Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 6 Issue 4

Unique energy levels and shifts in the heat drop of the universe from the Planck temperature to the present day based on a combined Einstein gravitational field equation

Tibor Endre Nagy

University of Debrecen, Kenézy Campus, Hungary

Correspondence: Tibor Endre Nagy, University of Debrecen, Kenézy Campus, Debrecen, Hungary

Received: August 31, 2022 | Published: September 13, 2022

Citation: Nagy TE. Unique energy levels and shifts in the heat drop of the universe from the Planck temperature to the present day based on a combined Einstein gravitational field equation. Aeron Aero Open Access J. 2022;6(4):132-143. DOI: 10.15406/aaoaj.2022.06.00152

Download PDF

Abstract

In the general relativity, it is possible to determine the size and age of the universe (13.73 billion years) by means of a newfound Einstein gravitational field equation. Multiplied the mass of the Earth by the ratio of the complete angle (2∙π) and of the deviation angle of a light beam grazing the surface of the Earth (α/2∙π), towards the macro and microcosm three times, both of the present total (5.4∙1053kg) and of the initial mass of the universe (6.49∙10-5kg) can be calculated. Testing the classic formula of Planck temperature (T=M∙c2/k), in the case of the initial mass of the cosmos / which is (π∙) 950.08 times the Planck mass /, the initial temperature of the universe could be determined as well. Using the ratio of the angles for one to three times, the temperature would gradually decrease and finally reach the surface temperature of the lightened ancient cosmos. Due to the Planck temperature restoration the derivative primordial temperatures / 2·π∙(3.13∙1022K, 6.95∙1012K and 1541.1 K) / are also shifted by the factor of (π∙) 950.08 to the lower values, finally cooling the universe to the present amount (2·π∙0.516 K). Around these stages of the developing cosmos, forward in time after the quark-gluon plasma state of matter all of the elementary particles and of the entire spectrum of electromagnetic radiation could be identified. By dividing both the present total and the initial mass of the universe by the factor, the visible matter of the cosmos (1.79∙1050kg) and the Planck mass remain.

Keywords: energy levels, gravitational field equation, heat drop, universe, milky way galaxy

Introduction

With the advancement of technology in the last century, the emergence of ever-higher resolution binoculars and the enhancement of astronomical spectroscopy have made it possible to observe distant galaxies.1 Before the creation of the General Relativity2 and even until the end of the twenties of the last century did not know that the universe expanded. After Edwin Hubble's milestone discovery (1926),3 it became apparent that the shift of the spectrum lines of the light from the galaxies to the Earths became proportional to the distance.4 In 1927, Georges Lemaitre, who was aware of the fact that retrogression in time, the distances of stars, leads to a certain well-defined point of the past,5 and the time calculated here, can be the interval of the emergence of the expanding universe.6 The mass of the point where the universe could have been born has not yet been precisely determined. The measure of this initial mass of the cosmos7 is cardinal, because then it is possible to find out what temperature the cosmos had at the moment of its creation in relation to the Planck mass.

To answer this question and to specify the mass quantity, the following approach is required. In the expanding universe, all galaxies are moving away from each other, so this view should be extended to the Milky Way Galaxy as well. If it goes away from each galaxy, then there is a Solar System in it, including the Earth.8 For this reason, the Earth can be treated as a separate entity, it moves on the one hand in the expanding universe at a very high speed,9 while circling around the Sun (Copernican system), it almost static. In this dual situation, when the Einstein equivalence principle exists together, using the Earth's parameters, it is possible to determine similar factors of the universe.10 In this way, the introduction of a special, repeatable angle ratio and a so-called thermos-relativistic factor can explain the evolution of the cosmos and present its scope holistically.

Determining the radius of the universe from the aspect of the high redshift Milky Way galaxy including the earth in the expanding cosmos

Since there is also time shift behind redshift, it is possible to calculate the exact point in time due to the rapid expansion of space in a manner to estimate the time interval involved by invoking the basic laws of physics. Alterations in either the acceleration or the gravitational fields (or both together) result in changes regarding the frequency of light. This shift of the spectrum line to a lower frequency is demonstrated by Einstein’s original formula11 (Eq.1):

ν= ν 0 ( 1+ Φ c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaeqyVd42aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGa ey4kaSYaaSaaaeaacqqHMoGraeaacaWGJbWaaWbaaSqabeaacaaIYa aaaaaaaOGaayjkaiaawMcaaaaa@41E8@   (1)

Where ν is the altered frequency, νo is the initial frequency, c is the speed of light and Φ is the gravitation potential difference.

The gravitational potential difference (Φ) is equal to the product of free fall acceleration (g) and the distance (h) between two points of different gravitational potentials: Φ=g×h.11 Therefore (Eq.1.a):

ν= ν 0 ( 1+ g.h c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH9oGBcqGH9aqpcqaH9oGBpaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeWaaeWaa8aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaam 4zaiaac6cacaWGObaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaa ikdaaaaaaaGccaGLOaGaayzkaaaaaa@43D3@   (1a)

If the same extent of a light beam’s redshift measured at farther galaxies12 is equated to the acceleration of the Earth (as a component of our galaxy) the above formula may also be applied. In this manner, a distance (h) can be calculated pointing towards the origin of the universe. This ‘short evolving distance’ (hpast present) is (Eq.2):  

h past.present = ν ν 0 ν 0 c 2 g Earth.stand MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiAaO WaaSbaaSqaaKqzGeGaamiCaiaadggacaWGZbGaamiDaiaac6cacaWG WbGaamOCaiaadwgacaWGZbGaamyzaiaad6gacaWG0baaleqaaKqzGe Gaeyypa0JcdaWcaaqaaKqzGeGaeqyVd4MaeyOeI0IaeqyVd4McdaWg aaWcbaqcLbsacaaIWaaaleqaaaGcbaqcLbsacqaH9oGBkmaaBaaale aajugibiaaicdaaSqabaaaaKqzGeGaeyyXICTcdaWcaaqaaKqzGeGa am4yaOWaaWbaaSqabeaajugibiaaikdaaaaakeaajugibiaadEgakm aaBaaaleaajugibiaadweacaWGHbGaamOCaiaadshacaWGObGaaiOl aiaadohaciGG0bGaaiyyaiaac6gacaWGKbaaleqaaaaaaaa@62AE@   (2)

Where hpast present is the unknown distance between two points of a gravitational field, (ν-νo)/νo= 3.141592653 is the redshift of the Earth as a component of the highly redshifted Milky Way Galaxy, c is the speed of light (2.99792458·108 m·s-1) and g is the standard gravity of the Earth (9.80665 m·s-2).

Numerically (Eq.2.a):

h past.present =3.141592653 8.987551787 10 16 m 2 s 2 9.80665m s 2 =2.879191841 10 16 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiAaO WaaSbaaSqaaKqzGeGaamiCaiaadggacaWGZbGaamiDaiaac6cacaWG WbGaamOCaiaadwgacaWGZbGaamyzaiaad6gacaWG0baaleqaaKqzGe Gaeyypa0JaaG4maiaac6cacaaIXaGaaGinaiaaigdacaaI1aGaaGyo aiaaikdacaaI2aGaaGynaiaaiodacqGHflY1kmaalaaabaqcLbsaca aI4aGaaiOlaiaaiMdacaaI4aGaaG4naiaaiwdacaaI1aGaaGymaiaa iEdacaaI4aGaaG4naiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaK qzGeGaaGymaiaaiAdaaaGaamyBaOWaaWbaaSqabeaajugibiaaikda aaGaeyyXICTaam4CaOWaaWbaaSqabeaajugibiabgkHiTiaaikdaaa aakeaajugibiaaiMdacaGGUaGaaGioaiaaicdacaaI2aGaaGOnaiaa iwdacaWGTbGaeyyXICTaam4CaOWaaWbaaSqabeaajugibiabgkHiTi aaikdaaaaaaiabg2da9iaaikdacaGGUaGaaGioaiaaiEdacaaI5aGa aGymaiaaiMdacaaIXaGaaGioaiaaisdacaaIXaGaeyyXICTaaGymai aaicdakmaaCaaaleqabaqcLbsacaaIXaGaaGOnaaaacaWGTbaaaa@8409@   (2a)

This distance depends both on the spectrum line shift ratio, which matches the motion of the Earth, and on the gravity of Earth (Figure 1a). The ‘short evolving distance’ (hpast present) can be given by the ratio of the entire plane angle (2π) and the deviation angle (α) of a light beam passing near the Earth’s surface caused by the gravitational field: h/α=H/2π. With the ratio calculated from the known ‘short evolving distance’ (h) and the two known angles (α, 2π) an enormous unknown distance can be calculated which might be termed the ‘long evolving distance’ (Hpast present = Huniverse)13 (Figure 1b).

Figure 1 Earth by dualistic approach.

Relationship between the entire plane angle (2π) represented by the expanding universe (in a light gray circle with the Earth in the center as the black dot) and the deviation angle (α) of a light beam (c) coming from the left galaxy and grazing the Earth. If the same beam is passing through the gravitational field of the Earth (g=9.8m∙s-2) when the Earth is in motion (n·α) or is comparatively static (α) the degree of change in light properties (e.g. deflection) is different. In the left figure, compared to the opposite galaxy with (e.g.) 3.14 redshift, the Earth remotes with the same velocity from A to B together with the light beam in its g along their contact distance h. This relative one-dimensional movement of the galaxy and the Earth in three dimensions forms a sphere (dark gray circle) with the radius of h around the planet. All observable redshifts from every direction of the cosmos are transforming into this globular region by this principle. Due to the Earth's movement with various redshifts, this orb also contains a homogeneous gravitation field to a value of 9.8m∙s-2. Throughout the generation of the contact distance (h=n∙REarth) there will be a concentric relation to the radius of the universe upward and toward the Earth's size. From this data (h, 2∙π and α) based on Euclidean geometry the size of the universe (H) (right figure), in the case of the inverse ratio of angles (α/2∙π) the Earth's radius (REarth) can be determined symmetrically as well.

The deviation angle (α) of a light beam passing near a celestial body’s surface, in this case that of the Earth, according to Einstein’s formula11 is (Eq.3):

α Earth = 2G M Earth c 2 R Earth MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde McdaWgaaWcbaqcLbsacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaWc beaajugibiabg2da9OWaaSaaaeaajugibiaaikdacqGHflY1caWGhb GaeyyXICTaamytaOWaaSbaaSqaaKqzGeGaamyraiaadggacaWGYbGa amiDaiaadIgaaSqabaaakeaajugibiaadogakmaaCaaaleqabaqcLb sacaaIYaaaaiabgwSixlaadkfakmaaBaaaleaajugibiaadweacaWG HbGaamOCaiaadshacaWGObaaleqaaaaaaaa@58A3@   (3)

Numerically (Eq.3.a):

α Earth = 26.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg 8.987551787 10 16 m 2 s 2 6.371005 10 6 m =1.392164551 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde McdaWgaaWcbaqcLbsacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaWc beaajugibiabg2da9OWaaSaaaeaajugibiaaikdacqGHflY1caaI2a GaaiOlaiaaiAdacaaI3aGaaG4maiaaiIdacaaI0aGaaGioaiabgwSi xlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaiaaig daaaGaamyBaOWaaWbaaSqabeaajugibiaaiodaaaGaeyyXICTaam4A aiaadEgakmaaCaaaleqabaqcLbsacqGHsislcaaIXaaaaiabgwSixl aadohakmaaCaaaleqabaqcLbsacqGHsislcaaIYaaaaiabgwSixlaa iwdacaGGUaGaaGyoaiaaiEdacaaIYaGaaGymaiaaiMdacqGHflY1ca aIXaGaaGimaOWaaWbaaSqabeaajugibiaaikdacaaI0aaaaiaadUga caWGNbaakeaajugibiaaiIdacaGGUaGaaGyoaiaaiIdacaaI3aGaaG ynaiaaiwdacaaIXaGaaG4naiaaiIdacaaI3aGaeyyXICTaaGymaiaa icdakmaaCaaaleqabaqcLbsacaaIXaGaaGOnaaaacaWGTbGcdaahaa WcbeqaaKqzGeGaaGOmaaaacqGHflY1caWGZbGcdaahaaWcbeqaaKqz GeGaeyOeI0IaaGOmaaaacqGHflY1caaI2aGaaiOlaiaaiodacaaI3a GaaGymaiaaicdacaaIWaGaaGynaiabgwSixlaaigdacaaIWaGcdaah aaWcbeqaaKqzGeGaaGOnaaaacaWGTbaaaiabg2da9iaaigdacaGGUa GaaG4maiaaiMdacaaIYaGaaGymaiaaiAdacaaI0aGaaGynaiaaiwda caaIXaGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacqGHsi slcaaI5aaaaaaa@A36F@   (3a)

Therefore, linking the two equations (Eq.2 and Eq.3) by 2∙π/α (Eq.4):

H univers e present =h 2π α = ν ν 0 ν 0 c 4 g Eart h stand π R Eart h mean G M Earth .(4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamiCaiaadkhacaWGLbGaam4Caiaadw gacaWGUbGaamiDaaqabaGccqGH9aqpcaWGObGaeyyXIC9aaSaaaeaa caaIYaGaeyyXICTaeqiWdahabaGaeqySdegaaiabg2da9maalaaaba GaeqyVd4MaeyOeI0IaeqyVd42aaSbaaSqaaiaaicdaaeqaaaGcbaGa eqyVd42aaSbaaSqaaiaaicdaaeqaaaaakiabgwSixpaalaaabaGaam 4yamaaCaaaleqabaGaaGinaaaaaOqaaiaadEgadaWgaaWcbaGaamyr aiaadggacaWGYbGaamiDaiaadIgadaWgaaadbaaabeaaliaadohaci GG0bGaaiyyaiaac6gacaWGKbaabeaaaaGccqGHflY1daWcaaqaaiab ec8aWjabgwSixlaadkfadaWgaaWcbaGaamyraiaadggacaWGYbGaam iDaiaadIgadaWgaaadbaaabeaaliaad2gacaWGLbGaamyyaiaad6ga aeqaaaGcbaGaam4raiabgwSixlaad2eadaWgaaWcbaGaamyraiaadg gacaWGYbGaamiDaiaadIgaaeqaaaaakiaaykW7caGGUaGaaGPaVlaa ykW7caaMc8UaaGPaVlaacIcacaaI0aGaaiykaaaa@8B0C@

Where Huniverse is the radius of the universe, (ν-νo)/νo=3.141592653 is the redshift of the Earth (as a component of the highly redshifted Milky Way Galaxy), c is the speed of light (2.99792458·108 m·s-1), π is the ratio of a circle’s circumference to its diameter (3.141592653), R is the volumetric mean radius of the Earth (6.371005·106 m), g is the standard gravity of the Earth (9.80665 m·s-2), M is the mass of the Earth (5.97219·1024 kg)14 and G is the gravitational constant (6.673848·10-11 m3·kg-1·s-2).15

When considering the large redshift ((ν-νo)/νo= 3.141592) which may be measured from farther stars, the ‘long evolving distance’ (Hpast present) equals 12.994509·1025 m, the radius of the universe according to our present knowledge16,17 (Eq.4.a):

H univers e present =3.141592653 80.77608713 10 32 m 4 s 4 3.1415926536.371005 10 6 m 9.80665m s 2 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg =12.994509779 10 25 m.(4.a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamiCaiaadkhacaWGLbGaam4Caiaadw gacaWGUbGaamiDaaqabaGccqGH9aqpcaaIZaGaaiOlaiaaigdacaaI 0aGaaGymaiaaiwdacaaI5aGaaGOmaiaaiAdacaaI1aGaaG4maiabgw SixpaalaaabaGaaGioaiaaicdacaGGUaGaaG4naiaaiEdacaaI2aGa aGimaiaaiIdacaaI3aGaaGymaiaaiodacqGHflY1caaIXaGaaGimam aaCaaaleqabaGaaG4maiaaikdaaaGccaWGTbWaaWbaaSqabeaacaaI 0aaaaOGaeyyXICTaam4CamaaCaaaleqabaGaeyOeI0IaaGinaaaaki abgwSixlaaiodacaGGUaGaaGymaiaaisdacaaIXaGaaGynaiaaiMda caaIYaGaaGOnaiaaiwdacaaIZaGaeyyXICTaaGOnaiaac6cacaaIZa GaaG4naiaaigdacaaIWaGaaGimaiaaiwdacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaaGOnaaaakiaad2gaaeaacaaI5aGaaiOlaiaaiI dacaaIWaGaaGOnaiaaiAdacaaI1aGaamyBaiabgwSixlaadohadaah aaWcbeqaaiabgkHiTiaaikdaaaGccqGHflY1caaI2aGaaiOlaiaaiA dacaaI3aGaaG4maiaaiIdacaaI0aGaaGioaiabgwSixlaaigdacaaI WaWaaWbaaSqabeaacqGHsislcaaIXaGaaGymaaaakiaad2gadaahaa WcbeqaaiaaiodaaaGccqGHflY1caWGRbGaam4zamaaCaaaleqabaGa eyOeI0IaaGymaaaakiabgwSixlaadohadaahaaWcbeqaaiabgkHiTi aaikdaaaGccqGHflY1caaI1aGaaiOlaiaaiMdacaaI3aGaaGOmaiaa igdacaaI5aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaikdaca aI0aaaaOGaam4AaiaadEgaaaGaeyypa0JaaGymaiaaikdacaGGUaGa aGyoaiaaiMdacaaI0aGaaGynaiaaicdacaaI5aGaaG4naiaaiEdaca aI5aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaikdacaaI1aaa aOGaamyBaiaac6cacaaMi8UaaGjcVlaayIW7caaMi8UaaGjcVlaacI cacaaI0aGaaiOlaiaadggacaGGPaaaaa@CFFA@

Which in time (Tuniverse=Huniverse/c) is 4.3345010∙1017s. Since one year is 3.1556926∙107s, this equates to 13.7355010 billion years.18 The usage of this redshift (3.14) value is important for symmetry regarding both mathematical and physical aspects.

Determination of the initial mass of the cosmos by the repetition of the ratio of angles

Solving the original Einstein equations (1 and 3) linked by 2π/α (4) for the mass (Eq.5):

M Earth = ν ν 0 ν 0 c 4 g Eart h stand π R Eart h mean G H univers e present .(5) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaGccqGH9aqp daWcaaqaaiabe27aUjabgkHiTiabe27aUnaaBaaaleaacaaIWaaabe aaaOqaaiabe27aUnaaBaaaleaacaaIWaaabeaaaaGccqGHflY1daWc aaqaaiaadogadaahaaWcbeqaaiaaisdaaaaakeaacaWGNbWaaSbaaS qaaiaadweacaWGHbGaamOCaiaadshacaWGObWaaSbaaWqaaaqabaWc caWGZbGaciiDaiaacggacaGGUbGaamizaaqabaaaaOGaeyyXIC9aaS aaaeaacqaHapaCcqGHflY1caWGsbWaaSbaaSqaaiaadweacaWGHbGa amOCaiaadshacaWGObWaaSbaaWqaaaqabaWccaWGTbGaamyzaiaadg gacaWGUbaabeaaaOqaaiaadEeacqGHflY1caWGibWaaSbaaSqaaiaa dwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohacaWGLbWaaS baaWqaaaqabaWccaWGWbGaamOCaiaadwgacaWGZbGaamyzaiaad6ga caWG0baabeaaaaGccaaMc8UaaiOlaiaaykW7caaMc8UaaGPaVlaayk W7caGGOaGaaGynaiaacMcaaaa@805E@

Numerically (Eq.5.a):

M Earth =3.141592653 80.77608713 10 32 m 4 s 4 3.1415926536.371005 10 6 m 9.80665m s 2 6.673848 10 11 m 3 k g 1 s 2 12.994509779 10 25 m =5.97219 10 24 kg.(5.a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaGccqGH9aqp caaIZaGaaiOlaiaaigdacaaI0aGaaGymaiaaiwdacaaI5aGaaGOmai aaiAdacaaI1aGaaG4maiabgwSixpaalaaabaGaaGioaiaaicdacaGG UaGaaG4naiaaiEdacaaI2aGaaGimaiaaiIdacaaI3aGaaGymaiaaio dacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaG4maiaaikdaaaGc caWGTbWaaWbaaSqabeaacaaI0aaaaOGaeyyXICTaam4CamaaCaaale qabaGaeyOeI0IaaGinaaaakiabgwSixlaaiodacaGGUaGaaGymaiaa isdacaaIXaGaaGynaiaaiMdacaaIYaGaaGOnaiaaiwdacaaIZaGaey yXICTaaGOnaiaac6cacaaIZaGaaG4naiaaigdacaaIWaGaaGimaiaa iwdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaGOnaaaakiaad2 gaaeaacaaI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aGa amyBaiabgwSixlaadohadaahaaWcbeqaaiabgkHiTiaaikdaaaGccq GHflY1caaI2aGaaiOlaiaaiAdacaaI3aGaaG4maiaaiIdacaaI0aGa aGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIXa GaaGymaaaakiaad2gadaahaaWcbeqaaiaaiodaaaGccqGHflY1caWG RbGaam4zamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgwSixlaado hadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqGHflY1caaIXaGaaGOm aiaac6cacaaI5aGaaGyoaiaaisdacaaI1aGaaGimaiaaiMdacaaI3a GaaG4naiaaiMdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaGOm aiaaiwdaaaGccaWGTbaaaiabg2da9iaaiwdacaGGUaGaaGyoaiaaiE dacaaIYaGaaGymaiaaiMdacqGHflY1caaIXaGaaGimamaaCaaaleqa baGaaGOmaiaaisdaaaGccaWGRbGaam4zaiaac6cacaaMi8UaaGjcVl aayIW7caaMi8UaaGjcVlaacIcacaaI1aGaaiOlaiaadggacaGGPaaa aa@C618@

This value is equal to the mass of the Earth, which mass is competent to determine the mass of the universe. In determining the size of the universe and of the Earth8 a symmetrical value in the ratio of the angles can detected in the direction of both the macro and microcosm. If we hypothesize that this symmetrical ratio is valid in nature and as the length and mass are also in correlation with each other (Eq.5 and Eq.6), we can apply it for the determination of mass and not just once but several times; it is possible to determine the initial and total mass of the universe as well.

Given that the re-application of the ratio of the angles (α/2∙π-1) can be repeated up to three times, since it fits three times between the Earth’s mass and the Planck mass, this is a limit. By utilizing this repetition, namely raising the ratio of angles to a cube value (α/2∙π)3, then multiplying the mass of the Earth (MEarth) by this value results in the following substance (Muniverse initial) (Eq.6):

M univers e initial = ( α 2π ) 3 M Earth .(6) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaaqabaGccqGH9aqpdaqadaqaamaalaaabaGaeqyS degabaGaaGOmaiabgwSixlabec8aWbaaaiaawIcacaGLPaaadaahaa WcbeqaaiaaiodaaaGccqGHflY1caWGnbWaaSbaaSqaaiaadweacaWG HbGaamOCaiaadshacaWGObaabeaakmaaBaaaleaaaeqaaOGaaiOlai aaykW7caaMc8UaaGPaVlaaykW7caGGOaGaaGOnaiaacMcaaaa@605E@

Since (Eq.6.a):

α 2π = 2GM 2π c 2 R = 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg 3.1415926538.987551787 10 16 m 2 s 2 6.371005 10 6 m =0.22157 10 9 .(6.a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHXoqyaeaacaaIYaGaeyyXICTaeqiWdahaaiabg2da9maalaaabaGa aGOmaiabgwSixlaadEeacqGHflY1caWGnbaabaGaaGOmaiabgwSixl abec8aWjabgwSixlaadogadaahaaWcbeqaaiaaikdaaaGccqGHflY1 caWGsbaaaiabg2da9maalaaabaGaaGOnaiaac6cacaaI2aGaaG4nai aaiodacaaI4aGaaGinaiaaiIdacqGHflY1caaIXaGaaGimamaaCaaa leqabaGaeyOeI0IaaGymaiaaigdaaaGccaWGTbWaaWbaaSqabeaaca aIZaaaaOGaeyyXICTaam4AaiaadEgadaahaaWcbeqaaiabgkHiTiaa igdaaaGccqGHflY1caWGZbWaaWbaaSqabeaacqGHsislcaaIYaaaaO GaeyyXICTaaGynaiaac6cacaaI5aGaaG4naiaaikdacaaIXaGaaGyo aiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaIYaGaaGinaaaaki aadUgacaWGNbaabaGaaG4maiaac6cacaaIXaGaaGinaiaaigdacaaI 1aGaaGyoaiaaikdacaaI2aGaaGynaiaaiodacqGHflY1caaI4aGaai OlaiaaiMdacaaI4aGaaG4naiaaiwdacaaI1aGaaGymaiaaiEdacaaI 4aGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaG Onaaaakiaad2gadaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGZbWa aWbaaSqabeaacqGHsislcaaIYaaaaOGaeyyXICTaaGOnaiaac6caca aIZaGaaG4naiaaigdacaaIWaGaaGimaiaaiwdacqGHflY1caaIXaGa aGimamaaCaaaleqabaGaaGOnaaaakiaad2gaaaGaeyypa0JaaGimai aac6cacaaIYaGaaGOmaiaaigdacaaI1aGaaG4naiabgwSixlaaigda caaIWaWaaWbaaSqabeaacqGHsislcaaI5aaaaOGaaGPaVlaac6caca aMc8UaaGPaVlaaykW7caaMc8UaaiikaiaaiAdacaGGUaGaamyyaiaa cMcacaaMc8oaaa@BFFF@

Numerically (Eq.6.b):

M univers e initial = ( 0.22156987 10 9 ) 3 5.97219 10 24 kg=6.4962948 10 5 kg.(6.b) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaaqabaGccqGH9aqpdaqadaqaaiaaicdacaGGUaGa aGOmaiaaikdacaaIXaGaaGynaiaaiAdacaaI5aGaaGioaiaaiEdacq GHflY1caaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGyoaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiabgwSixlaaiwdaca GGUaGaaGyoaiaaiEdacaaIYaGaaGymaiaaiMdacqGHflY1caaIXaGa aGimamaaCaaaleqabaGaaGOmaiaaisdaaaGccaWGRbGaam4zaiabg2 da9iaaiAdacaGGUaGaaGinaiaaiMdacaaI2aGaaGOmaiaaiMdacaaI 0aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislca aI1aaaaOGaam4AaiaadEgacaGGUaGaaGPaVlaaykW7caaMc8Uaaiik aiaaiAdacaGGUaGaamOyaiaacMcaaaa@7CEA@

This value may correspond to the mass of the initial universe (Muniverse initial) as it is closest to the Planck mass (MPlanck). (The next, the fourth step, would already go beyond the Planck mass, exceeding it in the direction of the smaller value.)

There is a difference between the calculated initial mass of the cosmos (Eq.6.b) and the Planck mass (CODATA: 2.17647051∙10-8kg) therefore divide it by 950.0863 and π and the result is the Planck mass (Eq.6.c):

M Planck = M univers e initial π950.0863 =2.176470 10 8 kg.(6.c) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgaaeqaaOGa eyypa0ZaaSaaaeaacaWGnbWaaSbaaSqaaiaadwhacaWGUbGaamyAai aadAhacaWGLbGaamOCaiaadohacaWGLbWaaSbaaWqaaaqabaWccaWG PbGaamOBaiaadMgacaWG0bGaamyAaiaadggacaWGSbaabeaaaOqaai abec8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGio aiaaiAdacaaIZaaaaiabg2da9iaaikdacaGGUaGaaGymaiaaiEdaca aI2aGaaGinaiaaiEdacaaIWaGaeyyXICTaaGymaiaaicdadaahaaWc beqaaiabgkHiTiaaiIdaaaGccaWGRbGaam4zaiaac6cacaaMc8UaaG PaVlaaykW7caGGOaGaaGOnaiaac6cacaWGJbGaaiykaaaa@6E50@

This mass-difference factor, which refers to the derivation of the two main equations, the thermodynamic (Eq.7) and Einstein equations (Eq.9), can be called the thermo-relativistic factor (ftr). A comparison and analysis of the fundamental masses of physics is necessary (Equations 7 and 9). Although they are not numerically equal, exploring their relationships and evaluating their differences is mandatory for the development of a unifying approach. They can be connected under certain conditions, which can eliminate the inequality between the initial mass of the universe and the Planck mass. However, this will have consequences in terms of the physical laws that describe the universe.

Like all masses, the initial mass of the universe has extent (1.5334∙10-32 m = 950.0863∙ 1.61625518∙10−35m /Planck length/).7 In this way, normally, the volume cannot be separated from the material inside it. One cannot be defined without the other. In this way, a 3D representation must be used to convert the initial mass of the universe and the Planck mass into each other (Figure 2a&2b). To ensure continuity free of inequalities, a unique space-time-mass distribution system must be developed. In this, the masses and volumes must be placed in such a way that they are mosaic-like, fit exactly and do not overlap.

Figure 2a On the left side of the figure, the downward mass shift by the thermo-relativistic factor (ftr) is shown (1), which also implies a downward shift of the Planck mass by 1 unit (2, infra-Planck mass). The middle and right parts of the figure show the upward symmetrical shifts of the level of each mass value (3,4).

Figure 2b The left part shows the overlap (1-4) of the mass level caused by the increase in mass due to the formation of symmetry. The center column shows a unit downward shift (5 and 6) to eliminate the excess mass due to overlap congestion (3 and 4 /Fig.2.a/). The column on the right shows the reduction to Planck mass, which is now two steps (7, 8). This also results in a further two-step shift in the levels below them (9, 10 and 11, 12).

The left side of Figure 2a shows the decrease in the initial mass of the cosmos as it is shifted one unit down toward the Planck mass. Then the initial mass of the universe becomes equal to the mass of Planck. On this occasion, there will no longer be discontinuity between the two masses. This maneuver creates a direct link between macro and microphysics. With this solution, looking at the physical world from the other side, the current visible mass of the universe is obtained from its actual mass. After all, the value of the actual mass also shifts by one unit towards the smaller value. In view of continuity, the shift will necessarily be repetitive to lower values.

Since a value less than the Planck mass does not exist in nature by definition, the shift is transferred to the temperature values. This transition from mass to temperature is a compulsion arising from the peculiarity of physics. Yet this fiction of mass loss must be continued and interpreted in order to find an explanation for the existence of very low-energy material particles, or electromagnetic waves in the cosmos. In this sense, the Planck mass will also shift by one unit toward smaller values. However, due to the symmetries that exist in physical nature, the possibility of mass shifts in the opposite direction must also be considered. Therefore, both the initial mass of the universe and the Plank mass must be assigned an opposite, i.e., upward shift. In this way, the symmetry will be complete in both cases. However, it doesn't make sense to eliminate the overlap by pushing it up, because such a mass may no longer exist in the universe (950∙1053kg ≈ 1056kg, see Chapter 7).

The initial temperature of the universe determined by its original mass

There is no direct information regarding the universe’s temperature (Tuniverse initial temperature) in this model based on Einstein’s principles, only increasing mass density may indicate it.7 The following equation would prove competent in calculating the value of the initial Planck temperature of the universe (Tuniverse initial Planck temperature) in this model too. Therefore the classic formula for determining the Planck temperature is:

T Planck = M Planck c 2 k . (7) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgaaeqaaOGa eyypa0ZaaSaaaeaacaWGnbWaaSbaaSqaaiaadcfacaWGSbGaamyyai aad6gacaWGJbGaam4AaaqabaGccqGHflY1caWGJbWaaWbaaSqabeaa caaIYaaaaaGcbaGaam4AaaaadaWgaaWcbaaabeaakiaac6cadaahaa WcbeqaaaaakmaaBaaaleaaaeqaaOGaaiikaiaaiEdacaGGPaaaaa@4C96@

Where k is the Boltzmann constant (1.38064852·10-23J/K), c is the speed of light (2.99792458·108m·s-1) and MPlanck is the Planck mass (2.17647051∙10-8kg).15

Expressing the Planck mass from Equation 7:

M Planck = T Planck k c 2 =2.17647051 10 8 k g . (8) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgaaeqaaOGa eyypa0ZaaSaaaeaacaWGubWaaSbaaSqaaiaadcfacaWGSbGaamyyai aad6gacaWGJbGaam4AaaqabaGccqGHflY1caWGRbaabaGaam4yamaa CaaaleqabaGaaGOmaaaaaaGccqGH9aqpqaaaaaaaaaWdbiaaikdaca GGUaGaaGymaiaaiEdacaaI2aGaaGinaiaaiEdacaaIWaGaaGynaiaa igdacqGHflY1caaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsislca aI4aaaaOGaam4AaiaadEgapaWaaSbaaSqaaaqabaGccaGGUaWaaWba aSqabeaaaaGcdaWgaaWcbaaabeaakiaacIcacaaI4aGaaiykaaaa@5CC9@

The initial mass of the universe (M universe initial) is derived from the Einstein equations (Eq. 6 and 6.b):

M univers e initial =6.496 10 5 k g .(9) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaaqabaGccqGH9aqpcaaI2aGaaiOlaiaaisdacaaI 5aGaaGOnaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislca aI1aaaaOGaam4AaiaadEgadaWgaaWcbaaabeaakiaac6cacaaMc8Ua aGPaVlaaykW7caaMc8UaaiikaiaaiMdacaGGPaaaaa@5AC4@

Due to the different masses, the two formulas (Equations 8 and 9) can be described mathematically as follows according to the rules of inequality. Depending on which side we look at the two different degrees of mass, there are two ways to describe inequality. This symmetrical appearance is also in line with the symmetry generally perceived in relation to the laws of physical nature. The two possible true statements are:

M univers e initial > M Planck , (10.a) o r M Planck < M univers e initial . (10.b) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbWdamaaBaaaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzamaaBaaameaaaeqaaSGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaaqabaGcpeGaeyOpa4Zdaiaa d2eadaWgaaWcbaGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRb aabeaakmaaBaaaleaaaeqaaOGaaiilamaaBaaaleaaaeqaaOWaaSba aSqaaaqabaGccaGGOaGaaGymaiaaicdacaGGUaGaamyyaiaacMcada WgaaWcbaaabeaakmaaBaaaleaaaeqaaOGaam4BaiaadkhadaWgaaWc baaabeaakmaaBaaaleaaaeqaaOWaaSbaaSqaaaqabaGcdaWgaaWcba aabeaakiaad2eadaWgaaWcbaGaamiuaiaadYgacaWGHbGaamOBaiaa dogacaWGRbaabeaak8qacqGH8aappaGaamytamaaBaaaleaacaWG1b GaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGaamyzamaaBaaa meaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadMgacaWGHbGaam iBaaqabaGcdaWgaaWcbaaabeaakiaac6cadaWgaaWcbaaabeaakmaa BaaaleaaaeqaaOWaaSbaaSqaaaqabaGccaGGOaGaaGymaiaaicdaca GGUaGaamOyaiaacMcaaaa@7312@

There is a mirror symmetry between them (Eq.10.a and Eq10.b) as an inequality. In this way, they can be rotated 180 degrees in a horizontal direction along an imaginary vertical axis. With this reversibility to the right or left, their meaning remains the same, their truthfulness is not damaged.

M univers e initial = M Planck 950 , (11.a) an d M univers e initial 950 = M Planck . (11.b) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaaqabaGccqGH9aqpcaWGnbWaaSbaaSqaaiaadcfa caWGSbGaamyyaiaad6gacaWGJbGaam4AaaqabaGccqGHflY1caaI5a GaaGynaiaaicdadaahaaWcbeqaaaaakiaacYcadaWgaaWcbaaabeaa kmaaBaaaleaaaeqaaOGaaiikaiaaigdacaaIXaGaaiOlaiaadggaca GGPaWaaSbaaSqaaaqabaGcdaWgaaWcbaaabeaakmaaBaaaleaaaeqa aOWaaSbaaSqaaaqabaGccaWGHbGaamOBaiaadsgadaahaaWcbeqaaa aakmaaBaaaleaaaeqaaOWaaSbaaSqaaaqabaGcdaWgaaWcbaaabeaa kmaaBaaaleaaaeqaaOWaaSaaaeaacaWGnbWaaSbaaSqaaiaadwhaca WGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohacaWGLbWaaSbaaWqa aaqabaWccaWGPbGaamOBaiaadMgacaWG0bGaamyAaiaadggacaWGSb aabeaaaOqaaiaaiMdacaaI1aGaaGimaaaacqGH9aqpcaWGnbWaaSba aSqaaiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaaqabaGcda ahaaWcbeqaaaaakmaaBaaaleaaaeqaaOGaaiOlamaaBaaaleaaaeqa aOWaaSbaaSqaaaqabaGccaGGOaGaaGymaiaaigdacaGGUaGaamOyai aacMcaaaa@7AF5@

It can be turned into equality mathematically by the solution of simple inequality. This means multiplying or dividing each mass by the dimensionless proportionality factor (thermo-relativistic factor /ftr ≈ 950/). By introducing the thermo-relativistic factor, inequality can be transformed into equality. In this way, the equations can be freely reversed in terms of bias without violating the content of truth and symmetry. Further, the inequality on the left (Eq.10.a) can be solved into equality in two ways:

The inequality on the right (Eq.10.b) can also be solved into equality in two ways:

M Planck 950= M univers e initial , (12.a) an d M Planck = M univers e initial 950 . (12.b) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgaaeqaaOGa eyyXICTaaGyoaiaaiwdacaaIWaGaeyypa0JaamytamaaBaaaleaaca WG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGaamyzamaa BaaameaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadMgacaWGHb GaamiBaaqabaGcdaahaaWcbeqaaaaakiaacYcadaWgaaWcbaaabeaa kmaaBaaaleaaaeqaaOGaaiikaiaaigdacaaIYaGaaiOlaiaadggaca GGPaWaaSbaaSqaaaqabaGcdaWgaaWcbaaabeaakiaadggacaWGUbGa amizamaaCaaaleqabaaaaOWaaSbaaSqaaaqabaGcdaWgaaWcbaaabe aakmaaBaaaleaaaeqaaOWaaSbaaSqaaaqabaGccaWGnbWaaSbaaSqa aiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaaqabaGccqGH9a qpdaWcaaqaaiaad2eadaWgaaWcbaGaamyDaiaad6gacaWGPbGaamOD aiaadwgacaWGYbGaam4CaiaadwgadaWgaaadbaaabeaaliaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgaaeqaaaGcbaGaaGyo aiaaiwdacaaIWaaaamaaBaaaleaaaeqaaOGaaiOlamaaBaaaleaaae qaaOWaaSbaaSqaaaqabaGccaGGOaGaaGymaiaaikdacaGGUaGaamOy aiaacMcaaaa@7A54@

Equations 11.a, 12.a, and formulas 11.b and 12.b are mirror images of each other (see Fig.2.a left).

None of the four equations is the same unless the side is reversed. According to the solutions of the equation, the mass of Planck changes twice and the initial mass of the universe also changes twice. In case of double mass decrease and double mass increase, continuity is formed symmetrically on both sides (Eq.11.a, 11.b, and Eq.12.a, 12.b). Otherwise, if there is only a single mass decrease unilaterally or only a mass increase, the continuity is partial (Eq.11.a, 11.b, or Eq.12.a and 12.b). When we lose mass in the macro universe on the other side, there is a lack of mass (from total mass to visible mass of the universe). While an increase in Planck's mass in microphysics at the other end would also result in a lack of mass. To avoid mass/energy congestion, the increase in Plank mass shifts the initial mass of the universe up one level, in this way assuming a supra-supra Planck value. Reducing the initial mass of the universe shifts the Plank mass down to the infra-Plank value to avoid mass/energy accumulation.

In the end, however, due to the mass and space-time shifts that occur at the opposite extreme (under extreme conditions) an equilibrium situation occurs in the universe. A symmetric balance that does not violate the laws of macro- and microphysics is created by the occasional separation of space-time and mass. In this way, the massless space-times are duplicated and combined. At other times, the unification and consolidation of space-timeless masses takes place. This space-time and mass separation would be perceptible at the two ends of the universe, in the intermediate case the space and the matter occupying it do not separate, but remain one. Consolidation of space-timeless masses can take place at the beginning of the universe. The joint appearance of the two space-times can occur simultaneously with the formation of the H atom and parallel to the expansion of the universe. According to them, in addition to the law of conservation of matter, the law of conservation of space-time also applies. If there is no space-time on one side, it must appear on the other side and vice versa.

Since, by definition, the value of the absolute temperature must not exceed the Planck temperature, a value exceeding this must be shifted to this level. In order not to step out of the framework defined by physics, the shift towards Planck temperature is possible by dividing by the square of the proportionality factor /ftr2 ≈ 9502/. However, this compulsion, which is not artificial but arising from natural laws, also results in a shift towards lower values at all unique temperature levels. This is done as follows for each of the critical temperature limits:

T univers e initia l supraPlanc k temperature = M univers e initia l supraPlanck c 2 k . (13) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBamaaBaaameaaaeqaaSGaci4CaiaacwhacaGGWbGa amOCaiaadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yai aadUgadaWgaaadbaaabeaaliaadshacaWGLbGaamyBaiaadchacaWG LbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbaabeaakiabg2 da9iaad2eadaWgaaWcbaGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgadaWgaaadbaaabeaaliaadMgacaWGUbGaam yAaiaadshacaWGPbGaamyyaiaadYgadaWgaaadbaaabeaaliGacoha caGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHb GaamOBaiaadogacaWGRbaabeaakiabgwSixpaalaaabaGaam4yamaa CaaaleqabaGaaGOmaaaaaOqaaiaadUgaaaGaaiOlamaaCaaaleqaba aaaOWaaSbaaSqaaaqabaGccaGGOaGaaGymaiaaiodacaGGPaaaaa@8040@

With this shift down 2 levels, 4 levels will appear below the Planck temperature. These four levels then move forward in time, under each step defined in proportion to the angles, from the beginning of the universe to the present day (see it later).

Using the classic formula for determining the Planck temperature it is possible to describe the thermal status of the cosmos numerically by substituting the initial mass of the universe (Muniverse initial supra-Planck) derived from the Einstein equation into this equation (Eq.13). This temperature value can be termed the initial supra-Planck temperature of the universe (Tuniverse initial supra-Planck temperature):

T univers e initia l supraPlanc k temperature = ( α 2π ) 3 M Earth c 2 k = = ( α 2π ) 3 ν ν 0 ν 0 c 4 g Eart h stand π R Eart h mean G H univers e present c 2 k . (14) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGub WaaSbaaSqaaiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaa dohacaWGLbWaaSbaaWqaaaqabaWccaWGPbGaamOBaiaadMgacaWG0b GaamyAaiaadggacaWGSbWaaSbaaWqaaaqabaWcciGGZbGaaiyDaiaa cchacaWGYbGaamyyaiabgkHiTiaadcfacaWGSbGaamyyaiaad6gaca WGJbGaam4AamaaBaaameaaaeqaaSGaamiDaiaadwgacaWGTbGaamiC aiaadwgacaWGYbGaamyyaiaadshacaWG1bGaamOCaiaadwgaaeqaaO Gaeyypa0ZaaeWaaeaadaWcaaqaaiabeg7aHbqaaiaaikdacqGHflY1 cqaHapaCaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaey yXICTaamytamaaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiA aaqabaGccqGHflY1daWcaaqaaiaadogadaahaaWcbeqaaiaaikdaaa aakeaacaWGRbaaaiabg2da9aqaaiabg2da9maabmaabaWaaSaaaeaa cqaHXoqyaeaacaaIYaGaeyyXICTaeqiWdahaaaGaayjkaiaawMcaam aaCaaaleqabaGaaG4maaaakiabgwSixpaalaaabaGaeqyVd4MaeyOe I0IaeqyVd42aaSbaaSqaaiaaicdaaeqaaaGcbaGaeqyVd42aaSbaaS qaaiaaicdaaeqaaaaakiabgwSixpaalaaabaGaam4yamaaCaaaleqa baGaaGinaaaaaOqaaiaadEgadaWgaaWcbaGaamyraiaadggacaWGYb GaamiDaiaadIgadaWgaaadbaaabeaaliaadohaciGG0bGaaiyyaiaa c6gacaWGKbaabeaaaaGccqGHflY1daWcaaqaaiabec8aWjabgwSixl aadkfadaWgaaWcbaGaamyraiaadggacaWGYbGaamiDaiaadIgadaWg aaadbaaabeaaliaad2gacaWGLbGaamyyaiaad6gaaeqaaaGcbaGaam 4raiabgwSixlaadIeadaWgaaWcbaGaamyDaiaad6gacaWGPbGaamOD aiaadwgacaWGYbGaam4CaiaadwgadaWgaaadbaaabeaaliaadchaca WGYbGaamyzaiaadohacaWGLbGaamOBaiaadshaaeqaaaaakiabgwSi xpaalaaabaGaam4yamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUgaaa GaaiOlamaaCaaaleqabaaaaOWaaSbaaSqaaaqabaGcdaqfqaqabSqa aaqab0qaaaaakmaavababeWcbaaabeqdbaaaaOGaaiikaiaaigdaca aI0aGaaiykaaaaaa@C2A6@

Considering the linear proportionality between mass and temperature in the formula, the mass surplus is converted to heat. It is numerically:

T univers e initia l supraPlanc k temperature = 6.49629 10 5 kg8.98755 10 16 m 2 s 2 1 .380648·10 -23 J K -1 =4.2288 10 35 K . (15) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzamaaBaaameaaaeqaaSGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBamaaBaaameaaaeqaaSGaci4CaiaacwhacaGGWbGa amOCaiaadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yai aadUgadaWgaaadbaaabeaaliaadshacaWGLbGaamyBaiaadchacaWG LbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbaabeaakiabg2 da9maalaaabaGaaGOnaiaac6cacaaI0aGaaGyoaiaaiAdacaaIYaGa aGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI1a aaaOGaam4AaiaadEgacqGHflY1caaI4aGaaiOlaiaaiMdacaaI4aGa aG4naiaaiwdacaaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaai aaigdacaaI2aaaaOGaamyBamaaCaaaleqabaGaaGOmaaaakiabgwSi xlaadohadaahaaWcbeqaaiabgkHiTiaaikdaaaaakeaacaqGXaGaae OlaiaabodacaqG4aGaaeimaiaabAdacaqG0aGaaeioaiaabElacaqG XaGaaeimamaaCaaaleqabaGaaeylaiaabkdacaqGZaaaaOGaaeOsai abgwSixlaabUeadaahaaWcbeqaaiaab2cacaqGXaaaaaaakiabg2da 9iaaisdacaGGUaGaaGOmaiaaikdacaaI4aGaaGioaiabgwSixlaaig dacaaIWaWaaWbaaSqabeaacaaIZaGaaGynaaaakiaadUeacaaMc8Ua aGPaVlaac6cadaWgaaWcbaaabeaakiaaykW7caGGOaGaaGymaiaaiw dacaGGPaaaaa@A157@

Variously, if the definitive Planck mass (1.416785·1032 K) can be recovered by the thermo-relativity factor (ftr = 950.863 and π) and dividing both sides of the combined formula with it:

T universe.initial.supraPlanck.temperature π950.0863 = M universe.initial.supraPlanck π950.0863 c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb sacaWGubGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGa amyzaiaadkhacaWGZbGaamyzaiaac6cacaWGPbGaamOBaiaadMgaca WG0bGaamyAaiaadggacaWGSbGaaiOlaiGacohacaGG1bGaaiiCaiaa dkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogaca WGRbGaaiOlaiaadshacaWGLbGaamyBaiaadchacaWGLbGaamOCaiaa dggacaWG0bGaamyDaiaadkhacaWGLbaaleqaaaGcbaqcLbsacqaHap aCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI 2aGaaG4maaaacqGH9aqpkmaalaaabaqcLbsacaWGnbGcdaWgaaWcba qcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzaiaac6cacaWGPbGaamOBaiaadMgacaWG0bGaamyAaiaadggaca WGSbGaaiOlaiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Ia amiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbaaleqaaaGcbaqcLb sacqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaa iIdacaaI2aGaaG4maaaacqGHflY1kmaalaaabaqcLbsacaWGJbGcda ahaaWcbeqaaKqzGeGaaGOmaaaaaOqaaKqzGeGaam4Aaaaaaaa@9914@   (16)

There is a mass shortage between the Planck mass and the initial cosmic mass. The supra-Planck temperature of the initial universe will decrease to the Planck one (Tuniverse initial Planck temperature):

T universe.initial.Planck.temperature = M universe.initial.Planck c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaiaac6cacaWGqbGaamiBaiaadggacaWGUbGaam4y aiaadUgacaGGUaGaamiDaiaadwgacaWGTbGaamiCaiaadwgacaWGYb GaamyyaiaadshacaWG1bGaamOCaiaadwgaaSqabaqcLbsacqGH9aqp caWGnbGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaam yzaiaadkhacaWGZbGaamyzaiaac6cacaWGPbGaamOBaiaadMgacaWG 0bGaamyAaiaadggacaWGSbGaaiOlaiaadcfacaWGSbGaamyyaiaad6 gacaWGJbGaam4AaaWcbeaajugibiabgwSixRWaaSaaaeaajugibiaa dogakmaaCaaaleqabaqcLbsacaaIYaaaaaGcbaqcLbsacaWGRbaaaa aa@790B@   (17)

The result is as follows:

T universe.initial.Planck.temperature = 6.4962948 10 5 kg8.987551787 10 16 m 2 s 2 3.141592950.08631.38064852 ·10 -23 J K -1 =1.416808 10 32 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaiaac6cacaWGqbGaamiBaiaadggacaWGUbGaam4y aiaadUgacaGGUaGaamiDaiaadwgacaWGTbGaamiCaiaadwgacaWGYb GaamyyaiaadshacaWG1bGaamOCaiaadwgaaSqabaqcLbsacqGH9aqp kmaalaaabaqcLbsacaaI2aGaaiOlaiaaisdacaaI5aGaaGOnaiaaik dacaaI5aGaaGinaiaaiIdacqGHflY1caaIXaGaaGimaOWaaWbaaSqa beaajugibiabgkHiTiaaiwdaaaGaam4AaiaadEgacqGHflY1caaI4a GaaiOlaiaaiMdacaaI4aGaaG4naiaaiwdacaaI1aGaaGymaiaaiEda caaI4aGaaG4naiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGe GaaGymaiaaiAdaaaGaamyBaOWaaWbaaSqabeaajugibiaaikdaaaGa eyyXICTaam4CaOWaaWbaaSqabeaajugibiabgkHiTiaaikdaaaaake aajugibiaaiodacaGGUaGaaGymaiaaisdacaaIXaGaaGynaiaaiMda caaIYaGaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicdacaaI4a GaaGOnaiaaiodacqGHflY1caaIXaGaaiOlaiaaiodacaaI4aGaaGim aiaaiAdacaaI0aGaaGioaiaaiwdacaaIYaGaae4TaiaabgdacaqGWa GcdaahaaWcbeqaaKqzGeGaaeylaiaabkdacaqGZaaaaiaabQeacqGH flY1caqGlbGcdaahaaWcbeqaaKqzGeGaaeylaiaabgdaaaaaaiabg2 da9iaabgdacaqGUaGaaeinaiaabgdacaqG2aGaaeioaiaabcdacaqG 4aGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaIZaGaaG OmaaaacaWGlbaaaa@B46E@   (18)

Considering the existing symmetry in nature and by extending this characteristic in the opposite direction and reducing the Planck mass into the infra-Planck one by re-dividing both sides of the equation with the factor /ftr ≈ 950/, it is possible to establish an infra-Planck temperature of the cosmos (Tuniverse initial infra-Planck temperature):

T universe.initial.Planck.temperature π950.0863 = M universe.initial.Planck π950.0863 c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb sacaWGubGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGa amyzaiaadkhacaWGZbGaamyzaiaac6cacaWGPbGaamOBaiaadMgaca WG0bGaamyAaiaadggacaWGSbGaaiOlaiaadcfacaWGSbGaamyyaiaa d6gacaWGJbGaam4Aaiaac6cacaWG0bGaamyzaiaad2gacaWGWbGaam yzaiaadkhacaWGHbGaamiDaiaadwhacaWGYbGaamyzaaWcbeaaaOqa aKqzGeGaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaic dacaaI4aGaaGOnaiaaiodaaaGaeyypa0JcdaWcaaqaaKqzGeGaamyt aOWaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgaca WGYbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDaiaa dMgacaWGHbGaamiBaiaac6cacaWGqbGaamiBaiaadggacaWGUbGaam 4yaiaadUgaaSqabaaakeaajugibiabec8aWjabgwSixlaaiMdacaaI 1aGaaGimaiaac6cacaaIWaGaaGioaiaaiAdacaaIZaaaaiabgwSixR WaaSaaaeaajugibiaadogakmaaCaaaleqabaqcLbsacaaIYaaaaaGc baqcLbsacaWGRbaaaaaa@8DB4@   (19)

T universe.initial.infraPlanck.temperature = M universe.initial.infraPlanck c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaiaac6caciGGPbGaaiOBaiaacAgacaWGYbGaamyy aiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4Aaiaac6 cacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaaWcbeaajugibiabg2da9iaad2eakmaaBa aaleaajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaa dohacaWGLbGaaiOlaiaadMgacaWGUbGaamyAaiaadshacaWGPbGaam yyaiaadYgacaGGUaGaciyAaiaac6gacaGGMbGaamOCaiaadggacqGH sislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgaaSqabaqcLb sacqGHflY1kmaalaaabaqcLbsacaWGJbGcdaahaaWcbeqaaKqzGeGa aGOmaaaaaOqaaKqzGeGaam4Aaaaaaaa@8435@   (20)

Or:

T universe.initial.infraPlanck.temperature = 6.4962948 10 5 kg8.987551787 10 16 m 2 s 2 ( 3.141592950.0863 ) 2 1.38064852 10 23 J K 1 =4.746769 10 28 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaiaac6caciGGPbGaaiOBaiaacAgacaWGYbGaamyy aiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4Aaiaac6 cacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaaWcbeaajugibiabg2da9OWaaSaaaeaaju gibiaaiAdacaGGUaGaaGinaiaaiMdacaaI2aGaaGOmaiaaiMdacaaI 0aGaaGioaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaey OeI0IaaGynaaaacaWGRbGaam4zaiabgwSixlaaiIdacaGGUaGaaGyo aiaaiIdacaaI3aGaaGynaiaaiwdacaaIXaGaaG4naiaaiIdacaaI3a GaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaIXaGaaGOn aaaacaWGTbGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHflY1caWGZb GcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGOmaaaaaOqaamaabmaabaqc LbsacaaIZaGaaiOlaiaaigdacaaI0aGaaGymaiaaiwdacaaI5aGaaG OmaiabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioaiaa iAdacaaIZaaakiaawIcacaGLPaaadaahaaWcbeqaaKqzGeGaaGOmaa aacqGHflY1caaIXaGaaiOlaiaaiodacaaI4aGaaGimaiaaiAdacaaI 0aGaaGioaiaaiwdacaaIYaGaeyyXICTaaGymaiaaicdakmaaCaaale qabaqcLbsacqGHsislcaaIYaGaaG4maaaacaWGkbGaeyyXICTaam4s aOWaaWbaaSqabeaajugibiabgkHiTiaaigdaaaaaaiabg2da9iaais dacaGGUaGaaG4naiaaisdacaaI2aGaaG4naiaaiAdacaaI5aGaeyyX ICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaIYaGaaGioaaaaca WGlbaaaa@BF05@   (21)

In this way, the temperature will be as follows numerically:

For such a modus to work a central symmetry has to form around the Planck mass and the Planck temperature. Besides symmetry, the other reason for its use is the law of energy conservation. In this case, the division of the thermo-relativity factor could eliminate the supra-Planck mass/energy /temperature surplus. The existing energy surplus would equalize the energy deficit created by introducing of the infra-Planck temperature.

In this manner, it is possible to reveal essential information at and around various stages of the universe's development (Figure 3).

Figure 3 The decrease in the temperature of the universe from the beginning to the present (Tuniverse initial Planck, Tuniverse present (CMB)).

The two dimensional symmetrical figures show a decrease in the universe’s temperature in time by using the ratio of α/2∙π for one to three times (Tuniverse primord1, Tuniverse primord2, Tuniverse primord3). The trapezoid fixed on the middle axis creates a two dimensional surplus area downwards on the other side, if the left upper angle is displaced upwards. This trapezoid or truncated cone shape in three dimensions marks the range of motion of the system. There will be a connection between the initial supra-Planck temperature and the initial infra-Planck temperature around the Planck one. (The rate of temperature change associated with the thermo-relativistic factor at all levels /dashed line/ is also equal to the ratio of the initial cosmos radius and Planck length7).

Since the Einstein equation and the Planck formula are essentially equal, a common solution must be found that does not violate either one of them while each one retains its integrity. The problem has been solved and a uniform approach created by multiplying both sides of the equation (Eq.20) by the thermo-relativistic factor of 950.0863 and π.

The initial infra-Planck temperature of the universe (Tuniverse initial infra-Planck temperature) derived from the initial supra-Planck temperature (Tuniverse initial supra-Planck temperature) is as follows:

T universe.initial.infraPlanck.temperature = T universe.initial.supraPlanck.temperature π950.0863π950.0863 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaiaac6caciGGPbGaaiOBaiaacAgacaWGYbGaamyy aiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4Aaiaac6 cacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaaWcbeaajugibiabg2da9OWaaSaaaeaaju gibiaadsfakmaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadAha caWGLbGaamOCaiaadohacaWGLbGaaiOlaiaadMgacaWGUbGaamyAai aadshacaWGPbGaamyyaiaadYgacaGGUaGaci4CaiaacwhacaGGWbGa amOCaiaadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yai aadUgacaGGUaGaamiDaiaadwgacaWGTbGaamiCaiaadwgacaWGYbGa amyyaiaadshacaWG1bGaamOCaiaadwgaaSqabaaakeaajugibiabec 8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioaiaa iAdacaaIZaGaeyyXICTaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWa GaaiOlaiaaicdacaaI4aGaaGOnaiaaiodaaaaaaa@9F61@   (22)

Ergo, the combined Einstein and Planck equation extended by multiplication of the thermo-relativistic factor is as follows:

π950.0863 T universe.initial.supraPlanck.temperature π950.0863π950.0863 =π950.0863 M universe.initial.supraPlanck π950.0863π950.0863 c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiWda NaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOn aiaaiodacqGHflY1kmaalaaabaqcLbsacaWGubGcdaWgaaWcbaqcLb sacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGaamyz aiaac6cacaWGPbGaamOBaiaadMgacaWG0bGaamyAaiaadggacaWGSb GaaiOlaiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Iaamiu aiaadYgacaWGHbGaamOBaiaadogacaWGRbGaaiOlaiaadshacaWGLb GaamyBaiaadchacaWGLbGaamOCaiaadggacaWG0bGaamyDaiaadkha caWGLbaaleqaaaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGaaGynai aaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maiabgwSixlabec8a WjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioaiaaiA dacaaIZaaaaiabg2da9iabec8aWjabgwSixlaaiMdacaaI1aGaaGim aiaac6cacaaIWaGaaGioaiaaiAdacaaIZaGaeyyXICTcdaWcaaqaaK qzGeGaamytaOWaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamOD aiaadwgacaWGYbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPb GaamiDaiaadMgacaWGHbGaamiBaiaac6caciGGZbGaaiyDaiaaccha caWGYbGaamyyaiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJb Gaam4AaaWcbeaaaOqaaKqzGeGaeqiWdaNaeyyXICTaaGyoaiaaiwda caaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaaiodacqGHflY1cqaHap aCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI 2aGaaG4maaaacqGHflY1kmaalaaabaqcLbsacaWGJbGcdaahaaWcbe qaaKqzGeGaaGOmaaaaaOqaaKqzGeGaam4Aaaaaaaa@CA8D@   (23)

However, by multiplying the supra-Planck temperature and the supra-Planck mass on both sides of the equation (Eq.23) by the factor could also establish a supra-supra-Planck temperature (Tuniverse initial supra-supra-Planck temperature) and a supra-supra-Planck mass (Muniverse initial supra-supra-Planck):

T universe.initial.suprasupraPlanck.temperature π950.0863π950.0863 = M universe.initial.suprasupraPlanck π950.0863π950.0863 c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb sacaWGubGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGa amyzaiaadkhacaWGZbGaamyzaiaac6cacaWGPbGaamOBaiaadMgaca WG0bGaamyAaiaadggacaWGSbGaaiOlaiGacohacaGG1bGaaiiCaiaa dkhacaWGHbGaeyOeI0Iaci4CaiaacwhacaGGWbGaamOCaiaadggacq GHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgacaGGUaGa amiDaiaadwgacaWGTbGaamiCaiaadwgacaWGYbGaamyyaiaadshaca WG1bGaamOCaiaadwgaaSqabaaakeaajugibiabec8aWjabgwSixlaa iMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioaiaaiAdacaaIZaGaey yXICTaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicda caaI4aGaaGOnaiaaiodaaaGaeyypa0JcdaWcaaqaaKqzGeGaamytaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDaiaadM gacaWGHbGaamiBaiaac6caciGGZbGaaiyDaiaacchacaWGYbGaamyy aiabgkHiTiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbaaleqaaaGcbaqcLbsa cqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiI dacaaI2aGaaG4maiabgwSixlabec8aWjabgwSixlaaiMdacaaI1aGa aGimaiaac6cacaaIWaGaaGioaiaaiAdacaaIZaaaaiabgwSixRWaaS aaaeaajugibiaadogakmaaCaaaleqabaqcLbsacaaIYaaaaaGcbaqc LbsacaWGRbaaaaaa@BCE4@   (24)

(By dividing the factor /and π/ square, the Planck units recovered without violating the Planck formula.)

Although the formulae (Eq.23 and Eq.24) can be simplified mathematically separately on the right and left or on both sides, physically this couldn’t be done. Due to the requirement of a secure Planck formula, symmetry and of the existing initial cosmos mass in the equation, simultaneous multiplication and division is obligatory on both sides.

The existence of the infra-infra-Planck energy level can be explained by two reasons. One is the symmetry of the supra-supra-Planck energy level mirror and the other is the displacement by two units due to the normalization of the supra-supra-Planck temperature down to the level of the Planck one. Along these lines, these equations also invariably include the original Planck temperature and the initial cosmos mass.

However, if the equation (Eq.23) is multiplied or divided separately more times (for example three or four) by the thermos-relativistic factor after the two unit shifts in the direction of the lower temperature values, there is no higher frequency and wavelength of electromagnetic radiation than gamma rays and the extremely low frequency (ELF).19

The initial energy of the universe and its decrease in time towards the present using the repetition of the ratio of angles and of the thermo-relativistic factor and π

According to mass-energy equivalence, by merging the individual components (m and c2) of the equation the combined formula (Eq.23) is modified as follows:

π950.0863 T universe.initial.infraPlanck.temperature =π950.0863 E universe.initial.supraPlanck.energy π950.0863π950.0863k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiWda NaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOn aiaaiodacqGHflY1caWGubGcdaWgaaWcbaqcLbsacaWG1bGaamOBai aadMgacaWG2bGaamyzaiaadkhacaWGZbGaamyzaiaac6cacaWGPbGa amOBaiaadMgacaWG0bGaamyAaiaadggacaWGSbGaaiOlaiGacMgaca GGUbGaaiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGa amOBaiaadogacaWGRbGaaiOlaiaadshacaWGLbGaamyBaiaadchaca WGLbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbaaleqaaKqz GeGaeyypa0JaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlai aaicdacaaI4aGaaGOnaiaaiodacqGHflY1kmaalaaabaqcLbsacaWG fbGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzai aadkhacaWGZbGaamyzaiaac6cacaWGPbGaamOBaiaadMgacaWG0bGa amyAaiaadggacaWGSbGaaiOlaiGacohacaGG1bGaaiiCaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGa aiOlaiaadwgacaWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaaaO qaaKqzGeGaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaa icdacaaI4aGaaGOnaiaaiodacqGHflY1cqaHapaCcqGHflY1caaI5a GaaGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maiabgwSi xlaadUgaaaaaaa@B63F@   (25)

Transforming the equation to energy establishing the initial supra-Planck energy:

π950.0863 E universe.initial.supraPlanck.energy = ( π950.0863 ) 2 π950.0863 T universe.initial.infraPlanck.temperature k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiWda NaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOn aiaaiodacqGHflY1caWGfbGcdaWgaaWcbaqcLbsacaWG1bGaamOBai aadMgacaWG2bGaamyzaiaadkhacaWGZbGaamyzaiaac6cacaWGPbGa amOBaiaadMgacaWG0bGaamyAaiaadggacaWGSbGaaiOlaiGacohaca GG1bGaaiiCaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGa amOBaiaadogacaWGRbGaaiOlaiaadwgacaWGUbGaamyzaiaadkhaca WGNbGaamyEaaWcbeaajugibiabg2da9OWaaeWaaeaajugibiabec8a WjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioaiaaiA dacaaIZaaakiaawIcacaGLPaaadaahaaWcbeqaaKqzGeGaaGOmaaaa cqGHflY1cqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaG imaiaaiIdacaaI2aGaaG4maiabgwSixlaadsfakmaaBaaaleaajugi biaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohacaWGLb GaaiOlaiaadMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYga caGGUaGaciyAaiaac6gacaGGMbGaamOCaiaadggacqGHsislcaWGqb GaamiBaiaadggacaWGUbGaam4yaiaadUgacaGGUaGaamiDaiaadwga caWGTbGaamiCaiaadwgacaWGYbGaamyyaiaadshacaWG1bGaamOCai aadwgaaSqabaqcLbsacqGHflY1caWGRbaaaa@AF42@   (26)

If the initial supra-Planck energy is multiplied by the factor in the equation, an initial supra-supra-Planck energy interpreted:

E universe.initial.suprasupraPlanck.energy = ( π950.0863 ) 3 4.74677 10 28 K1.380648 10 23 J K 1 =1.7427 10 16 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgacaGGUaGaamyAaiaad6gacaWGPbGaamiDai aadMgacaWGHbGaamiBaiaac6caciGGZbGaaiyDaiaacchacaWGYbGa amyyaiabgkHiTiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0 IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGaaiOlaiaadwga caWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaajugibiabg2da9K qbaoaabmaakeaajugibiabec8aWjabgwSixlaaiMdacaaI1aGaaGim aiaac6cacaaIWaGaaGioaiaaiAdacaaIZaaakiaawIcacaGLPaaaju aGdaahaaWcbeqaaKqzGeGaaG4maaaacqGHflY1caaI0aGaaiOlaiaa iEdacaaI0aGaaGOnaiaaiEdacaaI3aGaeyyXICTaaGymaiaaicdaju aGdaahaaWcbeqaaKqzGeGaaGOmaiaaiIdaaaGaam4saiabgwSixlaa igdacaGGUaGaaG4maiaaiIdacaaIWaGaaGOnaiaaisdacaaI4aGaey yXICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaGOm aiaaiodaaaGaamOsaiabgwSixlaadUeajuaGdaahaaWcbeqaaKqzGe GaeyOeI0IaaGymaaaacqGH9aqpcaaIXaGaaiOlaiaaiEdacaaI0aGa aGOmaiaaiEdacqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLb sacaaIXaGaaGOnaaaacaWGkbaaaa@A1B0@   (27)

Divided by (950.0863∙π)2, it is 1.956114∙109J. The Planck energy is: EPlanck=mPlanck∙c2= 2.17647∙10-8kg∙ 8.987551787∙1016m2/s2 =1.956113∙109J.

The positive supra-Planck energy on the right side of the equation (Eq.13) originated from the initial mass of the cosmos is used to equalize the energy shortage generated by dividing by the factor one more time on both sides of the equation producing the infra-Planck energy (Eq.19). The potential difference between the energy surplus and of the energy deficit at the beginning of the universe would have shifted continuously parallel to the decrease in temperature of the cosmos expressed as a pressure wave. Especially at the end of the evolving process of the universe, energy shortage has also been created by dividing the factor of 950.0863 and π. Due to an expansion of space there is an energy deficit (3000K - 3K) in the aspect of the electromagnetic waves from the lighting of the cosmos towards the present /red light – microwave electromagnetic radiation (CMB).20

The energy decline of the cosmos from the initial supra-supra-Planck energy by the repetition of the angular ratio and of the thermo-relativistic factor and π

Regarding the development of the universe as a whole, the most important changes from the initial temperatures to the present day are the following:

E univers e initial s uprasupraPlanc k energy E univers e initial s upraPlanc k energy E univers e initial P lanc k energy E univers e initia l infraPlanc k energy E univers e initia l infrainfraPlanc k energy E univers e primord.suprasupraPlanc k energy1 E univers e primord.suprasupraPlanc k energy2 E univers e primord.suprasupraPlanc k energy3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadweajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGa amyzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaam yAaiaad6gacaWGPbGaamiDaiaadMgacaWGHbGaamiBaKqbaoaaBeaa meaaaeqaaKqzGeGaci4CaiaacwhacaGGWbGaamOCaiaadggacqGHsi slciGGZbGaaiyDaiaacchacaWGYbGaamyyaiabgkHiTiaadcfacaWG SbGaamyyaiaad6gacaWGJbGaam4AaKqbaoaaBaaameaaaeqaaKqzGe Gaamyzaiaad6gacaWGLbGaamOCaiaadEgacaWG5baaleqaaKqzGeGa eyOKH4QaamyraKqbaoaaBaaaleaajugibiaadwhacaWGUbGaamyAai aadAhacaWGLbGaamOCaiaadohacaWGLbqcfa4aaSbaaWqaaaqabaqc LbsacaWGPbGaamOBaiaadMgacaWG0bGaamyAaiaadggacaWGSbqcfa 4aaSraaWqaaaqabaqcLbsaciGGZbGaaiyDaiaacchacaWGYbGaamyy aiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaKqbao aaBaaameaaaeqaaKqzGeGaamyzaiaad6gacaWGLbGaamOCaiaadEga caWG5baaleqaaKqzGeGaeyOKH4QaamyraKqbaoaaBaaaleaajugibi aadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohacaWGLbqc fa4aaSbaaWqaaaqabaqcLbsacaWGPbGaamOBaiaadMgacaWG0bGaam yAaiaadggacaWGSbqcfa4aaSraaWqaaaqabaqcLbsacaWGqbGaamiB aiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabeaajugibi aadwgacaWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaajugibiab gkziUcGcbaqcLbsacqGHsgIRcaWGfbqcfa4aaSbaaSqaaKqzGeGaam yDaiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4CaiaadwgajuaG daWgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaadshacaWGPb GaamyyaiaadYgajuaGdaWgaaadbaaabeaajugibiGacMgacaGGUbGa aiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBai aadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWGLbGaamOBaiaa dwgacaWGYbGaam4zaiaadMhaaSqabaqcLbsacqGHsgIRcaWGfbqcfa 4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgacaWGUb GaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaabeaa jugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0IaciyAai aac6gacaGGMbGaamOCaiaadggacqGHsislcaWGqbGaamiBaiaadgga caWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabeaajugibiaadwgaca WGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaajugibiabgkziUkaa dweajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaam yzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaamiC aiaadkhacaWGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGZb GaaiyDaiaacchacaWGYbGaamyyaiabgkHiTiGacohacaGG1bGaaiiC aiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaado gacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWGLbGaamOBaiaadwga caWGYbGaam4zaiaadMhacaaIXaaaleqaaKqzGeGaeyOKH4kakeaaju gibiabgkziUkaadweajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaa dMgacaWG2bGaamyzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaae qaaKqzGeGaamiCaiaadkhacaWGPbGaamyBaiaad+gacaWGYbGaamiz aiaac6caciGGZbGaaiyDaiaacchacaWGYbGaamyyaiabgkHiTiGaco hacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWG HbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWGLb GaamOBaiaadwgacaWGYbGaam4zaiaadMhacaaIYaaaleqaaKqzGeGa eyOKH4QaamyraKqbaoaaBaaaleaajugibiaadwhacaWGUbGaamyAai aadAhacaWGLbGaamOCaiaadohacaWGLbqcfa4aaSbaaWqaaaqabaqc LbsacaWGWbGaamOCaiaadMgacaWGTbGaam4BaiaadkhacaWGKbGaai OlaiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Iaci4Caiaa cwhacaGGWbGaamOCaiaadggacqGHsislcaWGqbGaamiBaiaadggaca WGUbGaam4yaiaadUgajuaGdaWgaaadbaaabeaajugibiaadwgacaWG UbGaamyzaiaadkhacaWGNbGaamyEaiaaiodaaSqabaaaaaa@8B9D@   (28)

Or:

( π950.0863 ) 2 E univers e initial P lanc k energy π950.0863 E univers e initial P lanc k energy E univers e initial P lanc k energy E univers e initial P lanc k energy π950.0863 E univers e initial P lanc k energy ( π950.0863 ) 2 ( π950.0863 ) 2 E univers e initial P lanc k energy α 2π ( π950.0863 ) 2 E univers e initial P lanc k energy ( α 2π ) 2 ( π950.0863 ) 2 E univers e initial P lanc k energy ( α 2π ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda qadaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGG UaGaaGimaiaaiIdacaaI2aGaaG4maaGccaGLOaGaayzkaaqcfa4aaW baaSqabeaajugibiaaikdaaaGaeyyXICTaamyraKqbaoaaBaaaleaa jugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohaca WGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWGPbGaamOBaiaadMgacaWG 0bGaamyAaiaadggacaWGSbqcfa4aaSraaWqaaaqabaqcLbsacaWGqb GaamiBaiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabeaa jugibiaadwgacaWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaaju gibiabgkziUkabec8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6ca caaIWaGaaGioaiaaiAdacaaIZaGaeyyXICTaamyraKqbaoaaBaaale aajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadoha caWGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWGPbGaamOBaiaadMgaca WG0bGaamyAaiaadggacaWGSbqcfa4aaSraaWqaaaqabaqcLbsacaWG qbGaamiBaiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabe aajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaa jugibiabgkziUkaadweajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBai aadMgacaWG2bGaamyzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaa aeqaaKqzGeGaamyAaiaad6gacaWGPbGaamiDaiaadMgacaWGHbGaam iBaKqbaoaaBeaameaaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWGLbGaamOBai aadwgacaWGYbGaam4zaiaadMhaaSqabaqcLbsacqGHsgIRaOqaaKqz GeGaeyOKH4Acfa4aaSaaaOqaaKqzGeGaamyraKqbaoaaBaaaleaaju gibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohacaWG Lbqcfa4aaSbaaWqaaaqabaqcLbsacaWGPbGaamOBaiaadMgacaWG0b GaamyAaiaadggacaWGSbqcfa4aaSraaWqaaaqabaqcLbsacaWGqbGa amiBaiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabeaaju gibiaadwgacaWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaaaOqa aKqzGeGaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaic dacaaI4aGaaGOnaiaaiodaaaGaeyOKH4Acfa4aaSaaaOqaaKqzGeGa amyraKqbaoaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadAhaca WGLbGaamOCaiaadohacaWGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWG PbGaamOBaiaadMgacaWG0bGaamyAaiaadggacaWGSbqcfa4aaSraaW qaaaqabaqcLbsacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUga juaGdaWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhaca WGNbGaamyEaaWcbeaaaOqaaKqbaoaabmaakeaajugibiabec8aWjab gwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioaiaaiAdaca aIZaaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaa aaGaeyOKH4Acfa4aaeWaaOqaaKqzGeGaeqiWdaNaeyyXICTaaGyoai aaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaaiodaaOGaayjk aiaawMcaaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabgwSixlaadw eajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaamyAai aad6gacaWGPbGaamiDaiaadMgacaWGHbGaamiBaKqbaoaaBeaameaa aeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa 4aaSbaaWqaaaqabaqcLbsacaWGLbGaamOBaiaadwgacaWGYbGaam4z aiaadMhaaSqabaqcLbsacqGHflY1juaGdaWcaaGcbaqcLbsacqaHXo qyaOqaaKqzGeGaaGOmaiabgwSixlabec8aWbaacqGHsgIRaOqaaKqz GeGaeyOKH4Acfa4aaeWaaOqaaKqzGeGaeqiWdaNaeyyXICTaaGyoai aaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaaiodaaOGaayjk aiaawMcaaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabgwSixlaadw eajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaamyAai aad6gacaWGPbGaamiDaiaadMgacaWGHbGaamiBaKqbaoaaBeaameaa aeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa 4aaSbaaWqaaaqabaqcLbsacaWGLbGaamOBaiaadwgacaWGYbGaam4z aiaadMhaaSqabaqcLbsacqGHflY1juaGdaqadaGcbaqcfa4aaSaaaO qaaKqzGeGaeqySdegakeaajugibiaaikdacqGHflY1cqaHapaCaaaa kiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHsg IRjuaGdaqadaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGaaGynaiaa icdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maaGccaGLOaGaayzkaa qcfa4aaWbaaSqabeaajugibiaaikdaaaGaeyyXICTaamyraKqbaoaa BaaaleaajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCai aadohacaWGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWGPbGaamOBaiaa dMgacaWG0bGaamyAaiaadggacaWGSbqcfa4aaSraaWqaaaqabaqcLb sacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaad baaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNbGaamyEaa WcbeaajugibiabgwSixNqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsa cqaHXoqyaOqaaKqzGeGaaGOmaiabgwSixlabec8aWbaaaOGaayjkai aawMcaaKqbaoaaCaaaleqabaqcLbsacaaIZaaaaaaaaa@D98C@   (29)

The maximum initial supra-supra-Planck energy (Euniverse initial supra-supra-Planck energy) of the universe is the following:

E univers e initia l suprasupraPlanc k energy = ( π950.0863 ) 2 1.956113 10 9 J=1.742688 10 16 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGZbGaaiyDaiaacchacaWGYbGaamyyaiabgkHiTiGacohacaGG1b GaaiiCaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadwgacaWGUbGaam yzaiaadkhacaWGNbGaamyEaaWcbeaajugibiabg2da9OWaaeWaaeaa jugibiabec8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWa GaaGioaiaaiAdacaaIZaaakiaawIcacaGLPaaadaahaaWcbeqaaKqz GeGaaGOmaaaacqGHflY1caaIXaGaaiOlaiaaiMdacaaI1aGaaGOnai aaigdacaaIXaGaaG4maiabgwSixlaaigdacaaIWaGcdaahaaWcbeqa aKqzGeGaaGyoaaaacaWGkbGaeyypa0JaaGymaiaac6cacaaI3aGaaG inaiaaikdacaaI2aGaaGioaiaaiIdacqGHflY1caaIXaGaaGimaOWa aWbaaSqabeaajugibiaaigdacaaI2aaaaiaadQeaaaa@8B59@   (30)

Transforming this maximum initial supra-supra-Planck energy into temperature (Tuniverse initial supra-supra-Planck temperature):

T univers e initia l suprasupraPlanc k temperature = 11604.5220546K1.742688 10 16 J 1.60217662 10 19 J =1.2622 10 39 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGZbGaaiyDaiaacchacaWGYbGaamyyaiabgkHiTiGacohacaGG1b GaaiiCaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadshacaWGLbGaam yBaiaadchacaWGLbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWG LbaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaaGymaiaaigdaca aI2aGaaGimaiaaisdacaGGUaGaaGynaiaaikdacaaIYaGaaGimaiaa iwdacaaI0aGaaGOnaiaadUeacqGHflY1caaIXaGaaiOlaiaaiEdaca aI0aGaaGOmaiaaiAdacaaI4aGaaGioaiabgwSixlaaigdacaaIWaGc daahaaWcbeqaaKqzGeGaaGymaiaaiAdaaaGaamOsaaGcbaqcLbsaca aIXaGaaiOlaiaaiAdacaaIWaGaaGOmaiaaigdacaaI3aGaaGOnaiaa iAdacaaIYaGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacq GHsislcaaIXaGaaGyoaaaacaWGkbaaaiabg2da9iaaigdacaGGUaGa aGOmaiaaiAdacaaIYaGaaGOmaiabgwSixlaaigdacaaIWaGcdaahaa WcbeqaaKqzGeGaaG4maiaaiMdaaaGaam4saaaa@9C8A@   (31)

The sub maximum initial supra-Planck (Euniverse initial supra-Planck energy) energy is as follows:

E univers e initia l supraPlanc k energy =π950.08631.956113 10 9 J=5.838575 10 12 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGZbGaaiyDaiaacchacaWGYbGaamyyaiabgkHiTiaadcfacaWGSb Gaamyyaiaad6gacaWGJbGaam4AaOWaaSbaaWqaaaqabaqcLbsacaWG LbGaamOBaiaadwgacaWGYbGaam4zaiaadMhaaSqabaqcLbsacqGH9a qpcqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaa iIdacaaI2aGaaG4maiabgwSixlaaigdacaGGUaGaaGyoaiaaiwdaca aI2aGaaGymaiaaigdacaaIZaGaeyyXICTaaGymaiaaicdakmaaCaaa leqabaqcLbsacaaI5aaaaiaadQeacqGH9aqpcaaI1aGaaiOlaiaaiI dacaaIZaGaaGioaiaaiwdacaaI3aGaaGynaiabgwSixlaaigdacaaI WaGcdaahaaWcbeqaaKqzGeGaaGymaiaaikdaaaGaamOsaaaa@8206@   (32)

Transforming this sub maximum initial supra-Planck energy into temperature (Tuniverse initial supra-Planck temperature):

T univers e initia l supraPlanc k temperature = 11604.5220546K5.838575 10 12 J 1.60217662 10 19 J =4.2288 10 35 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGZbGaaiyDaiaacchacaWGYbGaamyyaiabgkHiTiaadcfacaWGSb Gaamyyaiaad6gacaWGJbGaam4AaOWaaSbaaWqaaaqabaqcLbsacaWG 0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadw hacaWGYbGaamyzaaWcbeaajugibiabg2da9OWaaSaaaeaajugibiaa igdacaaIXaGaaGOnaiaaicdacaaI0aGaaiOlaiaaiwdacaaIYaGaaG OmaiaaicdacaaI1aGaaGinaiaaiAdacaWGlbGaeyyXICTaaGynaiaa c6cacaaI4aGaaG4maiaaiIdacaaI1aGaaG4naiaaiwdacqGHflY1ca aIXaGaaGimaOWaaWbaaSqabeaajugibiaaigdacaaIYaaaaiaadQea aOqaaKqzGeGaaGymaiaac6cacaaI2aGaaGimaiaaikdacaaIXaGaaG 4naiaaiAdacaaI2aGaaGOmaiabgwSixlaaigdacaaIWaGcdaahaaWc beqaaKqzGeGaeyOeI0IaaGymaiaaiMdaaaGaamOsaaaacqGH9aqpca aI0aGaaiOlaiaaikdacaaIYaGaaGioaiaaiIdacqGHflY1caaIXaGa aGimaOWaaWbaaSqabeaajugibiaaiodacaaI1aaaaiaadUeaaaa@96E2@   (33)

The initial Planck energy (Euniverse initial Planck energy) of the cosmos is in the center21

E univers e initia l Planc k energy =1.956113 10 9 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa caWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgakmaaBaaameaaae qaaKqzGeGaamyzaiaad6gacaWGLbGaamOCaiaadEgacaWG5baaleqa aKqzGeGaeyypa0JaaGymaiaac6cacaaI5aGaaGynaiaaiAdacaaIXa GaaGymaiaaiodacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugi biaaiMdaaaGaamOsaaaa@625C@   (34)

Transforming the initial Planck energy into temperature (Tuniverse initial Planck temperature) the result is the Planck temperature:

T univers e initia l Planc k temperature = 11604.5220546K1.956113 10 9 J 1.60217662 10 19 J =1.4168073 10 32 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa caWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgakmaaBaaameaaae qaaKqzGeGaamiDaiaadwgacaWGTbGaamiCaiaadwgacaWGYbGaamyy aiaadshacaWG1bGaamOCaiaadwgaaSqabaqcLbsacqGH9aqpkmaala aabaqcLbsacaaIXaGaaGymaiaaiAdacaaIWaGaaGinaiaac6cacaaI 1aGaaGOmaiaaikdacaaIWaGaaGynaiaaisdacaaI2aGaam4saiabgw SixlaaigdacaGGUaGaaGyoaiaaiwdacaaI2aGaaGymaiaaigdacaaI ZaGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaI5aaaai aadQeaaOqaaKqzGeGaaGymaiaac6cacaaI2aGaaGimaiaaikdacaaI XaGaaG4naiaaiAdacaaI2aGaaGOmaiabgwSixlaaigdacaaIWaGcda ahaaWcbeqaaKqzGeGaeyOeI0IaaGymaiaaiMdaaaGaamOsaaaacqGH 9aqpcaaIXaGaaiOlaiaaisdacaaIXaGaaGOnaiaaiIdacaaIWaGaaG 4naiaaiodacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiaa iodacaaIYaaaaiaadUeaaaa@92A0@   (35)

The initial infra-Planck energy (Euniverse initial infra-Planck energy) of the cosmos is:

E univers e initia l infraPlanc k energy = 1.956113 10 9 J π950.0863 =6.5536163 10 5 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGPbGaaiOBaiaacAgacaWGYbGaamyyaiabgkHiTiaadcfacaWGSb Gaamyyaiaad6gacaWGJbGaam4AaOWaaSbaaWqaaaqabaqcLbsacaWG LbGaamOBaiaadwgacaWGYbGaam4zaiaadMhaaSqabaqcLbsacqGH9a qpkmaalaaabaqcLbsacaaIXaGaaiOlaiaaiMdacaaI1aGaaGOnaiaa igdacaaIXaGaaG4maiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaK qzGeGaaGyoaaaacaWGkbaakeaajugibiabec8aWjabgwSixlaaiMda caaI1aGaaGimaiaac6cacaaIWaGaaGioaiaaiAdacaaIZaaaaiabg2 da9iaaiAdacaGGUaGaaGynaiaaiwdacaaIZaGaaGOnaiaaigdacaaI 2aGaaG4maiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaaG ynaaaacaWGkbaaaa@80DF@   (36)

Transforming the initial infra-Planck energy into temperature (Tuniverse initial infra-Planck temperature):

T univers e initia l Planc k temperature = 11604.5220546K6.5536163 10 5 J 1.60217662 10 19 J =4.746766 10 28 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa caWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgakmaaBaaameaaae qaaKqzGeGaamiDaiaadwgacaWGTbGaamiCaiaadwgacaWGYbGaamyy aiaadshacaWG1bGaamOCaiaadwgaaSqabaqcLbsacqGH9aqpkmaala aabaqcLbsacaaIXaGaaGymaiaaiAdacaaIWaGaaGinaiaac6cacaaI 1aGaaGOmaiaaikdacaaIWaGaaGynaiaaisdacaaI2aGaam4saiabgw SixlaaiAdacaGGUaGaaGynaiaaiwdacaaIZaGaaGOnaiaaigdacaaI 2aGaaG4maiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaaG ynaaaacaWGkbaakeaajugibiaaigdacaGGUaGaaGOnaiaaicdacaaI YaGaaGymaiaaiEdacaaI2aGaaGOnaiaaikdacqGHflY1caaIXaGaaG imaOWaaWbaaSqabeaajugibiabgkHiTiaaigdacaaI5aaaaiaadQea aaGaeyypa0JaaGinaiaac6cacaaI3aGaaGinaiaaiAdacaaI3aGaaG OnaiaaiAdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiaa ikdacaaI4aaaaiaadUeaaaa@92B4@   (37)

The minimum initial energy in the universe is the infra-infra-Planck energy (Euniverse initial infra-infra-Planck energy), which is as follows:

E univers e initia l infrainfraPlanc k energy = 1.956113 10 9 J ( π950.0863 ) 2 =2.195675 10 2 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGPbGaaiOBaiaacAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUb GaaiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadwgacaWGUbGaam yzaiaadkhacaWGNbGaamyEaaWcbeaajugibiabg2da9OWaaSaaaeaa jugibiaaigdacaGGUaGaaGyoaiaaiwdacaaI2aGaaGymaiaaigdaca aIZaGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaI5aaa aiaadQeaaOqaamaabmaabaqcLbsacqaHapaCcqGHflY1caaI5aGaaG ynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maaGccaGLOaGa ayzkaaWaaWbaaSqabeaajugibiaaikdaaaaaaiabg2da9iaaikdaca GGUaGaaGymaiaaiMdacaaI1aGaaGOnaiaaiEdacaaI1aGaeyyXICTa aGymaiaaicdakmaaCaaaleqabaqcLbsacaaIYaaaaiaadQeaaaa@88C2@   (38)

The lowest initial temperature value of the cosmos is the infra-infra-Planck one (Tuniverse initial infra-infra-Planck temperature):

T univers e initia l infrainfraPlanc k temperature = 11604.5220546K2.195675 10 2 J 1.60217662 10 19 J =1.59032148 10 25 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGPbGaaiOBaiaacAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUb GaaiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadshacaWGLbGaam yBaiaadchacaWGLbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWG LbaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaaGymaiaaigdaca aI2aGaaGimaiaaisdacaGGUaGaaGynaiaaikdacaaIYaGaaGimaiaa iwdacaaI0aGaaGOnaiaadUeacqGHflY1caaIYaGaaiOlaiaaigdaca aI5aGaaGynaiaaiAdacaaI3aGaaGynaiabgwSixlaaigdacaaIWaGc daahaaWcbeqaaKqzGeGaaGOmaaaacaWGkbaakeaajugibiaaigdaca GGUaGaaGOnaiaaicdacaaIYaGaaGymaiaaiEdacaaI2aGaaGOnaiaa ikdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTi aaigdacaaI5aaaaiaadQeaaaGaeyypa0JaaGymaiaac6cacaaI1aGa aGyoaiaaicdacaaIZaGaaGOmaiaaigdacaaI0aGaaGioaiabgwSixl aaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaaGOmaiaaiwdaaaGaam4s aaaa@9E8B@   (39)

The maximum primordial supra-supra-Planck energy1 (Euniverse primordial supra-supra-Planck energy1) of the cosmos is the following:

E univers e primord.suprasupraPlanc k energy1 = ( π950.0863 ) 2 1.956113 10 9 J0.22157 10 9 =3.8612 10 6 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGZbGaaiyDaiaa cchacaWGYbGaamyyaiabgkHiTiGacohacaGG1bGaaiiCaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNb GaamyEaiaaigdaaSqabaqcLbsacqGH9aqpkmaabmaabaqcLbsacqaH apaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdaca aI2aGaaG4maaGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiaaikda aaGaeyyXICTaaGymaiaac6cacaaI5aGaaGynaiaaiAdacaaIXaGaaG ymaiaaiodacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiaa iMdaaaGaamOsaiabgwSixlaaicdacaGGUaGaaGOmaiaaikdacaaIXa GaaGynaiaaiEdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugi biabgkHiTiaaiMdaaaGaeyypa0JaaG4maiaac6cacaaI4aGaaGOnai aaigdacaaIYaGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsa caaI2aaaaiaadQeaaaa@9772@   (40)

Transforming the maximum primordial supra-supra-Planck energy1 into temperature (Tuniverse initial infra-Planck temperature):

T univers e primordia l suprasupraPlanc k temperature1 = 11604.5220546K3.8612 10 6 J 1.60217662 10 19 J =2.7967 10 29 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaadMgacaWGHbGaamiBaOWa aSbaaWqaaaqabaqcLbsaciGGZbGaaiyDaiaacchacaWGYbGaamyyai abgkHiTiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Iaamiu aiaadYgacaWGHbGaamOBaiaadogacaWGRbGcdaWgaaadbaaabeaaju gibiaadshacaWGLbGaamyBaiaadchacaWGLbGaamOCaiaadggacaWG 0bGaamyDaiaadkhacaWGLbGaaGymaaWcbeaajugibiabg2da9OWaaS aaaeaajugibiaaigdacaaIXaGaaGOnaiaaicdacaaI0aGaaiOlaiaa iwdacaaIYaGaaGOmaiaaicdacaaI1aGaaGinaiaaiAdacaWGlbGaey yXICTaaG4maiaac6cacaaI4aGaaGOnaiaaigdacaaIYaGaeyyXICTa aGymaiaaicdakmaaCaaaleqabaqcLbsacaaI2aaaaiaadQeaaOqaaK qzGeGaaGymaiaac6cacaaI2aGaaGimaiaaikdacaaIXaGaaG4naiaa iAdacaaI2aGaaGOmaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaK qzGeGaeyOeI0IaaGymaiaaiMdaaaGaamOsaaaacqGH9aqpcaaIYaGa aiOlaiaaiEdacaaI5aGaaGOnaiaaiEdacqGHflY1caaIXaGaaGimaO WaaWbaaSqabeaajugibiaaikdacaaI5aaaaiaadUeaaaa@9DEF@   (41)

The maximum primordial supra-supra-Planck energy2 (Euniverse primordial supra-supra-Planck energy2) is:

E univers e primord.suprasupraPlanc k energy2 = ( π950.0863 ) 2 1.956113 10 9 J ( 0.22157 10 9 ) 2 =8.5554 10 4 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGZbGaaiyDaiaa cchacaWGYbGaamyyaiabgkHiTiGacohacaGG1bGaaiiCaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNb GaamyEaiaaikdaaSqabaqcLbsacqGH9aqpkmaabmaabaqcLbsacqaH apaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdaca aI2aGaaG4maaGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiaaikda aaGaeyyXICTaaGymaiaac6cacaaI5aGaaGynaiaaiAdacaaIXaGaaG ymaiaaiodacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiaa iMdaaaGaamOsaiabgwSixRWaaeWaaeaajugibiaaicdacaGGUaGaaG OmaiaaikdacaaIXaGaaGynaiaaiEdacqGHflY1caaIXaGaaGimaOWa aWbaaSqabeaajugibiabgkHiTiaaiMdaaaaakiaawIcacaGLPaaada ahaaWcbeqaaKqzGeGaaeOmaaaacqGH9aqpcaaI4aGaaiOlaiaaiwda caaI1aGaaGynaiaaisdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabe aajugibiabgkHiTiaaisdaaaGaamOsaaaa@9C02@   (42)

Transforming the maximum primordial supra-supra-Planck energy2 into temperature (Tuniverse initial infra-Planck temperature):

T univers e primordia l suprasupraPlanc k temperature2 = 11604.5220546K8.5554 10 4 J 1.60217662 10 19 J =6.1966 10 19 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaadMgacaWGHbGaamiBaOWa aSbaaWqaaaqabaqcLbsaciGGZbGaaiyDaiaacchacaWGYbGaamyyai abgkHiTiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Iaamiu aiaadYgacaWGHbGaamOBaiaadogacaWGRbGcdaWgaaadbaaabeaaju gibiaadshacaWGLbGaamyBaiaadchacaWGLbGaamOCaiaadggacaWG 0bGaamyDaiaadkhacaWGLbGaaGOmaaWcbeaajugibiabg2da9OWaaS aaaeaajugibiaaigdacaaIXaGaaGOnaiaaicdacaaI0aGaaiOlaiaa iwdacaaIYaGaaGOmaiaaicdacaaI1aGaaGinaiaaiAdacaWGlbGaey yXICTaaGioaiaac6cacaaI1aGaaGynaiaaiwdacaaI0aGaeyyXICTa aGymaiaaicdakmaaCaaaleqabaqcLbsacqGHsislcaaI0aaaaiaadQ eaaOqaaKqzGeGaaGymaiaac6cacaaI2aGaaGimaiaaikdacaaIXaGa aG4naiaaiAdacaaI2aGaaGOmaiabgwSixlaaigdacaaIWaGcdaahaa WcbeqaaKqzGeGaeyOeI0IaaGymaiaaiMdaaaGaamOsaaaacqGH9aqp caaI2aGaaiOlaiaaigdacaaI5aGaaGOnaiaaiAdacqGHflY1caaIXa GaaGimaOWaaWbaaSqabeaajugibiaaigdacaaI5aaaaiaadUeaaaa@9EDE@   (43)

The maximum primordial supra-supra-Planck frequency2 (νuniverse primordial supra-supra-Planck freq.2) is:

ν univers e primord.suprasupraPlanc k freq.2 = E h = 8.5554 10 4 J 6.62607004 10 34 Js =1.2911 10 30 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaa dkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCai aadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacohacaGG1bGa aiiCaiaadkhacaWGHbGaeyOeI0Iaci4CaiaacwhacaGGWbGaamOCai aadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUga kmaaBaaameaaaeqaaKqzGeGaamOzaiaadkhacaWGLbGaamyCaiaac6 cacaaIYaaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamyraaGc baqcLbsacaWGObaaaiabg2da9OWaaSaaaeaajugibiaaiIdacaGGUa GaaGynaiaaiwdacaaI1aGaaGinaiabgwSixlaaigdacaaIWaGcdaah aaWcbeqaaKqzGeGaeyOeI0IaaGinaaaacaWGkbaakeaajugibiaaiA dacaGGUaGaaGOnaiaaikdacaaI2aGaaGimaiaaiEdacaaIWaGaaGim aiaaisdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiabgk HiTiaaiodacaaI0aaaaiaadQeacqGHflY1caWGZbaaaiabg2da9iaa igdacaGGUaGaaGOmaiaaiMdacaaIXaGaaGymaiabgwSixlaaigdaca aIWaGcdaahaaWcbeqaaKqzGeGaaG4maiaaicdaaaGaam4CaOWaaWba aSqabeaajugibiabgkHiTiaaigdaaaaaaa@940A@   (44)

Finally, the maximum primordial supra-supra-Planck energy3 (Euniverse primordial supra-supra-Planck energy3) numerically is:

E univers e primord.suprasupraPlanc k energy3 = ( π950.0863 ) 2 1.956113 10 9 J ( 0.22157 10 9 ) 3 =1.895626 10 13 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGZbGaaiyDaiaa cchacaWGYbGaamyyaiabgkHiTiGacohacaGG1bGaaiiCaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNb GaamyEaiaaiodaaSqabaqcLbsacqGH9aqpkmaabmaabaqcLbsacqaH apaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdaca aI2aGaaG4maaGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiaaikda aaGaeyyXICTaaGymaiaac6cacaaI5aGaaGynaiaaiAdacaaIXaGaaG ymaiaaiodacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiaa iMdaaaGaamOsaiabgwSixRWaaeWaaeaajugibiaaicdacaGGUaGaaG OmaiaaikdacaaIXaGaaGynaiaaiEdacqGHflY1caaIXaGaaGimaOWa aWbaaSqabeaajugibiabgkHiTiaaiMdaaaaakiaawIcacaGLPaaada ahaaWcbeqaaKqzGeGaae4maaaacqGH9aqpcaaIXaGaaiOlaiaaiIda caaI5aGaaGynaiaaiAdacaaIYaGaaGOnaiabgwSixlaaigdacaaIWa GcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaiaaiodaaaGaamOsaaaa @9E3C@   (45)

The maximum primordial supra-supra-Planck frequency3 (νuniverse primordial supra-supra-Planck freq.3) is:

Where h is the Planck constant (6.62607004·10-34 J·s), E is the energy (Euniverse primordial supra-supra-Planck energy3).

ν univers e primord.suprasupraPlanc k freq.3 = E h = 1.895626 10 13 J 6.62607004 10 34 Js =2.86086 10 20 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaa dkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCai aadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacohacaGG1bGa aiiCaiaadkhacaWGHbGaeyOeI0Iaci4CaiaacwhacaGGWbGaamOCai aadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUga kmaaBaaameaaaeqaaKqzGeGaamOzaiaadkhacaWGLbGaamyCaiaac6 cacaaIZaaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamyraaGc baqcLbsacaWGObaaaiabg2da9OWaaSaaaeaajugibiaaigdacaGGUa GaaGioaiaaiMdacaaI1aGaaGOnaiaaikdacaaI2aGaeyyXICTaaGym aiaaicdakmaaCaaaleqabaqcLbsacqGHsislcaaIXaGaaG4maaaaca WGkbaakeaajugibiaaiAdacaGGUaGaaGOnaiaaikdacaaI2aGaaGim aiaaiEdacaaIWaGaaGimaiaaisdacqGHflY1caaIXaGaaGimaOWaaW baaSqabeaajugibiabgkHiTiaaiodacaaI0aaaaiaadQeacqGHflY1 caWGZbaaaiabg2da9iaaikdacaGGUaGaaGioaiaaiAdacaaIWaGaaG ioaiaaiAdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiaa ikdacaaIWaaaaiaadohakmaaCaaaleqabaqcLbsacqGHsislcaaIXa aaaaaa@970C@   (46)

As c=ν∙λ and λ=c∙ν-1, this is in wavelength: 1.04791∙10-12m, which fits to the energy range of gamma electromagnetic wave radiation.22 (Since the energy of the electron is 8.187∙10-14 J, it is 2.3 electrons rest mass.) Multiply or divide it by π and 2∙π it is: 3.2921∙10-12m, 6.5842∙10-12m or 3.3356∙10-13m and 1.667∙10-13m respectively.

Transforming the maximum primordial supra-supra-Planck energy3 into temperature (Tuniverse primordial supra-supra-Planck temperature3):

T univers e primord.suprasupraPlanc k temperature3 = 11604.5220546K1.895626 10 13 J 1.60217662 10 19 J =1.373 10 10 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGZbGaaiyDaiaa cchacaWGYbGaamyyaiabgkHiTiGacohacaGG1bGaaiiCaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadchacaWGLb GaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbGaaG4maaWcbeaa jugibiabg2da9OWaaSaaaeaajugibiaaigdacaaIXaGaaGOnaiaaic dacaaI0aGaaiOlaiaaiwdacaaIYaGaaGOmaiaaicdacaaI1aGaaGin aiaaiAdacaWGlbGaeyyXICTaaGymaiaac6cacaaI4aGaaGyoaiaaiw dacaaI2aGaaGOmaiaaiAdacqGHflY1caaIXaGaaGimaOWaaWbaaSqa beaajugibiabgkHiTiaaigdacaaIZaaaaiaadQeaaOqaaKqzGeGaaG ymaiaac6cacaaI2aGaaGimaiaaikdacaaIXaGaaG4naiaaiAdacaaI 2aGaaGOmaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaey OeI0IaaGymaiaaiMdaaaGaamOsaaaacqGH9aqpcaaIXaGaaiOlaiaa iodacaaI3aGaaG4maiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaK qzGeGaaGymaiaaicdaaaGaam4saaaa@9D6D@   (47)

The relevant temperature levels and temperature shifts of the developing cosmos performed by the usage of the angular ratio (α/2∙π) and of the factor (950.0863 and π) is shown in Figure 3.

Figure 4 shows a gradual decrease in the lowering temperature of the evolving universe based on the combined Einstein and Planck formulae from the very beginning to the present. In order to avoid violating the laws of physics, the extension of the temperature around the individual energy levels is required by introducing the so-called thermo-relativistic factor (π ∙ 950.0863). By definition, unchanged Planck temperatures, the initial supra-supra-Planck and infra-infra-Planck values ​​can be obtained by multiplication and division by factors square. Because of the normalization of the supra-supra-Planck temperature resulting from the Einstein formula, the temperature values ​​are shifted through two units to the lower values within each stair. Finally, in the fourth stage of the development of the cosmos, through the expansion of space, the entire spectrum of electromagnetic waves appears with two units shifted relative to each other. The light emitted by the universe is sparked from gamma rays, and HF is generated from the red light, from which ELF can be derived. At the intermediate energy levels, the CMB is generated from soft X-rays, the latter being the VLF equivalent.

Figure 4 Gradual divisions and shifts in the universe's temperature.

Energy drop in the universe from the initial Planck level due to the repetition of the angular ratio and π

It is essential to know the four prominent energy levels that can be calculated from the central Planck temperature of the universe by repeatedly applying the ratio of angles. 

The central initial Planck energy of the cosmos (Euniverse initial Planck energy)23 is:

E univers e initia l Planc k energy =1.956113 10 9 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa caWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgakmaaBaaameaaae qaaKqzGeGaamyzaiaad6gacaWGLbGaamOCaiaadEgacaWG5baaleqa aKqzGeGaeyypa0JaaGymaiaac6cacaaI5aGaaGynaiaaiAdacaaIXa GaaGymaiaaiodacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugi biaaiMdaaaGaamOsaaaa@625C@   (48)

At the first primordial stage of decreasing cosmos energy (Euniverse primordial Planck energy1) is as follows:

E univers e primord.Planc k energy1 = E univers e initia l Planc k energy α 2π =1.956113 10 9 J0.22157 10 9 = 0.433416 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6cacaWGqbGaamiBaiaa dggacaWGUbGaam4yaiaadUgakmaaBaaameaaaeqaaKqzGeGaamyzai aad6gacaWGLbGaamOCaiaadEgacaWG5bGaaGymaaWcbeaajugibiab g2da9iaadweakmaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadA hacaWGLbGaamOCaiaadohacaWGLbGcdaWgaaadbaaabeaajugibiaa dMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgakmaaBaaame aaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNb GaamyEaaWcbeaajugibiabgwSixRWaaSaaaeaajugibiabeg7aHbGc baqcLbsacaaIYaGaeyyXICTaeqiWdahaaiabg2da9iaaigdacaGGUa GaaGyoaiaaiwdacaaI2aGaaGymaiaaigdacaaIZaGaeyyXICTaaGym aiaaicdakmaaCaaaleqabaqcLbsacaaI5aaaaiaadQeacqGHflY1ca aIWaGaaiOlaiaaikdacaaIYaGaaGymaiaaiwdacaaI3aGaeyyXICTa aGymaiaaicdakmaaCaaaleqabaqcLbsacqGHsislcaaI5aaaaiabg2 da9iaaicdacaGGUaGaaGinaiaaiodacaaIZaGaaGinaiaaigdacaaI 2aGcdaWgaaWcbaaabeaajugibiaadQeaaaa@A1DF@   (49)

The second primordial energy grade of the universe (Euniverse primordial Planck energy2) is:

E univers e primord.Planc k energy2 = E univers e initia l Planc k energy ( α 2π ) 2 =1.956113 10 9 J ( 0.22156987 10 9 ) 2 =9.6031861 10 11 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6cacaWGqbGaamiBaiaa dggacaWGUbGaam4yaiaadUgakmaaBaaameaaaeqaaKqzGeGaamyzai aad6gacaWGLbGaamOCaiaadEgacaWG5bGaaGOmaaWcbeaajugibiab g2da9iaadweakmaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadA hacaWGLbGaamOCaiaadohacaWGLbGcdaWgaaadbaaabeaajugibiaa dMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgakmaaBaaame aaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNb GaamyEaaWcbeaajugibiabgwSixRWaaeWaaeaadaWcaaqaaKqzGeGa eqySdegakeaajugibiaaikdacqGHflY1cqaHapaCaaaakiaawIcaca GLPaaadaahaaWcbeqaaKqzGeGaaGOmaaaacqGH9aqpcaaIXaGaaiOl aiaaiMdacaaI1aGaaGOnaiaaigdacaaIXaGaaG4maiabgwSixlaaig dacaaIWaGcdaahaaWcbeqaaKqzGeGaaGyoaaaacaWGkbGaeyyXICTc daqadaqaaKqzGeGaaGimaiaac6cacaaIYaGaaGOmaiaaigdacaaI1a GaaGOnaiaaiMdacaaI4aGaaG4naiabgwSixlaaigdacaaIWaGcdaah aaWcbeqaaKqzGeGaeyOeI0IaaGyoaaaaaOGaayjkaiaawMcaamaaCa aaleqabaqcLbsacaqGYaaaaiabg2da9iaaiMdacaGGUaGaaGOnaiaa icdacaaIZaGaaGymaiaaiIdacaaI2aGaaGymaiabgwSixlaaigdaca aIWaGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaiaaigdaaaGaamOs aaaa@B1B7@   (50)

Since the energy of a photon is E=h∙ν, the frequency of the electromagnetic radiation created at the second primordial stage of the universe (νuniverse primordial Planck freq.2) is:

ν univ.primord.Planc k freq.2 = E h = 9.6031861 10 11 J 6.62607004 10 34 J s 1 =1.44930344 10 23 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaaiOlaiaa dchacaWGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGcdaWgaaadbaaabeaa jugibiaadAgacaWGYbGaamyzaiaadghacaGGUaGaaGOmaaWcbeaaju gibiabg2da9OWaaSaaaeaajugibiaadweaaOqaaKqzGeGaamiAaaaa cqGH9aqpkmaalaaabaqcLbsacaaI5aGaaiOlaiaaiAdacaaIWaGaaG 4maiaaigdacaaI4aGaaGOnaiaaigdacqGHflY1caaIXaGaaGimaOWa aWbaaSqabeaajugibiabgkHiTiaaigdacaaIXaaaaiaadQeaaOqaaK qzGeGaaGOnaiaac6cacaaI2aGaaGOmaiaaiAdacaaIWaGaaG4naiaa icdacaaIWaGaaGinaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaK qzGeGaeyOeI0IaaG4maiaaisdaaaGaamOsaiabgwSixlaadohakmaa CaaaleqabaqcLbsacqGHsislcaaIXaaaaaaacqGH9aqpcaaIXaGaai OlaiaaisdacaaI0aGaaGyoaiaaiodacaaIWaGaaG4maiaaisdacaaI 0aGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaIYaGaaG 4maaaacaWGZbGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaaaaaaa@8D2A@   (51)

Where h is the Planck constant (6.62607004·10-34 J·s), ν is the frequency (νuniverse primordial Planck freq.2) and E is the energy (Euniverse primordial Planck energy2).

On the basis of the mass energy equivalence (E=m∙c2) and the energy of a photon (E=h∙ν) the mass of the particle created at the second primordial stage of the universe (muniverse primordial Planck2) is:

m univers e primord.Planck2 = hν c 2 = 6.62607004 10 34 kg m 2 s 1 1.44930344 10 23 s 1 8.987551787 10 16 m 2 s 2 =1.068498555 10 27 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6cacaWGqbGaamiBaiaa dggacaWGUbGaam4yaiaadUgacaaIYaaaleqaaKqzGeGaeyypa0Jcda WcaaqaaKqzGeGaamiAaiabgwSixlabe27aUbGcbaqcLbsacaWGJbGc daahaaWcbeqaaKqzGeGaaGOmaaaaaaGaeyypa0JcdaWcaaqaaKqzGe GaaGOnaiaac6cacaaI2aGaaGOmaiaaiAdacaaIWaGaaG4naiaaicda caaIWaGaaGinaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGe GaeyOeI0IaaG4maiaaisdaaaGaam4AaiaadEgacqGHflY1caWGTbGc daahaaWcbeqaaKqzGeGaaGOmaaaacqGHflY1caWGZbGcdaahaaWcbe qaaKqzGeGaeyOeI0IaaGymaaaacqGHflY1caaIXaGaaiOlaiaaisda caaI0aGaaGyoaiaaiodacaaIWaGaaG4maiaaisdacaaI0aGaeyyXIC TaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaIYaGaaG4maaaacaWG ZbGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaaaaaOqaaKqzGeGaaG ioaiaac6cacaaI5aGaaGioaiaaiEdacaaI1aGaaGynaiaaigdacaaI 3aGaaGioaiaaiEdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaaju gibiaaigdacaaI2aaaaiaad2gakmaaCaaaleqabaqcLbsacaaIYaaa aiabgwSixlaadohakmaaCaaaleqabaqcLbsacqGHsislcaaIYaaaaa aacqGH9aqpcaaIXaGaaiOlaiaaicdacaaI2aGaaGioaiaaisdacaaI 5aGaaGioaiaaiwdacaaI1aGaaGynaiabgwSixlaaigdacaaIWaGcda ahaaWcbeqaaKqzGeGaeyOeI0IaaGOmaiaaiEdaaaGaam4AaiaadEga aaa@B1AD@   (52)

Where h is the Planck constant (6.62607004·10-34 J·s), ν is the frequency (νuniverse primordial Planck freq.2) and c is the speed of light (2.99792458·108 m·s-1).

Since the mass of a proton is 1.6726219∙10-27kg, this value corresponds to the mass of a quark-pair: 0.63881655∙10-27kg.24 Multiply it by π and 2∙π: 2.0069 u, the mass of a Deuteron nucleus, or 4.0138 u, the mass of Helium nucleus.25 This energy is close to the creation energy/mass of these elements in nuclear fusions (e.g. in the core of stars such as the Sun).

Finally, the third primordial energy stage of the cosmos (Euniverse primordial Planck energy3) is:

E univers e primord.Planc k energy3 = E univers e initia l Planc k energy ( α 2π ) 3 =1.956113 10 9 J ( 0.22157 10 9 ) 3 =2.12778 10 20 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6cacaWGqbGaamiBaiaa dggacaWGUbGaam4yaiaadUgakmaaBaaameaaaeqaaKqzGeGaamyzai aad6gacaWGLbGaamOCaiaadEgacaWG5bGaaG4maaWcbeaajugibiab g2da9iaadweakmaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadA hacaWGLbGaamOCaiaadohacaWGLbGcdaWgaaadbaaabeaajugibiaa dMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgakmaaBaaame aaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWGNb GaamyEaaWcbeaajugibiabgwSixRWaaeWaaeaadaWcaaqaaKqzGeGa eqySdegakeaajugibiaaikdacqGHflY1cqaHapaCaaaakiaawIcaca GLPaaadaahaaWcbeqaaKqzGeGaaG4maaaacqGH9aqpcaaIXaGaaiOl aiaaiMdacaaI1aGaaGOnaiaaigdacaaIXaGaaG4maiabgwSixlaaig dacaaIWaGcdaahaaWcbeqaaKqzGeGaaGyoaaaacaWGkbGaeyyXICTc daqadaqaaKqzGeGaaGimaiaac6cacaaIYaGaaGOmaiaaigdacaaI1a GaaG4naiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaeyOe I0IaaGyoaaaaaOGaayjkaiaawMcaamaaCaaaleqabaqcLbsacaqGZa aaaiabg2da9iaaikdacaGGUaGaaGymaiaaikdacaaI3aGaaG4naiaa iIdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTi aaikdacaaIWaaaaiaadQeaaaa@ADFA@   (53)

Converted to a frequency (νuniverse primordial Planck freq.3):

ν univers e primord.Planc k freq.3 = E h = 2.12778 10 20 J 6.62607004 10 34 J s 1 =3.21122 10 13 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaa dkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCai aadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiaadcfacaWGSbGa amyyaiaad6gacaWGJbGaam4AaOWaaSbaaWqaaaqabaqcLbsacaWGMb GaamOCaiaadwgacaWGXbGaaiOlaiaaiodaaSqabaqcLbsacqGH9aqp kmaalaaabaqcLbsacaWGfbaakeaajugibiaadIgaaaGaeyypa0Jcda WcaaqaaKqzGeGaaGOmaiaac6cacaaIXaGaaGOmaiaaiEdacaaI3aGa aGioaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaeyOeI0 IaaGOmaiaaicdaaaGaamOsaaGcbaqcLbsacaaI2aGaaiOlaiaaiAda caaIYaGaaGOnaiaaicdacaaI3aGaaGimaiaaicdacaaI0aGaeyyXIC TaaGymaiaaicdakmaaCaaaleqabaqcLbsacqGHsislcaaIZaGaaGin aaaacaWGkbGaeyyXICTaam4CaOWaaWbaaSqabeaajugibiabgkHiTi aaigdaaaaaaiabg2da9iaaiodacaGGUaGaaGOmaiaaigdacaaIXaGa aGOmaiaaikdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibi aaigdacaaIZaaaaiaadohakmaaCaaaleqabaqcLbsacqGHsislcaaI Xaaaaaaa@8D43@   (54)

Since c=ν∙λ and λ=c∙ν-1, this is in wavelength =9.33578∙10-6m, the range of infrared electromagnetic waves.26 It is at a temperature (Tuniverse primordial Planck temperature3) occurring on the surface of the developing cosmos:

T univers e primord.Planc k temperature3 = 11604.5220546K2.12778 10 20 J 1.60217662 10 19 J =1541.145K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6cacaWGqbGaamiBaiaa dggacaWGUbGaam4yaiaadUgakmaaBaaameaaaeqaaKqzGeGaamiDai aadwgacaWGTbGaamiCaiaadwgacaWGYbGaamyyaiaadshacaWG1bGa amOCaiaadwgacaaIZaaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGe GaaGymaiaaigdacaaI2aGaaGimaiaaisdacaGGUaGaaGynaiaaikda caaIYaGaaGimaiaaiwdacaaI0aGaaGOnaiaadUeacqGHflY1caaIYa GaaiOlaiaaigdacaaIYaGaaG4naiaaiEdacaaI4aGaeyyXICTaaGym aiaaicdakmaaCaaaleqabaqcLbsacqGHsislcaaIYaGaaGimaaaaca WGkbaakeaajugibiaaigdacaGGUaGaaGOnaiaaicdacaaIYaGaaGym aiaaiEdacaaI2aGaaGOnaiaaikdacqGHflY1caaIXaGaaGimaOWaaW baaSqabeaajugibiabgkHiTiaaigdacaaI5aaaaiaadQeaaaGaeyyp a0JaaGymaiaaiwdacaaI0aGaaGymaiaac6cacaaIXaGaaGinaiaaiw dacaWGlbaaaa@8D82@   (55)

At this last stage of development, the surface of the universe glows a faint red color. However, multiplying this value by π and 2·π the temperatures are 4841.65 K and 9683.3 K respectively. In this situation, the temperature and color are approximately equal to light orange K-type stars or white A-type stars in terms of surface color and temperature.27 At this temperature, the universe suddenly begins to emit light and becomes transparent as space expands.

The energy decrease of the cosmos from the initial infra-infra-Planck energy considering the repetition of the angular ratio, thermo-relativistic factor and π

The minimal initial temperature of the universe is the infra-infra-Planck energy. From this point there is also a four stage gradual decrease in the temperature in the cosmos.

E univers e initia l infrainfraPlanc k energy E univers e primord.infrainfraPlanc k energy1 E univers e primord.infrainfraPlanc k energy2 E univers e primord.infrainfraPlanc k energy3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGfbGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGPbGaam OBaiaadMgacaWG0bGaamyAaiaadggacaWGSbGcdaWgaaadbaaabeaa jugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0IaciyAai aac6gacaGGMbGaamOCaiaadggacqGHsislcaWGqbGaamiBaiaadgga caWGUbGaam4yaiaadUgakmaaBaaameaaaeqaaKqzGeGaamyzaiaad6 gacaWGLbGaamOCaiaadEgacaWG5baaleqaaKqzGeGaeyOKH4Qaamyr aOWaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgaca WGYbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkha caWGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGPbGaaiOBai aacAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUbGaaiOzaiaadkha caWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRb GcdaWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWG NbGaamyEaiaaigdaaSqabaqcLbsacqGHsgIRcaWGfbGcdaWgaaWcba qcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCaiaadMgacaWGTb Gaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGGUbGaaiOzaiaadkha caWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaamOCaiaadggacqGHsi slcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgakmaaBaaameaa aeqaaKqzGeGaamyzaiaad6gacaWGLbGaamOCaiaadEgacaWG5bGaaG OmaaWcbeaajugibiabgkziUcGcbaqcLbsacqGHsgIRcaWGfbGcdaWg aaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhaca WGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCaiaadMga caWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGGUbGaaiOzai aadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaamOCaiaadgga cqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgakmaaBa aameaaaeqaaKqzGeGaamyzaiaad6gacaWGLbGaamOCaiaadEgacaWG 5bGaaG4maaWcbeaaaaaa@E53B@   (56)

Or:

E univers e initial P lanc k energy ( π950.0863 ) 2 E univers e initial P lanc k energy ( π950.0863 ) 2 α 2π E univers e initial P lanc k energy ( π950.0863 ) 2 ( α 2π ) 2 E univers e initial P lanc k energy ( π950.0863 ) 2 ( α 2π ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aajugibiaadweakmaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaa dAhacaWGLbGaamOCaiaadohacaWGLbGcdaWgaaadbaaabeaajugibi aadMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgakmaaBeaa meaaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRb GcdaWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaadkhacaWG NbGaamyEaaWcbeaaaOqaamaabmaabaqcLbsacqaHapaCcqGHflY1ca aI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maaGc caGLOaGaayzkaaWaaWbaaSqabeaajugibiaaikdaaaaaaiabgkziUQ WaaSaaaeaajugibiaadweakmaaBaaaleaajugibiaadwhacaWGUbGa amyAaiaadAhacaWGLbGaamOCaiaadohacaWGLbGcdaWgaaadbaaabe aajugibiaadMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYga kmaaBeaameaaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaado gacaWGRbGcdaWgaaadbaaabeaajugibiaadwgacaWGUbGaamyzaiaa dkhacaWGNbGaamyEaaWcbeaaaOqaamaabmaabaqcLbsacqaHapaCcq GHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGa aG4maaGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiaaikdaaaaaai abgwSixRWaaSaaaeaajugibiabeg7aHbGcbaqcLbsacaaIYaGaeyyX ICTaeqiWdahaaiabgkziUQWaaSaaaeaajugibiaadweakmaaBaaale aajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadoha caWGLbGcdaWgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaads hacaWGPbGaamyyaiaadYgakmaaBeaameaaaeqaaKqzGeGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbGcdaWgaaadbaaabeaajugibi aadwgacaWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaaaOqaamaa bmaabaqcLbsacqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUa GaaGimaiaaiIdacaaI2aGaaG4maaGccaGLOaGaayzkaaWaaWbaaSqa beaajugibiaaikdaaaaaaiabgwSixRWaaeWaaeaadaWcaaqaaKqzGe GaeqySdegakeaajugibiaaikdacqGHflY1cqaHapaCaaaakiaawIca caGLPaaadaahaaWcbeqaaKqzGeGaaGOmaaaacqGHsgIRaOqaaKqzGe GaeyOKH4QcdaWcaaqaaKqzGeGaamyraOWaaSbaaSqaaKqzGeGaamyD aiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4CaiaadwgakmaaBa aameaaaeqaaKqzGeGaamyAaiaad6gacaWGPbGaamiDaiaadMgacaWG HbGaamiBaOWaaSraaWqaaaqabaqcLbsacaWGqbGaamiBaiaadggaca WGUbGaam4yaiaadUgakmaaBaaameaaaeqaaKqzGeGaamyzaiaad6ga caWGLbGaamOCaiaadEgacaWG5baaleqaaaGcbaWaaeWaaeaajugibi abec8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGio aiaaiAdacaaIZaaakiaawIcacaGLPaaadaahaaWcbeqaaKqzGeGaaG OmaaaaaaGaeyyXICTcdaqadaqaamaalaaabaqcLbsacqaHXoqyaOqa aKqzGeGaaGOmaiabgwSixlabec8aWbaaaOGaayjkaiaawMcaaaaaaa@0F74@   (57)

The minimum initial infra-infra-Planck energy (Euniverse initial infra-infra-Planck energy) numerically, is:

E univers e initia l infrainfraPlanc k energy = E univers e Planc k energy ( π950.0863 ) 2 = 1.956113 10 9 J 8.908936364 10 6 =0.219567513 10 3 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGPbGaaiOBaiaacAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUb GaaiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadwgacaWGUbGaam yzaiaadkhacaWGNbGaamyEaaWcbeaajugibiabg2da9OWaaSaaaeaa jugibiaadweakmaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadA hacaWGLbGaamOCaiaadohacaWGLbGcdaWgaaadbaaabeaajugibiaa dcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaOWaaSbaaWqaaaqaba qcLbsacaWGLbGaamOBaiaadwgacaWGYbGaam4zaiaadMhaaSqabaaa keaadaqadaqaaKqzGeGaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWa GaaiOlaiaaicdacaaI4aGaaGOnaiaaiodaaOGaayjkaiaawMcaamaa CaaaleqabaqcLbsacaaIYaaaaaaacqGH9aqpkmaalaaabaqcLbsaca aIXaGaaiOlaiaaiMdacaaI1aGaaGOnaiaaigdacaaIXaGaaG4maiab gwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaaGyoaaaacaWGkb aakeaajugibiaaiIdacaGGUaGaaGyoaiaaicdacaaI4aGaaGyoaiaa iodacaaI2aGaaG4maiaaiAdacaaI0aGaeyyXICTaaGymaiaaicdakm aaCaaaleqabaqcLbsacaaI2aaaaaaacqGH9aqpcaaIWaGaaiOlaiaa ikdacaaIXaGaaGyoaiaaiwdacaaI2aGaaG4naiaaiwdacaaIXaGaaG 4maiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaaG4maaaa caWGkbaaaa@B08E@   (58)

The first primordial energy stage of the universe at the primordial infra-Planck1 (Euniverse primordial infra-infra-Planck energy1) when the ratio of angles is used once:

E univers e primord.infrainfraPlanc k energy1 = E univers e initia l infrainfraPlanc k energy α 2π = 219.567513J0.22157 10 9 =48.649573 10 9 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGfbGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaam OCaiaadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGG UbGaaiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaam OCaiaadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaa dUgakmaaBaaameaaaeqaaKqzGeGaamyzaiaad6gacaWGLbGaamOCai aadEgacaWG5bGaaGymaaWcbeaajugibiabg2da9iaadweakmaaBaaa leaajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaado hacaWGLbGcdaWgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaa dshacaWGPbGaamyyaiaadYgakmaaBaaameaaaeqaaKqzGeGaciyAai aac6gacaGGMbGaamOCaiaadggacqGHsislciGGPbGaaiOBaiaacAga caWGYbGaamyyaiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJb Gaam4AaOWaaSbaaWqaaaqabaqcLbsacaWGLbGaamOBaiaadwgacaWG YbGaam4zaiaadMhaaSqabaqcLbsacqGHflY1kmaalaaabaqcLbsacq aHXoqyaOqaaKqzGeGaaGOmaiabgwSixlabec8aWbaacqGH9aqpaOqa aKqzGeGaaGOmaiaaigdacaaI5aGaaiOlaiaaiwdacaaI2aGaaG4nai aaiwdacaaIXaGaaG4maiaadQeacqGHflY1caaIWaGaaiOlaiaaikda caaIYaGaaGymaiaaiwdacaaI3aGaeyyXICTaaGymaiaaicdakmaaCa aaleqabaqcLbsacqGHsislcaaI5aaaaiabg2da9iaaisdacaaI4aGa aiOlaiaaiAdacaaI0aGaaGyoaiaaiwdacaaI3aGaaG4maiabgwSixl aaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGyoaaaacaWG kbaaaaa@BB4F@   (59)

Transforming it to a frequency (νuniverse primordial infra-infra-Planck freq.1):

ν univers e primord.infrainfraPlanc k freq.1 = E h = 48.649573 10 9 J 6.62607004 10 34 J s 1 =7.342146 10 25 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaa dkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCai aadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGGUbGa aiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaamOCai aadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUga kmaaBaaameaaaeqaaKqzGeGaamOzaiaadkhacaWGLbGaamyCaiaac6 cacaaIXaaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamyraaGc baqcLbsacaWGObaaaiabg2da9OWaaSaaaeaajugibiaaisdacaaI4a GaaiOlaiaaiAdacaaI0aGaaGyoaiaaiwdacaaI3aGaaG4maiabgwSi xlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGyoaaaaca WGkbaakeaajugibiaaiAdacaGGUaGaaGOnaiaaikdacaaI2aGaaGim aiaaiEdacaaIWaGaaGimaiaaisdacqGHflY1caaIXaGaaGimaOWaaW baaSqabeaajugibiabgkHiTiaaiodacaaI0aaaaiaadQeacqGHflY1 caWGZbGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaaaaaaGaeyypa0 JaaG4naiaac6cacaaIZaGaaGinaiaaikdacaaIXaGaaGinaiaaiAda cqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiaaikdacaaI1a aaaiaadohakmaaCaaaleqabaqcLbsacqGHsislcaaIXaaaaaaa@9A0C@   (60)

Where h is the Planck constant (6.62607004·10-34 J·s), ν is the frequency (νuniverse primordial infra-infra-Planck freq.1) and E the energy (Euniverse primordial infra-infra-Planck energy1).

Which is in wavelength (as λ=c/ν): 4.086∙10-18m. Since E=h∙ν and E=m∙c2, the mass (muniverse primordial infra-infra-Planck1) is:

m univers e primord.infrainfraPlanck1 = hν c 2 = 6.62607004 10 34 J s 1 7.342146 10 25 s 1 8.987551787 10 16 m 2 s 2 =5.413 10 25 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGPbGaaiOBaiaa cAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUbGaaiOzaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGa aGymaaWcbeaajugibiabg2da9OWaaSaaaeaajugibiaadIgacqGHfl Y1cqaH9oGBaOqaaKqzGeGaam4yaOWaaWbaaSqabeaajugibiaaikda aaaaaiabg2da9OWaaSaaaeaajugibiaaiAdacaGGUaGaaGOnaiaaik dacaaI2aGaaGimaiaaiEdacaaIWaGaaGimaiaaisdacqGHflY1caaI XaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTiaaiodacaaI0aaaai aadQeacqGHflY1caWGZbGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGym aaaacqGHflY1caaI3aGaaiOlaiaaiodacaaI0aGaaGOmaiaaigdaca aI0aGaaGOnaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGa aGOmaiaaiwdaaaGaam4CaOWaaWbaaSqabeaajugibiabgkHiTiaaig daaaaakeaajugibiaaiIdacaGGUaGaaGyoaiaaiIdacaaI3aGaaGyn aiaaiwdacaaIXaGaaG4naiaaiIdacaaI3aGaeyyXICTaaGymaiaaic dakmaaCaaaleqabaqcLbsacaaIXaGaaGOnaaaacaWGTbGcdaahaaWc beqaaKqzGeGaaGOmaaaacqGHflY1caWGZbGcdaahaaWcbeqaaKqzGe GaeyOeI0IaaGOmaaaaaaGaeyypa0JaaGynaiaac6cacaaI0aGaaGym aiaaiodacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiabgk HiTiaaikdacaaI1aaaaiaadUgacaWGNbaaaa@B110@   (61)

Where h is the Planck constant (6.62607004·10-34 J·s), ν is the frequency (νuniverse primordial infra-infra-Planck freq.1) and c is the speed of light (2.99792458·108 m·s-1).

Since the mass of a proton is 1.6726219∙10-27kg, it correlates with a mass of 323.6233 protons. This is the range of the interchanges of the bosons, or the field of the formation of their pairs. Divide this by 2 and 2∙π for a mass of 161.8 and 51.5 protons respectively, which is in the mass range of heavy bosons (e.g. top quark, Higgs, Z and W)28

However, multiply it by π and 2∙π the mass will be 1016.69 and 2033.38 protons mass respectively, which corresponds to the upper energy limit of Higgs field.

The temperature value of the universe at the first stage of the primordial infra-infra-Planck1 (Tuniverse primordial infra-infra-Planck temperature1) is as follows:

T univers e primord.infrainfraPlanc k temperature1 = 11604.5220546K48.649573 10 9 J 1.60217662 10 19 J =3.52367 10 15 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGPbGaaiOBaiaa cAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUbGaaiOzaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadchacaWGLb GaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbGaaGymaaWcbeaa jugibiabg2da9OWaaSaaaeaajugibiaaigdacaaIXaGaaGOnaiaaic dacaaI0aGaaiOlaiaaiwdacaaIYaGaaGOmaiaaicdacaaI1aGaaGin aiaaiAdacaWGlbGaeyyXICTaaGinaiaaiIdacaGGUaGaaGOnaiaais dacaaI5aGaaGynaiaaiEdacaaIZaGaeyyXICTaaGymaiaaicdakmaa CaaaleqabaqcLbsacqGHsislcaaI5aaaaiaadQeaaOqaaKqzGeGaaG ymaiaac6cacaaI2aGaaGimaiaaikdacaaIXaGaaG4naiaaiAdacaaI 2aGaaGOmaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaey OeI0IaaGymaiaaiMdaaaGaamOsaaaacqGH9aqpcaaIZaGaaiOlaiaa iwdacaaIYaGaaG4maiaaiAdacaaI3aGaeyyXICTaaGymaiaaicdakm aaCaaaleqabaqcLbsacaaIXaGaaGynaaaacaWGlbaaaa@9EC8@   (62)

The energy of the primordial universe at the second stage of the primordial infra-infra-Planck2 (Euniverse primordial infra-infra-Planck energy2) when the ratio of angles is squared:

E univers e primord.infrainfraPlanc k energy2 = E univers e initia l infrainfraPlanc k energy ( α 2π ) 2 =219.567513J ( 0.22157 10 9 ) 2 = =10.779286 10 18 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGfbGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaam OCaiaadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGG UbGaaiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaam OCaiaadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaa dUgakmaaBaaameaaaeqaaKqzGeGaamyzaiaad6gacaWGLbGaamOCai aadEgacaWG5bGaaGOmaaWcbeaajugibiabg2da9iaadweakmaaBaaa leaajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaado hacaWGLbGcdaWgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaa dshacaWGPbGaamyyaiaadYgakmaaBaaameaaaeqaaKqzGeGaciyAai aac6gacaGGMbGaamOCaiaadggacqGHsislciGGPbGaaiOBaiaacAga caWGYbGaamyyaiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJb Gaam4AaOWaaSbaaWqaaaqabaqcLbsacaWGLbGaamOBaiaadwgacaWG YbGaam4zaiaadMhaaSqabaqcLbsacqGHflY1kmaabmaabaWaaSaaae aajugibiabeg7aHbGcbaqcLbsacaaIYaGaeyyXICTaeqiWdahaaaGc caGLOaGaayzkaaWaaWbaaSqabeaajugibiaaikdaaaGaeyypa0JaaG OmaiaaigdacaaI5aGaaiOlaiaaiwdacaaI2aGaaG4naiaaiwdacaaI XaGaaG4maiaadQeacqGHflY1kmaabmaabaqcLbsacaaIWaGaaiOlai aaikdacaaIYaGaaGymaiaaiwdacaaI3aGaeyyXICTaaGymaiaaicda kmaaCaaaleqabaqcLbsacqGHsislcaaI5aaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaajugibiaabkdaaaGaeyypa0dakeaajugibiabg2da 9iaaigdacaaIWaGaaiOlaiaaiEdacaaI3aGaaGyoaiaaikdacaaI4a GaaGOnaiabgwSixlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaeyOe I0IaaGymaiaaiIdaaaGaamOsaaaaaa@C3B2@   (63)

This is, as a frequency (νuniverse primordial infra-infra-Planck freq.2):

ν univers e primord.infrainfraPlanc k freq.2 = E h = 10.779286 10 18 J 6.62607004 10 34 J s 1 =1.6268 10 16 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaa dkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCai aadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGGUbGa aiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaamOCai aadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUga kmaaBaaameaaaeqaaKqzGeGaamOzaiaadkhacaWGLbGaamyCaiaac6 cacaaIYaaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamyraaGc baqcLbsacaWGObaaaiabg2da9OWaaSaaaeaajugibiaaigdacaaIWa GaaiOlaiaaiEdacaaI3aGaaGyoaiaaikdacaaI4aGaaGOnaiabgwSi xlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaiaaiI daaaGaamOsaaGcbaqcLbsacaaI2aGaaiOlaiaaiAdacaaIYaGaaGOn aiaaicdacaaI3aGaaGimaiaaicdacaaI0aGaeyyXICTaaGymaiaaic dakmaaCaaaleqabaqcLbsacqGHsislcaaIZaGaaGinaaaacaWGkbGa eyyXICTaam4CaOWaaWbaaSqabeaajugibiabgkHiTiaaigdaaaaaai abg2da9iaaigdacaGGUaGaaGOnaiaaikdacaaI2aGaaGioaiabgwSi xlaaigdacaaIWaGcdaahaaWcbeqaaKqzGeGaaGymaiaaiAdaaaGaam 4CaOWaaWbaaSqabeaajugibiabgkHiTiaaigdaaaaaaa@9949@   (64)

Where h is the Planck constant (6.62607004·10-34 J·s) and E is the energy (Euniverse primordial infra-infra-Planck energy2). 1 Joule= 1kg m2∙s-2

T univers e primord.infrainfraPlanc k temperature2 = 11604.5220546K10.779286 10 18 J 1.60217662 10 19 J =7.8074077 10 5 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGPbGaaiOBaiaa cAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUbGaaiOzaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadchacaWGLb GaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbGaaGOmaaWcbeaa jugibiabg2da9OWaaSaaaeaajugibiaaigdacaaIXaGaaGOnaiaaic dacaaI0aGaaiOlaiaaiwdacaaIYaGaaGOmaiaaicdacaaI1aGaaGin aiaaiAdacaWGlbGaeyyXICTaaGymaiaaicdacaGGUaGaaG4naiaaiE dacaaI5aGaaGOmaiaaiIdacaaI2aGaeyyXICTaaGymaiaaicdakmaa CaaaleqabaqcLbsacqGHsislcaaIXaGaaGioaaaacaWGkbaakeaaju gibiaaigdacaGGUaGaaGOnaiaaicdacaaIYaGaaGymaiaaiEdacaaI 2aGaaGOnaiaaikdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaaju gibiabgkHiTiaaigdacaaI5aaaaiaadQeaaaGaeyypa0JaaG4naiaa c6cacaaI4aGaaGimaiaaiEdacaaI0aGaaGimaiaaiEdacaaI3aGaey yXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaI1aaaaiaadUea aaa@A044@   (65)

As c=λ∙ν and λ=c/ν =1.8428∙10-8m = 18.428 nm. Divide this by 2∙π and π and the wavelengths are 2.933 nm and 5.865 nm respectively, but multiply it by π and 2∙π and they are 57.893 nm and 115.786 nm respectively. These are the wavelengths of soft X-rays and extreme ultraviolet electromagnetic radiation29 respectively.

The temperature value of the universe at the second stage of the primordial infra-infra-Planck2 (Tuniverse primordial infra-infra-Planck temperature2) is as follows:

The energy of the cosmos at the third stage of the primordial infra-Planck3 (Tuniverse primordial infra-Planck energy3), when the angles ratio is cubed:

E univers e primord.infrainfraPlanc k energy3 = E univers e initia l infrainfraPlanc k energy ( α 2π ) 3 =219.567513J0.0108768 10 27 =2.3882 10 27 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGfbGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaam OCaiaadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGG UbGaaiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaam OCaiaadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaa dUgakmaaBaaameaaaeqaaKqzGeGaamyzaiaad6gacaWGLbGaamOCai aadEgacaWG5bGaaG4maaWcbeaajugibiabg2da9iaadweakmaaBaaa leaajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaado hacaWGLbGcdaWgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaa dshacaWGPbGaamyyaiaadYgakmaaBaaameaaaeqaaKqzGeGaciyAai aac6gacaGGMbGaamOCaiaadggacqGHsislciGGPbGaaiOBaiaacAga caWGYbGaamyyaiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJb Gaam4AaOWaaSbaaWqaaaqabaqcLbsacaWGLbGaamOBaiaadwgacaWG YbGaam4zaiaadMhaaSqabaqcLbsacqGHflY1kmaabmaabaWaaSaaae aajugibiabeg7aHbGcbaqcLbsacaaIYaGaeyyXICTaeqiWdahaaaGc caGLOaGaayzkaaWaaWbaaSqabeaajugibiaaiodaaaaakeaajugibi abg2da9iaaikdacaaIXaGaaGyoaiaac6cacaaI1aGaaGOnaiaaiEda caaI1aGaaGymaiaaiodacaWGkbGaeyyXICTaaGimaiaac6cacaaIWa GaaGymaiaaicdacaaI4aGaaG4naiaaiAdacaaI4aGaeyyXICTaaGym aiaaicdakmaaCaaaleqabaqcLbsacqGHsislcaaIYaGaaG4naaaacq GH9aqpcaaIYaGaaiOlaiaaiodacaaI4aGaaGioaiaaikdacqGHflY1 caaIXaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTiaaikdacaaI3a aaaiaadQeaaaaa@BF0D@   (66)

This as a frequency is (νuniverse primordial infra-infra-Planck freq.3):

ν univers e primord.infrainfr a Planc k freq.3 = E h = 2.3882 10 27 J 6.62607004 10 34 J s 1 =3.60455 10 6 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaa dkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCai aadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGGUbGa aiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaamOCai aadggakmaaBaaameaaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadAgacaWGYbGaam yzaiaadghacaGGUaGaaG4maaWcbeaajugibiabg2da9OWaaSaaaeaa jugibiaadweaaOqaaKqzGeGaamiAaaaacqGH9aqpkmaalaaabaqcLb sacaaIYaGaaiOlaiaaiodacaaI4aGaaGioaiaaikdacqGHflY1caaI XaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTiaaikdacaaI3aaaai aadQeaaOqaaKqzGeGaaGOnaiaac6cacaaI2aGaaGOmaiaaiAdacaaI WaGaaG4naiaaicdacaaIWaGaaGinaiabgwSixlaaigdacaaIWaGcda ahaaWcbeqaaKqzGeGaeyOeI0IaaG4maiaaisdaaaGaamOsaiabgwSi xlaadohakmaaCaaaleqabaqcLbsacqGHsislcaaIXaaaaaaacqGH9a qpcaaIZaGaaiOlaiaaiAdacaaIWaGaaGinaiaaiwdacaaI1aGaeyyX ICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacaaI2aaaaiaadohakm aaCaaaleqabaqcLbsacqGHsislcaaIXaaaaaaa@96E3@   (67)

Which corresponds to the initial high frequency radio electromagnetic wave (HF).30 Since c=λ∙ν and λ=c/ν it is 0.8317∙102 m, or 83.17 m as a wavelength. Multiply it by π and 2·π and it is 261.288 m and 522.576 m respectively. Divide it by π and 2∙π and the wavelengths are 26.473 m and 13.237 m respectively.

The temperature value (Tuniverse primordial infra-infra-Planck temperature3) by the ratio pair is as follows:

T univers e primord.infrainfraPlanc k temperature3 = 11604.5220546K2.3882 10 27 J 1.60217662 10 19 J =1.7297 10 4 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGPbGaaiOBaiaa cAgacaWGYbGaamyyaiabgkHiTiGacMgacaGGUbGaaiOzaiaadkhaca WGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbGc daWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadchacaWGLb GaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbGaaG4maaWcbeaa jugibiabg2da9OWaaSaaaeaajugibiaaigdacaaIXaGaaGOnaiaaic dacaaI0aGaaiOlaiaaiwdacaaIYaGaaGOmaiaaicdacaaI1aGaaGin aiaaiAdacaWGlbGaeyyXICTaaGOmaiaac6cacaaIZaGaaGioaiaaiI dacaaIYaGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacqGH sislcaaIYaGaaG4naaaacaWGkbaakeaajugibiaaigdacaGGUaGaaG OnaiaaicdacaaIYaGaaGymaiaaiEdacaaI2aGaaGOnaiaaikdacqGH flY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTiaaigdaca aI5aaaaiaadQeaaaGaeyypa0JaaGymaiaac6cacaaI3aGaaGOmaiaa iMdacaaI3aGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacq GHsislcaaI0aaaaiaadUeaaaa@9CB6@   (68)

Since the initial supra-supra-Planck energy has shifted by the factor squared, recovering the original initial Planck one by two units the infra-infra-Planck primordial3 energy should also be pushed to the lower values.

E univers e primord.infrainfraPlanc k energy 3 shifted2times = E univers e initia l infrainfraPlanc k energy ( π950.0863 ) 2 ( α 2π ) 3 = 219.567513 J 8.908936364 10 6 0.0108768 10 27 =0.268067 10 33 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGfbGcdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaam OCaiaadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGG UbGaaiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaam OCaiaadggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaa dUgakmaaBaaameaaaeqaaKqzGeGaamyzaiaad6gacaWGLbGaamOCai aadEgacaWG5bGaaG4maOWaaSbaaWqaaaqabaqcLbsacaWGZbGaamiA aiaadMgacaWGMbGaamiDaiaadwgacaWGKbGaaGOmaiaadshacaWGPb GaamyBaiaadwgacaWGZbaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqz GeGaamyraOWaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODai aadwgacaWGYbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyA aiaad6gacaWGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaa qabaqcLbsaciGGPbGaaiOBaiaacAgacaWGYbGaamyyaiabgkHiTiGa cMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgaca WGHbGaamOBaiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadwga caWGUbGaamyzaiaadkhacaWGNbGaamyEaaWcbeaaaOqaamaabmaaba qcLbsacqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGim aiaaiIdacaaI2aGaaG4maaGccaGLOaGaayzkaaWaaWbaaSqabeaaju gibiaaikdaaaaaaiabgwSixRWaaeWaaeaadaWcaaqaaKqzGeGaeqyS degakeaajugibiaaikdacqGHflY1cqaHapaCaaaakiaawIcacaGLPa aadaahaaWcbeqaaKqzGeGaaG4maaaacqGH9aqpkmaalaaabaqcLbsa caaIYaGaaGymaiaaiMdacaGGUaGaaGynaiaaiAdacaaI3aGaaGynai aaigdacaaIZaGcdaWgaaWcbaaabeaajugibiaadQeaaOqaaKqzGeGa aGioaiaac6cacaaI5aGaaGimaiaaiIdacaaI5aGaaG4maiaaiAdaca aIZaGaaGOnaiaaisdacqGHflY1caaIXaGaaGimaOWaaWbaaSqabeaa jugibiaaiAdaaaaaaiabgwSixlaaicdacaGGUaGaaGimaiaaigdaca aIWaGaaGioaiaaiEdacaaI2aGaaGioaiabgwSixlaaigdacaaIWaGc daahaaWcbeqaaKqzGeGaeyOeI0IaaGOmaiaaiEdaaaaakeaajugibi abg2da9iaaicdacaGGUaGaaGOmaiaaiAdacaaI4aGaaGimaiaaiAda caaI3aGaeyyXICTaaGymaiaaicdakmaaCaaaleqabaqcLbsacqGHsi slcaaIZaGaaG4maaaacaWGkbaaaaa@EA71@   (69)

Converted to frequency (νuniverse primordial infra-infra-Planck freq.3, shifted 2times) it is:

ν univers e primord.infrainfr a Planc k freq .3 shifted2times = E h = 2.68067 10 34 J 6.626070040 10 34 J s 1 = 0.4045 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyVd4 McdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaa dkhacaWGZbGaamyzaOWaaSbaaWqaaaqabaqcLbsacaWGWbGaamOCai aadMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGGUbGa aiOzaiaadkhacaWGHbGaeyOeI0IaciyAaiaac6gacaGGMbGaamOCai aadggakmaaBaaameaaaeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOB aiaadogacaWGRbGcdaWgaaadbaaabeaajugibiaadAgacaWGYbGaam yzaiaadghacaGGUaGaaG4maOWaaSbaaWqaaaqabaqcLbsacaWGZbGa amiAaiaadMgacaWGMbGaamiDaiaadwgacaWGKbGaaGOmaiaadshaca WGPbGaamyBaiaadwgacaWGZbaaleqaaKqzGeGaeyypa0JcdaWcaaqa aKqzGeGaamyraaGcbaqcLbsacaWGObaaaiabg2da9OWaaSaaaeaaju gibiaaikdacaGGUaGaaGOnaiaaiIdacaaIWaGaaGOnaiaaiEdacqGH flY1caaIXaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTiaaiodaca aI0aaaaiaadQeaaOqaaKqzGeGaaGOnaiaac6cacaaI2aGaaGOmaiaa iAdacaaIWaGaaG4naiaaicdacaaIWaGaaGinaiaaicdacqGHflY1ca aIXaGaaGimaOWaaWbaaSqabeaajugibiabgkHiTiaaiodacaaI0aaa aiaadQeacqGHflY1caWGZbGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaG ymaaaaaaGaeyypa0JaaGimaiaac6cacaaI0aGaaGimaiaaisdacaaI 1aGcdaWgaaWcbaaabeaajugibiaadohakmaaCaaaleqabaqcLbsacq GHsislcaaIXaaaaaaa@9FDE@   (70)

This is in the energy range of extremely low frequency electromagnetic waves (ELF).31 As λ=c/ν, the wavelength is: 7.411432∙108m or 741143.2 km (divide it by π and 2∙π: 235870 km and 117930 km respectively).

Given that electromagnetic waves with a lower frequency than this value are unknown in the macrocosm, this is a limit, which closes physics in this regard.

The conversion number between electron volt and temperature is:

T= 1eV k = 1.60217662 10 19 J 1.38064852 10 23 J K 1 = 11604.5220546 K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaiaadwgacaWGwbaakeaa jugibiaadUgaaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaiaac6 cacaaI2aGaaGimaiaaikdacaaIXaGaaG4naiaaiAdacaaI2aGaaGOm aiabgwSixlaaigdacaaIWaqcfa4aaWbaaSqabeaajugibiabgkHiTi aaigdacaaI5aaaaiaadQeaaOqaaKqzGeGaaGymaiaac6cacaaIZaGa aGioaiaaicdacaaI2aGaaGinaiaaiIdacaaI1aGaaGOmaiabgwSixl aaigdacaaIWaqcfa4aaWbaaSqabeaajugibiabgkHiTiaaikdacaaI ZaaaaiaadQeacqGHflY1caWGlbqcfa4aaWbaaSqabeaajugibiabgk HiTiaaigdaaaaaaiabg2da9iaaigdacaaIXaGaaGOnaiaaicdacaaI 0aGaaiOlaiaaiwdacaaIYaGaaGOmaiaaicdacaaI1aGaaGinaiaaiA dajuaGdaWgaaWcbaaabeaajugibiaadUeaaaa@7271@   (71)

The temperature of the primordial cosmos at the third stage of the infra-Planck primordial3 is (Tuniverse primordial infra-infra-Planck temperature3):

T univers e primord.infrainfraPlanc k temperature 3 shifted2times = 11604.5220546K2.68067 10 34 J 1.60217662 10 19 J =1.9416 10 11 K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaciyAaiaa c6gacaGGMbGaamOCaiaadggacqGHsislciGGPbGaaiOBaiaacAgaca WGYbGaamyyaiabgkHiTiaadcfacaWGSbGaamyyaiaad6gacaWGJbGa am4AaKqbaoaaBaaameaaaeqaaKqzGeGaamiDaiaadwgacaWGTbGaam iCaiaadwgacaWGYbGaamyyaiaadshacaWG1bGaamOCaiaadwgacaaI Zaqcfa4aaSbaaWqaaaqabaqcLbsacaWGZbGaamiAaiaadMgacaWGMb GaamiDaiaadwgacaWGKbGaaGOmaiaadshacaWGPbGaamyBaiaadwga caWGZbaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymai aaigdacaaI2aGaaGimaiaaisdacaGGUaGaaGynaiaaikdacaaIYaGa aGimaiaaiwdacaaI0aGaaGOnaiaadUeacqGHflY1caaIYaGaaiOlai aaiAdacaaI4aGaaGimaiaaiAdacaaI3aGaeyyXICTaaGymaiaaicda juaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaG4maiaaisdaaaGaamOsaa GcbaqcLbsacaaIXaGaaiOlaiaaiAdacaaIWaGaaGOmaiaaigdacaaI 3aGaaGOnaiaaiAdacaaIYaGaeyyXICTaaGymaiaaicdajuaGdaahaa WcbeqaaKqzGeGaeyOeI0IaaGymaiaaiMdaaaGaamOsaaaacqGH9aqp caaIXaGaaiOlaiaaiMdacaaI0aGaaGymaiaaiAdacqGHflY1caaIXa GaaGimaKqbaoaaCaaaleqabaqcLbsacqGHsislcaaIXaGaaGymaaaa caWGlbaaaa@AE01@   (72)

In summary, the three temperature values (supra-supra-Planck, Planck and infra-infra-Planck) thus shift to each other in the fourth stage of development of the cosmos when gamma, red and HF photons emerge. By restoring the Planck temperature with two units, the CMB is the VLF and the HF is the ELF.

Intermediate temperature levels in the gradual reduction of the initial Planck temperature of the universe according to the repetition of the angular ratio, thermo-relativistic factor and π

Utilizing the ratio of angles (α/2π) by one to three times, multiplying it by itself, or raising it to a square and cube, the initial Planck temperature of the cosmos gradually decreases to the present value. Since the initial Planck temperature (Tuniverse initial Planck temperature) is:

T univers e initia l Planc k temperature = M univers e initia l Planck c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaKqbao aaBaaameaaaeqaaKqzGeGaamiDaiaadwgacaWGTbGaamiCaiaadwga caWGYbGaamyyaiaadshacaWG1bGaamOCaiaadwgaaSqabaqcLbsacq GH9aqpcaWGnbqcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGa amODaiaadwgacaWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaaju gibiaadMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaG daWgaaadbaaabeaajugibiaadcfacaWGSbGaamyyaiaad6gacaWGJb Gaam4AaaWcbeaajugibiabgwSixNqbaoaalaaakeaajugibiaadoga juaGdaahaaWcbeqaaKqzGeGaaGOmaaaaaOqaaKqzGeGaam4Aaaaaaa a@7D05@   (73)

At the first stage of the primordial universe (Tuniverse primordial Planck temperature1), the temperature is higher than the energy of the quark-gluon plasma state of matter:

T univers e primord.Planc k temperature1 = α 2π M univers e initia l Planck c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaigdaaSqabaqcLbsacqGH9aqpjuaGda WcaaGcbaqcLbsacqaHXoqyaOqaaKqzGeGaaGOmaiabgwSixlabec8a WbaacqGHflY1caWGnbqcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gaca WGPbGaamODaiaadwgacaWGYbGaam4CaiaadwgajuaGdaWgaaadbaaa beaajugibiaadMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadY gajuaGdaWgaaadbaaabeaajugibiaadcfacaWGSbGaamyyaiaad6ga caWGJbGaam4AaaWcbeaajugibiabgwSixNqbaoaalaaakeaajugibi aadogajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaaaOqaaKqzGeGaam4A aaaaaaa@87B7@   (74)

When using the ratio of angles once, the primordial cosmos temperature is as follows:

T univers e primord.Planc k temperature1 =0.22156987 10 9 1.416785 10 32 K=3.139 10 22 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaigdaaSqabaqcLbsacqGH9aqpcaaIWa GaaiOlaiaaikdacaaIYaGaaGymaiaaiwdacaaI2aGaaGyoaiaaiIda caaI3aGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGaey OeI0IaaGyoaaaacqGHflY1caaIXaGaaiOlaiaaisdacaaIXaGaaGOn aiaaiEdacaaI4aGaaGynaiabgwSixlaaigdacaaIWaqcfa4aaWbaaS qabeaajugibiaaiodacaaIYaaaaiaadUeacqGH9aqpcaaIZaGaaiOl aiaaigdacaaIZaGaaGyoaiabgwSixlaaigdacaaIWaqcfa4aaWbaaS qabeaajugibiaaikdacaaIYaaaaiaadUeaaaa@85FF@   (75)

Transforming it into energy (3.139∙1022K /11604.522 = 2.7∙1018eV): 2.7 EeV.

Considering the temperature value of Eq.74 and multiplying it by 950.0863 and π, it is 9.36923∙1025 K (Tuniverse primordial supra-Planck temperature1), transformed into energy (9.36923∙1025K/11604.5): 8.0738∙ 1021eV, however multiply it by π and 2∙π: 2.536∙1026eV and 5.073∙1026eV respectively. Dividing this value (9.36923∙1025eV) by π and 2∙π, the results are as follows: 2.982∙1025eV and 1.491∙1025eV respectively.

By calculating from the initial Planck temperature of the universe one times derivative value (Eq.74) and dividing it by 950.0863 and π (Tuniverse primordial infra-Planck temperature1), it is 3.308∙1019 K, which in energy is (3.3∙1019K/11604.5=2.85 1015eV): 2.85 PeV, however, multiply it by 2∙π and π: 17.907 PeV and 8.9535 PeV respectively. Divide it by π and 2∙π: 0,907 PeV and 453.6 TeV respectively.

The twice-reduced initial Planck temperature of the cosmos (Tuniverse primordial Planck temperature2) by using the ratio of angles (α/2π) two times is at the second primordial infra-Planck2 temperature:

T univers e primord.Planc k temperature2 = ( α 2π ) 2 M univers e initia l Planck c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaikdaaSqabaqcLbsacqGH9aqpjuaGda qadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibiaaikda cqGHflY1cqaHapaCaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaK qzGeGaaGOmaaaacqGHflY1caWGnbqcfa4aaSbaaSqaaKqzGeGaamyD aiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4CaiaadwgajuaGda WgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaadshacaWGPbGa amyyaiaadYgajuaGdaWgaaadbaaabeaajugibiaadcfacaWGSbGaam yyaiaad6gacaWGJbGaam4AaaWcbeaajugibiabgwSixNqbaoaalaaa keaajugibiaadogajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaaaOqaaK qzGeGaam4Aaaaaaaa@8BE9@   (76)

Numerically:

T univers e primord.Planc k temperature2 = ( 0.22156987 10 9 ) 2 1.416785 10 32 K=6.955452 10 12 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaikdaaSqabaqcLbsacqGH9aqpjuaGda qadaGcbaqcLbsacaaIWaGaaiOlaiaaikdacaaIYaGaaGymaiaaiwda caaI2aGaaGyoaiaaiIdacaaI3aGaeyyXICTaaGymaiaaicdajuaGda ahaaWcbeqaaKqzGeGaeyOeI0IaaGyoaaaaaOGaayjkaiaawMcaaKqb aoaaCaaaleqabaqcLbsacaaIYaaaaiabgwSixlaaigdacaGGUaGaaG inaiaaigdacaaI2aGaaG4naiaaiIdacaaI1aGaeyyXICTaaGymaiaa icdajuaGdaahaaWcbeqaaKqzGeGaaG4maiaaikdaaaGaam4saiabg2 da9iaaiAdacaGGUaGaaGyoaiaaiwdacaaI1aGaaGinaiaaiwdacaaI YaGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGaaGymai aaikdaaaGaam4saaaa@8D01@   (77)

In energy, this is (6.955452∙1012K/11604.505=5.993751564∙108eV) 599.33 MeV (approximately the energy of a quark pair). Multiply it by π and 2∙π: 1.882992588 GeV and 3.765985176 GeV respectively. Since 1 u is 0.938272081 GeV, they are: 2.00687266 u (Deuteron nucleus) and 4.013745322 u (Helium nucleus). This energy level is close to the creation energy/mass of these elements in nuclear fusions. Divide it by π and 2∙π: 190.787 MeV and 95.393 MeV respectively, which is roughly the energy of a muon. At this temperature value (Eq.77) is created the cosmic rays.32

However, consider the initial Planck temperature of the universe derived twice (Eq.76) and multiplied by 950.0863 and π; this is 2.076∙1016 K (Tuniverse primordial supra-Planck temperature2), which in energy is (2.076∙1016 K/11604.5=1.7889 1012eV): 1.8 TeV, similar to high energy collisions in cyclotrons (lead-lead ion).33 However, multiply it by π and 2∙π: 5.654 TeV and 11.31 TeV respectively, similar to high energy collisions in cyclotrons (proton-proton).34 Divide it by π and 2∙π, it is: 0.5729 TeV and 286.47 GeV respectively.

On the other hand from the initial Planck temperature derived twice, divide it by 950.0863 and π and it is 2.33∙109K (Tuniverse primordial infra-Planck temperature2), which in energy is (2.33∙109K/11604.5 =2.0081∙105eV): 0.2 MeV (the energy level of gamma rays). Multiply it by π and 2∙π: 0.628 MeV and 1.256 MeV respectively, the energy level of 1-2 electrons. Divide it by π and 2∙π: 63.66 keV and 31.83 keV respectively, which is roughly the energy level of X-rays.

Ultimately, at the third primordial temperature stage (Tuniverse primordial Planck temperature3) of the cosmos and with the mass of the initial universe multiplied by the value of the angular ratio cubed (α/2π)3 the temperature will be as follows:

T univers e primord.Planc k temperature3 = ( α 2π ) 3 M univers e initia l Planck c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaiodaaSqabaqcLbsacqGH9aqpjuaGda qadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibiaaikda cqGHflY1cqaHapaCaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaK qzGeGaaG4maaaacqGHflY1caWGnbqcfa4aaSbaaSqaaKqzGeGaamyD aiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4CaiaadwgajuaGda WgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaadshacaWGPbGa amyyaiaadYgajuaGdaWgaaadbaaabeaajugibiaadcfacaWGSbGaam yyaiaad6gacaWGJbGaam4AaaWcbeaajugibiabgwSixNqbaoaalaaa keaajugibiaadogajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaaaOqaaK qzGeGaam4Aaaaaaaa@8BEB@   (78)

The combined equation detailed (Eq.6 and Eq.8):

T univers e primord.Planc k temperature3 = ( α 2π ) 3 ν ν 0 ν 0 c 4 g Eart h stand π R Eart h mean G H univers e present π950.0863 c 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaiodaaSqabaqcLbsacqGH9aqpjuaGda qadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibiaaikda cqGHflY1cqaHapaCaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaK qzGeGaaG4maaaacqGHflY1juaGdaWcaaGcbaqcfa4aaSaaaOqaaKqz GeGaeqyVd4MaeyOeI0IaeqyVd4wcfa4aaSbaaSqaaKqzGeGaaGimaa WcbeaaaOqaaKqzGeGaeqyVd4wcfa4aaSbaaSqaaKqzGeGaaGimaaWc beaaaaqcLbsacqGHflY1juaGdaWcaaGcbaqcLbsacaWGJbqcfa4aaW baaSqabeaajugibiaaisdaaaaakeaajugibiaadEgajuaGdaWgaaWc baqcLbsacaWGfbGaamyyaiaadkhacaWG0bGaamiAaKqbaoaaBaaame aaaeqaaKqzGeGaam4CaiGacshacaGGHbGaaiOBaiaadsgaaSqabaaa aKqzGeGaeyyXICDcfa4aaSaaaOqaaKqzGeGaeqiWdaNaeyyXICTaam OuaKqbaoaaBaaaleaajugibiaadweacaWGHbGaamOCaiaadshacaWG Obqcfa4aaSbaaWqaaaqabaqcLbsacaWGTbGaamyzaiaadggacaWGUb aaleqaaaGcbaqcLbsacaWGhbGaeyyXICTaamisaKqbaoaaBaaaleaa jugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohaca WGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWGWbGaamOCaiaadwgacaWG ZbGaamyzaiaad6gacaWG0baaleqaaaaaaOqaaKqzGeGaeqiWdaNaey yXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaa iodaaaGaeyyXICDcfa4aaSaaaOqaaKqzGeGaam4yaKqbaoaaCaaale qabaqcLbsacaaIYaaaaaGcbaqcLbsacaWGRbaaaaaa@C7BC@   (79)

The thrice derivative primordial temperature numerically:

T univers e primord.Planc k temperature3 = ( 0.22156987 10 9 ) 3 1.416785 10 32 K=1.541118 10 3 K=1541.118K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaiodaaSqabaqcLbsacqGH9aqpjuaGda qadaGcbaqcLbsacaaIWaGaaiOlaiaaikdacaaIYaGaaGymaiaaiwda caaI2aGaaGyoaiaaiIdacaaI3aGaeyyXICTaaGymaiaaicdajuaGda ahaaWcbeqaaKqzGeGaeyOeI0IaaGyoaaaaaOGaayjkaiaawMcaaKqb aoaaCaaaleqabaqcLbsacaaIZaaaaiabgwSixlaaigdacaGGUaGaaG inaiaaigdacaaI2aGaaG4naiaaiIdacaaI1aGaeyyXICTaaGymaiaa icdajuaGdaahaaWcbeqaaKqzGeGaaG4maiaaikdaaaGaam4saiabg2 da9iaaigdacaGGUaGaaGynaiaaisdacaaIXaGaaGymaiaaigdacaaI 4aGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGaaG4maa aacaWGlbGaeyypa0JaaGymaiaaiwdacaaI0aGaaGymaiaac6cacaaI XaGaaGymaiaaiIdacaWGlbaaaa@93ED@   (80)

Considering initial Planck temperature of the universe and its triple derivative value (Eq.78) and multiplying it by 950.0863 and π, the temperature is as follows: 4.5999∙106 K (Tuniverse primordial supra-Planck temperature3). Transform it into energy (4.6∙106K/11604.5): 3.9639∙102eV. This is roughly the same as that of soft X-ray radiation energy. Multiply it (4.6∙106 K) by π and 2π and it is 14.45∙106K and 2.89∙107K. This value is close to the temperature of the core of a star.35 However, divide it by π and 2π: 1.464∙106 K and 0.732∙106 K respectively. These are at the energy of 126.17eV and 63.85eV respectively, which is the energy of extreme ultraviolet radiation.

Since the initial supra-supra-Planck energy has shifted by the factor squared to the initial Planck one (under the fourth Chapter) the supra-Planck temperature should also be pushed to the lower values by two units to the level of the infra-Planck one. This is also the same in the case of the fourth temperature stage of the cosmos or its third primordial temperature stage (Tuniverse primordial infra-Planck temperature3) when soft X-ray radiation transforms into microwave electromagnetic radiation using the factor for two times or is squared:

T univers e primord.Planc k temper.3shifted2times = ( α 2π ) 3 T univers e initia l supraPlanc k temper. ( π950.0863 ) 2 = ( α 2π ) 3 T univers e initia l infraPlanc k temper. = 0.5163 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaGGUaGaaG4m aiaadohacaWGObGaamyAaiaadAgacaWG0bGaamyzaiaadsgacaaIYa GaamiDaiaadMgacaWGTbGaamyzaiaadohaaSqabaqcLbsacqGH9aqp juaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibi aaikdacqGHflY1cqaHapaCaaaakiaawIcacaGLPaaajuaGdaahaaWc beqaaKqzGeGaaG4maaaacqGHflY1juaGdaWcaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaGGUa aaleqaaaGcbaqcfa4aaeWaaOqaaKqzGeGaeqiWdaNaeyyXICTaaGyo aiaaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaaiodaaOGaay jkaiaawMcaaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaaaacqGH9aqp juaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibi aaikdacqGHflY1cqaHapaCaaaakiaawIcacaGLPaaajuaGdaahaaWc beqaaKqzGeGaaG4maaaacqGHflY1caWGubqcfa4aaSbaaSqaaKqzGe GaamyDaiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4Caiaadwga juaGdaWgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaadshaca WGPbGaamyyaiaadYgajuaGdaWgaaadbaaabeaajugibiGacMgacaGG UbGaaiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaam OBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWG0bGaamyz aiaad2gacaWGWbGaamyzaiaadkhacaGGUaaaleqaaKqzGeGaeyypa0 JaaGimaiaac6cacaaI1aGaaGymaiaaiAdacaaIZaqcfa4aaSbaaSqa aaqabaqcLbsacaWGlbaaaa@E609@   (81)

Multiplied by π and 2π, it is 1.622 K and 3.244 K respectively. These values correspond to the maximum temperature value of cosmic microwave background electromagnetic radiation (CMB).36 However, if the formula is mathematically simplified (Eq.14), which means the formula, is extended once in the direction of lower temperatures:

T univers e primord.Planc k temperature3shifted1times = ( α 2π ) 3 π950.0863 T univers e initia l Planc k temperature ( π950.0863 ) 2 = ( α 2π ) 3 T univers e initia l Planc k temperature π950.0863 = 0.5163 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGa amyzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaam iCaiaadkhacaWGPbGaamyBaiaad+gacaWGYbGaamizaiaac6cacaWG qbGaamiBaiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabe aajugibiaadshacaWGLbGaamyBaiaadchacaWGLbGaamOCaiaadgga caWG0bGaamyDaiaadkhacaWGLbGaaG4maiaadohacaWGObGaamyAai aadAgacaWG0bGaamyzaiaadsgacaaIXaGaamiDaiaadMgacaWGTbGa amyzaiaadohaaSqabaqcLbsacqGH9aqpjuaGdaqadaGcbaqcfa4aaS aaaOqaaKqzGeGaeqySdegakeaajugibiaaikdacqGHflY1cqaHapaC aaaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzGeGaaG4maaaacq GHflY1juaGdaWcaaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGaaGyn aiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maiabgwSixlaads fajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyz aiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaamyAai aad6gacaWGPbGaamiDaiaadMgacaWGHbGaamiBaKqbaoaaBaaameaa aeqaaKqzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa 4aaSbaaWqaaaqabaqcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyz aiaadkhacaWGHbGaamiDaiaadwhacaWGYbGaamyzaaWcbeaaaOqaaK qbaoaabmaakeaajugibiabec8aWjabgwSixlaaiMdacaaI1aGaaGim aiaac6cacaaIWaGaaGioaiaaiAdacaaIZaaakiaawIcacaGLPaaaju aGdaahaaWcbeqaaKqzGeGaaGOmaaaaaaGaeyypa0tcfa4aaeWaaOqa aKqbaoaalaaakeaajugibiabeg7aHbGcbaqcLbsacaaIYaGaeyyXIC TaeqiWdahaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabeaajugibiaa iodaaaGaeyyXICDcfa4aaSaaaOqaaKqzGeGaamivaKqbaoaaBaaale aajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCaiaadoha caWGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWGPbGaamOBaiaadMgaca WG0bGaamyAaiaadggacaWGSbqcfa4aaSbaaWqaaaqabaqcLbsacaWG qbGaamiBaiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabe aajugibiaadshacaWGLbGaamyBaiaadchacaWGLbGaamOCaiaadgga caWG0bGaamyDaiaadkhacaWGLbaaleqaaaGcbaqcLbsacqaHapaCcq GHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGa aG4maaaaaOqaaKqzGeGaeyypa0JaaGimaiaac6cacaaI1aGaaGymai aaiAdacaaIZaqcfa4aaSbaaSqaaaqabaqcLbsacaWGlbaaaaa@FEE2@   (82)

In this way the same numbers eliminate each other in the equation, so the values are reduced and CMB is created from the red range of visible light throughout the inflation of space caused by dividing by the factor. In this sense, there is no difference between the individual energy levels since there is apparently only one unit of shift between them.

Alternatively, but with a similar result, shifting to normalize the initial supra-Planck temperature of the cosmos by the factor once, it will be the initial Planck one. The initial Planck temperature of the universe will be the initial infra-Planck temperature of the cosmos. Therefore, in the last stage of the universe the temperature (Tuniverse primordial infra-Planck temperature3, or what is equal to: Tuniverse primordial Planck temperature3. shifted 1 times) will be the following:

T univers e primord.Planc k temperature3 , shifted1times = ( α 2π ) 3 T univers e initia l Planc k temperature π950.0863 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaiodacaGGSaqcfa4aaSbaaWqaaaqaba qcLbsacaWGZbGaamiAaiaadMgacaWGMbGaamiDaiaadwgacaWGKbGa aGymaiaadshacaWGPbGaamyBaiaadwgacaWGZbaaleqaaKqzGeGaey ypa0tcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabeg7aHbGcbaqc LbsacaaIYaGaeyyXICTaeqiWdahaaaGccaGLOaGaayzkaaqcfa4aaW baaSqabeaajugibiaaiodaaaGaeyyXICDcfa4aaSaaaOqaaKqzGeGa amivaKqbaoaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadAhaca WGLbGaamOCaiaadohacaWGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWG PbGaamOBaiaadMgacaWG0bGaamyAaiaadggacaWGSbqcfa4aaSbaaW qaaaqabaqcLbsacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUga juaGdaWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadchaca WGLbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbaaleqaaaGc baqcLbsacqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaG imaiaaiIdacaaI2aGaaG4maaaaaaa@A8D2@   (83)

Numerically:

T univers e primord.Planc k temperature3,shifted1times = ( α 2π ) 3 1.416785 10 32 K π950.0863 = 1541.118K π950.0863 = 0.5163 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadchaca WGYbGaamyAaiaad2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaa dYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLb sacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiD aiaadwhacaWGYbGaamyzaiaaiodacaGGSaGaam4CaiaadIgacaWGPb GaamOzaiaadshacaWGLbGaamizaiaaigdacaWG0bGaamyAaiaad2ga caWGLbGaam4CaaWcbeaajugibiabg2da9KqbaoaabmaakeaajuaGda WcaaGcbaqcLbsacqaHXoqyaOqaaKqzGeGaaGOmaiabgwSixlabec8a WbaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbsacaaIZaaaai abgwSixNqbaoaalaaakeaajugibiaaigdacaGGUaGaaGinaiaaigda caaI2aGaaG4naiaaiIdacaaI1aGaeyyXICTaaGymaiaaicdajuaGda ahaaWcbeqaaKqzGeGaaG4maiaaikdaaaGaam4saaGcbaqcLbsacqaH apaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdaca aI2aGaaG4maaaacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIXaGaaGyn aiaaisdacaaIXaGaaiOlaiaaigdacaaIXaGaaGioaiaadUeaaOqaaK qzGeGaeqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicda caaI4aGaaGOnaiaaiodaaaGaeyypa0JaaGimaiaac6cacaaI1aGaaG ymaiaaiAdacaaIZaqcfa4aaSbaaSqaaaqabaqcLbsacaWGlbaaaa@ABA8@   (84)

Finally, the validity of the angle ratio (α/2∙π, 2∙π/α) determined on the basis of the Einstein equation from the side of the Planck formula, can be elucidated. If the ratio of angles was not as much as calculated on the basis of equation 3, the most important physical parameters could not be determined. From the temperature or energy of the initial cosmos, the values in each step would be different in a positive or negative direction. Thus, the mass of quark-pair, proton and helium nucleus, the distribution of microwave background radiation or the energy range of the Higgs field would also be shifted. We would not get the well-known quantum mechanical energy ranges. On the contrary, if the ratio of angles was not equal to equation 3, neither the age of the universe nor the Earth's radius would correspond to the real one. Along these lines, it can be stated that the ratio of angles independently from each other in both cases can be applicable. The universal usability of the ratio on quantum mechanical and gravitational sides confirms the introduction of a general description of physical phenomena.

Reversibility of the cosmic temperature drop by utilizing the repetition of the angular ratio and of the thermo-relativistic factor

Consideration of the reversibility of the changes in the temperature of the cosmos, in the case of mirror symmetry, out of six units a total of four units of shortening occur back in time at every fourth stage of the universe. In the end, at the fourth stage is happened to the direction of the ELF towards the lightening of the cosmos.

Decreases in the initial temperature of the universe through the introduction of the thermo-relativistic factor and the shifts in the normalization of temperature in this model also points to the direction of entropy growth. However, by checking these results from the opposite direction by adding energy to the system, it is possible to return to the beginning of the universe (initial Planck temperature) (Eq.17). In this case however, a reverse offset should be used by the ratio of the angles (2π/α) and by the thermo-relativistic factor (π∙950.0863) towards higher temperatures.

T univers e primord.infraPlanc k temperature3 T univers e primord.infraPlanc k temperature2 T univers e primord.infraPlanc k temperature1 T univers e initial i nfraPlanc k temperature T univers e initial P lanc k temperature MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGa amyzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaam iCaiaadkhacaWGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGG PbGaaiOBaiaacAgacaWGYbGaamyyaiabgkHiTiaadcfacaWGSbGaam yyaiaad6gacaWGJbGaam4AaKqbaoaaBaaameaaaeqaaKqzGeGaamiD aiaadwgacaWGTbGaamiCaiaadwgacaWGYbGaamyyaiaadshacaWG1b GaamOCaiaadwgacaaIZaaaleqaaKqzGeGaeyOKH4QaamivaKqbaoaa BaaaleaajugibiaadwhacaWGUbGaamyAaiaadAhacaWGLbGaamOCai aadohacaWGLbqcfa4aaSbaaWqaaaqabaqcLbsacaWGWbGaamOCaiaa dMgacaWGTbGaam4BaiaadkhacaWGKbGaaiOlaiGacMgacaGGUbGaai OzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWGHbGaamOBaiaa dogacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWG0bGaamyzaiaad2 gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwhacaWGYbGaamyz aiaaikdaaSqabaqcLbsacqGHsgIRcaWGubqcfa4aaSbaaSqaaKqzGe GaamyDaiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4Caiaadwga juaGdaWgaaadbaaabeaajugibiaadchacaWGYbGaamyAaiaad2gaca WGVbGaamOCaiaadsgacaGGUaGaciyAaiaac6gacaGGMbGaamOCaiaa dggacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgaju aGdaWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadchacaWG LbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbGaaGymaaWcbe aajugibiabgkziUcGcbaqcLbsacqGHsgIRcaWGubqcfa4aaSbaaSqa aKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4Cai aadwgajuaGdaWgaaadbaaabeaajugibiaadMgacaWGUbGaamyAaiaa dshacaWGPbGaamyyaiaadYgajuaGdaWgbaadbaaabeaajugibiGacM gacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0IaamiuaiaadYgacaWG HbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWG0b Gaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwha caWGYbGaamyzaaWcbeaajugibiabgkziUkaadsfajuaGdaWgaaWcba qcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkhacaWGZbGa amyzaKqbaoaaBaaameaaaeqaaKqzGeGaamyAaiaad6gacaWGPbGaam iDaiaadMgacaWGHbGaamiBaKqbaoaaBeaameaaaeqaaKqzGeGaamiu aiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqaba qcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGa amiDaiaadwhacaWGYbGaamyzaaWcbeaaaaaa@0E3E@   (85)

Otherwise:

T univers e initial P lanc k temperature π950.0863 ( α 2π ) 3 T univers e initial P lanc k temperature π950.0863 ( α 2π ) 2 T univers e initial P lanc k temperature π950.0863 α 2π T univers e initial P lanc k temperature π950.0863 π950.0863 T univers e initial i nfraPlanc k temperature MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaWGubqcfa4aaSbaaSqaaKqzGeGaamyDaiaad6ga caWGPbGaamODaiaadwgacaWGYbGaam4CaiaadwgajuaGdaWgaaadba aabeaajugibiaadMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaa dYgajuaGdaWgbaadbaaabeaajugibiaadcfacaWGSbGaamyyaiaad6 gacaWGJbGaam4AaKqbaoaaBaaameaaaeqaaKqzGeGaamiDaiaadwga caWGTbGaamiCaiaadwgacaWGYbGaamyyaiaadshacaWG1bGaamOCai aadwgaaSqabaaakeaajugibiabec8aWjabgwSixlaaiMdacaaI1aGa aGimaiaac6cacaaIWaGaaGioaiaaiAdacaaIZaaaaiabgwSixNqbao aabmaakeaajuaGdaWcaaGcbaqcLbsacqaHXoqyaOqaaKqzGeGaaGOm aiabgwSixlabec8aWbaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqaba qcLbsacaaIZaaaaiabgkziUMqbaoaalaaakeaajugibiaadsfajuaG daWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadk hacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaamyAaiaad6ga caWGPbGaamiDaiaadMgacaWGHbGaamiBaKqbaoaaBeaameaaaeqaaK qzGeGaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSba aWqaaaqabaqcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadk hacaWGHbGaamiDaiaadwhacaWGYbGaamyzaaWcbeaaaOqaaKqzGeGa eqiWdaNaeyyXICTaaGyoaiaaiwdacaaIWaGaaiOlaiaaicdacaaI4a GaaGOnaiaaiodaaaGaeyyXICDcfa4aaeWaaOqaaKqbaoaalaaakeaa jugibiabeg7aHbGcbaqcLbsacaaIYaGaeyyXICTaeqiWdahaaaGcca GLOaGaayzkaaqcfa4aaWbaaSqabeaajugibiaaikdaaaGaeyOKH4Ac fa4aaSaaaOqaaKqzGeGaamivaKqbaoaaBaaaleaajugibiaadwhaca WGUbGaamyAaiaadAhacaWGLbGaamOCaiaadohacaWGLbqcfa4aaSba aWqaaaqabaqcLbsacaWGPbGaamOBaiaadMgacaWG0bGaamyAaiaadg gacaWGSbqcfa4aaSraaWqaaaqabaqcLbsacaWGqbGaamiBaiaadgga caWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabeaajugibiaadshaca WGLbGaamyBaiaadchacaWGLbGaamOCaiaadggacaWG0bGaamyDaiaa dkhacaWGLbaaleqaaaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGaaG ynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maaaacqGHflY1 juaGdaWcaaGcbaqcLbsacqaHXoqyaOqaaKqzGeGaaGOmaiabgwSixl abec8aWbaacqGHsgIRaOqaaKqzGeGaeyOKH4Acfa4aaSaaaOqaaKqz GeGaamivaKqbaoaaBaaaleaajugibiaadwhacaWGUbGaamyAaiaadA hacaWGLbGaamOCaiaadohacaWGLbqcfa4aaSbaaWqaaaqabaqcLbsa caWGPbGaamOBaiaadMgacaWG0bGaamyAaiaadggacaWGSbqcfa4aaS raaWqaaaqabaqcLbsacaWGqbGaamiBaiaadggacaWGUbGaam4yaiaa dUgajuaGdaWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadc hacaWGLbGaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbaaleqa aaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUa GaaGimaiaaiIdacaaI2aGaaG4maaaacqGHsgIRcqaHapaCcqGHflY1 caaI5aGaaGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4mai abgwSixlaadsfajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMga caWG2bGaamyzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaK qzGeGaamyAaiaad6gacaWGPbGaamiDaiaadMgacaWGHbGaamiBaKqb aoaaBeaameaaaeqaaKqzGeGaciyAaiaac6gacaGGMbGaamOCaiaadg gacqGHsislcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgajuaG daWgaaadbaaabeaajugibiaadshacaWGLbGaamyBaiaadchacaWGLb GaamOCaiaadggacaWG0bGaamyDaiaadkhacaWGLbaaleqaaaaaaa@5D19@   (86)

Considering the recurring property of processes occurring in the cosmos and utilizing the ratio of the angles (2π/α) up to three times, the initial Planck temperature of the universe is:

T univers e initia l Planc k temperature = ( 2π α ) 3 T univers e primord.Planc k temperature3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaKqbao aaBaaameaaaeqaaKqzGeGaamiDaiaadwgacaWGTbGaamiCaiaadwga caWGYbGaamyyaiaadshacaWG1bGaamOCaiaadwgaaSqabaqcLbsacq GH9aqpjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGOmaiabgwSi xlabec8aWbGcbaqcLbsacqaHXoqyaaaakiaawIcacaGLPaaajuaGda ahaaWcbeqaaKqzGeGaaG4maaaacqGHflY1caWGubqcfa4aaSbaaSqa aKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWGYbGaam4Cai aadwgajuaGdaWgaaadbaaabeaajugibiaadchacaWGYbGaamyAaiaa d2gacaWGVbGaamOCaiaadsgacaGGUaGaamiuaiaadYgacaWGHbGaam OBaiaadogacaWGRbqcfa4aaSbaaWqaaaqabaqcLbsacaWG0bGaamyz aiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwhacaWGYb GaamyzaiaaiodaaSqabaaaaa@8F1A@   (87)

Dividing it by the factor and π we can obtain the initial infra-Planck temperature of the cosmos:

T univers e initia l infraPlanc k temperature = ( 2π α ) 3 T univers e primord.infraPlanc k temperature3 π950.0863 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHb GaamiDaiaadwhacaWGYbGaamyzaaWcbeaajugibiabg2da9Kqbaoaa bmaakeaajuaGdaWcaaGcbaqcLbsacaaIYaGaeyyXICTaeqiWdahake aajugibiabeg7aHbaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqabaqc LbsacaaIZaaaaiabgwSixNqbaoaalaaakeaajugibiaadsfajuaGda WgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGaamyzaiaadkha caWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaamiCaiaadkhaca WGPbGaamyBaiaad+gacaWGYbGaamizaiaac6caciGGPbGaaiOBaiaa cAgacaWGYbGaamyyaiabgkHiTiaadcfacaWGSbGaamyyaiaad6gaca WGJbGaam4AaKqbaoaaBaaameaaaeqaaKqzGeGaamiDaiaadwgacaWG TbGaamiCaiaadwgacaWGYbGaamyyaiaadshacaWG1bGaamOCaiaadw gacaaIZaaaleqaaaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGaaGyn aiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maaaaaaa@A602@   (88)

Numerically:

T univers e initia l infraPlanc k temperature = ( 2π α ) 3 1541.118 K π950.0863 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwgacaWG YbGaam4CaiaadwgakmaaBaaameaaaeqaaKqzGeGaamyAaiaad6gaca WGPbGaamiDaiaadMgacaWGHbGaamiBaOWaaSbaaWqaaaqabaqcLbsa ciGGPbGaaiOBaiaacAgacaWGYbGaamyyaiabgkHiTiaadcfacaWGSb Gaamyyaiaad6gacaWGJbGaam4AaOWaaSbaaWqaaaqabaqcLbsacaWG 0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadw hacaWGYbGaamyzaaWcbeaajugibiabg2da9OWaaeWaaeaadaWcaaqa aKqzGeGaaGOmaiabgwSixlabec8aWbGcbaqcLbsacqaHXoqyaaaaki aawIcacaGLPaaadaahaaWcbeqaaKqzGeGaaG4maaaacqGHflY1kmaa laaabaqcLbsacaaIXaGaaGynaiaaisdacaaIXaGaaiOlaiaaigdaca aIXaGaaGioaOWaaSbaaSqaaaqabaqcLbsacaWGlbaakeaajugibiab ec8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioai aaiAdacaaIZaaaaaaa@8060@   (89)

Since:

α= 2G M Earth c 2 R Eart h mean MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qycqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIYaGaeyyXICTaam4raiab gwSixlaad2eajuaGdaWgaaWcbaqcLbsacaWGfbGaamyyaiaadkhaca WG0bGaamiAaaWcbeaaaOqaaKqzGeGaam4yaKqbaoaaCaaaleqabaqc LbsacaaIYaaaaiabgwSixlaadkfajuaGdaWgaaWcbaqcLbsacaWGfb GaamyyaiaadkhacaWG0bGaamiAaKqbaoaaBaaameaaaeqaaKqzGeGa amyBaiaadwgacaWGHbGaamOBaaWcbeaaaaaaaa@58B8@   (90)

The temperature is:

T univers e initia l infraPlanc k temperature = ( π c 2 R Eart h mean G M Earth ) 3 0.5163K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHb GaamiDaiaadwhacaWGYbGaamyzaaWcbeaajugibiabg2da9Kqbaoaa bmaakeaajuaGdaWcaaGcbaqcLbsacqaHapaCcqGHflY1caWGJbqcfa 4aaWbaaSqabeaajugibiaaikdaaaGaeyyXICTaamOuaKqbaoaaBaaa leaajugibiaadweacaWGHbGaamOCaiaadshacaWGObqcfa4aaSbaaW qaaaqabaqcLbsacaWGTbGaamyzaiaadggacaWGUbaaleqaaaGcbaqc LbsacaWGhbGaeyyXICTaamytaKqbaoaaBaaaleaajugibiaadweaca WGHbGaamOCaiaadshacaWGObaaleqaaaaaaOGaayjkaiaawMcaaKqb aoaaCaaaleqabaqcLbsacaaIZaaaaiabgwSixlaaicdacaGGUaGaaG ynaiaaigdacaaI2aGaaG4maiaadUeaaaa@8DFB@   (91)

 Numerically detailed:

T univers e initia l infraPlanc k temperature = ( 3.141592653598.987551787 10 16 m 4 s 4 6.371005 10 6 m 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg ) 3 0.5163K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHb GaamiDaiaadwhacaWGYbGaamyzaaWcbeaajugibiabg2da9Kqbaoaa bmaakeaajuaGdaWcaaGcbaqcLbsacaaIZaGaaiOlaiaaigdacaaI0a GaaGymaiaaiwdacaaI5aGaaGOmaiaaiAdacaaI1aGaaG4maiaaiwda caaI5aGaeyyXICTaaGioaiaac6cacaaI5aGaaGioaiaaiEdacaaI1a GaaGynaiaaigdacaaI3aGaaGioaiaaiEdacqGHflY1caaIXaGaaGim aKqbaoaaCaaaleqabaqcLbsacaaIXaGaaGOnaaaacaWGTbqcfa4aaW baaSqabeaajugibiaaisdaaaGaeyyXICTaam4CaKqbaoaaCaaaleqa baqcLbsacqGHsislcaaI0aaaaiabgwSixlaaiAdacaGGUaGaaG4mai aaiEdacaaIXaGaaGimaiaaicdacaaI1aGaeyyXICTaaGymaiaaicda juaGdaahaaWcbeqaaKqzGeGaaGOnaaaacaWGTbaakeaajugibiaaiA dacaGGUaGaaGOnaiaaiEdacaaIZaGaaGioaiaaisdacaaI4aGaeyyX ICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymai aaigdaaaGaamyBaKqbaoaaCaaaleqabaqcLbsacaaIZaaaaiabgwSi xlaadUgacaWGNbqcfa4aaWbaaSqabeaajugibiabgkHiTiaaigdaaa GaeyyXICTaam4CaKqbaoaaCaaaleqabaqcLbsacqGHsislcaaIYaaa aiabgwSixlaaiwdacaGGUaGaaGyoaiaaiEdacaaIYaGaaGymaiaaiM dacqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacaaIYaGa aGinaaaacaWGRbGaam4zaaaaaOGaayjkaiaawMcaaKqbaoaaCaaale qabaqcLbsacaaIZaaaaiabgwSixlaaicdacaGGUaGaaGynaiaaigda caaI2aGaaG4maiaadUeaaaa@CF70@   (92)

Moreover:

T univers e initia l infraPlanc k temperature =91.932250532 10 27 0.5163K=4.7464620949 10 28 K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHb GaamiDaiaadwhacaWGYbGaamyzaaWcbeaajugibiabg2da9iaaiMda caaIXaGaaiOlaiaaiMdacaaIZaGaaGOmaiaaikdacaaI1aGaaGimai aaiwdacaaIZaGaaGOmaiabgwSixlaaigdacaaIWaqcfa4aaWbaaSqa beaajugibiaaikdacaaI3aaaaiabgwSixlaaicdacaGGUaGaaGynai aaigdacaaI2aGaaG4maiaadUeacqGH9aqpcaaI0aGaaiOlaiaaiEda caaI0aGaaGOnaiaaisdacaaI2aGaaGOmaiaaicdacaaI5aGaaGinai aaiMdacqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacaaI YaGaaGioaaaacaWGlbaaaa@89DD@   (93)

However, multiply it by the thermo-relativistic factor 950.0863 and π and we have back the definitive Planck temperature serving the thermal state of the initial universe:

T univers e initia l Planc k temperature =4.7464621 10 28 K950.0863π=1.4167164 10 32 K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgaaadbaaa beaajugibiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaKqbao aaBaaameaaaeqaaKqzGeGaamiDaiaadwgacaWGTbGaamiCaiaadwga caWGYbGaamyyaiaadshacaWG1bGaamOCaiaadwgaaSqabaqcLbsacq GH9aqpcaaI0aGaaiOlaiaaiEdacaaI0aGaaGOnaiaaisdacaaI2aGa aGOmaiaaigdacqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLb sacaaIYaGaaGioaaaacaWGlbGaeyyXICTaaGyoaiaaiwdacaaIWaGa aiOlaiaaicdacaaI4aGaaGOnaiaaiodacqGHflY1cqaHapaCcqGH9a qpcaaIXaGaaiOlaiaaisdacaaIXaGaaGOnaiaaiEdacaaIXaGaaGOn aiaaisdacqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsaca aIZaGaaGOmaaaacaWGlbaaaa@8553@   (94)

Finally, according to energy levels and shifts the division of physics and the representation of this triple, tree-shaped division of it are shown in Figure 5.

Figure 5 Triple, tree-shaped physics structure.

Determination of the total mass of the present universe due to repetitive multiplication of the ratio of the angles

On the basis of the Einstein equation (see Chapter 2 and Formula 6.b) it is possible to determine the total mass of the universe by utilizing the ratio of the angles (2π/α) six times. Six times is obligatory, because symmetrically up and down from the Earth we use the ratio three to three times to determine the mass of the initial and present cosmos. In this way, the projected mass of the cosmos is:

M univers e initial s upraPlanc k projecte d t o present = ( 2π c 2 R Eart h mean 2G M Earth ) 6 M univers e initial s upraPlanck MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgbaadbaaa beaajugibiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWGWbGaamOCaiaad+gacaWGQbGaamyzaiaadogacaWG0b GaamyzaiaadsgajuaGdaWgaaadbaaabeaajugibiaadshacaWGVbqc fa4aaSbaaWqaaaqabaqcLbsacaWGWbGaamOCaiaadwgacaWGZbGaam yzaiaad6gacaWG0baaleqaaKqzGeGaeyypa0tcfa4aaeWaaOqaaKqb aoaalaaakeaajugibiaaikdacqGHflY1cqaHapaCcqGHflY1caWGJb qcfa4aaWbaaSqabeaajugibiaaikdaaaGaeyyXICTaamOuaKqbaoaa BaaaleaajugibiaadweacaWGHbGaamOCaiaadshacaWGObqcfa4aaS baaWqaaaqabaqcLbsacaWGTbGaamyzaiaadggacaWGUbaaleqaaaGc baqcLbsacaaIYaGaeyyXICTaam4raiabgwSixlaad2eajuaGdaWgaa WcbaqcLbsacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaWcbeaaaaaa kiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzGeGaaGOnaaaacqGHfl Y1caWGnbqcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamOD aiaadwgacaWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibi aadMgacaWGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWg baadbaaabeaajugibiGacohacaGG1bGaaiiCaiaadkhacaWGHbGaey OeI0IaamiuaiaadYgacaWGHbGaamOBaiaadogacaWGRbaaleqaaaaa @B621@   (95)

Numerically:

M u.init.supPl.proj.t o pres. = ( 8.98755 10 16 m 2 s 2 3.1415926.371 10 6 m 6.673848 10 11 m 3 k g 1 s 2 5.97219 10 24 kg ) 6 6.4963 10 5 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzGeGaamyDaiaac6cacaWGPbGaamOBaiaadMga caWG0bGaaiOlaiGacohacaGG1bGaaiiCaiabgkHiTiaadcfacaWGSb GaaiOlaiaadchacaWGYbGaam4BaiaadQgacaGGUaGaamiDaiaad+ga juaGdaWgaaadbaaabeaajugibiaadchacaWGYbGaamyzaiaadohaca GGUaaaleqaaKqzGeGaeyypa0tcfa4aaeWaaOqaaKqbaoaalaaakeaa jugibiaaiIdacaGGUaGaaGyoaiaaiIdacaaI3aGaaGynaiaaiwdacq GHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacaaIXaGaaGOn aaaacaWGTbqcfa4aaWbaaSqabeaajugibiaaikdaaaGaeyyXICTaam 4CaKqbaoaaCaaaleqabaqcLbsacqGHsislcaaIYaaaaiabgwSixlaa iodacaGGUaGaaGymaiaaisdacaaIXaGaaGynaiaaiMdacaaIYaGaey yXICTaaGOnaiaac6cacaaIZaGaaG4naiaaigdacqGHflY1caaIXaGa aGimaKqbaoaaCaaaleqabaqcLbsacaaI2aaaaiaad2gaaOqaaKqzGe GaaGOnaiaac6cacaaI2aGaaG4naiaaiodacaaI4aGaaGinaiaaiIda cqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacqGHsislca aIXaGaaGymaaaacaWGTbqcfa4aaWbaaSqabeaajugibiaaiodaaaGa eyyXICTaam4AaiaadEgajuaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaG ymaaaacqGHflY1caWGZbqcfa4aaWbaaSqabeaajugibiabgkHiTiaa ikdaaaGaeyyXICTaaGynaiaac6cacaaI5aGaaG4naiaaikdacaaIXa GaaGyoaiabgwSixlaaigdacaaIWaqcfa4aaWbaaSqabeaajugibiaa ikdacaaI0aaaaiaadUgacaWGNbaaaaGccaGLOaGaayzkaaqcfa4aaW baaSqabeaajugibiaaiAdaaaGaeyyXICTaaGOnaiaac6cacaaI0aGa aGyoaiaaiAdacaaIZaGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbe qaaKqzGeGaeyOeI0IaaGynaaaacaWGRbGaam4zaaaa@BF7A@   (96)

Moreover:

M univers e initial s upraPlanc k projecte d t o present =8451.538687949 10 54 6.4962948 10 5 kg= 54903.68683 10 49 kg=5.4903686 10 53 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aad2eajuaGdaWgaaWcbaqcLbsacaWG1bGaamOBaiaadMgacaWG2bGa amyzaiaadkhacaWGZbGaamyzaKqbaoaaBaaameaaaeqaaKqzGeGaam yAaiaad6gacaWGPbGaamiDaiaadMgacaWGHbGaamiBaKqbaoaaBeaa meaaaeqaaKqzGeGaci4CaiaacwhacaGGWbGaamOCaiaadggacqGHsi slcaWGqbGaamiBaiaadggacaWGUbGaam4yaiaadUgajuaGdaWgaaad baaabeaajugibiaadchacaWGYbGaam4BaiaadQgacaWGLbGaam4yai aadshacaWGLbGaamizaKqbaoaaBaaameaaaeqaaKqzGeGaamiDaiaa d+gajuaGdaWgaaadbaaabeaajugibiaadchacaWGYbGaamyzaiaado hacaWGLbGaamOBaiaadshaaSqabaqcLbsacqGH9aqpcaaI4aGaaGin aiaaiwdacaaIXaGaaiOlaiaaiwdacaaIZaGaaGioaiaaiAdacaaI4a GaaG4naiaaiMdacaaI0aGaaGyoaiabgwSixlaaigdacaaIWaqcfa4a aWbaaSqabeaajugibiaaiwdacaaI0aaaaiabgwSixlaaiAdacaGGUa GaaGinaiaaiMdacaaI2aGaaGOmaiaaiMdacaaI0aGaaGioaiabgwSi xlaaigdacaaIWaqcfa4aaWbaaSqabeaajugibiabgkHiTiaaiwdaaa Gaam4AaiaadEgacqGH9aqpaOqaaKqzGeGaaGynaiaaisdacaaI5aGa aGimaiaaiodacaGGUaGaaGOnaiaaiIdacaaI2aGaaGioaiaaiodacq GHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacaaI0aGaaGyo aaaacaWGRbGaam4zaiabg2da9iaaiwdacaGGUaGaaGinaiaaiMdaca aIWaGaaG4maiaaiAdacaaI4aGaaGOnaiabgwSixlaaigdacaaIWaqc fa4aaWbaaSqabeaajugibiaaiwdacaaIZaaaaiaadUgacaWGNbaaaa a@AFCB@   (97)

This mass falls within the order of magnitude of the total mass of the cosmos and is almost identical to it.37

The modifying effect of the thermo-relativistic factor on the masses at higher levels in the cosmos

As in the case of determination of the initial mass of the cosmos, because of the symmetry the total mass of the cosmos could also be divided by the square of the thermos-relativistic factor. In this case the mass is:

M univers e initial i nfraPlanc k projecte d t o present = 5.4903686 10 53 kg π950.0863π950.0863 = 5.4 10 53 kg 8.91 10 6 =0.6162 10 47 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgbaadbaaa beaajugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWGWbGaamOCaiaad+gacaWGQbGaamyzaiaadogacaWG0b GaamyzaiaadsgajuaGdaWgaaadbaaabeaajugibiaadshacaWGVbqc fa4aaSbaaWqaaaqabaqcLbsacaWGWbGaamOCaiaadwgacaWGZbGaam yzaiaad6gacaWG0baaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqz GeGaaGynaiaac6cacaaI0aGaaGyoaiaaicdacaaIZaGaaGOnaiaaiI dacaaI2aGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGa aGynaiaaiodaaaGaam4AaiaadEgaaOqaaKqzGeGaeqiWdaNaeyyXIC TaaGyoaiaaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaaioda cqGHflY1cqaHapaCcqGHflY1caaI5aGaaGynaiaaicdacaGGUaGaaG imaiaaiIdacaaI2aGaaG4maaaacqGH9aqpjuaGdaWcaaGcbaqcLbsa caaI1aGaaiOlaiaaisdacqGHflY1caaIXaGaaGimaKqbaoaaCaaale qabaqcLbsacaaI1aGaaG4maaaacaWGRbGaam4zaaGcbaqcLbsacaaI 4aGaaiOlaiaaiMdacaaIXaGaeyyXICTaaGymaiaaicdajuaGdaahaa WcbeqaaKqzGeGaaGOnaaaaaaGaeyypa0JaaGimaiaac6cacaaI2aGa aGymaiaaiAdacaaIYaGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbe qaaKqzGeGaaGinaiaaiEdaaaGaam4AaiaadEgaaaa@B5D4@   (98)

However multiply it by the thermo-relativistic factor to obtain the actual, observable mass of the cosmos37:

M univers e initial P lanc k projecte d t o present =π950.08630.61627 10 47 kg=1.839 10 50 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgbaadbaaa beaajugibiaadcfacaWGSbGaamyyaiaad6gacaWGJbGaam4AaKqbao aaBaaameaaaeqaaKqzGeGaamiCaiaadkhacaWGVbGaamOAaiaadwga caWGJbGaamiDaiaadwgacaWGKbqcfa4aaSbaaWqaaaqabaqcLbsaca WG0bGaam4BaKqbaoaaBaaameaaaeqaaKqzGeGaamiCaiaadkhacaWG LbGaam4CaiaadwgacaWGUbGaamiDaaWcbeaajugibiabg2da9iabec 8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGioaiaa iAdacaaIZaGaeyyXICTaaGimaiaac6cacaaI2aGaaGymaiaaiAdaca aIYaGaaG4naiabgwSixlaaigdacaaIWaqcfa4aaWbaaSqabeaajugi biaaisdacaaI3aaaaiaadUgacaWGNbGaeyypa0JaaGymaiaac6caca aI4aGaaG4maiaaiMdacqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqa baqcLbsacaaI1aGaaGimaaaacaWGRbGaam4zaaaa@8C22@   (99)

If this mass is pushed down by two units, the result is approximately equal to the mass of a galaxy such as the Milky Way38:

M univers e initial i nfraPlanc k shifted2x = 1.839 10 50 kg π950.0863π950.0863 =2.06422 10 43 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgbaadbaaa beaajugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0Iaam iuaiaadYgacaWGHbGaamOBaiaadogacaWGRbqcfa4aaSbaaWqaaaqa baqcLbsacaWGZbGaamiAaiaadMgacaWGMbGaamiDaiaadwgacaWGKb GaaGOmaiaadIhaaSqabaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsa caaIXaGaaiOlaiaaiIdacaaIZaGaaGyoaiabgwSixlaaigdacaaIWa qcfa4aaWbaaSqabeaajugibiaaiwdacaaIWaaaaiaadUgacaWGNbaa keaajugibiabec8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6caca aIWaGaaGioaiaaiAdacaaIZaGaeyyXICTaeqiWdaNaeyyXICTaaGyo aiaaiwdacaaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaaiodaaaGaey ypa0JaaeOmaiaab6cacaqGWaGaaeOnaiaabsdacaqGYaGaaeOmaiab gwSixlaaigdacaaIWaqcfa4aaWbaaSqabeaajugibiaaisdacaaIZa aaaiaadUgacaWGNbaaaa@91F1@   (100)

Starting from the infra-infra Planck value and applying a double downward shift, the mass of the Milky Way Galaxy is:

M univers e initial i nfrainfraPlanc k shifted2x = 0.61627655 10 47 kg π950.0863π950.0863 =6.918 10 39 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzGeGaamyDaiaad6gacaWGPbGaamODaiaadwga caWGYbGaam4CaiaadwgajuaGdaWgaaadbaaabeaajugibiaadMgaca WGUbGaamyAaiaadshacaWGPbGaamyyaiaadYgajuaGdaWgbaadbaaa beaajugibiGacMgacaGGUbGaaiOzaiaadkhacaWGHbGaeyOeI0Iaci yAaiaac6gacaGGMbGaamOCaiaadggacqGHsislcaWGqbGaamiBaiaa dggacaWGUbGaam4yaiaadUgajuaGdaWgaaadbaaabeaajugibiaado hacaWGObGaamyAaiaadAgacaWG0bGaamyzaiaadsgacaaIYaGaamiE aaWcbeaajugibiabg2da9KqbaoaalaaakeaajugibiaaicdacaGGUa GaaGOnaiaaigdacaaI2aGaaGOmaiaaiEdacaaI2aGaaGynaiaaiwda cqGHflY1caaIXaGaaGimaKqbaoaaCaaaleqabaqcLbsacaaI0aGaaG 4naaaacaWGRbGaam4zaaGcbaqcLbsacqaHapaCcqGHflY1caaI5aGa aGynaiaaicdacaGGUaGaaGimaiaaiIdacaaI2aGaaG4maiabgwSixl abec8aWjabgwSixlaaiMdacaaI1aGaaGimaiaac6cacaaIWaGaaGio aiaaiAdacaaIZaaaaiabg2da9iaaiAdacaGGUaGaaGyoaiaaigdaca aI4aGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzGeGaaG4m aiaaiMdaaaGaam4AaiaadEgaaaa@9A03@   (101)

(Multiplied it by π∙π, it is: 6.82∙1040 kg.)

After the smaller level shifts caused by the thermo-relativistic factor and due to the normalization to the Planck mass, applying the large temperature jump created in proportion to the angles (Eq.101 multiplied by 0.2215∙10-9), the amount of mass reduction is 1.5323∙1030 kg. Shifting this mass value down by another 2 (due to the square of the thermo-relativistic factor) level, the mass is 1.71943∙1023 kg.

In summary, by dividing the thermo-relativistic factor once there will be symmetry between today's total and actual mass of the universe as well as between the initial cosmos mass and the Planck mass. Both of the two mass surpluses fall out and the actual known mass of the cosmos and the Planck mass remain. In addition, a certain range can be determined, in which the mass of a galaxy (such as the Milky Way) fits, or the mass of an average-sized Sun or small planet can be obtained.

Conclusion

From the aspect of the high redshifted Milky Way Galaxy (including the Earth) in correlation with the expanding universe, it could also describe the cosmos from various points of view. Using the repetition of the angular ratio symmetrically (α/2π and 2π/α) and linking the modified Einstein gravitation field equation and the formula for determining the Planck temperature by the factor of π∙950.0863, many important developing stages of the cosmos can be determined. Division by the thermo-relativity factor is the ignition device that initiates processes occurring in the universe and gives it room for maneuver.

In trying to find the link between basic physical laws and attempts to describe inanimate nature as a whole, some important circumstances would be taken into account:

  1. A paradigm change has to be made in the movement of the Earth and a special motion assigned to it with correlation to the notion of an expanding universe.
  2. An example needs to be found in the cosmos to have a sufficiently long homogenous gravitational field which fits the Einstein requirement by the enormous motion of the Earth with light propagation in its gravitational field.
  3. Einstein formulas describing redshift and light deflection should be combined by the rules of classical geometry.
  4. It must utilize the ratio of the angle three times to the Earth’s mass symmetrically to determine the mass of the initial and present cosmos.
  5. To combine the Einstein and Planck formulas a so-called thermo-relativistic factor should be introduced to determine the temperature of the cosmos throughout its evolution.

To retrieve the Planck temperature the initial maximum temperature of the universe must be pushed to the lower temperatures by the thermo-relativistic factor squared to have the entire width of the spectrum of electromagnetic radiation at the last stage of the universe's development.

Acknowledgments

None.

Conflicts of interest

The Authors declares that there is no Conflict of interest.

References

  1. Bennett CL, Larson D, Weiland JL, et al. Nine-year wilkinson microwave anisotropy probe (wmap) observations: final maps and results. AJ Supplement Series. 2013;208(20):54.
  2. Einstein, A. Relativity the special and general theory. H Holt and Company. New York; 1920.
  3. Hubble EP. Extragalactic nebulae. ApJ. 1926;(64):321–369.   
  4. Hubble EP. A relation between distance radial velocity among extra-galactic nebulae. Astronomy. 1929;15(3):168–173.
  5. Lemaitre G. The beginning of the world from the point of view of quantum theory. Nature. 1931;127:706.
  6. Lemaître G. l’Universe en expansion. Annales de la Société Scientifique de Bruxelles. 1933;A53:51–85.
  7. Nagy ET. Determining the size, mass, gravity and density of the present and primordial universe by means of a modified Einstein’s gravitational field equation. Vixra. 2016.  
  8. Nagy ET. The age of the universe the size of the Sun and planets based upon the theory of general relativity and euclidean geometry. Vixra. 2015.
  9. Bacon R, Conseil S, Mary D, et al. The Muse hubble ultra deep field survey. A&A. 2017;608.
  10. Nagy ET. Earth in the Expanding Universe: A Dualistic approach to determine their physical parameters based on a combined einstein gravity field equation using the hubble law. vixra. 2020.
  11. Einstein A. On the Influence of gravitation on the propagation of light. Ann Phys. 1911;35:898–908.
  12. Beckwith SVW, Stiavelli M, Koekemoer, et al. The hubble ultra deep field. AJ. 2006;132(5)5:1729–1755.
  13. Herrmann J. dtv-Atlas Astronomie. Deutscher Taschenbuch Verlag GmbH & Co. München; 1990.
  14. NASA Science Solar System Exploration, Earth.
  15. Committee on data for science and technology (CODATA). CODATA recommended values of the fundamental physical constants: 2010.  
  16. Hinshaw G, Nolta MR, Bennett CL, et al. 2007 Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Temperature Analysis. Astrophysics. 2007.
  17. Nagy ET. Study on the Effect of Variations in earth-surface gravity depending on the shape and position of the earth radius and age of the universe using general relativity and Euclidean geometry. challenging issues on environment and earth science. 2021;8:89–103.
  18. Convert units, measurement unit converter. Convert tropical year to seconds. 2021.
  19. Hubblesite. The electromagnetic spectrum. 2019.
  20. Wright EL. Brief history of the Universe. 2004.
  21. Xijia Wang. New discovery on Planck units and physical dimension in cosmic continuum theory. Journal of Modern Physics. 2018;9(14):2391–2401.
  22. Arpansa (Australian radiation protection and nuclear safety agency gamma radiation) gamma radiation.
  23. Swinburne University of Technology. Planck Energy. COSMOS - The SAO Encyclopedia of Astronomy.
  24. Nave CR. Georgia State University. HyperPhysics. Quarks. 2016.
  25. Nörtershäuser W. Helium nucleus measured with record precision. Nature. 2021;589:518–519.
  26. NASA Science. Tour of the electromagnetic spectrum. Infrared waves. 2010.
  27. Astrobackyard. Astrophotography tips and tutorials. Types of stars. 2022.
  28. CMS Collaboration. Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the ττbb final state at 13 TeV. 2021.
  29. Attwood D. Soft X-rays and extreme ultraviolet radiation: principles and applications. 1st ed. David Cambridge University Press; 2007.
  30. Scarpati J. Radio frequency (RF, rf). TechTarget. 2021.
  31. Manning C. What are the spectrum band designators and bandwidths? "Extremely Low Frequency". ANL Glossary. NASA.  
  32. Howell E. Space.com. Science & Astronomy. What are cosmic rays? 2018.
  33. CERN Courier. LHC begins physics with lead ions. 2010.
  34. CERN Document Server. First 13TeV collisions, for tuning the LHC, seen by CMS. 2015.
  35. CSIRO. Australia telescope national facility. Main Sequence Stars.
  36. Tests of Big Bang: The CMB. Discovery of the cosmic microwave background.
  37. McPherson K. The Physics Factbook. An encyclopedia of scientific essays. Mass of the Universe. 2006.
  38. Fragione G, Loeb A. Constraining Milky Way mass with hypervelocity Stars. arXiv. 2016.
Creative Commons Attribution License

©2022 Nagy. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.