa baGaam4raiabgwSixlaad2eaaeaacqaHapaCcqGHflY1caWGJbWaaW baaSqabeaacaaIYaaaaOGaeyyXICTaamOuaaaaaaa@6634@   (50)

Numerically:

f α/2π = 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg 3.141592658.98755178 10 16 m 2 s 2 6.371005 10 6 m =0.22156987 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadAgada Wgaaqcbawaaiabeg7aHjaac+cacaaIYaGaeqiWdahabeaajaaycqGH 9aqpdaWcaaqaaiaaiAdacaGGUaGaaGOnaiaaiEdacaaIZaGaaGioai aaisdacaaI4aGaeyyXICTaaGymaiaaicdadaahaaqcbawabeaacqGH sislcaaIXaGaaGymaaaajaaycaWGTbWaaWbaaKqaGfqabaGaaG4maa aajaaycqGHflY1caWGRbGaam4zamaaCaaajeaybeqaaiabgkHiTiaa igdaaaqcaaMaeyyXICTaam4CamaaCaaajeaybeqaaiabgkHiTiaaik daaaqcaaMaeyyXICTaaGynaiaac6cacaaI5aGaaG4naiaaikdacaaI XaGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGOmai aaisdaaaqcaaMaam4AaiaadEgacqGHflY1aeaacaaIZaGaaiOlaiaa igdacaaI0aGaaGymaiaaiwdacaaI5aGaaGOmaiaaiAdacaaI1aGaey yXICTaaGioaiaac6cacaaI5aGaaGioaiaaiEdacaaI1aGaaGynaiaa igdacaaI3aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqaba GaaGymaiaaiAdaaaqcaaMaamyBamaaCaaajeaybeqaaiaaikdaaaqc aaMaeyyXICTaam4CamaaCaaajeaybeqaaiabgkHiTiaaikdaaaqcaa MaeyyXICTaaGOnaiaac6cacaaIZaGaaG4naiaaigdacaaIWaGaaGim aiaaiwdacqGHflY1caaIXaGaaGimamaaCaaajeaybeqaaiaaiAdaaa qcaaMaamyBaaaacqGH9aqpcaqGWaGaaeOlaiaabkdacaqGYaGaaeym aiaabwdacaqG2aGaaeyoaiaabIdacaqG3aGaeyyXICTaaGymaiaaic dadaahaaqcbawabeaacqGHsislcaaI5aaaaaaa@AACB@   (51)

Inversely:

f 2π/α =2π 1 α = 2π c 2 R 2GM = π c 2 R GM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIYaGaeqiWdaNaai4laiabeg7aHbqabaGccqGH9aqpcaaI YaGaeyyXICTaeqiWdaNaeyyXIC9aaSaaaeaacaaIXaaabaGaeqySde gaaiabg2da9maalaaabaGaaGOmaiabgwSixlabec8aWjabgwSixlaa dogadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGsbaabaGaaGOmai abgwSixlaadEeacqGHflY1caWGnbaaaiabg2da9maalaaabaGaeqiW daNaeyyXICTaam4yamaaCaaaleqabaGaaGOmaaaakiabgwSixlaadk faaeaacaWGhbGaeyyXICTaamytaaaaaaa@686E@   (52)

Numerically:

f 2π/α = 3.1415926538.98755178 10 16 m 2 s 2 6.371005 10 6 m 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg =4.513249 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadAgada WgaaqcbawaaiaaikdacqaHapaCcaGGVaGaeqySdegabeaajaaycqGH 9aqpdaWcaaqaaiaaiodacaGGUaGaaGymaiaaisdacaaIXaGaaGynai aaiMdacaaIYaGaaGOnaiaaiwdacaaIZaGaeyyXICTaaGioaiaac6ca caaI5aGaaGioaiaaiEdacaaI1aGaaGynaiaaigdacaaI3aGaaGioai abgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGymaiaaiAdaaaqc aaMaamyBamaaCaaajeaybeqaaiaaikdaaaqcaaMaeyyXICTaam4Cam aaCaaajeaybeqaaiabgkHiTiaaikdaaaqcaaMaeyyXICTaaGOnaiaa c6cacaaIZaGaaG4naiaaigdacaaIWaGaaGimaiaaiwdacqGHflY1ca aIXaGaaGimamaaCaaajeaybeqaaiaaiAdaaaqcaaMaamyBaaqaaiaa iAdacaGGUaGaaGOnaiaaiEdacaaIZaGaaGioaiaaisdacaaI4aGaey yXICTaaGymaiaaicdadaahaaqcbawabeaacqGHsislcaaIXaGaaGym aaaajaaycaWGTbWaaWbaaKqaGfqabaGaaG4maaaajaaycqGHflY1ca WGRbGaam4zamaaCaaajeaybeqaaiabgkHiTiaaigdaaaqcaaMaeyyX ICTaam4CamaaCaaajeaybeqaaiabgkHiTiaaikdaaaqcaaMaeyyXIC TaaGynaiaac6cacaaI5aGaaG4naiaaikdacaaIXaGaaGyoaiabgwSi xlaaigdacaaIWaWaaWbaaKqaGfqabaGaaGOmaiaaisdaaaqcaaMaam 4AaiaadEgaaaGaeyypa0Jaaeinaiaab6cacaqG1aGaaeymaiaaboda caqGYaGaaeinaiaabMdacqGHflY1caaIXaGaaGimamaaCaaajeaybe qaaiaaiMdaaaaaaa@A6DF@   (53)

The minuscule dimensionless value of fα/2π may be followed by time dilation and distance contraction. On the other hand, behind an enormous value of f2π/α, representing almost 10 orders of magnitude, there may be time contraction or distance dilatation, depending on the concept in which it is used.

The factor (fα/2π) resulting from the ratio of the angles (α/2π) results in distance contraction through time dilation:

H lon g evol.dist.man f α/2π = h shor t evol.dist.man f 2π/α f α/2π = ν ν 0 ν 0 c 2 g Earth 2π c 2 R Earth 2G M Earth 2G M Earth 2π c 2 R Earth = h shor t evol.dist.man MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WGibWaaSbaaKqaGfaacaWGSbGaam4Baiaad6gacaWGNbWaaSbaaKGa GfaaaeqaaKqaGjaadwgacaWG2bGaam4BaiaadYgacaGGUaGaamizai aadMgacaWGZbGaciiDaiaac6cacaWGTbGaamyyaiaad6gaaeqaaKaa GjabgwSixlaadAgadaWgaaqcbawaaiabeg7aHjaac+cacaaIYaGaeq iWdahabeaajaaycqGH9aqpcaWGObWaaSbaaKqaGfaacaWGZbGaamiA aiaad+gacaWGYbGaamiDamaaBaaajiaybaaabeaajeaycaWGLbGaam ODaiaad+gacaWGSbGaaiOlaiaadsgacaWGPbGaam4CaiGacshacaGG UaGaamyBaiaadggacaWGUbaabeaajaaycqGHflY1caWGMbWaaSbaaK qaGfaacaaIYaGaeqiWdaNaai4laiabeg7aHbqabaqcaaMaeyyXICTa amOzamaaBaaajeaybaGaeqySdeMaai4laiaaikdacqaHapaCaeqaaa GcbaqcaaMaeyypa0ZaaSaaaeaacqaH9oGBcqGHsislcqaH9oGBdaWg aaqcbawaaiaaicdaaeqaaaqcaawaaiabe27aUnaaBaaajeaybaGaaG imaaqabaaaaKaaGjabgwSixpaalaaabaGaam4yamaaCaaajeaybeqa aiaaikdaaaaajaaybaGaam4zamaaBaaajeaybaGaamyraiaadggaca WGYbGaamiDaiaadIgaaeqaaaaajaaycqGHflY1daWcaaqaaiaaikda cqGHflY1cqaHapaCcqGHflY1caWGJbWaaWbaaKqaGfqabaGaaGOmaa aajaaycqGHflY1caWGsbWaaSbaaKqaGfaacaWGfbGaamyyaiaadkha caWG0bGaamiAaaqabaaajaaybaGaaGOmaiabgwSixlaadEeacqGHfl Y1caWGnbWaaSbaaKqaGfaacaWGfbGaamyyaiaadkhacaWG0bGaamiA aaqabaaaaKaaGjabgwSixpaalaaabaGaaGOmaiabgwSixlaadEeacq GHflY1caWGnbWaaSbaaKqaGfaacaWGfbGaamyyaiaadkhacaWG0bGa amiAaaqabaaajaaybaGaaGOmaiabgwSixlabec8aWjabgwSixlaado gadaahaaqcbawabeaacaaIYaaaaKaaGjabgwSixlaadkfadaWgaaqc bawaaiaadweacaWGHbGaamOCaiaadshacaWGObaabeaaaaqcaaMaey ypa0JaamiAamaaBaaajeaybaGaam4CaiaadIgacaWGVbGaamOCaiaa dshadaWgaaqccawaaaqabaqcbaMaamyzaiaadAhacaWGVbGaamiBai aac6cacaWGKbGaamyAaiaadohaciGG0bGaaiOlaiaad2gacaWGHbGa amOBaaqabaaaaaa@E3FA@   (54)

The factor (f2π/α) resulting from the inverse ratio of the angles (2π/α) results in distance dilation through time contraction:

h shor t evol.dist.man f 2π/α = h shor t evol.dist.man 2π α = ν ν 0 ν 0 c 2 g Earth 2π c 2 R 2GM = H lon g evol.dist.man MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaagbaeqabaGaam iAamaaBaaajeaybaGaam4CaiaadIgacaWGVbGaamOCaiaadshadaWg aaqccawaaaqabaqcbaMaamyzaiaadAhacaWGVbGaamiBaiaac6caca WGKbGaamyAaiaadohaciGG0bGaaiOlaiaad2gacaWGHbGaamOBaaqa baqcaaMaeyyXICTaamOzamaaBaaajeaybaGaaGOmaiabec8aWjaac+ cacqaHXoqyaeqaaKaaGjabg2da9iaadIgadaWgaaqcbawaaiaadoha caWGObGaam4BaiaadkhacaWG0bWaaSbaaKGaGfaaaeqaaKqaGjaadw gacaWG2bGaam4BaiaadYgacaGGUaGaamizaiaadMgacaWGZbGaciiD aiaac6cacaWGTbGaamyyaiaad6gaaeqaaaqcaawaaiabgwSixpaala aabaGaaGOmaiabgwSixlabec8aWbqaaiabeg7aHbaacqGH9aqpdaWc aaqaaiabe27aUjabgkHiTiabe27aUnaaBaaajeaybaGaaGimaaqaba aajaaybaGaeqyVd42aaSbaaKqaGfaacaaIWaaabeaaaaqcaaMaeyyX IC9aaSaaaeaacaWGJbWaaWbaaKqaGfqabaGaaGOmaaaaaKaaGfaaca WGNbWaaSbaaKqaGfaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqa baaaaKaaGjabgwSixpaalaaabaGaaGOmaiabgwSixlabec8aWjabgw SixlaadogadaahaaqcbawabeaacaaIYaaaaKaaGjabgwSixlaadkfa aeaacaaIYaGaeyyXICTaam4raiabgwSixlaad2eaaaGaeyypa0Jaam isamaaBaaajeaybaGaamiBaiaad+gacaWGUbGaam4zamaaBaaajiay baaabeaajeaycaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaadsgaca WGPbGaam4CaiGacshacaGGUaGaamyBaiaadggacaWGUbaabeaaaaaa @B0BA@   (55)

Determining the cross-sectional area of the average human circulation based on a value derived from the Darwinian rate of evolution

When determining the cross-sectional area of an average human circulation with a circular shape and a circular cross-section (A), the following data (V, t and v) shall be taken into account.

Based on Equation 24, taking the single circulation time (t2π(25)) as 25 s, the circular cross-sectional area (A1) of the average circulation is as follows:

Since: V 2π(25s) t 2π(25s) = A 1 v Darninian evol.man(bluered) ,s o A 1 = V 2π(25s) t 2π(25s) v Darninian evol.man(bluered) = m ρ t 2π(25s) v Darninian evol.man(bluered) = 1.4kg 1 10 3 kg m 3 25 s5.2 10 2 m s =0.0107692 10 1 m 2 =10.7692c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayci GGtbGaaiyAaiaac6gacaWGJbGaamyzaiaacQdadaWcaaqaaiaadAfa daWgaaqcbawaaiaaikdacqaHapaCcaGGOaGaaGOmaiaaiwdacaWGZb GaaiykaaqabaaajaaybaGaamiDamaaBaaajeaybaGaaGOmaiabec8a WjaacIcacaaIYaGaaGynaiaadohacaGGPaaabeaaaaqcaaMaeyypa0 JaamyqamaaBaaajeaybaGaaGymaaqabaqcaaMaeyyXICTaamODamaa BaaajeaybaGaamiraiaadggacaWGYbGaamOBaiaadMgacaWGUbGaam yAaiaadggacaWGUbaabeaajaaydaWgaaqcbawaamaaBaaajiaybaaa beaajeaycaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaad2gacaWGHb GaamOBaiaacIcacaWGIbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOC aiaadwgacaWGKbGaaiykaaqabaqcaaMaaiilaiaadohacaWGVbWaaS baaKqaGfaaaeqaaKaaGjaadgeadaWgaaqcbawaaiaaigdaaeqaaaGc baqcaaMaeyypa0ZaaSaaaeaacaWGwbWaaSbaaKqaGfaacaaIYaGaeq iWdaNaaiikaiaaikdacaaI1aGaam4CaiaacMcaaeqaaaqcaawaaiaa dshadaWgaaqcbawaaiaaikdacqaHapaCcaGGOaGaaGOmaiaaiwdaca WGZbGaaiykaaqabaqcaaMaeyyXICTaamODamaaBaaajeaybaGaamir aiaadggacaWGYbGaamOBaiaadMgacaWGUbGaamyAaiaadggacaWGUb aabeaajaaydaWgaaqcbawaamaaBaaajiaybaaabeaajeaycaWGLbGa amODaiaad+gacaWGSbGaaiOlaiaad2gacaWGHbGaamOBaiaacIcaca WGIbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadwgacaWGKbGa aiykaaqabaaaaKaaGjabg2da9maalaaabaWaaSaaaeaacaWGTbaaba GaeqyWdihaaaqaaiaadshadaWgaaqcbawaaiaaikdacqaHapaCcaGG OaGaaGOmaiaaiwdacaWGZbGaaiykaaqabaqcaaMaeyyXICTaamODam aaBaaajeaybaGaamiraiaadggacaWGYbGaamOBaiaadMgacaWGUbGa amyAaiaadggacaWGUbaabeaajaaydaWgaaqcbawaamaaBaaajiayba aabeaajeaycaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaad2gacaWG HbGaamOBaiaacIcacaWGIbGaamiBaiaadwhacaWGLbGaeyOeI0Iaam OCaiaadwgacaWGKbGaaiykaaqabaaaaaGcbaqcaaMaeyypa0ZaaSaa aeaadaWcaaqaaiaaigdacaGGUaGaaGinaiaadUgacaWGNbaabaGaaG ymaiabgwSixlaaigdacaaIWaWaaWbaaKqaGfqabaGaaG4maaaajaay daWcaaqaaiaadUgacaWGNbaabaGaamyBamaaCaaajeaybeqaaiaaio daaaaaaaaaaKaaGfaacaaIYaGaaGynamaaBaaajeaybaaabeaajaay caWGZbGaeyyXICTaaGynaiaac6cacaaIYaGaeyyXICTaaGymaiaaic dadaahaaqcbawabeaacqGHsislcaaIYaaaaKaaGnaalaaabaGaamyB aaqaaiaadohaaaaaaiabg2da9iaaicdacaGGUaGaaGimaiaaigdaca aIWaGaaG4naiaaiAdacaaI5aGaaGOmaiabgwSixlaaigdacaaIWaWa aWbaaKqaGfqabaGaeyOeI0IaaGymaaaajaaydaWgaaqcbawaaaqaba qcaaMaamyBamaaCaaajeaybeqaaiaaikdaaaqcaaMaeyypa0JaaGym aiaaicdacaGGUaGaaG4naiaaiAdacaaI5aGaaGOmaiaadogacaWGTb WaaWbaaKqaGfqabaGaaGOmaaaaaaaa@0B78@   (56)

Where V2π(25) is the volume of single circulation of blood stream and vDarwinian evolution, man(blue-red) is the rate of Darwinian process.

Taking the single turnaround time of the circulation (t2π(30)) to be 30 s, the area of the circular cross-section (A2) is:

A 2 = V 2π(30s) t 2π(30s) v Darwin.evol.man(bluered) = 2 10 3 m 3 30s5.2 10 2 m s =0.01282 10 1 m 2 =12.82c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGbb WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGwbWaaSba aSqaaiaaikdacqaHapaCcaGGOaGaaG4maiaaicdacaWGZbGaaiykaa qabaaakeaacaWG0bWaaSbaaSqaaiaaikdacqaHapaCcaGGOaGaaG4m aiaaicdacaWGZbGaaiykaaqabaGccqGHflY1caWG2bWaaSbaaSqaai aadseacaWGHbGaamOCaiaadEhacaWGPbGaamOBaiaac6cacaWGLbGa amODaiaad+gacaWGSbGaaiOlaiaad2gacaWGHbGaamOBaiaacIcaca WGIbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadwgacaWGKbGa aiykaaqabaaaaaGcbaGaeyypa0ZaaSaaaeaacaaIYaGaeyyXICTaaG ymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGTbWaaWba aSqabeaacaaIZaaaaaGcbaGaaG4maiaaicdacaWGZbGaeyyXICTaaG ynaiaac6cacaaIYaGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiab gkHiTiaaikdaaaGcdaWcaaqaaiaad2gaaeaacaWGZbaaaaaacqGH9a qpcaaIWaGaaiOlaiaaicdacaaIXaGaaGOmaiaaiIdacaaIYaGaeyyX ICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGTb WaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGymaiaaikdacaGGUaGa aGioaiaaikdacaWGJbGaamyBamaaCaaaleqabaGaaGOmaaaaaaaa@8E3C@   (57)

The radius of a circular tube (torus) (r) with a circular cross-sectional area (A) can be expressed from the relation A = r2∙π:

A= r 2 π , so : r= A π , and : d=2r=2 A π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaayk W7cqGH9aqpcaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyyXICTaeqiW da3aaSbaaSqaaaqabaGccaGGSaWaaSbaaSqaaaqabaGccaWGZbGaam 4BaiaacQdadaWgaaWcbaaabeaakiaadkhacqGH9aqpdaGcaaqaamaa laaabaGaamyqaaqaaiabec8aWbaaaSqabaGcdaWgaaWcbaaabeaaki aacYcadaWgaaWcbaaabeaakiaadggacaWGUbGaamizaiaacQdadaWg aaWcbaaabeaakiaadsgacqGH9aqpcaaIYaGaeyyXICTaamOCaiabg2 da9iaaikdacqGHflY1daGcaaqaamaalaaabaGaamyqaaqaaiabec8a WbaaaSqabaaaaa@5968@   (58)

From this, the radius (r1) of the circular cross-sectional surface of the torus is expressed numerically as follows:

r 1 = 10.7693c m 2 3.141592 =1.8515cm , and : d=3.703cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaakiabg2da9maakaaabaWaaSaaaeaacaaIXaGa aGimaiaac6cacaaI3aGaaGOnaiaaiMdacaaIZaGaam4yaiaad2gada ahaaWcbeqaaiaaikdaaaaakeaacaaIZaGaaiOlaiaaigdacaaI0aGa aGymaiaaiwdacaaI5aGaaGOmaaaaaSqabaGccqGH9aqpcaaIXaGaai OlaiaaiIdacaaI1aGaaGymaiaaiwdacaWGJbGaamyBaiaacYcadaWg aaWcbaaabeaakiaadggacaWGUbGaamizaiaacQdadaWgaaWcbaaabe aakiaadsgacqGH9aqpcaaIZaGaaiOlaiaaiEdacaaIWaGaaG4maiaa dogacaWGTbaaaa@5A44@   (59)

And the radius (r2) of the larger cross-section is:

r 2 = 12.82c m 2 3.141592 =2.02cm , and : d=4.04cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaakiabg2da9maakaaabaWaaSaaaeaacaaIXaGa aGOmaiaac6cacaaI4aGaaGOmaiaadogacaWGTbWaaWbaaSqabeaaca aIYaaaaaGcbaGaaG4maiaac6cacaaIXaGaaGinaiaaigdacaaI1aGa aGyoaiaaikdaaaaaleqaaOGaeyypa0JaaGOmaiaac6cacaaIWaGaaG OmaiaadogacaWGTbGaaiilamaaBaaaleaaaeqaaOGaamyyaiaad6ga caWGKbGaaiOoamaaBaaaleaaaeqaaOGaamizaiabg2da9iaaisdaca GGUaGaaGimaiaaisdacaWGJbGaamyBaaaa@5681@   (60)

For a blood flow rate derived from the Darwinian velocity of evolution (vDarwinian evolution, man(blue-red)), the radius (r) of the average human circulation cross-section can be determined between 1.85 cm and 2 cm at rest (the diameter is between 3.7 cm and 4 cm).

The force of gravity affecting the average human blood circulation

If the mass (m1), or in this case the volume of human blood (V1) for a single revolution time (t1) is accelerated by the force of gravity (g), the acceleration force (F1):

F=ma= m 1 g= V 1 ρg,so: F 1 = 1.4 kg 9.80665 m s 2 = 13.7293 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGgb GaaGPaVlabg2da9iaad2gacqGHflY1caWGHbGaeyypa0JaamyBamaa BaaaleaacaaIXaaabeaakiabgwSixlaadEgacqGH9aqpcaWGwbWaaS baaSqaaiaaigdaaeqaaOGaeyyXICTaeqyWdiNaeyyXICTaam4zaiaa cYcacaWGZbGaam4BaiaacQdaaeaacaWGgbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaGymaiaac6cacaaI0aWaaSbaaSqaaaqabaGccaWG RbGaam4zaiabgwSixlaaiMdacaGGUaGaaGioaiaaicdacaaI2aGaaG OnaiaaiwdadaWgaaWcbaaabeaakiaad2gacqGHflY1caWGZbWaaWba aSqabeaacqGHsislcaaIYaaaaOGaeyypa0JaaGymaiaaiodacaGGUa GaaG4naiaaikdacaaI5aGaaG4mamaaBaaaleaaaeqaaOGaamOtaaaa aa@6D00@   (61)

Where mass (m1) is the product of volume (V1) and density (ρ) of the human blood (m=V∙ρ; ρ≈1.060g/cm3). However, for the sake of simplicity, the density of blood is taken to be equal to that of water.

Moreover, for the larger volume (mass; m2), the accelerating force (F2):

F 2 = 2 kg 9.80665 m s 2 = 19.6133 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaaabeaakiabg2da9iaaikdadaWgaaWcbaaabeaakiaa dUgacaWGNbGaeyyXICTaaGyoaiaac6cacaaI4aGaaGimaiaaiAdaca aI2aGaaGynamaaBaaaleaaaeqaaOGaamyBaiabgwSixlaadohadaah aaWcbeqaaiabgkHiTiaaikdaaaGccqGH9aqpcaaIXaGaaGyoaiaac6 cacaaI2aGaaGymaiaaiodacaaIZaWaaSbaaSqaaaqabaGccaWGobaa aa@5080@   (62)

The gravitational attractive force, which according to our idea above accelerates the blood in biological evolution and which also maintains the average human blood circulation, can vary between 13.7 N and 19.6 N under physiological conditions at rest. In this setup, the driving force in the model corresponds to the pressure force of the heart. 

When determining the weight of a vertical column of blood (left and centre of Figure 8), the relationship between the mass of the blood and the gravity acting on it becomes evident. The compressive force (F) acting on the base of the column and the resulting pressure (P) are the same as the blood pressure prevailing in human blood circulation. Less obviously, but the same applies to a torus-shaped circulation (right side of Figure 8). Counting from any point of the circle (white dashed line), the length (s) of a single revolution is the same in all cases. The driving force (F) required to move this section (s) corresponds to the work (W) done by the heart against gravity (g) (W=m∙g∙s). If we place the torus symbolizing circulation in any plane in space, due to the pressure (P) spreading equally in all directions, it will behave similarly to the vertical column of blood. The compressive force will be the same regardless of whether the circulation is fractionated or not. The amount of blood ejected during a single contraction of the heart is 70 mL. In the model, the same corresponds to the blood volume of a 5 cm section. In this way, the continuously flowing blood within the entire circle is composed of fractionated elements.

Figure 8 highlights the relationship between the Earth's gravitational (g) attractive force (F↓) acting on the mass (m) of a given column of blood and the driving force (Fͻ) required to turn the same volume of average human blood circulation (V≈m) around once. For further relationships (pressure /P/, work /W/, etc.), see the following chapters.

The pressure conditions established by the gravitational force in the average human blood circulation

The pressure (P) exerted by the acceleration force (F) per unit area (A), i.e., in this case the transverse cross-section of the average human circulation is as follows:

P 1 = F 1 A 1 = 13.7293N 0.00107693 m 2 = 12748.55 N/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaamOramaaBaaaleaa caaIXaaabeaaaOqaaiaadgeadaWgaaWcbaGaaGymaaqabaaaaOGaey ypa0ZaaSaaaeaacaaIXaGaaG4maiaac6cacaaI3aGaaGOmaiaaiMda caaIZaGaamOtaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaG imaiaaiEdacaaI2aGaaGyoaiaaiodacaWGTbWaaWbaaSqabeaacaaI Yaaaaaaakiabg2da9iaaigdacaaIYaGaaG4naiaaisdacaaI4aGaai OlaiaaiwdacaaI1aWaaSbaaSqaaaqabaGccaWGobGaai4laiaad2ga daahaaWcbeqaaiaaikdaaaaaaa@5716@   (63)

In the case of the larger accelerating force (F2) and the larger pipe cross-sectional area (A2), the accelerating force (F2) is as follows:

P 2 = F 2 A 2 = 19.6133N 0.001282 m 2 =15298.986 N m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaamOramaaBaaaleaa caaIYaaabeaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaaaaOGaey ypa0ZaaSaaaeaacaaIXaGaaGyoaiaac6cacaaI2aGaaGymaiaaioda caaIZaGaamOtaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaG OmaiaaiIdacaaIYaGaamyBamaaCaaaleqabaGaaGOmaaaaaaGccqGH 9aqpcaaIXaGaaGynaiaaikdacaaI5aGaaGioaiaac6cacaaI5aGaaG ioaiaaiAdadaWcaaqaaiaad6eaaeaacaWGTbWaaWbaaSqabeaacaaI Yaaaaaaaaaa@5587@   (64)

Since: 1 N/m2 = 7.5∙10-3 mmHg (torr), in the case of the smaller accelerating force (F1), the value of the pressure (P1) in the average human circulation is:

P 1(mmHg) =12748.55 N m 2 7.5 10 3 =95 .614 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIXaGaaiikaiaad2gacaWGTbGaamisaiaadEgacaGGPaaa beaakiabg2da9iaaigdacaaIYaGaaG4naiaaisdacaaI4aGaaiOlai aaiwdacaaI1aWaaSaaaeaacaWGobaabaGaamyBamaaCaaaleqabaGa aGOmaaaaaaGccqGHflY1caaI3aGaaiOlaiaaiwdacqGHflY1caaIXa GaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaakiabg2da9iaabMda caqG1aGaaeOlaiaabAdacaqGXaGaaeinamaaBaaaleaaaeqaaOGaae yBaiaab2gacaqGibGaae4zaaaa@599F@   (65)

Moreover, in the case of a greater acceleration force (F2), the value of the pressure (P2) in the circulation will increase:

P 2(mmHg) =15300 N m 2 7.5 10 3 = 114.75 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIYaGaaiikaiaad2gacaWGTbGaamisaiaadEgacaGGPaaa beaakiabg2da9iaaigdacaaI1aGaaG4maiaaicdacaaIWaWaaSaaae aacaWGobaabaGaamyBamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1 caaI3aGaaiOlaiaaiwdacqGHflY1caaIXaGaaGimamaaCaaaleqaba GaeyOeI0IaaG4maaaakiabg2da9iaaigdacaaIXaGaaGinaiaac6ca caaI3aGaaGynamaaBaaaleaaaeqaaOGaaeyBaiaab2gacaqGibGaae 4zaaaa@5780@   (66)

The pressure (P) in the average human blood circulation can take values between 96 and 115 mmHg. Depending on the individual parameters (F, A), calculated with a simple mathematical average, in the previous case it corresponds to 115 mmHg systolic and 75 mmHg diastolic values (or in another version 120/70 mmHg blood pressure). The latter average blood pressure corresponds to a blood pressure value of 140/90 mmHg. These values are the same as the data determined by the invasive internal cardiac catheter method or by indirect external blood pressure measurement.50

Gravitational work done during a single revolution of human blood circulation

The driving force behind the torus-shaped average human blood circulation is the pumping function of the heart. Metaphorically, it is the equivalent of the attractive force of gravity in the human body. The work required to maintain blood flow (W1) is the product of force (F1) and flow length (s1):

W 1 = F 1 s 1 =13.7293N1.3m= 17.848 Nm= 17.848 J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIXaaabeaakiabg2da9iaadAeadaWgaaWcbaGaaGymaaqa baGccqGHflY1caWGZbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaG ymaiaaiodacaGGUaGaaG4naiaaikdacaaI5aGaaG4maiaad6eacqGH flY1caaIXaGaaiOlaiaaiodacaWGTbGaeyypa0JaaGymaiaaiEdaca GGUaGaaGioaiaaisdacaaI4aWaaSbaaSqaaaqabaGccaWGobGaamyB aiabg2da9iaaigdacaaI3aGaaiOlaiaaiIdacaaI0aGaaGioamaaBa aaleaaaeqaaOGaamOsaaaa@590B@   (67)

In the other case, when the greater accelerating force prevails (F2), the amount of work (W2) increases:

W 2 = F 2 s 2 =19.6133N1.56m=30.6Nm=30.6J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIYaaabeaakiabg2da9iaadAeadaWgaaWcbaGaaGOmaaqa baGccqGHflY1caWGZbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaG ymaiaaiMdacaGGUaGaaGOnaiaaigdacaaIZaGaaG4maiaad6eacqGH flY1caaIXaGaaiOlaiaaiwdacaaI2aGaamyBaiabg2da9iaaiodaca aIWaGaaiOlaiaaiAdacaWGobGaamyBaiabg2da9iaaiodacaaIWaGa aiOlaiaaiAdacaWGkbaaaa@5654@   (68)

The work of the heart muscle that maintains the average human blood circulation, which corresponds to the work of the gravitational force, can vary between 17.8 J and 30.6 J in a resting state under physiological conditions (Figure 8).

The output of the heart for a single cycle time of the average human blood circulation

The performance of the heart can be determined in two ways in relation to the time of one revolution (25-30s).48,49 One method is to estimate it from the two extreme values of the maximum and minimum circulation flow rates (in the aorta and capillaries).44 The other, as detailed above, is reduced from the speed of Darwinian evolution in proportion to the angles (Eq.46). However, since both flow rates are roughly the same (5cm and 5.2cm), the conclusions drawn from them and the result that can also be displayed visually are similar.

In this way, the performance (P1(watt)) of the work (W1) of the driving force (F1) required maintaining the flow rate of the average human bloodstream (vDarwinian evolution, man(blue-red)reduced) derived from the rate of Darwinian evolution (VDarwinian evolution, man(blue-red)) is as follows:

P 1(watt) = m 1 g s 1 t 1 = F s 1 t 1 = W 1 t 1 = 13.7293kg m s 2 1.3m 25s = 17.848Nm 25s =0.7139 J s =0.714W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGqb WaaSbaaSqaaiaaigdacaGGOaGaam4DaiaadggacaWG0bGaamiDaiaa cMcaaeqaaOGaeyypa0ZaaSaaaeaacaWGTbWaaSbaaSqaaiaaigdaae qaaOGaeyyXICTaam4zaiabgwSixlaadohadaWgaaWcbaGaaGymaaqa baaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaaaakiabg2da9maala aabaGaamOraiabgwSixlaadohadaWgaaWcbaGaaGymaaqabaaakeaa caWG0bWaaSbaaSqaaiaaigdaaeqaaaaakiabg2da9maalaaabaGaam 4vamaaBaaaleaacaaIXaaabeaaaOqaaiaadshadaWgaaWcbaGaaGym aaqabaaaaaGcbaGaeyypa0ZaaSaaaeaacaaIXaGaaG4maiaac6caca aI3aGaaGOmaiaaiMdacaaIZaGaam4AaiaadEgadaWcaaqaaiaad2ga aeaacaWGZbWaaWbaaSqabeaacaaIYaaaaaaakiabgwSixlaaigdaca GGUaGaaG4maiaad2gaaeaacaaIYaGaaGynaiaadohaaaGaeyypa0Za aSaaaeaacaaIXaGaaG4naiaac6cacaaI4aGaaGinaiaaiIdacaWGob GaamyBaaqaaiaaikdacaaI1aGaam4CaaaaaeaacqGH9aqpcaaIWaGa aiOlaiaaiEdacaaIXaGaaG4maiaaiMdadaWcaaqaaiaadQeaaeaaca WGZbaaaiabg2da9iaaicdacaGGUaGaaG4naiaaigdacaaI0aGaam4v aaaaaa@7F73@   (69)

(Since 1 J = 1 kg•1 m2•1 s‒2, and 1 Joule per second [J/s] = 1 Watt [W].)

In the other case, when the greater work is performed (W2) (even in the case of greater single flow time; t2), the performance (P2(watt)) also increases:

P 2(watt) = W 2 t 2 = 30.6 J 30 s =1.02 J s =1 .02 W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIYaGaaiikaiaadEhacaWGHbGaamiDaiaadshacaGGPaaa beaakiabg2da9maalaaabaGaam4vamaaBaaaleaacaaIYaaabeaaaO qaaiaadshadaWgaaWcbaGaaGOmaaqabaaaaOGaeyypa0ZaaSaaaeaa caaIZaGaaGimaiaac6cacaaI2aWaaSbaaSqaaaqabaGccaWGkbaaba GaaG4maiaaicdadaWgaaWcbaaabeaakiaadohaaaGaeyypa0Jaaeym aiaab6cacaqGWaGaaeOmamaalaaabaGaamOsaaqaaiaadohaaaGaey ypa0Jaaeymaiaab6cacaqGWaGaaeOmamaaBaaaleaaaeqaaOGaam4v aaaa@53F2@   (70)

The performance of the heart (Pwatt) can also be determined directly from the value derived from the speed of the Darwinian evolutionary process (vDarwinian evolution, man(blue-red)). This can be calculated from the product of the heart's work (W) and the average human blood circulation speed (vDarwinian evolution, man(blue-red)reduced). Since the work involved in performance (PWatt) can be broken down into the product of force and distance (s), the quotient of distance (s2) and time (t2π(25)) will be equal to velocity. Therefore, the value calculated from the velocity of the blood between the aorta and capillary (Vestimated) should be equal to vDarwinian evolution, man(blue-red)reduced, and then the power determined in this way is the following:

P 1(watt) = W 1 t 1 = F 2π(25) s 2π(25) t 2π(25) = F 2π(25) v,but,be equal:v= v Darwinian so: F 2π(25) v Darwin = m 2π(25) g Earth v Darwin = 1.4 kg9.80665 m s 2 0.052 m s = 0.714 W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGqb WaaSbaaSqaaiaaigdacaGGOaGaam4DaiaadggacaWG0bGaamiDaiaa cMcaaeqaaOGaeyypa0ZaaSaaaeaacaWGxbWaaSbaaSqaaiaaigdaae qaaaGcbaGaamiDamaaBaaaleaacaaIXaaabeaaaaGccqGH9aqpdaWc aaqaaiaadAeadaWgaaWcbaGaaGOmaiabec8aWjaacIcacaaIYaGaaG ynaiaacMcaaeqaaOGaeyyXICTaam4CamaaBaaaleaacaaIYaGaeqiW daNaaiikaiaaikdacaaI1aGaaiykaaqabaaakeaacaWG0bWaaSbaaS qaaiaaikdacqaHapaCcaGGOaGaaGOmaiaaiwdacaGGPaaabeaaaaGc cqGH9aqpaeaacaWGgbWaaSbaaSqaaiaaikdacqaHapaCcaGGOaGaaG OmaiaaiwdacaGGPaaabeaakiabgwSixlaadAhacaGGSaGaamOyaiaa dwhacaWG0bGaaiilaabaaaaaaaaapeGaamOyaiaadwgacaqGGaGaam yzaiaadghacaWG1bGaamyyaiaadYgacaGG6aGaamODaiabg2da9iaa dAhadaWgaaWcbaGaamiraiaadggacaWGYbGaam4DaiaadMgacaWGUb GaamyAaiaadggacaWGUbaabeaakmaaBaaaleaaaeqaaOGaam4Caiaa d+gacaGG6aaabaWdaiaadAeadaWgaaWcbaGaaGOmaiabec8aWjaacI cacaaIYaGaaGynaiaacMcaaeqaaOGaeyyXICTaamODamaaBaaaleaa caWGebGaamyyaiaadkhacaWG3bGaamyAaiaad6gaaeqaaOGaeyypa0 JaamyBamaaBaaaleaacaaIYaGaeqiWdaNaaiikaiaaikdacaaI1aGa aiykaaqabaGccqGHflY1caWGNbWaaSbaaSqaaiaadweacaWGHbGaam OCaiaadshacaWGObaabeaakiabgwSixlaadAhadaWgaaWcbaGaamir aiaadggacaWGYbGaam4DaiaadMgacaWGUbaabeaakiabg2da9aqaai aaigdacaGGUaGaaGinamaaBaaaleaaaeqaaOGaam4AaiaadEgacqGH flY1caaI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aWaaS aaaeaacaWGTbaabaGaam4CamaaCaaaleqabaGaaGOmaaaaaaGccqGH flY1caaIWaGaaiOlaiaaicdacaaI1aGaaGOmamaalaaabaGaamyBaa qaaiaadohaaaGaeyypa0JaaGimaiaac6cacaaI3aGaaGymaiaaisda daWgaaWcbaaabeaakiaadEfaaaaa@C2B1@   (71)

(Since 1 kg∙m/s2 = 1 N, 1 kg∙m2/s3 =1 N∙m/s, 1 N∙m = 1 J, 1 N∙m/s = 1 J/s, 1J/s = 1 W.)

The power of the heart (P2(watt)) for 30 s of average human blood circulation (t2π(30)) and a mass of 2 kg (m2π(30)) is slightly higher than the previous one, i.e., almost 1 watt.

Cardiac output (PWatt) for a single cardiac contraction, that is, blood volume per systole (i.e., stroke volume /sv/ = 70 mL) individually, for average human circulatory velocity (vDarwinian evolution man(blue-red)), aortic blood flow speed (vaorta), and capillary blood flow rate (vcapillary) is:

P 1(watt) = m sv g s 1 t 1 = m sv g v Darninian evol.man(bluered) =0.07kg9.8 m s 2 0.052 m s =0.0357 J s ,but: P 1(watt) = m sv g s 1 t 1 = m sv g v aorta = 0.070kg9.80665 m s 2 1.5 m s =1.029 J s = 1.03 W ,and: P 1(watt) = m sv g s 1 t 1 = m sv g v capillary = 0.070kg9.80665 m s 2 0.001 m s = 0.000686 W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WGqbWaaSbaaKqaGfaacaaIXaGaaiikaiaadEhacaWGHbGaamiDaiaa dshacaGGPaaabeaajaaycqGH9aqpdaWcaaqaaiaad2gadaWgaaqcba waaiaadohacaWG2baabeaajaaycqGHflY1caWGNbGaeyyXICTaam4C amaaBaaajeaybaGaaGymaaqabaaajaaybaGaamiDamaaBaaajeayba GaaGymaaqabaaaaKaaGjabg2da9iaad2gadaWgaaqcbawaaiaadoha caWG2baabeaajaaycqGHflY1caWGNbGaeyyXICTaamODamaaBaaaje aybaGaamiraiaadggacaWGYbGaamOBaiaadMgacaWGUbGaamyAaiaa dggacaWGUbaabeaajaaydaWgaaqcbawaamaaBaaajiaybaaabeaaje aycaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaad2gacaWGHbGaamOB aiaacIcacaWGIbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadw gacaWGKbGaaiykaaqabaaajaaybaGaeyypa0JaaGimaiaac6cacaaI WaGaaG4naiaadUgacaWGNbGaeyyXICTaaGyoaiaac6cacaaI4aWaaS aaaeaacaWGTbaabaGaam4CamaaCaaajeaybeqaaiaaikdaaaaaaKaa GjabgwSixlaaicdacaGGUaGaaGimaiaaiwdacaaIYaWaaSaaaeaaca WGTbaabaGaam4CaaaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIZaGa aGynaiaaiEdadaWcaaqaaiaadQeaaeaacaWGZbaaamaaBaaajeayba aabeaajaaycaGGSaGaamOyaiaadwhacaWG0bGaaiOoaaqaaiaadcfa daWgaaqcbawaaiaaigdacaGGOaGaam4DaiaadggacaWG0bGaamiDai aacMcaaeqaaKaaGjabg2da9maalaaabaGaamyBamaaBaaajeaybaGa am4CaiaadAhaaeqaaKaaGjabgwSixlaadEgacqGHflY1caWGZbWaaS baaKqaGfaacaaIXaaabeaaaKaaGfaacaWG0bWaaSbaaKqaGfaacaaI XaaabeaaaaqcaaMaeyypa0JaamyBamaaBaaajeaybaGaam4CaiaadA haaeqaaKaaGjabgwSixlaadEgacqGHflY1caWG2bWaaSbaaKqaGfaa caWGHbGaam4BaiaadkhacaWG0bGaamyyaaqabaqcaaMaeyypa0daba GaaGimaiaac6cacaaIWaGaaG4naiaaicdacaWGRbGaam4zaiabgwSi xlaaiMdacaGGUaGaaGioaiaaicdacaaI2aGaaGOnaiaaiwdadaWcaa qaaiaad2gaaeaacaWGZbWaaWbaaKqaGfqabaGaaGOmaaaaaaqcaaMa eyyXICTaaGymaiaac6cacaaI1aWaaSaaaeaacaWGTbaabaGaam4Caa aacqGH9aqpcaaIXaGaaiOlaiaaicdacaaIYaGaaGyoamaalaaabaGa amOsaaqaaiaadohaaaGaeyypa0JaaGymaiaac6cacaaIWaGaaG4mam aaBaaajeaybaaabeaajaaycaWGxbWaaSbaaKqaGfaaaeqaaKaaGjaa cYcacaWGHbGaamOBaiaadsgacaGG6aaabaGaamiuamaaBaaajeayba GaaGymaiaacIcacaWG3bGaamyyaiaadshacaWG0bGaaiykaaqabaqc aaMaeyypa0ZaaSaaaeaacaWGTbWaaSbaaKqaGfaacaWGZbGaamODaa qabaqcaaMaeyyXICTaam4zaiabgwSixlaadohadaWgaaqcbawaaiaa igdaaeqaaaqcaawaaiaadshadaWgaaqcbawaaiaaigdaaeqaaaaaja aycqGH9aqpcaWGTbWaaSbaaKqaGfaacaWGZbGaamODaaqabaqcaaMa eyyXICTaam4zaiabgwSixlaadAhadaWgaaqcbawaaiaadogacaWGHb GaamiCaiaadMgacaWGSbGaamiBaiaadggacaWGYbGaamyEaaqabaqc aaMaeyypa0dakeaajaaycaaIWaGaaiOlaiaaicdacaaI3aGaaGimai aadUgacaWGNbGaeyyXICTaaGyoaiaac6cacaaI4aGaaGimaiaaiAda caaI2aGaaGynamaalaaabaGaamyBaaqaaiaadohadaahaaqcbawabe aacaaIYaaaaaaajaaycqGHflY1caaIWaGaaiOlaiaaicdacaaIWaGa aGymamaalaaabaGaamyBaaqaaiaadohaaaGaeyypa0JaaGimaiaac6 cacaaIWaGaaGimaiaaicdacaaI2aGaaGioaiaaiAdadaWgaaqcbawa aaqabaqcaaMaam4vaaaaaa@3779@   (72)

These are therefore speed-dependent values and indicate how much the heart's performance is for a single contraction in each section of the vascular path.

The so-called average human blood circulation model derived from the above-mentioned physiological hemodynamic parameters according to the physical laws of flow can be presented as follows (Figure 9).

Figure 9. The representation shows a torus-shaped image of the average human blood circulation. The individual parameters, i.e., volume (V), radius (r), cross-sectional area (A), force (F), work (W), pressure (PmmHg) and performance (Pwatt) were derived from the speed of the Darwinian evolutionary process (vDarwinian evol.man). In addition, we created them from time (t2π=25s-30s) and distance data (C=1.3m-1.56m) with the help of circulation test procedures (dye dilution, etc.). Using the estimated average human blood circulation speed (vestimated=5cm/s), we can reach a similar conclusion. The hemodynamic parameters determined by the two methods essentially overlap (5.2cm/s and 5cm/s), supporting each other's results.

The above data refer to the average human blood circulation as a whole. The durations of the pulmonary and systemic circulation (t2π,pulmonary=4s and t2π,systemic=25s) can be precisely determined with different circulation testing procedures. These can be done with dye or heat dilution methods, as well as with radioisotope measurements, which lead to similar results.

Based on the two circulating blood volumes (V2π,systemic and V2π,pulmonary), as well as knowing the speed of the Darwinian evolutionary process (vDarwinian evolution, man(blue-red)), a small and a large blood circulation can be distinguished, which ensures continuous one-way blood flow. With these data, the originally single circular blood flow (torus) can be divided into two separate parts (doubled torus), which represent human blood circulation in detail.51

Separation of toroidal average human blood circulation into average systemic and pulmonary circulation

The circulation size (s,C) resulting from the single circulation time of the human blood circulation (t2π,pulmonary) and the average speed (vaverage,torus) we arbitrarily determined includes the pulmonary circulation. Similarly, the circulation derived from the value of the Darwinian evolutionary rate also includes the pulmonary circulation. If in both cases the length of the pulmonary circulation (spulmonary) and the value of the volume of the blood in it are subtracted from the length (and volume) of the average human blood circulation, which is embodied in the form of the torus, the toroidal blood flow can be divided into two parts. With this method, a separate pulmonary and systemic circulation can be created (Caverage - Cpulmonary = Csystemic and V2π,average-V2π,pulmonary = V2π,systemic). In this way, the sophisticated system of human blood circulation is realized, which represents the highest degree of Darwinian evolution.

If a section is cut out of the torus-shaped average human blood circulation and reduced in proportion to the pulmonary circulation time, the intensity of the blood flow does not change with the same flow cross-sectional area (I=A∙v). Thus, the value of the s/t ratio, i.e., the flow rate, remains unchanged even with a smaller size, i.e., the blood flow rate does not change in the pulmonary circulation either.

The cross-sectional area and flow velocity of the pulmonary circulation should also be taken as equal to the toroidal average human circulation (v = 5.2 cm/s and A = 10.77-12.8 cm2, see also (Figures 9&10). This is mandatory in order for the law of continuity to function, i.e., for equal volumes of blood to flow through a certain flow section during equal time intervals. If this law were not operated, disturbances would occur in the respiratory-circulatory system and various diseases and related symptoms would develop.

In this way, by separating the toroidal blood flow into two parts, a pulmonary and a systemic circulation, the highest degree of Darwinian evolution is realized, which culminates in the human circulatory system.

Given the pulmonary circulation time (t2π,pulmonary=3.98 - 4.47s and 4.67s),52,53 which means the time of blood flow from the right ventricle or the pulmonary artery to the left atrium (Cpulmonary), the average pulmonary circulation its radius (r), length (s) and cross-sectional area (A) can also be calculated.

Figure 10. Representation of the average human blood circulation in the form of a "double torus", which approximately shows a ratio of minimum 1 to 5.5, or maximum 1 to 7.5. The figure shows the distribution of the blood volume per cycle (Vpulmonary = 0.225 dm3 and Vsystemic = 1.23 dm3) in proportion to the circulation times (t2π,pulmonary = 4 s and t2π,systemic = 25-30 s). This blood flow model, which can also be called the "folded figure of eight", shows unique parameters /radius (r), circumference (C), volume (V), cross-sectional area (A), force (F), work (W), pressure (PmmHg), power (PWatt)/ for both blood circuits, i.e., the pulmonary and systemic blood circuits. These are consistent with data from medical circulation testing procedures and heart ultrasound examinations.          

The most important parameters of the pulmonary circulation

Similar to the above, the two obligatory flow laws apply to pulmonary circulation the path of circulating blood:

Since: As t 2π =Av,s o , s pulmonary t 2π(pulmonary) = v Darwin.evol.man(bluered) ,and: s pulmonary = v Darwin.evol.man(bluered) t 2π(pulmonary) , but: s pulm. = C pulm.circumf. , so: C pulm.circumf. =5.23 cm s 4s=20.92cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGtb GaaiyAaiaac6gacaWGJbGaamyzaiaacQdadaWcaaqaaiaadgeacqGH flY1caWGZbaabaGaamiDamaaBaaaleaacaaIYaGaeqiWdahabeaaaa GccaaMc8Uaeyypa0JaamyqaiabgwSixlaadAhacaaMc8UaaGPaVlaa cYcacaWGZbGaam4BamaaBaaaleaaaeqaaOGaaiilamaalaaabaGaam 4CamaaBaaaleaacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6ga caWGHbGaamOCaiaadMhaaeqaaaGcbaGaamiDamaaBaaaleaacaaIYa GaeqiWdaNaaiikaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOB aiaadggacaWGYbGaamyEaiaacMcaaeqaaaaakiaaykW7aeaacqGH9a qpcaWG2bWaaSbaaSqaaiaadseacaWGHbGaamOCaiaadEhacaWGPbGa amOBaiaac6cacaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaad2gaca WGHbGaamOBaiaacIcacaWGIbGaamiBaiaadwhacaWGLbGaeyOeI0Ia amOCaiaadwgacaWGKbGaaiykaaqabaGccaGGSaGaamyyaiaad6gaca WGKbGaaiOoaaqaaiaadohadaWgaaWcbaGaamiCaiaadwhacaWGSbGa amyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baabeaakiaaykW7cq GH9aqpcaWG2bWaaSbaaSqaaiaadseacaWGHbGaamOCaiaadEhacaWG PbGaamOBaiaac6cacaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaad2 gacaWGHbGaamOBaiaacIcacaWGIbGaamiBaiaadwhacaWGLbGaeyOe I0IaamOCaiaadwgacaWGKbGaaiykaaqabaGccqGHflY1caWG0bWaaS baaSqaaiaaikdacqaHapaCcaGGOaGaamiCaiaadwhacaWGSbGaamyB aiaad+gacaWGUbGaamyyaiaadkhacaWG5bGaaiykaaqabaGcdaWgba WcbaaabeaakiaacYcadaWgaaWcbaaabeaakiaadkgacaWG1bGaamiD aiaacQdaaeaacaWGZbWaaSbaaSqaaiaadchacaWG1bGaamiBaiaad2 gacaGGUaaabeaakiabg2da9iaadoeadaWgaaWcbaGaamiCaiaadwha caWGSbGaamyBaiaac6cacaWGJbGaamyAaiaadkhacaWGJbGaamyDai aad2gacaWGMbGaaiOlaaqabaGccaGGSaWaaSbaaSqaaaqabaGccaWG ZbGaam4BaiaacQdacaWGdbWaaSbaaSqaaiaadchacaWG1bGaamiBai aad2gacaGGUaGaam4yaiaadMgacaWGYbGaam4yaiaadwhacaWGTbGa amOzaiaac6caaeqaaaGcbaGaeyypa0JaaGynaiaac6cacaaIYaGaaG 4mamaalaaabaGaam4yaiaad2gaaeaacaWGZbaaaiabgwSixlaaisda caWGZbGaeyypa0JaaGOmaiaaicdacaGGUaGaaGyoaiaabkdacaWGJb GaamyBaaaaaa@F358@   (73)

From the length of the circumference (Cpulmonary circumference), the radius of the average pulmonary circulation (rpulmonary circulation) is as follows:

C=2r π , so : r pulmonar y circulation = C pulmonar y circumf. 2π =3.33cm. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2 da9iaaikdacqGHflY1caWGYbGaeyyXICTaeqiWda3aaSbaaSqaaaqa baGccaGGSaWaaSbaaSqaaaqabaGccaWGZbGaam4BaiaacQdadaWgaa WcbaaabeaakiaadkhadaWgaaWcbaGaamiCaiaadwhacaWGSbGaamyB aiaad+gacaWGUbGaamyyaiaadkhacaWG5bWaaSbaaWqaaaqabaWcca WGJbGaamyAaiaadkhacaWGJbGaamyDaiaadYgacaWGHbGaamiDaiaa dMgacaWGVbGaamOBaaqabaGccqGH9aqpdaWcaaqaaiaadoeadaWgaa WcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaa dkhacaWG5bWaaSbaaWqaaaqabaWccaWGJbGaamyAaiaadkhacaWGJb GaamyDaiaad2gacaWGMbGaaiOlaaqabaaakeaacaaIYaGaeyyXICTa eqiWdahaaiabg2da9iaabodacaqGUaGaae4maiaabodacaqGJbGaae yBaiaac6caaaa@7554@   (74)

The magnitude of the average systemic circulation can be determined by subtracting the length of the average pulmonary circulation from the average toroidal circulation:

s average human circulation1 s average huma n pulmonar y circulation = s average human systemi c circulation1 =1.3m0.2092m= 1.09 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGZb WaaSbaaSqaaabaaaaaaaaapeGaamyyaiaadAhacaWGLbGaamOCaiaa dggacaWGNbGaamyzaiaabccacaWGObGaamyDaiaad2gacaWGHbGaam OBaiaabccacaWGJbGaamyAaiaadkhacaWGJbGaamyDaiaadYgacaWG HbGaamiDaiaadMgacaWGVbGaamOBaiaaigdaa8aabeaakiabgkHiTi aadohadaWgaaWcbaWdbiaadggacaWG2bGaamyzaiaadkhacaWGHbGa am4zaiaadwgacaqGGaGaamiAaiaadwhacaWGTbGaamyyaiaad6gada WgaaadbaaabeaaliaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOB aiaadggacaWGYbGaamyEamaaBaaameaaaeqaaSGaam4yaiaadMgaca WGYbGaam4yaiaadwhacaWGSbGaamyyaiaadshacaWGPbGaam4Baiaa d6gaa8aabeaakiabg2da9aqaaiaadohadaWgaaWcbaWdbiaadggaca WG2bGaamyzaiaadkhacaWGHbGaam4zaiaadwgacaqGGaGaamiAaiaa dwhacaWGTbGaamyyaiaad6gacaqGGaGaam4CaiaadMhacaWGZbGaam iDaiaadwgacaWGTbGaamyAaiaadogadaWgaaadbaaabeaaliaadoga caWGPbGaamOCaiaadogacaWG1bGaamiBaiaadggacaWG0bGaamyAai aad+gacaWGUbGaaGymaaWdaeqaaOGaeyypa0JaaGymaiaac6cacaaI ZaGaamyBaiabgkHiTiaaicdacaGGUaGaaGOmaiaaicdacaaI5aGaaG Omaiaad2gacqGH9aqpcaaIXaGaaiOlaiaaicdacaaI5aWaaSbaaSqa aaqabaGccaWGTbaaaaa@A168@   (75)

The length of the averege systemic circulation (Eq.75) in the Figure 8 circulation model based on the length of the larger averege toroidal circulation will be as follows:

s average human circulation2 s average human pulmonar y circulation = s average human systemi c circulation2 =1.56m0.2092m=1.3508m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGZb WaaSbaaSqaaabaaaaaaaaapeGaamyyaiaadAhacaWGLbGaamOCaiaa dggacaWGNbGaamyzaiaabccacaWGObGaamyDaiaad2gacaWGHbGaam OBaiaabccacaWGJbGaamyAaiaadkhacaWGJbGaamyDaiaadYgacaWG HbGaamiDaiaadMgacaWGVbGaamOBaiaaikdaa8aabeaakiabgkHiTi aadohadaWgaaWcbaWdbiaadggacaWG2bGaamyzaiaadkhacaWGHbGa am4zaiaadwgacaqGGaGaamiAaiaadwhacaWGTbGaamyyaiaad6gaca qGGaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaa dkhacaWG5bWaaSbaaWqaaaqabaWccaWGJbGaamyAaiaadkhacaWGJb GaamyDaiaadYgacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqa aOGaeyypa0dabaGaam4CamaaBaaaleaapeGaamyyaiaadAhacaWGLb GaamOCaiaadggacaWGNbGaamyzaiaabccacaWGObGaamyDaiaad2ga caWGHbGaamOBaiaabccacaWGZbGaamyEaiaadohacaWG0bGaamyzai aad2gacaWGPbGaam4yamaaBaaameaaaeqaaSGaam4yaiaadMgacaWG YbGaam4yaiaadwhacaWGSbGaamyyaiaadshacaWGPbGaam4Baiaad6 gacaaIYaaapaqabaGccqGH9aqpcaaIXaGaaiOlaiaaiwdacaaI2aGa amyBaiabgkHiTiaaicdacaGGUaGaaGOmaiaaicdacaaI5aGaaGOmai aad2gacqGH9aqpcaqGXaGaaeOlaiaabodacaqG1aGaaeimaiaabIda caWGTbaaaaa@A3B8@   (76)

The volume (Vpulmonary ≈ mpulmonary ) of blood (in the figure-8 circulation) passing through the smaller cross-sectional area in the average pulmonary circulation expressed in kilograms is as follows:

V pulmonary = A systemic/pulmonary s pulmonar y circulation = =0.001077 m 2 0.2092m=0 .0002253 m 3 0 .2253 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGwb WaaSbaaSqaaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaa dggacaWGYbGaamyEaaqabaGccqGH9aqpcaWGbbWaaSbaaSqaaiaado hacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbGaai4l aiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYb GaamyEaaqabaGccqGHflY1caWGZbWaaSbaaSqaaiaadchacaWG1bGa amiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEamaaBaaame aaaeqaaSGaam4yaiaadMgacaWGYbGaam4yaiaadwhacaWGSbGaamyy aiaadshacaWGPbGaam4Baiaad6gaaeqaaOGaeyypa0dabaGaeyypa0 JaaGimaiaac6cacaaIWaGaaGimaiaaigdacaaIWaGaaG4naiaaiEda caWGTbWaaWbaaSqabeaacaaIYaaaaOGaeyyXICTaaGimaiaac6caca aIYaGaaGimaiaaiMdacaaIYaGaamyBaiabg2da9iaabcdacaqGUaGa aeimaiaabcdacaqGWaGaaeOmaiaabkdacaqG1aGaae4mamaaBaaale aaaeqaaOGaamyBamaaCaaaleqabaGaaG4maaaakiabgIKi7kaabcda caqGUaGaaeOmaiaabkdacaqG1aGaae4mamaaBaaaleaaaeqaaOGaam 4AaiaadEgaaaaa@8BF8@   (77)

Since this mass is moved by gravity along the circumference, the force (F):

F=ma=mg , so : F 1 =0.2253kg9.80665m s 2 =2.20952N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadAeaca aMc8Uaeyypa0JaamyBaiabgwSixlaadggacqGH9aqpcaWGTbGaeyyX ICTaam4zaiaacYcadaWgaaqcbawaaaqabaqcaaMaam4Caiaad+gaca GG6aWaaSbaaKqaGfaaaeqaaKaaGjaadAeadaWgaaqcbawaaiaaigda aeqaaKaaGjabg2da9iaaicdacaGGUaGaaGOmaiaaikdacaaI1aGaaG 4maiaadUgacaWGNbGaeyyXICTaaGyoaiaac6cacaaI4aGaaGimaiaa iAdacaaI2aGaaGynaiaad2gacqGHflY1caWGZbWaaWbaaKqaGfqaba GaeyOeI0IaaGOmaaaajaaycqGH9aqpcaqGYaGaaeOlaiaabkdacaqG WaGaaeyoaiaabwdacaqGYaGaamOtaaaa@671C@   (78)

The pressure (Ppulmonary) in the pipe is based on the force acting on the surface (A1) as follows:

P 1pulmonary = F 1pulmonary A 1systemic/pulmonary = 2 .20952 N 0.00107693 m 2 =2051.6845 N m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIXaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGa amyyaiaadkhacaWG5baabeaakiabg2da9maalaaabaGaamOramaaBa aaleaacaaIXaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGa amyyaiaadkhacaWG5baabeaaaOqaaiaadgeadaWgaaWcbaGaaGymai aadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbGa ai4laiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggaca WGYbGaamyEaaqabaaaaOGaeyypa0ZaaSaaaeaacaqGYaGaaeOlaiaa bkdacaqGWaGaaeyoaiaabwdacaqGYaWaaSbaaSqaaaqabaGccaWGob aabaGaaGimaiaac6cacaaIWaGaaGimaiaaigdacaaIWaGaaG4naiaa iAdacaaI5aGaaG4maiaad2gadaahaaWcbeqaaiaaikdaaaaaaOGaey ypa0JaaeOmaiaaicdacaaI1aGaaGymaiaac6cacaaI2aGaaGioaiaa isdacaaI1aWaaSaaaeaacaWGobaabaGaamyBamaaCaaaleqabaGaaG Omaaaaaaaaaa@78FD@   (79)

(A1systemic= A1pulmonary)

Since 1 N/m2 = 7.5∙10-3 mmHg, the pressure in the pulmonary circulation, expressed in millimeters of mercury:

P 1(mmHg)pulmonary =2051.77.5 10 3 mmHg=15.38mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIXaGaaiikaiaad2gacaWGTbGaamisaiaadEgacaGGPaGa amiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhaca WG5baabeaakiabg2da9iaabkdacaaIWaGaaGynaiaaigdacaGGUaGa aG4naiabgwSixlaaiEdacaGGUaGaaGynaiabgwSixlaaigdacaaIWa WaaWbaaSqabeaacqGHsislcaaIZaaaaOGaamyBaiaad2gacaWGibGa am4zaiabg2da9iaabgdacaqG1aGaaiOlaiaaiodacaaI4aGaaeyBai aab2gacaqGibGaae4zaaaa@609A@   (80)

However, with a larger cross-sectional area (A2) (Eq.57), the pressure in the pulmonary circulation decreases:

P 2(mmHg)pulmonary = F 1 A 2 = 2 .20952 N 0.001282 m 2 =1723.5 N m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIYaGaaiikaiaad2gacaWGTbGaamisaiaadEgacaGGPaGa amiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhaca WG5baabeaakiabg2da9maalaaabaGaamOramaaBaaaleaacaaIXaaa beaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaaaaOGaeyypa0ZaaS aaaeaacaqGYaGaaeOlaiaabkdacaqGWaGaaeyoaiaabwdacaqGYaWa aSbaaSqaaaqabaGccaWGobaabaGaaGimaiaac6cacaaIWaGaaGimai aaigdacaaIYaGaaGioaiaaikdacaWGTbWaaWbaaSqabeaacaaIYaaa aaaakiabg2da9iaaigdacaaI3aGaaGOmaiaaiodacaGGUaGaaGynam aalaaabaGaamOtaaqaaiaad2gadaahaaWcbeqaaiaaikdaaaaaaaaa @60CC@   (81)

Converted to mmHg:

P 2(mmHg)pulmonary =1723.57.5 10 3 mmHg= 12.92 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIYaGaaiikaiaad2gacaWGTbGaamisaiaadEgacaGGPaGa amiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhaca WG5baabeaakiabg2da9iaaigdacaaI3aGaaGOmaiaaiodacaGGUaGa aGynaiabgwSixlaaiEdacaGGUaGaaGynaiabgwSixlaaigdacaaIWa WaaWbaaSqabeaacqGHsislcaaIZaaaaOGaamyBaiaad2gacaWGibGa am4zaiabg2da9iaaigdacaaIYaGaaiOlaiaaiMdacaaIYaWaaSbaaS qaaaqabaGccaqGTbGaaeyBaiaabIeacaqGNbaaaa@60E6@   (82)

According to them, the pulmonary pressure can vary between 12.9 mmHg and 15.3 mmHg under physiological conditions at rest, in accordance with our current knowledge.50

Essential parameters of the systemic circulation

In contrast, the volume/mass (V1 or V2) values of the systemic circulation are numerically:

V 1systemi c circ. = A 1systemic/pulmonary s 1systemi c circ. =0.001077 m 2 1.0908m=0.0011748 m 3 1.1748 k g ,but: V 2systemi c circ. = A 1systemic/pulmonary s 2systemi c circ. =0.001077 m 2 1.3508m=0.00145481 m 3 1.4548kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WGwbWaaSbaaKqaGfaacaaIXaGaam4CaiaadMhacaWGZbGaamiDaiaa dwgacaWGTbGaamyAaiaadogadaWgaaqccawaaaqabaqcbaMaam4yai aadMgacaWGYbGaam4yaiaac6caaeqaaKaaGjabg2da9iaadgeadaWg aaqcbawaaiaaigdacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2 gacaWGPbGaam4yaiaac+cacaWGWbGaamyDaiaadYgacaWGTbGaam4B aiaad6gacaWGHbGaamOCaiaadMhaaeqaaKaaGjabgwSixlaadohada WgaaqcbawaaiaaigdacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaa d2gacaWGPbGaam4yamaaBaaajiaybaaabeaajeaycaWGJbGaamyAai aadkhacaWGJbGaaiOlaaqabaaajaaybaGaeyypa0JaaGimaiaac6ca caaIWaGaaGimaiaaigdacaaIWaGaaG4naiaaiEdacaWGTbWaaWbaaK qaGfqabaGaaGOmaaaajaaycqGHflY1caaIXaGaaiOlaiaaicdacaaI 5aGaaGimaiaaiIdacaWGTbGaeyypa0Jaaeimaiaab6cacaqGWaGaae imaiaabgdacaqGXaGaae4naiaabsdacaqG4aGaamyBamaaCaaajeay beqaaiaaiodaaaqcaaMaeyisISRaaGymaiaac6cacaaIXaGaaG4nai aaisdacaaI4aWaaSbaaKqaGfaaaeqaaKaaGjaadUgacaWGNbWaaSba aKqaGfaaaeqaaKaaGjaacYcacaWGIbGaamyDaiaadshacaGG6aaaba GaamOvamaaBaaajeaybaGaaGOmaiaadohacaWG5bGaam4Caiaadsha caWGLbGaamyBaiaadMgacaWGJbWaaSbaaKGaGfaaaeqaaKqaGjaado gacaWGPbGaamOCaiaadogacaGGUaaabeaajaaycqGH9aqpcaWGbbWa aSbaaKqaGfaacaaIXaGaam4CaiaadMhacaWGZbGaamiDaiaadwgaca WGTbGaamyAaiaadogacaGGVaGaamiCaiaadwhacaWGSbGaamyBaiaa d+gacaWGUbGaamyyaiaadkhacaWG5baabeaajaaycqGHflY1caWGZb WaaSbaaKqaGfaacaaIYaGaam4CaiaadMhacaWGZbGaamiDaiaadwga caWGTbGaamyAaiaadogadaWgaaqccawaaaqabaqcbaMaam4yaiaadM gacaWGYbGaam4yaiaac6caaeqaaaGcbaqcaaMaeyypa0JaaGimaiaa c6cacaaIWaGaaGimaiaaigdacaaIWaGaaG4naiaaiEdacaWGTbWaaW baaKqaGfqabaGaaGOmaaaajaaycqGHflY1caaIXaGaaiOlaiaaioda caaI1aGaaGimaiaaiIdacaWGTbGaeyypa0Jaaeimaiaab6cacaqGWa GaaeimaiaabgdacaqG0aGaaeynaiaabsdacaqG4aGaaeymaiaad2ga daahaaqcbawabeaacaaIZaaaaKaaGjabgIKi7kaaigdacaGGUaGaaG inaiaaiwdacaaI0aGaaGioaiaadUgacaWGNbaaaaa@EF1E@   (83)

The forces (F1,2) acting on the systemic circulation are as follows:

F 1systemi c circ. = m 1systemi c circ. g , so : F 1syst.c. =1.1748kg9.80665 m s 2 =11 .52 N , but: F 2systemi c circ. = m 2systemi c circ. g , so : F 1syst.c. =1.4548kg9.80665 m s 2 =14.26N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGgb WaaSbaaSqaaiaaigdacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaa d2gacaWGPbGaam4yamaaBaaameaaaeqaaSGaam4yaiaadMgacaWGYb Gaam4yaiaac6caaeqaaOGaaGPaVlabg2da9iaad2gadaWgaaWcbaGa aGymaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgaca WGJbWaaSbaaWqaaaqabaWccaWGJbGaamyAaiaadkhacaWGJbGaaiOl aaqabaGccqGHflY1caWGNbGaaiilamaaBaaaleaaaeqaaOGaam4Cai aad+gacaGG6aWaaSbaaSqaaaqabaGccaWGgbWaaSbaaSqaaiaaigda caWGZbGaamyEaiaadohacaWG0bGaaiOlaiaadogacaGGUaaabeaaaO qaaiabg2da9iaaigdacaGGUaGaaGymaiaaiEdacaaI0aGaaGioaiaa dUgacaWGNbGaeyyXICTaaGyoaiaac6cacaaI4aGaaGimaiaaiAdaca aI2aGaaGynamaalaaabaGaamyBaaqaaiaadohadaahaaWcbeqaaiaa ikdaaaaaaOGaaeypaiaabgdacaqGXaGaaeOlaiaabwdacaqGYaWaaS baaSqaaaqabaGccaWGobGaaiilamaaBaaaleaaaeqaaOGaamOyaiaa dwhacaWG0bGaaiOoaaqaaiaadAeadaWgaaWcbaGaaGOmaiaadohaca WG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbWaaSbaaWqa aaqabaWccaWGJbGaamyAaiaadkhacaWGJbGaaiOlaaqabaGccaaMc8 Uaeyypa0JaamyBamaaBaaaleaacaaIYaGaam4CaiaadMhacaWGZbGa amiDaiaadwgacaWGTbGaamyAaiaadogadaWgaaadbaaabeaaliaado gacaWGPbGaamOCaiaadogacaGGUaaabeaakiabgwSixlaadEgacaGG SaWaaSbaaSqaaaqabaGccaWGZbGaam4BaiaacQdadaWgaaWcbaaabe aakiaadAeadaWgaaWcbaGaaGymaiaadohacaWG5bGaam4Caiaadsha caGGUaGaam4yaiaac6caaeqaaaGcbaGaeyypa0JaaGymaiaac6caca aI0aGaaGynaiaaisdacaaI4aGaam4AaiaadEgacqGHflY1caaI5aGa aiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aWaaSaaaeaacaWGTb aabaGaam4CamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaqGXaGa aeinaiaab6cacaqGYaGaaeOnaiaad6eaaaaa@C3AD@   (84)

In the systemic circulation, the pressures (Psystemic circulation1 and Psystemic circulation2) created as a result of the forces driving smaller and larger masses are the following:

P systemi c circulation1 = F syst.circ.1 A 1 = 11 .52085 N 0.00107693 m 2 =10697.8656 N m 2 ,and P systemi c circulation2 = F syst.circ.2 A 1 = 14 .2667 N 0.00107693 m 2 =13247.57822 N m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayca WGqbWaaSbaaKqaGfaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaa d2gacaWGPbGaam4yamaaBaaajiaybaaabeaajeaycaWGJbGaamyAai aadkhacaWGJbGaamyDaiaadYgacaWGHbGaamiDaiaadMgacaWGVbGa amOBaiaaigdaaeqaaKaaGjabg2da9maalaaabaGaamOramaaBaaaje aybaGaam4CaiaadMhacaWGZbGaamiDaiaac6cacaWGJbGaamyAaiaa dkhacaWGJbGaaiOlaiaaigdaaeqaaaqcaawaaiaadgeadaWgaaqcba waaiaaigdaaeqaaaaajaaycqGH9aqpdaWcaaqaaiaabgdacaqGXaGa aeOlaiaabwdacaqGYaGaaeimaiaabIdacaqG1aWaaSbaaKqaGfaaae qaaKaaGjaad6eaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaa icdacaaI3aGaaGOnaiaaiMdacaaIZaGaamyBamaaCaaajeaybeqaai aaikdaaaaaaKaaGjabg2da9iaaigdacaaIWaGaaGOnaiaaiMdacaaI 3aGaaiOlaiaaiIdacaaI2aGaaGynaiaaiAdadaWcaaqaaiaad6eaae aacaWGTbWaaWbaaKqaGfqabaGaaGOmaaaaaaqcaaMaaiilaiaadgga caWGUbGaamizaaGcbaqcaaMaamiuamaaBaaajeaybaGaam4CaiaadM hacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogadaWgaaqccawa aaqabaqcbaMaam4yaiaadMgacaWGYbGaam4yaiaadwhacaWGSbGaam yyaiaadshacaWGPbGaam4Baiaad6gacaaIYaaabeaajaaycqGH9aqp daWcaaqaaiaadAeadaWgaaqcbawaaiaadohacaWG5bGaam4Caiaads hacaGGUaGaam4yaiaadMgacaWGYbGaam4yaiaac6cacaaIYaaabeaa aKaaGfaacaWGbbWaaSbaaKqaGfaacaaIXaaabeaaaaqcaaMaeyypa0 ZaaSaaaeaacaqGXaGaaeinaiaab6cacaqGYaGaaeOnaiaabAdacaqG 3aWaaSbaaKqaGfaaaeqaaKaaGjaad6eaaeaacaaIWaGaaiOlaiaaic dacaaIWaGaaGymaiaaicdacaaI3aGaaGOnaiaaiMdacaaIZaGaamyB amaaCaaajeaybeqaaiaaikdaaaaaaKaaGjabg2da9iaabgdacaqGZa GaaGOmaiaaisdacaaI3aGaaiOlaiaaiwdacaaI3aGaaGioaiaaikda caaIYaWaaSaaaeaacaWGobaabaGaamyBamaaCaaajeaybeqaaiaaik daaaaaaaaaaa@C1BA@   (85)

Since 1N/m2 = 0.007501 mmHg, the pressure (PmmHg systemic circulation1) is expressed in millimeters of mercury:

P systemi c circulation1 =10697.867.5 10 3 mmHg = 80 .234 mmHg,and P systemi c circulation2 =13247.577.5 10 3 mmHg= 99.356 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGqb WaaSbaaSqaaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaa dMgacaWGJbWaaSbaaWqaaaqabaWccaWGJbGaamyAaiaadkhacaWGJb GaamyDaiaadYgacaWGHbGaamiDaiaadMgacaWGVbGaamOBaiaaigda aeqaaOGaeyypa0JaaGymaiaaicdacaaI2aGaaGyoaiaaiEdacaGGUa GaaGioaiaaiAdacqGHflY1caaI3aGaaiOlaiaaiwdacqGHflY1caaI XaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaakiaad2gacaWGTb GaamisaiaadEgacaqGGaGaaeypaiaabccacaqG4aGaaeimaiaab6ca caqGYaGaae4maiaabsdadaWgaaWcbaaabeaakiaad2gacaWGTbGaam isaiaadEgacaGGSaGaamyyaiaad6gacaWGKbaabaGaamiuamaaBaaa leaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam 4yamaaBaaameaaaeqaaSGaam4yaiaadMgacaWGYbGaam4yaiaadwha caWGSbGaamyyaiaadshacaWGPbGaam4Baiaad6gacaaIYaaabeaaki abg2da9iaaigdacaaIZaGaaGOmaiaaisdacaaI3aGaaiOlaiaaiwda caaI3aGaeyyXICTaaG4naiaac6cacaaI1aGaeyyXICTaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGTbGaamyBaiaadIea caWGNbGaeyypa0JaaGyoaiaaiMdacaGGUaGaaG4maiaaiwdacaaI2a WaaSbaaSqaaaqabaGccaWGTbGaamyBaiaadIeacaWGNbaaaaa@A010@   (86)

These systemic average human blood pressure values, based on the two blood volumes (masses), are between 80 mm Hg and 100 mm Hg. This also means that they can take any value between the two values under physiological conditions at rest. This corresponds approximately to blood pressure values of 100/60 mm Hg and 120/80 mm Hg. Blood pressure values above and below these are essentially limit values. Values that differ from this, measured at rest, are already pathological in nature; in these cases, we can talk about diseases of various origins, high blood pressure or hypotensive states.50 (Calculated with the A2 value, the average pressure values are 83 and 90 millimeters of mercury.)

The relationship between pressure, cross-sectional area and flow intensity in the pulmonary circulation

Based on the formula P=F/A, and hence A=F/P (Eq.78 and Eq.81), the surface of the flow cross-sectional area (similar to the systemic blood circulation) in the pulmonary circulation is as follows:

A 2 = F 1 P 2(mmHg) = m 1 g P 2(mmHg) = 2 .21 N 1723.5 N m 2 =0.001282 m 2 =12.82c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaamOramaaBaaaleaa caaIXaaabeaaaOqaaiaadcfadaWgaaWcbaGaaGOmaiaacIcacaWGTb GaamyBaiaadIeacaWGNbGaaiykaaqabaaaaOGaeyypa0ZaaSaaaeaa caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaam4zaaqaaiaadc fadaWgaaWcbaGaaGOmaiaacIcacaWGTbGaamyBaiaadIeacaWGNbGa aiykaaqabaaaaOGaeyypa0ZaaSaaaeaacaqGYaGaaeOlaiaabkdaca qGXaWaaSbaaSqaaaqabaGccaWGobaabaGaaGymaiaaiEdacaaIYaGa aG4maiaac6cacaaI1aWaaSbaaSqaaaqabaGcdaWcaaqaaiaad6eaae aacaWGTbWaaWbaaSqabeaacaaIYaaaaaaaaaGccqGH9aqpcaaIWaGa aiOlaiaaicdacaaIWaGaaGymaiaaikdacaaI4aGaaGOmaiaad2gada ahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaIXaGaaGOmaiaac6cacaaI 4aGaaGOmaiaadogacaWGTbWaaWbaaSqabeaacaaIYaaaaaaa@6CBF@   (87)

Starting from the law of intensity and applying the A∙s/t ratio, the result of the cardiac output for the single revolution time of the pulmonary circulation (4s) and for the single contraction of the right heart (≈1s) is as follows:

I= V pulmonary t pulmonary = A pulmonary s t =0.001282 m 2 0.2092m 4s =0.0000670486 m 3 s =67.048 c m 3 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGjb Gaeyypa0ZaaSaaaeaacaWGwbWaaSbaaSqaaiaadchacaWG1bGaamiB aiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqabaaakeaaca WG0bWaaSbaaSqaaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOB aiaadggacaWGYbGaamyEaaqabaaaaOGaeyypa0JaamyqamaaBaaale aacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOC aiaadMhaaeqaaOGaeyyXIC9aaSaaaeaacaWGZbaabaGaamiDaaaacq GH9aqpcaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaikdacaaI4aGa aGOmaiaad2gadaahaaWcbeqaaiaaikdaaaGccqGHflY1daWcaaqaai aaicdacaGGUaGaaGOmaiaaicdacaaI5aGaaGOmaiaad2gaaeaacaaI 0aGaam4CaaaaaeaacqGH9aqpcaqGWaGaaeOlaiaabcdacaqGWaGaae imaiaabcdacaqG2aGaae4naiaabcdacaqG0aGaaeioaiaabAdadaWc aaqaaiaad2gadaahaaWcbeqaaiaaiodaaaaakeaacaWGZbaaaiabg2 da9iaabAdacaqG3aGaaeOlaiaabcdacaqG0aGaaeioamaalaaabaGa am4yaiaad2gadaahaaWcbeqaaiaaiodaaaaakeaacaWGZbaaaaaaaa@81C8@   (88)

Starting from the law of continuity and applying the product I=A∙v, the result is the same as the previous one, i.e., the stroke volume:

I=CO= A pulmonary v=0.001282 m 2 0.052 m s =0,0000670486 m 3 s =67.05 mL s 67.05 g s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGjb Gaeyypa0Jaam4qaiaad+eacqGH9aqpcaWGbbWaaSbaaSqaaiaadcha caWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaa qabaGccqGHflY1caWG2bGaeyypa0JaaGimaiaac6cacaaIWaGaaGim aiaaigdacaaIYaGaaGioaiaaikdacaWGTbWaaWbaaSqabeaacaaIYa aaaOGaeyyXICTaaGimaiaac6cacaaIWaGaaGynaiaaikdadaWcaaqa aiaad2gaaeaacaWGZbaaaaqaaiabg2da9iaabcdacaqGSaGaaeimai aabcdacaqGWaGaaeimaiaabAdacaqG3aGaaeimaiaabsdacaqG4aGa aeOnamaalaaabaGaamyBamaaCaaaleqabaGaaG4maaaaaOqaaiaado haaaGaeyypa0JaaeOnaiaabEdacaqGUaGaaeimaiaabwdadaWcaaqa aiaad2gacaWGmbaabaGaam4CaaaacqGHijYUcaqG2aGaae4naiaab6 cacaqGWaGaaeynamaalaaabaGaam4zaaqaaiaadohaaaaaaaa@72D5@   (89)

(Using the product, I=A∙v, the stroke volume is also similar in the case of the systemic circulation, since the area and the speed are the same. Breaking down the speed into the quotient of the distance per time, the ratio is also the same: s/t=1.3m /25s=0.052m/s.)

Another condition for maintaining flow velocity (v=5.23 cm/s) and cross-sectional area constancy (A=12.82cm2) is that the pressure in the pulmonary circulation (P(mmHg)pulmonary) is lower than in the systemic circulation:

P (mmHg)pulmonary = W pulmonary V pulmonary = F pulmonary s pulmonary A 2 s pulmonary = m pulmonary g s pulmonary V pulmonary = m pulmonary g s pulmonary m pulmonary ρ blood(water) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGqb WaaSbaaSqaaiaacIcacaWGTbGaamyBaiaadIeacaWGNbGaaiykaiaa dchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaam yEaaqabaGccqGH9aqpdaWcaaqaaiaadEfadaWgaaWcbaGaamiCaiaa dwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baabe aaaOqaaiaadAfadaWgaaWcbaGaamiCaiaadwhacaWGSbGaamyBaiaa d+gacaWGUbGaamyyaiaadkhacaWG5baabeaaaaGccqGH9aqpdaWcaa qaaiaadAeadaWgaaWcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+ga caWGUbGaamyyaiaadkhacaWG5baabeaakiabgwSixlaadohadaWgaa WcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaa dkhacaWG5baabeaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaGccq GHflY1caWGZbWaaSbaaSqaaiaadchacaWG1bGaamiBaiaad2gacaWG VbGaamOBaiaadggacaWGYbGaamyEaaqabaaaaaGcbaGaeyypa0ZaaS aaaeaacaWGTbWaaSbaaSqaaiaadchacaWG1bGaamiBaiaad2gacaWG VbGaamOBaiaadggacaWGYbGaamyEaaqabaGccqGHflY1caWGNbGaey yXICTaam4CamaaBaaaleaacaWGWbGaamyDaiaadYgacaWGTbGaam4B aiaad6gacaWGHbGaamOCaiaadMhaaeqaaaGcbaGaamOvamaaBaaale aacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOC aiaadMhaaeqaaaaakiabg2da9maalaaabaGaamyBamaaBaaaleaaca WGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaa dMhaaeqaaOGaeyyXICTaam4zaiabgwSixlaadohadaWgaaWcbaGaam iCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG 5baabeaaaOqaamaalaaabaGaamyBamaaBaaaleaacaWGWbGaamyDai aadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaGc baGaeqyWdi3aaSbaaSqaaiaadkgacaWGSbGaam4Baiaad+gacaWGKb GaaiikaiaadEhacaWGHbGaamiDaiaadwgacaWGYbGaaiykaaqabaaa aaaaaaaa@D192@   (90)

Numerically:

P (mmHg)pulmonary =gsρ=9.80665 m s 2 0.2092m 10 3 kg m 3 =2051.55 Nm m 3 =2051.55 N m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGqb WaaSbaaSqaaiaacIcacaWGTbGaamyBaiaadIeacaWGNbGaaiykaiaa dchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaam yEaaqabaGccqGH9aqpcaWGNbGaeyyXICTaam4CaiabgwSixlabeg8a Yjabg2da9iaaiMdacaGGUaGaaGioaiaaicdacaaI2aGaaGOnaiaaiw dadaWcaaqaaiaad2gaaeaacaWGZbWaaWbaaSqabeaacaaIYaaaaaaa kiabgwSixlaaicdacaGGUaGaaGOmaiaaicdacaaI5aGaaGOmaiaad2 gaaeaacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaG4maaaakmaa laaabaGaam4AaiaadEgaaeaacaWGTbWaaWbaaSqabeaacaaIZaaaaa aakiabg2da9iaaikdacaaIWaGaaGynaiaaigdacaGGUaGaaGynaiaa iwdadaWcaaqaaiaad6eacaWGTbaabaGaamyBamaaCaaaleqabaGaaG 4maaaaaaGccqGH9aqpcaaIYaGaaGimaiaaiwdacaaIXaGaaiOlaiaa iwdacaaI1aWaaSaaaeaacaWGobaabaGaamyBamaaCaaaleqabaGaaG Omaaaaaaaaaaa@79DA@   (91)

This is expressed in millimeters of mercury with the following conversion:

P systemi c circulation1 =2051.557.5 10 3 mmHg =15 .386 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGa am4yamaaBaaameaaaeqaaSGaam4yaiaadMgacaWGYbGaam4yaiaadw hacaWGSbGaamyyaiaadshacaWGPbGaam4Baiaad6gacaaIXaaabeaa kiabg2da9iaaikdacaaIWaGaaGynaiaaigdacaGGUaGaaGynaiaaiw dacqGHflY1caaI3aGaaiOlaiaaiwdacqGHflY1caaIXaGaaGimamaa CaaaleqabaGaeyOeI0IaaG4maaaakiaad2gacaWGTbGaamisaiaadE gacaqGGaGaaeypaiaabgdacaqG1aGaaeOlaiaabodacaqG4aGaaeOn amaaBaaaleaaaeqaaOGaamyBaiaad2gacaWGibGaam4zaaaa@673E@   (92)

The difference between the two blood flow circles can be illustrated by comparing them. The ratio of the two shows the relationship between the individual parameters according to the following equation in close connection with the statements of Bernoulli's law. According to this, the works (W) done by the contraction of both chambers of the heart is proportional to the product of the pressures (P) established in the two blood circuits and the systemic and pulmonary circulation volumes (V).

P (mmHg)systemic P (mmHg)pulmonary = W systemic V systemic W pulmonary V pulmonary = F systemic s systemic A 2 s systemic F pulmonary s pulmonary A 2 s pulmonary = m systemic g s systemic V systemic m pulmonary g s pulmonary V pulmonary = m systemic g s systemic m systemic m pulmonary g s pulmonary m pulmonary = s systemic s pulmonary = 1.3m 0.2092m =6.21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayda WcaaqaaiaadcfadaWgaaqcbawaaiaacIcacaWGTbGaamyBaiaadIea caWGNbGaaiykaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBai aadMgacaWGJbaabeaaaKaaGfaacaWGqbWaaSbaaKqaGfaacaGGOaGa amyBaiaad2gacaWGibGaam4zaiaacMcacaWGWbGaamyDaiaadYgaca WGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaaajaaycqGH 9aqpdaWcaaqaamaalaaabaGaam4vamaaBaaajeaybaGaam4CaiaadM hacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaeqaaaqcaawa aiaadAfadaWgaaqcbawaaiaadohacaWG5bGaam4CaiaadshacaWGLb GaamyBaiaadMgacaWGJbaabeaaaaaajaaybaWaaSaaaeaacaWGxbWa aSbaaKqaGfaacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gaca WGHbGaamOCaiaadMhaaeqaaaqcaawaaiaadAfadaWgaaqcbawaaiaa dchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaam yEaaqabaaaaaaajaaycqGH9aqpdGaiaUaaaeacGa4aiacGlaaabGai akacGa4GgbWaiacGBaaajeaybGaiakacGa4GZbGaiacGdMhacGaiao 4CaiacGa4G0bGaiacGdwgacGaiaoyBaiacGa4GPbGaiacGdogaaeqc GaiajaaycWaiaAyXICTaiacGdohadGaiaUbaaKqaGfacGaOaiacGdo hacGaiaoyEaiacGa4GZbGaiacGdshacGaiaoyzaiacGa4GTbGaiacG dMgacGaiao4yaaqajacGaaqcaawaiacGcGaiaoyqamacGa4gaaqcba waiacGcGaiaIOmaaqajacGaKaaGjadGaOHflY1cGaiao4CamacGa4g aaqcbawaiacGcGaiao4CaiacGa4G5bGaiacGdohacGaiaoiDaiacGa 4GLbGaiacGd2gacGaiaoyAaiacGa4GJbaabKaiacaaaaqcaawaiacG dGaiaUaaaeacGaOaiacGdAeadGaiaUbaaKqaGfacGaOaiacGdchacG aiaoyDaiacGa4GSbGaiacGd2gacGaiao4BaiacGa4GUbGaiacGdgga cGaiaoOCaiacGa4G5baabKaiacqcaaMamacGgwSixlacGa4GZbWaia cGBaaajeaybGaiakacGa4GWbGaiacGdwhacGaiaoiBaiacGa4GTbGa iacGd+gacGaiaoOBaiacGa4GHbGaiacGdkhacGaiaoyEaaqajacGaa qcaawaiacGcGaiaoyqamacGa4gaaqcbawaiacGcGaiaIOmaaqajacG aKaaGjadGaOHflY1cGaiao4CamacGa4gaaqcbawaiacGcGaiaoiCai acGa4G1bGaiacGdYgacGaiaoyBaiacGa4GVbGaiacGd6gacGaiaoyy aiacGa4GYbGaiacGdMhaaeqcGaiaaaaaaKaaGjabg2da9maalaaaba WaaSaaaeaacaWGTbWaaSbaaKqaGfaacaWGZbGaamyEaiaadohacaWG 0bGaamyzaiaad2gacaWGPbGaam4yaaqabaqcaaMaeyyXICTaam4zai abgwSixlaadohadaWgaaqcbawaaiaadohacaWG5bGaam4Caiaadsha caWGLbGaamyBaiaadMgacaWGJbaabeaaaKaaGfaacaWGwbWaaSbaaK qaGfaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGa am4yaaqabaaaaaqcaawaamaalaaabaGaamyBamaaBaaajeaybaGaam iCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG 5baabeaajaaycqGHflY1caWGNbGaeyyXICTaam4CamaaBaaajeayba GaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkha caWG5baabeaaaKaaGfaacaWGwbWaaSbaaKqaGfaacaWGWbGaamyDai aadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaaa aaaakeaajaaycqGH9aqpdaWcaaqaamaalaaabaGaamyBamaaBaaaje aybaGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaa dogaaeqaaKaaGjabgwSixlaadEgacqGHflY1caWGZbWaaSbaaKqaGf aacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam4y aaqabaaajaaybaGaamyBamaaBaaajeaybaGaam4CaiaadMhacaWGZb GaamiDaiaadwgacaWGTbGaamyAaiaadogaaeqaaaaaaKaaGfaadaWc aaqaaiaad2gadaWgaaqcbawaaiaadchacaWG1bGaamiBaiaad2gaca WGVbGaamOBaiaadggacaWGYbGaamyEaaqabaqcaaMaeyyXICTaam4z aiabgwSixlaadohadaWgaaqcbawaaiaadchacaWG1bGaamiBaiaad2 gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqabaaajaaybaGaamyB amaaBaaajeaybaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUb GaamyyaiaadkhacaWG5baabeaaaaaaaKaaGjabg2da9maalaaabaGa am4CamaaBaaajeaybaGaam4CaiaadMhacaWGZbGaamiDaiaadwgaca WGTbGaamyAaiaadogaaeqaaaqcaawaaiaadohadaWgaaqcbawaaiaa dchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaam yEaaqabaaaaKaaGjabg2da9maalaaabaGaaGymaiaac6cacaaIZaGa amyBaaqaaiaaicdacaGGUaGaaGOmaiaaicdacaaI5aGaaGOmaiaad2 gaaaGaeyypa0JaaGOnaiaac6cacaaIYaGaaGymaaaaaa@BD17@   (93)

Moreover, the ratio of the pressures of the systemic and pulmonary circulation (P(mmHg)systemic and P(mmHg)pulmonary), as well as (by eliminating the flow cross-section; A1 or A2) the ratio of the forces (Fsystemic and Fpulmonary) maintaining the circulation can also be determined in this model.

P (mmHg)systemic P (mmHg)pulmonary = F systemic A 2 F pulmonary A 2 = F systemic F pulmonary = 13.73 N 2.21 N =6.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGqbWaaSbaaSqaaiaacIcacaWGTbGaamyBaiaadIeacaWGNbGaaiyk aiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJb aabeaaaOqaaiaadcfadaWgaaWcbaGaaiikaiaad2gacaWGTbGaamis aiaadEgacaGGPaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUb GaamyyaiaadkhacaWG5baabeaaaaGccqGH9aqpdaWcaaqaamaalaaa baGaamOramaaBaaaleaacaWGZbGaamyEaiaadohacaWG0bGaamyzai aad2gacaWGPbGaam4yaaqabaaakeaacaWGbbWaaSbaaSqaaiaaikda aeqaaaaaaOqaamaalaaabaGaamOramaaBaaaleaacaWGWbGaamyDai aadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaGc baGaamyqamaaBaaaleaacaaIYaaabeaaaaaaaOGaeyypa0ZaaSaaae aacaWGgbWaaSbaaSqaaiaadohacaWG5bGaam4CaiaadshacaWGLbGa amyBaiaadMgacaWGJbaabeaaaOqaaiaadAeadaWgaaWcbaGaamiCai aadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baa beaaaaGccqGH9aqpdaWcaaqaaiaaigdacaaIZaGaaiOlaiaaiEdaca aIZaWaaSbaaSqaaaqabaGccaWGobaabaGaaGOmaiaac6cacaaIYaGa aGymamaaBaaaleaaaeqaaOGaamOtaaaacqGH9aqpcaaI2aGaaiOlai aaikdaaaa@8919@   (94)

But:

P (mmHg)systemic P (mmHg)pulmonary = m systemic g A 2 m pulmonary g A 2 = m systemic m pulmonary = 1.45kg 0.22kg =6.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGqbWaaSbaaSqaaiaacIcacaWGTbGaamyBaiaadIeacaWGNbGaaiyk aiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJb aabeaaaOqaaiaadcfadaWgaaWcbaGaaiikaiaad2gacaWGTbGaamis aiaadEgacaGGPaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUb GaamyyaiaadkhacaWG5baabeaaaaGccqGH9aqpdaWcaaqaamaalaaa baGaamyBamaaBaaaleaacaWGZbGaamyEaiaadohacaWG0bGaamyzai aad2gacaWGPbGaam4yaaqabaGccqGHflY1caWGNbaabaGaamyqamaa BaaaleaacaaIYaaabeaaaaaakeaadaWcaaqaaiaad2gadaWgaaWcba GaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkha caWG5baabeaakiabgwSixlaadEgaaeaacaWGbbWaaSbaaSqaaiaaik daaeqaaaaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWgaaWcbaGaam4C aiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaeqaaa GcbaGaamyBamaaBaaaleaacaWGWbGaamyDaiaadYgacaWGTbGaam4B aiaad6gacaWGHbGaamOCaiaadMhaaeqaaaaakiabg2da9maalaaaba GaaGymaiaac6cacaaI0aGaaGynaiaadUgacaWGNbaabaGaaGimaiaa c6cacaaIYaGaaGOmaiaadUgacaWGNbaaaiabg2da9iaaiAdacaGGUa GaaGynaaaa@933E@   (95)

The result of the change in the flow conditions in the model is the pressure difference between the two blood circuits, the ratio of which is the same as above. This explains the well-known physiological fact that the pulmonary circulation is a low-pressure system compared to the systemic circulation. This pressure ratio contains Bernoulli's law in hidden form. This states that, in addition to the flow intensity being unchanged, the differences in the flow cross-sections cause a change in the flow velocities, with parallel changes in the pressure conditions. In the model, however, the flow velocity (v) and cross-section of the flow (A) are both constant, but the dimensions and pressure change. The law of conservation of energy is also realized in this case through their reduction. In the case of a lack of this size and pressure compensation, disturbances appear in the normal human blood circulation, the physiological mechanisms become pathological and this leads to the development of various cardiovascular diseases.

The pressure established by the work of the heart in the small and large blood circulation can be broken down into its components in the following steps. Since the flow cross-sections and flow velocities are equal in both blood circuits, they drop out together with g. In this way, the formula is simplified and reduced to their blood volumes (masses), their dimensions, and their flow time.

P (mmHg)systemic P (mmHg)pulmonary = W systemic V systemic W pulmonary V pulmonary = F systemic s systemic A systemic v systemic t systemic F pulmonary s pulmonary A pulmonary v pulmonary t pulmonary = m systemic g s systemic A systemic v systemic t systemic m pulmonary g s pulmonary A pulmonary v pulmonary t pulmonary = m systemic s systemic t systemic m pulmonary s pulmonary t pulmonary = m systemic s systemic m pulmonary s pulmonary t pulmonary t systemic = 1.45kg1.3m4s 0.22kg0.21m25s =6.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaadcfadaWgaaWcbaGaaiikaiaad2gacaWGTbGaamisaiaadEga caGGPaGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAai aadogaaeqaaaGcbaGaamiuamaaBaaaleaacaGGOaGaamyBaiaad2ga caWGibGaam4zaiaacMcacaWGWbGaamyDaiaadYgacaWGTbGaam4Bai aad6gacaWGHbGaamOCaiaadMhaaeqaaaaakiabg2da9maalaaabaWa aSaaaeaacaWGxbWaaSbaaSqaaiaadohacaWG5bGaam4Caiaadshaca WGLbGaamyBaiaadMgacaWGJbaabeaaaOqaaiaadAfadaWgaaWcbaGa am4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaae qaaaaaaOqaamaalaaabaGaam4vamaaBaaaleaacaWGWbGaamyDaiaa dYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaGcba GaamOvamaaBaaaleaacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaa d6gacaWGHbGaamOCaiaadMhaaeqaaaaaaaGccqGH9aqpdaWcaaqaam aalaaabaGaamOramaaBaaaleaacaWGZbGaamyEaiaadohacaWG0bGa amyzaiaad2gacaWGPbGaam4yaaqabaGccqGHflY1caWGZbWaaSbaaS qaaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWG JbaabeaaaOqaaabaaaaaaaaapeGaamyqa8aadaWgaaWcbaGaam4Cai aadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaeqaaOGa eyyXIC9dbiaadAhapaWaaSbaaSqaaiaadohacaWG5bGaam4Caiaads hacaWGLbGaamyBaiaadMgacaWGJbaabeaak8qacqGHflY1caWG0bWa aSbaaSqaaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadM gacaWGJbaabeaaaaaak8aabaWaaSaaaeaacaWGgbWaaSbaaSqaaiaa dchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaam yEaaqabaGccqGHflY1caWGZbWaaSbaaSqaaiaadchacaWG1bGaamiB aiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqabaaakeaaca WGbbWaaSbaaSqaaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOB aiaadggacaWGYbGaamyEaaqabaGccqGHflY1peGaamODa8aadaWgaa WcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaa dkhacaWG5baabeaak8qacqGHflY1caWG0bWaaSbaaSqaaiaadchaca WG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqa baaaaaaaaOWdaeaacqGH9aqpdaWcaaqaamaalaaabaGaamyBamaaBa aaleaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGa am4yaaqabaGccqGHflY1caWGNbGaeyyXICTaam4CamaaBaaaleaaca WGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam4yaaqa baaakeaapeGaamyqa8aadaWgaaWcbaGaam4CaiaadMhacaWGZbGaam iDaiaadwgacaWGTbGaamyAaiaadogaaeqaaOGaeyyXIC9dbiaadAha paWaaSbaaSqaaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBai aadMgacaWGJbaabeaak8qacqGHflY1caWG0bWaaSbaaSqaaiaadoha caWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaabeaaaa aak8aabaWaaSaaaeaacaWGTbWaaSbaaSqaaiaadchacaWG1bGaamiB aiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqabaGccqGHfl Y1caWGNbGaeyyXICTaam4CamaaBaaaleaacaWGWbGaamyDaiaadYga caWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaGcbaGaam yqamaaBaaaleaacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6ga caWGHbGaamOCaiaadMhaaeqaaOGaeyyXIC9dbiaadAhapaWaaSbaaS qaaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWG YbGaamyEaaqabaGcpeGaeyyXICTaamiDamaaBaaaleaacaWGWbGaam yDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqa aaaaaaGcpaGaeyypa0ZaaSaaaeaadaWcaaqaaiaad2gadaWgaaWcba Gaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadoga aeqaaOGaeyyXICTaam4CamaaBaaaleaacaWGZbGaamyEaiaadohaca WG0bGaamyzaiaad2gacaWGPbGaam4yaaqabaaakeaapeGaamiDamaa BaaaleaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPb Gaam4yaaqabaaaaaGcpaqaamaalaaabaGaamyBamaaBaaaleaacaWG WbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadM haaeqaaOGaeyyXICTaam4CamaaBaaaleaacaWGWbGaamyDaiaadYga caWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaGcbaWdbi aadshadaWgaaWcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWG UbGaamyyaiaadkhacaWG5baabeaaaaaaaaGcpaqaaiabg2da9maala aabaGaamyBamaaBaaaleaacaWGZbGaamyEaiaadohacaWG0bGaamyz aiaad2gacaWGPbGaam4yaaqabaGccqGHflY1caWGZbWaaSbaaSqaai aadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaa beaaaOqaaiaad2gadaWgaaWcbaGaamiCaiaadwhacaWGSbGaamyBai aad+gacaWGUbGaamyyaiaadkhacaWG5baabeaakiabgwSixlaadoha daWgaaWcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaam yyaiaadkhacaWG5baabeaaaaGccqGHflY1daWcaaqaa8qacaWG0bWa aSbaaSqaaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadg gacaWGYbGaamyEaaqabaaak8aabaWdbiaadshadaWgaaWcbaGaam4C aiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaeqaaa aak8aacqGH9aqpdaWcaaqaaiaaigdacaGGUaGaaGinaiaaiwdacaWG RbGaam4zaiabgwSixlaaigdacaGGUaGaaG4maiaad2gacqGHflY1ca aI0aGaam4CaaqaaiaaicdacaGGUaGaaGOmaiaaikdacaWGRbGaam4z aiabgwSixlaaicdacaGGUaGaaGOmaiaaigdacaWGTbGaeyyXICTaaG OmaiaaiwdacaWGZbaaaiabg2da9iaaiAdacaGGUaGaaGynaaaaaa@F547@   (96)

Moreover, based on the relationship v=s/t, knowing the flow distance and flow time, these can be converted into flow speed. In this way, the ratio of the pressure of the systemic and pulmonary circulation (Psystemic and Ppulmonary) is proportional to the volume occupied in their circulation (msystemic and mpulmonary), the speed of the systemic circulation (vsytemic), and the reciprocal of the speed of the pulmonary circulation (1/vpulmonary).

P (mmHg)systemic P (mmHg)pulmonary = m systemic m pulmonary v systemic t pulmonary s pulmonary = = 1.4548kg 0.2253kg 0.052 m s 4s 0.2092m =6.45710.05219.12=6.4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaadcfadaWgaaWcbaGaaiikaiaad2gacaWGTbGaamisaiaadEga caGGPaGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAai aadogaaeqaaaGcbaGaamiuamaaBaaaleaacaGGOaGaamyBaiaad2ga caWGibGaam4zaiaacMcacaWGWbGaamyDaiaadYgacaWGTbGaam4Bai aad6gacaWGHbGaamOCaiaadMhaaeqaaaaakiabg2da9maalaaabaGa amyBamaaBaaaleaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2 gacaWGPbGaam4yaaqabaaakeaacaWGTbWaaSbaaSqaaiaadchacaWG 1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqaba aaaOGaeyyXICTaamODamaaBaaaleaacaWGZbGaamyEaiaadohacaWG 0bGaamyzaiaad2gacaWGPbGaam4yaaqabaGccqGHflY1daWcaaqaaa baaaaaaaaapeGaamiDamaaBaaaleaacaWGWbGaamyDaiaadYgacaWG TbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaGcpaqaaiaado hadaWgaaWcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGa amyyaiaadkhacaWG5baabeaaaaGccqGH9aqpaeaacqGH9aqpdaWcaa qaaiaaigdacaGGUaGaaGinaiaaiwdacaaI0aGaaGioaiaadUgacaWG NbaabaGaaGimaiaac6cacaaIYaGaaGOmaiaaiwdacaaIZaGaam4Aai aadEgaaaGaeyyXICTaaGimaiaac6cacaaIWaGaaGynaiaaikdadaWc aaqaaiaad2gaaeaacaWGZbaaaiabgwSixpaalaaabaGaaGinaiaado haaeaacaaIWaGaaiOlaiaaikdacaaIWaGaaGyoaiaaikdacaWGTbaa aiabg2da9iaaiAdacaGGUaGaaGinaiaaiwdacaaI3aGaaGymaiabgw SixlaaicdacaGGUaGaaGimaiaaiwdacaaIYaGaeyyXICTaaGymaiaa iMdacaGGUaGaaGymaiaaikdacqGH9aqpcaaI2aGaaiOlaiaaisdaaa aa@BB3B@   (97)

Considering the velocities (vsystemic, vpulmonary) since they are the same in the two blood circuits, they are eliminated and only the mass ratio (msystemic/mpulmonary) remains.

P (mmHg)systemic P (mmHg)pulmonary = m systemic m pulmonary v systemic 1 v pulmonary = m systemic m pulmonary v systemic v pulmonary = 1.4548kg 0.2253kg =6.4571 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaadcfadaWgaaWcbaGaaiikaiaad2gacaWGTbGaamisaiaadEga caGGPaGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAai aadogaaeqaaaGcbaGaamiuamaaBaaaleaacaGGOaGaamyBaiaad2ga caWGibGaam4zaiaacMcacaWGWbGaamyDaiaadYgacaWGTbGaam4Bai aad6gacaWGHbGaamOCaiaadMhaaeqaaaaakiabg2da9maalaaabaGa amyBamaaBaaaleaacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2 gacaWGPbGaam4yaaqabaaakeaacaWGTbWaaSbaaSqaaiaadchacaWG 1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqaba aaaOGaeyyXICTaamODamaaBaaaleaacaWGZbGaamyEaiaadohacaWG 0bGaamyzaiaad2gacaWGPbGaam4yaaqabaGccqGHflY1daWcaaqaaa baaaaaaaaapeGaaGymaaWdaeaacaWG2bWaaSbaaSqaaiaadchacaWG 1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaqaba aaaaGcbaGaeyypa0ZaaSaaaeaacaWGTbWaaSbaaSqaaiaadohacaWG 5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaabeaaaOqaai aad2gadaWgaaWcbaGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWG UbGaamyyaiaadkhacaWG5baabeaaaaGccqGHflY1daWcaaqaaiaadA hadaWgaaWcbaGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGa amyAaiaadogaaeqaaaGcbaGaamODamaaBaaaleaacaWGWbGaamyDai aadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaeqaaaaa kiabg2da9maalaaabaGaaGymaiaac6cacaaI0aGaaGynaiaaisdaca aI4aGaam4AaiaadEgaaeaacaaIWaGaaiOlaiaaikdacaaIYaGaaGyn aiaaiodacaWGRbGaam4zaaaacqGH9aqpcaaI2aGaaiOlaiaaisdaca aI1aGaaG4naiaaigdaaaaa@B972@   (98)

Alternative definitions of the velocity of Darwinian evolution and the rate of average human circulation using the laws of classical and modern physics

Another option, different from the above, to determine the speed of the evolutionary process, is to insert the special case of Newton's law of general mass attraction, i.e., the formula of free fall, into the law of general relativity.

The following relation expresses the velocity (v) of freely falling bodies, including biological individuals (see also Eq.11):

v 2 =2gh , and : gh= v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaCa aaleqabaGaaGOmaaaakiabg2da9iaaikdacqGHflY1caWGNbGaeyyX ICTaamiAaiaacYcadaWgaaWcbaaabeaakiaadggacaWGUbGaamizai aacQdadaWgaaWcbaaabeaakiaadEgacqGHflY1caWGObGaeyypa0Za aSaaaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaa a@4C93@   (99)

In the Einstein relation determining the redshift (Eq.1), the value of the gravitational potential difference (ΔΦ) is the following, broken down (Eq.2) into the product of g and h:

ν= ν 0 ( 1+ ΔΦ c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaeqyVd42aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaMc8Ua aGymaiabgUcaRmaalaaabaGaeuiLdqKaeuOPdyeabaGaam4yamaaCa aaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@44D9@   (100)

and:

ν= ν 0 ( 1+ g Earth(mean) h past,present c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaeqyVd42aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaMc8Ua aGymaiabgUcaRmaalaaabaGaam4zamaaBaaaleaacaWGfbGaamyyai aadkhacaWG0bGaamiAaiaacIcacaWGTbGaamyzaiaadggacaWGUbGa aiykaaqabaGccqGHflY1caWGObWaaSbaaSqaaiaadchacaWGHbGaam 4CaiaadshacaGGSaGaamiCaiaadkhacaWGLbGaam4CaiaadwgacaWG UbGaamiDaaqabaaakeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaaaaO GaayjkaiaawMcaaaaa@5B43@   (101)

According to the law of free fall, v squared is equal to the product of g and h multiplied by 2. In this way, the square of the velocity of the free-falling body can be substituted into the value of the product g∙h in the numerator of the Einstein formula. Then the formula changes as follows:

ν ν 0 ν 0 = v Darwin.evol.man(bluered) 2 2 c 2 and: ν ν 0 ν 0 2 c 2 = v Darwin.evol.man(bluered) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaMc8 +aaSaaaeaacqaH9oGBcqGHsislcqaH9oGBdaWgaaWcbaGaaGimaaqa baaakeaacqaH9oGBdaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0ZaaS aaaeaadaWcaaqaaiaadAhadaWgaaWcbaGaamiraiaadggacaWGYbGa am4DaiaadMgacaWGUbGaaiOlaiaadwgacaWG2bGaam4BaiaadYgaca GGUaGaamyBaiaadggacaWGUbGaaiikaiaadkgacaWGSbGaamyDaiaa dwgacqGHsislcaWGYbGaamyzaiaadsgacaGGPaaabeaakmaaCaaale qabaGaaGOmaaaaaOqaaiaaikdaaaaabaGaam4yamaaCaaaleqabaGa aGOmaaaaaaGccaWGHbGaamOBaiaadsgacaGG6aaabaWaaSaaaeaacq aH9oGBcqGHsislcqaH9oGBdaWgaaWcbaGaaGimaaqabaaakeaacqaH 9oGBdaWgaaWcbaGaaGimaaqabaaaaOGaeyyXICTaaGOmaiabgwSixl aadogadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWG2bWaaSbaaSqa aiaadseacaWGHbGaamOCaiaadEhacaWGPbGaamOBaiaac6cacaWGLb GaamODaiaad+gacaWGSbGaaiOlaiaad2gacaWGHbGaamOBaiaacIca caWGIbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadwgacaWGKb GaaiykaaqabaGcdaahaaWcbeqaaiaaikdaaaaaaaa@87CF@   (102)

Accordingly, if the degree of redshift (blue-red) is (ν-νo)/νo = 0.62 (Eq.8 and Eq.9) and taking the roots from both sides of the equation:

0.622 c 2 = v Darwin.evol.man(bluered) 2 and: 0.622 c= v Darwin.evol.man(bluered) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIWa GaaiOlaiaaiAdacaaIYaGaeyyXICTaaGOmaiabgwSixlaadogadaah aaWcbeqaaiaaikdaaaGccqGH9aqpcaWG2bWaaSbaaSqaaiaadseaca WGHbGaamOCaiaadEhacaWGPbGaamOBaiaac6cacaWGLbGaamODaiaa d+gacaWGSbGaaiOlaiaad2gacaWGHbGaamOBaiaacIcacaWGIbGaam iBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadwgacaWGKbGaaiykaaqa baGcdaahaaWcbeqaaiaaikdaaaGccaWGHbGaamOBaiaadsgacaGG6a aabaWaaOaaaeaacaaIWaGaaiOlaiaaiAdacaaIYaGaeyyXICTaaGOm aaWcbeaakiabgwSixlaadogacqGH9aqpcaWG2bWaaSbaaSqaaiaads eacaWGHbGaamOCaiaadEhacaWGPbGaamOBaiaac6cacaWGLbGaamOD aiaad+gacaWGSbGaaiOlaiaad2gacaWGHbGaamOBaiaacIcacaWGIb GaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaadwgacaWGKbGaaiyk aaqabaaaaaa@7EBD@   (103)

Numerically:

v Darwin.evol.man(bluered) =0.78742.99792458 10 8 m s 1.4142=2.360568 10 8 m s 1.4142 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG2b WaaSbaaSqaaiaadseacaWGHbGaamOCaiaadEhacaWGPbGaamOBaiaa c6cacaWGLbGaamODaiaad+gacaWGSbGaaiOlaiaad2gacaWGHbGaam OBaiaacIcacaWGIbGaamiBaiaadwhacaWGLbGaeyOeI0IaamOCaiaa dwgacaWGKbGaaiykaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaiEdaca aI4aGaaG4naiaaisdacqGHflY1caaIYaGaaiOlaiaaiMdacaaI5aGa aG4naiaaiMdacaaIYaGaaGinaiaaiwdacaaI4aGaeyyXICTaaGymai aaicdadaahaaWcbeqaaiaaiIdaaaGcdaWcaaqaaiaad2gaaeaacaWG ZbaaaaqaaiabgwSixlaaigdacaGGUaGaaGinaiaaigdacaaI0aGaaG Omaiabg2da9iaaikdacaGGUaGaaG4maiaaiAdacaaIWaGaaGynaiaa iAdacaaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiIdaaa GcdaWcaaqaaiaad2gaaeaacaWGZbaaaiabgwSixlaaigdacaGGUaGa aGinaiaaigdacaaI0aGaaGOmaaaaaa@7E2C@   (104)

This value exceeds the speed of light. Multiplied by the ratio of the angles (α/2∙π-1 = 2.2157∙10-10), the speed of blood circulation would be equal to 5.2303 cm/s∙1.4142, i.e., 7.3967 cm/s.

12 c α 2π = v Darwin.evol.man(black) ,so: v Darwin.evol.man(black)reduce d b y α/2π = 11.41423 10 8 m s 0.22157 10 9 =6.6425 10 2 m s 1.4142 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayda GcaaqaaiaaigdacqGHflY1caaIYaaajeaybeaajaaycqGHflY1caWG JbGaeyyXIC9aaSaaaeaacqaHXoqyaeaacaaIYaGaeyyXICTaeqiWda haaiabg2da9iaadAhadaWgaaqcbawaaiaadseacaWGHbGaamOCaiaa dEhacaWGPbGaamOBaiaac6cacaWGLbGaamODaiaad+gacaWGSbGaai Olaiaad2gacaWGHbGaamOBaiaacIcacaWGIbGaamiBaiaadggacaWG JbGaam4AaiaacMcaaeqaaKaaGjaacYcacaWGZbGaam4BaiaacQdaca WG2bWaaSbaaKqaGfaacaWGebGaamyyaiaadkhacaWG3bGaamyAaiaa d6gacaGGUaGaamyzaiaadAhacaWGVbGaamiBaiaac6cacaWGTbGaam yyaiaad6gacaGGOaGaamOyaiaadYgacaWGHbGaam4yaiaadUgacaGG PaGaamOCaiaadwgacaWGKbGaamyDaiaadogacaWGLbGaamizamaaBa aajiaybaaabeaajeaycaWGIbGaamyEamaaBaaajiaybaaabeaajeay cqaHXoqycaGGVaGaaGOmaiabec8aWbqabaqcaaMaeyypa0dakeaaja aycaaIXaGaeyyXICTaaGymaiaac6cacaaI0aGaaGymaiaaisdacaaI YaGaeyyXICTaaGPaVdbaaaaaaaaapeGaaG4maiabgwSixlaaigdaca aIWaWdamaaCaaajeaybeqaa8qacaaI4aaaaKaaG9aadaWcaaqaaiaa d2gaaeaacaWGZbaaa8qacqGHflY1caaIWaGaaiOlaiaaikdacaaIYa GaaGymaiaaiwdacaaI3aGaeyyXICTaaGymaiaaicdapaWaaWbaaKqa GfqabaWdbiabgkHiTiaaiMdaaaqcaaMaeyypa0JaaGOnaiaac6caca aI2aGaaGinaiaaikdacaaI1aGaeyyXICTaaGymaiaaicdapaWaaWba aKqaGfqabaWdbiabgkHiTiaaikdaaaqcaa2damaalaaabaGaamyBaa qaaiaadohaaaGaeyyXICTaaGymaiaac6cacaaI0aGaaGymaiaaisda caaIYaaaaaa@BF05@   (105)

This is the same as the result obtained by the above method for the average human blood circulation (6.6425 cm/s; see Chapter 3 and Eq.15). At complete blackout, when there is respiratory and circulatory insufficiency, the frequency shift will be (ν-νo)/νo =0.92 and 1, respectively. Then the blood flow speed in the human body would exceed the maximum value, i.e., 6.6425 cm/s ∙ 1.4142 = 9.3938 cm/s.

If we apply these two laws, the factor 2 must disappear from the classical formula (v2=2∙g∙h) due to the change in the curvature of space-time, otherwise the value obtained in this way exceeds the speed of light by a value of 1.41 (Eq.105).

However, instead of the redshift of 0.62, we take the shift of the two inner values of the red and blue reflection bands [(ν-νo)/νo=(630-420)/420=0.5] and calculate with a redshift of 0.5, then the product of the two terms under the square root (0.5 multiplied by 2) will be 1. In that case, it is not necessary to eliminate the factor 2 from the formula either, the end result will be the speed of light. Taking this into account, the speed of the Darwinian evolutionary process does not exceed the speed of light:

ν ν 0 ν 0 = v Darwin.evol.man(bluered) 2 2 c 2 ,and:0.52 c 2 = v Darwin.evol.man(bluered) 2 ,so:c= v Darwin.evol.man(bluered,medial) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiabe27aUjabgkHiTiabe27aUnaaBaaaleaacaaIWaaabeaaaOqa aiabe27aUnaaBaaaleaacaaIWaaabeaaaaGccqGH9aqpdaWcaaqaam aalaaabaGaamODamaaBaaaleaacaWGebGaamyyaiaadkhacaWG3bGa amyAaiaad6gacaGGUaGaamyzaiaadAhacaWGVbGaamiBaiaac6caca WGTbGaamyyaiaad6gacaGGOaGaamOyaiaadYgacaWG1bGaamyzaiab gkHiTiaadkhacaWGLbGaamizaiaacMcaaeqaaOWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGOmaaaaaeaacaWGJbWaaWbaaSqabeaacaaIYaaa aaaakiaacYcacaWGHbGaamOBaiaadsgacaGG6aGaaGimaiaac6caca aI1aGaeyyXICTaaGOmaiabgwSixlaadogadaahaaWcbeqaaiaaikda aaGccqGH9aqpaeaacaWG2bWaaSbaaSqaaiaadseacaWGHbGaamOCai aadEhacaWGPbGaamOBaiaac6cacaWGLbGaamODaiaad+gacaWGSbGa aiOlaiaad2gacaWGHbGaamOBaiaacIcacaWGIbGaamiBaiaadwhaca WGLbGaeyOeI0IaamOCaiaadwgacaWGKbGaaiykaaqabaGcdaahaaWc beqaaiaaikdaaaGccaGGSaGaam4Caiaad+gacaGG6aGaam4yaiabg2 da9iaadAhadaWgaaWcbaGaamiraiaadggacaWGYbGaam4DaiaadMga caWGUbGaaiOlaiaadwgacaWG2bGaam4BaiaadYgacaGGUaGaamyBai aadggacaWGUbGaaiikaiaadkgacaWGSbGaamyDaiaadwgacqGHsisl caWGYbGaamyzaiaadsgacaGGSaGaamyBaiaadwgacaWGKbGaamyAai aadggacaWGSbGaaiykaaqabaaaaaa@A627@   (106)

When substituting the formulas describing free fall and Newton's law of gravity, as well as the general relativity, an interaction of space-time curvatures is created. Since both equations separately contain a strong space-time curvature, when combined, they can add up or even reduce each other's curvature. When the two systems merges, taking into account a smaller redshift (0.5), factor 2 can be eliminated, so the unification of physical laws cannot violate the constancy of the speed of light. In the case of a larger redshift, i.e., complete blackening [(ν-νo)/νo=1], a phenomenon can cancel the excess value.

In general, it can be said from the aspect of the high redshifted Milky Way Galaxy (including the Earth) in correlation with the expanding universe, it may also describe the cosmos from various points of view.54 Furthermore, by combining the laws and equations of Einstein and Newton, the physical laws of nature can be connected. Due to their joint effect, they can merge into one in the human blood circulation. In addition, they receive a supportive interpretation from the point of view of the living world, with particular regard to the evolution of biological organisms.

Conclusion

To determine the time interval of development of biological individuals in the Darwinian evolution, the size of the universe must first be determined (Huniverse). In the expanding universe, the radius of the cosmos can be determined in the radial direction from the point of view of the Earth, which is receding in the opposite direction to the distant galaxies. The evolutionary distances (HDarwinian evolutionary distant) calculated from the color changes of the respiratory pigments, which are also given by the Einsteinian formula, must then be measured for the radius of the cosmos. In Darwinian evolution, from the birth of life to the formation of the human race, it takes approximately four billion years for such a system to develop during adaptation to environmental factors. This is made on the bases of our hypothesis possible by molecular systems interacting with gravity. In this way, a special form of physiological processes and anatomical structures is created, which should be characteristic of both. Simple inorganic and then organic chemical and physiological processes can transform into highly organized structures known from animal or human physiology and anatomy. In such a system, due to the multiplication of gravitational effects, the phenomenon of light bending, the shift of the light frequency (red shift) would be noticeable in a modified form. This is achieved through optical phenomena resulting from breathing-related molecular changes in the transparent tissue interwoven with blood-filled capillaries (respiration-circulation-dependent biological redshift). For studying circulation and respiration in biological evolution is to try to describe anatomical and physiological processes from the perspective of free fall. Examined in the line of unbroken development from the past to the present, this concept may provide a more complete answer to explain the structure and physiology of biological individuals. Using the ratio of these angles (α/2π, 2π/α), we can obtain the value of the time dilation that can lead to the determination of the average flow velocity in the human blood stream (vDarwinian, man(blue-red) reduced by 2π/α). This speed is necessary in order to create a torus-shaped blood circulation model. By further refining this model with the combination of various physiological tests, the pulmonary and systemic circulation can be formed in the shape of a figure of folded eight. During the four-billion-year course of Darwin's evolutionary process, it is possible to go from the origin of life to the formation of the human race through mutations, embedded in the genetic information system, and by inheriting the effects of gravity. In this way, by using general relativity and Newton's law of gravity, the laws of physics and biology can be plastically merged into one in the Darwinian evolutionary process. In this sense, it would be a fusion of the laws of modern physics describing the entire inanimate nature and the laws taking place in living organisms.

Acknowledgments

I gratefully think of the role of my father Dr. Zoltán Nagy PhD chemist (University of Debrecen, Central Research Laboratory) in terms of the formation of my thoughts. He introduced me to the basics of spectroscopy, with a special focus on the absorption and emission processes taking place in the atomic shell structure. In addition, the educational and scientific activities of my mother, chemist Dr. Edit Pólyik (University of Debrecen, Institute of Medical Chemistry), had a great influence on the development of the ideas contained in this article. With particular regard to the enzymatic processes, taking place in the human body and the periodic color changes that can be associated with this.

Figures are not to scale.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. Chaboyer B. The Age of the universe. Nuclear Physics Proc Suppl. 1996;51(2):10–19.
  2. Hubble EP. A relation between distance and radial velocity among extra-galactic nebulae. Astronomy. 1929;15(3):168–173.
  3. Page l, Hinshaw g, Komatsu e, et al. Three year Wilkinson microwave anisotropy probe (WMAP) observations: polarization analysis. ApJ. 2007.
  4. Nagy ET. The age of the universe the size of the sun and planets based upon the theory of general relativity and Euclidean geometry. Vixra. 2015.
  5. Nagy ET. Study on the effect of variations in earth-surface gravity depending on the shape and position of the earth radius and age of the universe using general relativity and Euclidean geometry. Challenging Issues on Environment and Earth Science. 2021;8:89–103.
  6. Nagy ET. Earth in the expanding universe: a dualistic approach to determine their physical parameters based on a combined Einstein gravity field equation using the Hubble law. ViXra. 2020.
  7. Darwin C. On the origin of species by means of natural selection. London: John Murray; 1859.
  8. Darwin C. The descent of man, and selection in relation to sex. London: John Murray; 1871.
  9. Einstein A. Relativity the special and general theory. New York: H. Holt and Company; 1920.
  10. Einstein A. Cosmological considerations on the general theory of relativity. Proceedings of the Royal Prussian Academy of Sciences. 1917:142–152.
  11. Nagy ET. Determining the beginning of life on earth: the evolution time of living creatures based upon color changes within their blood with reference to the theory of general relativity and Euclidean geometry. ViXra. 2015.
  12. Einstein A. Einstein A. The field equations of gravity. Reports of the meetings of the Prussian Academy of Sciences in Berlin. 1915;844–847.
  13. Dickin AP. Radiogenic isotope geology. Cambridge University Press; 2005.
  14. Daniel JP, Deino AL. Dating rocks and fossils using geologic methods. Nature Education. 2013.
  15. Thews G, Mutschler E, Vaupel P. Human anatomy, physiology and Pathophysiology. Amsterdam: Elsevier; 1985.
  16. Einstein A. On the principle of relativity and the conclusions drawn from it. Yearbook of Radioactivity and Electronics. 1907;4:411.
  17. Carreau EC. Lisa pathfinder. Space time curvature; 2019.
  18. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356): 737–738.
  19. DNA and the genetic code. Encyclopedia Britannica.
  20. Griffiths AJF. Mutation, genetics. Encyclopedia Britannica; 2022.
  21. Gilchrist DA. Mutation. Division of genome sciences national human genome research institute; 2022.
  22. Purves W, Orians G. Life, the Science of Biology. Sunderland, Massachusetts, Sinauer; 1987.
  23. Murphy A, Knipe H. CT pulmonary angiogram (protocol). Radiopaedia org. 2022.
  24. Hecht EM, Rosenkrantz A. Pulmonary MR angiography techniques and applications. Magnetic Resonance Imaging Clinics of North America. 2009;17(1):101–131.
  25. Farhi LE, Sheehan DW. Pulmonary circulation and systemic circulation: similar problems, different solutions. In: Piiper J, Goldstick TK, Meyer M, editors. Oxygen Transport to Tissue XII. Advances in Experimental Medicine and Biology. Boston, MA: Springer; 1990. p. 277.
  26. Einstein A. On the influence of gravitation on the propagation of light. Ann Phys. 1911;35:898–908.
  27. Beckwith SVW, Stiavelli M, Koekemoer AM, et al. The Hubble ultra deep field. AJ. 2006;132(5):1729–1755.
  28. Herrmann J. dtv-Atlas Astronomy, German paperback publisher. GmbH & Co; München; 1990.
  29. Committee on data for science and technology (CODATA). CODATA recommended values of the fundamental physical constants; 2010.
  30. Williams DR. Planetary fact sheet. 2015.
  31. Advanced converter: time conversion calculator. 2015.
  32. Bennett CL, Larson D, Weiland JL, et al. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. arXiv. 2013.
  33. Fox HM, Vevers G. The nature of animal colours. London: Sidgwick and Jackson; 1960.
  34. Speed, distance, and time of fall for an average‐sized adult in stable free fall position. Green Harbor Publications; 2010.
  35. Charlton R. Diagnosing death. BMJ. 1996;313(7063):956–957.
  36. Chäfer AT. Colour measurements of pallor mortis. International journal of legal medicine. 2000;113(2):81–83.
  37. Newton’s law of gravity. Encyclopedia Britannica.
  38. Fauci AS, Braunwald E, Kasper DL, et al. Harrison's principles of internal medicine. 17th ed. New York: McGraw-Hill; 2011.
  39. Hudetz AG. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation. 1997;4(2):233–252.
  40. Ohnishi Y, Fujisawa K, Ishibashi T, et al. Capillary blood flow velocity measurements in cystoid macular edema with the scanning laser ophthalmoscope. Am J Ophthalmol. 1994;117(1):24–29.
  41. Merrikh AA, Lage José L. Effect of blood flow on gas transport in a pulmonary capillary. J Biomech Eng. 2005;127(3):432–439.
  42. Garcia J, van der Palen RLF, Bollache E, et al. Distribution of blood flow velocity in the normal aorta: Effect of age and gender. JMRI. 2017.
  43. Gardin JM, Burn CS, Childs WJ, et al. Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography. American Heart Journal. 1984;107(2):310–319.
  44. Nagy TE, Szolnoki E. Human blood circulation model based on flow laws of intensity and continuity in relation to earth’s surface gravity. J Lung Pulm Respir Res. 2023;10(2):46‒54.
  45. Lund Johansen P. The dye dilution method for measurement of cardiac output. Eur Heart J. 1990;11(1):6–12.
  46. Conway J, Lund Johansen P. Thermodilution method for measuring cardiac output. Eur Heart J. 1990;11(1):17–20.
  47. Fouad Tarazi FM, MacIntyre WJ. Radionuclide methods for cardiac output determination. Eur Heart J. 1990;11(1):33–40.
  48. Allsager CM, Swanevelder J. Measuring cardiac output. British Journal of Anaesthesia. 2003;3(1).
  49. Rakshitha C. Blood circulation time: definition and importance. Biology discussion.
  50. Libby P, Zipes DP, Bonow RO, et al. Braunwald's heart disease: A Textbook of Cardiovascular Medicine.
  51. Klabunde RE. Stroke work and cardiac work. Cardiovascular Physiology Concepts. 2017.
  52. He Zhao, Jiaywei Tsauo, Xiaowu Zhang, et al. Pulmonary transit time derived from pulmonary angiography for the diagnosis of hepatopulmonary syndrome. Liver Int. 2018;38(11):1974–1981.
  53. Slutsky RA, Bhargava V, Higgins CB. Pulmonary circulation time: comparison of mean, median, peak, and onset (appearance) values using indocyanine green and first-transit radionuclide techniques. Am Heart J. 1983;106(1):41–45.
  54. Nagy TE. Unique energy levels and shifts in the heat drop of the universe from the Planck temperature to the present day based on a combined Einstein gravitational field equation. Aeron Aero Open Access J. 2022;6(4):132–143.
Creative Commons Attribution License

©2023 Nagy, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.