Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Technical Paper Volume 1 Issue 1

Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution

Rajesh Kumar

School of Mechanical Engineering, Jimma University, Ethiopia

Correspondence: Rajesh Kumar, School of Mechanical Engineering, JIT, Jimma University, P.O. Box-378, Jimma, Ethiopia, Tel +251909462675

Received: May 11, 2017 | Published: June 2, 2017

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10-29. DOI: 10.15406/aaoaj.2017.01.00003

Download PDF

Abstract

In this paper the stochastic thermo-elastic stability of laminated composite plates resting on elastic foundations under non-uniform temperature distribution is analyzed. The mathematical model is based on higher order shear deformation theory [HSDT] and von-Karman nonlinear kinematics is presented. A C0 nonlinear finite element method combined with direct iterative method in conjunction with mean centered first order Tailor series based perturbation technique is employed for the Eigen value problem in random environment to derive the second order statistics (mean and the standard deviation) of the thermal post buckling load under non-uniform temperature distribution. Typical numerical results for stacking sequence, no of plies, plate thickness ratios, amplitude ratios, aspect ratios, boundary conditions and temperature change are generated. Numerical results have been compared with available results in literatures and with independent Monte Carlo simulation [MCS].

Keywords: non uniform temperature distribution, thermal post buckling temperature, composite plates, system properties, elastic foundation, perturbation technique

Abbreviations

MCS, monte carlo simulation; HSDT, higher order shear deformation theory; FEM, finite element method; SFEM, stochastic finite element method

Introduction

Composite structures have inherent dispersion in system properties due to lack of strict quality control and the characteristics of the large parameters involved with the manufacturing and fabrication process. The transverse shear deformation effects are considerably pronounced in composite laminates and must be incorporated while studying the buckling and post-buckling behavior of laminates under in-plane thermally induced loading. Thermal buckling of geometrically nonlinear plate structures is one of the major design criteria for an efficient and optimal usage of materials and then buckling loads are of extremely inherent in the design and developments of high performance composite component for stability point of view. The variation in the system properties of the composite materials necessitates the inclusion of randomness of system properties in the analysis; otherwise predicted response may differ significantly rendering the structures unsafe. For reliable and safe design especially for sensitive engineering applications in thermal environments, accurate prediction of system behavior of composite structures in the present of uncertainties in the system properties fevers a probabilistic analysis approach by modeling their properties as basic random variables.

 A considerable amount of literature exists on the thermal buckling and post-buckling of laminated composite plates supported with and without elastic foundation subjected to non-uniform temperature with deterministic system properties. Notably among them are Chen et al.1 Shen,2 Shen,3 Shen and Zhu,4 Shen and Lin,5 Shen6 and Shen.7 The research based on the assumption of complete determinacy of the structural parameters, the inherent randomness in the structures is neglected. To well define the original problem for better understanding and characterization of actual behavior of laminated composite materials for sensitive applications and reliable design, it is obviously of prime importance that inherent randomness in the system parameters to be incorporated in the analysis. However, the analysis of the structures with randomness in system properties is not developed to the some extent. The deterministic analysis is not sufficient to predict system behavior due to various system uncertainties as it gives only mean response and misses the deviation caused by the system parameters.

A considerable amount of literature exists on the initial thermal buckling and post buckling of laminated composite plates with temperature dependent and temperature independent thermo-elastic material properties.8-14

However, the analysis of the structures with randomness in system properties is not developed to the same extent.15-18 Nieuwenhof & Coyette19 investigated sensitivity analysis to the random parameters such as material and shape parameters using SFEM and independent MCS. Stefanou & Papadrakakis,20  Singh et al.21,22 & Onkar et al.25,26 have used a generalized layer wise stochastic finite element formulation for the buckling analysis of homogeneous and laminated plates with and without centrally loaded circular cutouts having random material properties using FOPT in conjunction with HSDT.25,27

The contribution of this paper is the investigation of HSDT based on C0 linear and nonlinear FEM in conjunction with mean centered FOPT, to compute the second order statistics of thermal post buckling temperature of laminated composite plates resting on elastic foundation involving randomness in system parameters such as material properties, thermal expansion coefficients, foundation parameters and lamina plate thickness are modeled as independent random variables (RVs) assuming non-uniform tent like temperature and uniform constant temperature and a linearly varying transverse temperature distribution across the thickness under uni-axial and biaxial edge compression over entire surface of the plate. This approach is valid for system properties with small random dispersion compared with the mean values. The condition satisfies by most of the engineering materials and fortunately composites fall in these categories.

Mathematical formulation

A rectangular laminated composite plate of length a, width b, and total thickness h, defined in (X, Y, Z) system with x- and -y axes located in the middle plane and its origin placed at the corner of the plate with consisting of N orthotropic layers with the fiber orientation of ( θ k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaeqiUdeNcdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaiykaaaa @3E8B@ . Let ( u ¯ , v ¯ , w ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaiKc9yrVq0dXdbba91rpepec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaajyaGba qcLbsaceWG1bGbaebacaGGSaGaaGjbVlqadAhagaqeaiaacYcacaaM e8Uabm4DayaaraaajyaGcaGLOaGaayzkaaaaaa@42FA@ be the displacement parallel to the (X, Y, Z) respectively as shown in Figure 1. The thickness coordinate Z of the top and bottom surfaces of any k t h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb GcdaWgaaWcbaqcLbmacaWG0bGaamiAaaWcbeaaaaa@3CD3@ layer are denoted by Z ( k 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQfak8aadaWgaaWcbaqcfa4aaeWaaSqaaKqzadWdbiaa dUgacqGHsislcaaIXaaal8aacaGLOaGaayzkaaaabeaaaaa@3FE4@ and Z ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQfajuaGpaWaaSbaaSqaaKqbaoaabmaaleaajugWa8qa caWGRbaal8aacaGLOaGaayzkaaaabeaaaaa@3EC0@ respectively. The fiber of the k t h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgak8aadaWgaaWcbaqcLbmapeGaamiDaiaadIgaaSWd aeqaaaaa@3D21@ layer is oriented with angle θ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCkmaaBaaajyaGbaqcLbmacaWGRbaajyaGbeaaaaa@3DAB@ to the X- axes. The plate is resting on elastic foundation excluding any separation during the process of deformation as shown in Figure 1. The load displacement relationship between the plate and the supporting foundation can be described by two-parameter model of the Pasternak-type as

Figure 1 Geometry of laminated composite plate resting on elastic foundation.

P= K 1 w- K 2 Ñ 2 w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaKiuai aaj2dacaqIlbGcdaWgaaqcfasaaKqzadGaaKymaaqcfayabaqcLbsa caqI3bGaaKylaiaaykW7caqIlbGcdaWgaaqcfasaaKqzadGaaKOmaa qcfasabaqcLbsacaqIrdGcdaahaaqcfasabKazfa2=baqcLbmacaqI YaaaaKqzGeGaaK4Daaaa@49CF@ with P= K 1 w- K 2 Ñ 2 w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaKiuai aaj2dacaqIlbqcfa4aaSbaaKqbGeaajugWaiaajgdaaKqbGfqaaKqz GeGaaK4Daiaaj2cacaaMc8UaaK4saKqbaoaaBaaajuaibaqcLbmaca qIYaaajuaqbeaajugibiaajgnajuaGdaahaaqcfawabKazfa2=baqc LbmacaqIYaaaaKqzGeGaaK4Daaaa@4B9B@ . (1)

Where, P is the foundation reaction per unit area, and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaiyc9yrVq0dXdbba91rpepec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaey4bIe naaa@3A23@ is the Laplace differential operator, K1 and K2 are the Winkler and Pasternak Foundation stiffness [12], respectively, and “w” is the transverse displacement of the plate. This model is called Winkler type when K 2 =   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUeakmaaBaaaleaajugWaiaaikdaaSqabaqcLbsacqGH 9aqpcaqGGaGaaGimaaaa@3E9B@ .

Displacement Field Model

In the present study the Reddy’s higher order shear deformation theory has been employed.16 The difficulty and complexity associated with making a choice of C1 continuity is inherent generality and has led to the development of nonconforming approaches. The displacement field model, after incorporating zero transverse shear stress conditions at the top and the bottom of the plate, is slightly modified, so that a C0 continuous element would be sufficient. The C0 continuity permits easy so parameters finite element formulation and consequently can be applied for non rectangular geometry is as well. In modified form, the derivatives of out-of-plane displacement are themselves considered as separate degree of freedom (DOFs). Thus five DOFs withC1 continuity are transformed into seven DOFs due to conformity with HSDT. In this change artificial constraints are imposed which can be enforced valiantly through the penalty approach, in ordered to satisfy the imposed.22,26

The displacement field along the x, y, and z directions for an arbitrary composite laminated plate is now  written as

u ¯ = u + f 1 ( z ) ψ x + f 2 ( z ) θ x v ¯ = v + f 1 ( z ) ψ y + f 2 ( z ) θ y w ¯ = w ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsace WG1bGbaebacqGH9aqpcaWG1bGaey4kaSIaamOzaOWaaSbaaKqbagaa jugWaiaaigdaaKqbagqaaKqzGeGaaiikaiaadQhacaGGPaGaeqiYdK NcdaWgaaqcfayaaKqzadGaamiEaaqcfayabaqcLbsacqGHRaWkcaWG MbGcdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaqcLbsacaGGOaGaam OEaiaacMcacqaH4oqCkmaaBaaajuaGbaqcLbmacaWG4baajuaGbeaa jugibiaaysW7caaMe8UaaGjbVdqcfayaaKqzGeGabmODayaaraGaey ypa0JaamODaiabgUcaRiaadAgalmaaBaaajuaGbaqcLbmacaaIXaaa juaGbeaajugibiaacIcacaWG6bGaaiykaiabeI8a5PWaaSbaaKqbag aajugWaiaadMhaaKqbagqaaKqzGeGaey4kaSIaamOzaOWaaSbaaKqb agaajugWaiaaikdaaKqbagqaaKqzGeGaaiikaiaadQhacaGGPaGaeq iUdeNcdaWgaaqcfayaaKqzadGaamyEaaqcfayabaqcLbsacaaMe8Ua aGjbVdGcbaqcLbsaceWG3bGbaebacqGH9aqpcaWG3bGaai4oaaaaaa@7FF2@ (2)

Where u, v, and w are corresponding displacements of a point on the mid plane. ψ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiYdK NcdaWgaaqcfayaaKqzadGaamiEaaqcfayabaaaaa@3BB7@ and ψ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiYdK NcdaWgaaqcfayaaKqzadGaamyEaaqcfayabaaaaa@3BB9@ are the rotations of normal to the mid plane about the y-axis and x-axis respectively. with θ x = w , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde NcdaWgaaqcfayaaKqzadGaamiEaaqcfayabaqcLbsacqGH9aqpcaWG 3bGaaiilaOWaaSbaaKqbagaajugWaiaadIhaaKqbagqaaaaa@41B2@ and θ x = w , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde NcdaWgaaqcfayaaKqzadGaamiEaaqcfayabaqcLbsacqGH9aqpcaWG 3bGaaiilaOWaaSbaaKqbagaajugWaiaadIhaaKqbagqaaaaa@41B2@

f 1 ( z ) = C 1 z C 2 z 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaO WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaOWaaeWaaKqbagaajugi biaadQhaaKqbakaawIcacaGLPaaajugibiabg2da9iaadoeakmaaBa aajuaGbaqcLbmacaaIXaaajuaGbeaajugibiaadQhacqGHsislcaWG dbWcdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaqcLbsacaWG6bGcda ahaaqcfasabeaajugWaiaaiodaaaaaaa@4EA4@ ; f 2 ( z ) = C 4 z 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaO WaaSbaaKqbagaajugWaiaaikdaaKqbagqaaOWaaeWaaKqbagaajugi biaadQhaaKqbakaawIcacaGLPaaajugibiabg2da9iabgkHiTiaado eakmaaBaaajuaGbaqcLbmacaaI0aaajuaGbeaajugibiaadQhakmaa CaaajuaGbeqaaKqzadGaaG4maaaaaaa@4981@ with C 1 = 1 , C 2 = C 4 = 4 h 2 / 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaKqzGeGaeyypa0JaaGym aiaacYcacaaMb8UaaGjcVlaaykW7caWGdbGcdaWgaaqcfayaaKqzad GaaGOmaaqcfayabaqcLbsacqGH9aqpcaWGdbGcdaWgaaqcfayaaKqz adGaaGinaaqcfayabaqcLbsacqGH9aqpkmaalyaajuaGbaqcLbsaca aI0aGaamiAaOWaaWbaaKqbagqabaqcLbmacaaIYaaaaaqcfayaaKqz GeGaaG4maaaaaaa@549A@ .

The displacement vector for the modified C0 continuous model can be written as

{ Λ } = [ u v w θ y θ x ψ y ψ x ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacqqHBoataKqbakaawUhacaGL9baajugibiabg2da9OWaamWa aKqbagaajugibuaabeaabCaaaaqcfayaaKqzGeGaamyDaaqcfayaaK qzGeGaamODaaqcfayaaKqzGeGaam4DaaqcfayaaKqzGeGaeqiUdeNc daWgaaqcfayaaKqzadGaamyEaaqcfayabaaabaqcLbsacqaH4oqCkm aaBaaajuaGbaqcLbmacaWG4baajuaGbeaaaeaajugibiabeI8a5PWa aSbaaKqbagaajugWaiaadMhaaKqbagqaaaqaaKqzGeGaeqiYdKNcda WgaaqcfayaaKqzadGaamiEaaqcfayabaaaaaGaay5waiaaw2faaOWa aWbaaKqbagqabaqcLbmacaWGubaaaaaa@60A2@ (3)

With θ x = w , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde NcdaWgaaqcfayaaKqzadGaamiEaaqcfayabaqcLbsacqGH9aqpcaWG 3bGaaiilaOWaaSbaaKqbagaajugWaiaadIhaaKqbagqaaaaa@41B2@ and θ y = w , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde NcdaWgaaqcfayaaKqzadGaamyEaaqcfayabaqcLbsacqGH9aqpcaWG 3bGaaiilaOWaaSbaaKqbagaajugWaiaadIhaaKqbagqaaaaa@41B3@

Where, comma (,) denotes partial differentiation.

Strain Displacement Relations

The strain-displacements relations are obtained by using the small deformation theory with linear elasticity based on HSDT are expressed.10

Stress–Strain Relation

The constitutive relationship between stress resultants and corresponding strains of laminated composite plate accounting for thermal effect can be written as10,22,27

{ σ } k = [ Q ¯ ] k { ε } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacqaHdpWCaOGaay5Eaiaaw2haamaaBaaaleaajugWaiaadUgaaSqa baqcLbsacqGH9aqpkmaadmaabaqcLbsaceWGrbGbaebaaOGaay5wai aaw2faamaaBaaaleaajugWaiaadUgaaSqabaGcdaGadaqaaKqzGeGa eqyTdugakiaawUhacaGL9baadaWgaaWcbaqcLbmacaWGRbaaleqaaa aa@4B07@ or. { σ x σ y σ xy σ yz σ xz } k = [ Q ¯ 11 Q ¯ 12 Q ¯ 16 0 0 Q ¯ 12 Q ¯ 22 Q ¯ 26 0 0 Q ¯ 16 Q ¯ 26 Q ¯ 66 0 0 0 0 0 Q ¯ 44 Q ¯ 45 0 0 0 Q ¯ 45 Q ¯ 55 ] k { ε 1 ε 2 ε 6 ε 4 ε 5 } k - { λ 1 λ 2 λ 12 0 0 } k δT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsafaqabeqbbaaaaKqbagaajugibiaajo8akmaaBaaajuaGbaqc LbmacaqI4baajuaGbeaaaeaajugibiaajo8akmaaBaaajuaGbaqcLb macaqI5baajuaGbeaaaeaajugibiaajo8akmaaBaaajuaGbaqcLbma caqI4bGaaKyEaaqcfayabaaabaqcLbsacaqIdpGcdaWgaaqcfayaaK qzadGaaKyEaiaajQhaaKqbagqaaaqaaKqzGeGaaK4WdOWaaSbaaKqb agaajugWaiaajIhacaqI6baajuaGbeaaaaaacaGL7bGaayzFaaGcda WgaaqcfayaaKqzadGaaK4AaaqcfayabaqcLbsacaqI9aGcdaWadaqc fayaaKqzGeqbaeqabuqbaaaaaKqbagaakmaanaaajuaGbaqcLbsaca qIrbaaaOWaaSbaaKqbagaajugWaiaajgdacaqIXaaajuaGbeaaaeaa kmaanaaajuaGbaqcLbsacaqIrbaaaOWaaSbaaKqbagaajugWaiaajg dacaqIYaaajuaGbeaaaeaakmaanaaajuaGbaqcLbsacaqIrbaaaOWa aSbaaKqbagaajugWaiaajgdacaqI2aaajuaGbeaaaeaajugibiaajc daaKqbagaajugibiaajcdaaKqbagaakmaanaaajuaGbaqcLbsacaqI rbaaaOWaaSbaaKqbagaajugWaiaajgdacaqIYaaajuaGbeaaaeaakm aanaaajuaGbaqcLbsacaqIrbaaaOWaaSbaaKqbagaajugWaiaajkda caqIYaaajuaGbeaaaeaakmaanaaajuaGbaqcLbsacaqIrbaaaOWaaS baaKqbagaajugWaiaajkdacaqI2aaajuaGbeaaaeaajugibiaajcda aKqbagaajugibiaajcdaaKqbagaakmaanaaajuaGbaqcLbsacaqIrb aaaOWaaSbaaKqbagaajugWaiaajgdacaqI2aaajuaGbeaaaeaakmaa naaajuaGbaqcLbsacaqIrbaaaOWaaSbaaKqbagaajugWaiaajkdaca qI2aaajuaGbeaaaeaakmaanaaajuaGbaqcLbsacaqIrbaaaOWaaSba aKqbagaajugWaiaajAdacaqI2aaajuaGbeaaaeaajugibiaajcdaaK qbagaajugibiaajcdaaKqbagaajugibiaajcdaaKqbagaajugibiaa jcdaaKqbagaajugibiaajcdaaKqbagaakmaanaaajuaGbaqcLbsaca qIrbaaaOWaaSbaaKqbagaajugWaiaajsdacaqI0aaajuaGbeaaaeaa kmaanaaajuaGbaqcLbsacaqIrbaaaOWaaSbaaKGbagaajugWaiaajs dacaqI1aaajuaGbeaaaeaajugibiaajcdaaKqbagaajugibiaajcda aKqbagaajugibiaajcdaaKqbagaakmaanaaajuaGbaqcLbsacaqIrb aaaOWaaSbaaKqbagaajugWaiaajsdacaqI1aaajuaGbeaaaeaakmaa naaajuaGbaqcLbsacaqIrbaaaOWaaSbaaKqbagaajugWaiaajwdaca qI1aaajuaGbeaaaaaacaGLBbGaayzxaaGcdaWgaaqcfayaaKqzGeGa aK4AaaqcfayabaGcdaGadaqcfayaaKqzGeqbaeqabuqaaaaajuaGba qcLbsacaqI1oGcdaWgaaqcfayaaKqzadGaaKymaaqcfayabaaabaqc LbsacaqI1oGcdaWgaaqcfayaaKqzadGaaKOmaaqcfayabaaabaqcLb sacaqI1oGcdaWgaaqcfayaaKqzadGaaKOnaaqcfayabaaabaqcLbsa caqI1oGcdaWgaaqcfayaaKqzadGaaKinaaqcfayabaaabaqcLbsaca qI1oGcdaWgaaqcfayaaKqzadGaaKynaaqcfayabaaaaaGaay5Eaiaa w2haaOWaaSbaaKqbagaajugWaiaajUgaaKqbagqaaKqzGeGaaKylaO WaaiWaaKqbagaajugibuaabeqafeaaaaqcfayaaKqzGeGaaK4UdOWa aSbaaKqbagaajugWaiaajgdaaKqbagqaaaqaaKqzGeGaaK4UdOWaaS baaKqbagaajugWaiaajkdaaKqbagqaaaqaaKqzGeGaaK4UdOWaaSba aKqbagaajugWaiaajgdacaqIYaaajuaGbeaaaeaajugibiaajcdaaK qbagaajugibiaajcdaaaaajuaGcaGL7bGaayzFaaGcdaWgaaqcfaya aKqzGeGaaK4AaaqcfayabaqcLbsacaqI0oqcLbmacaqIubaaaa@0760@ (4)

with λ 1 = Q ¯ 11 α 1 + Q ¯ 12 α 2 + Q ¯ 16 α 12 ; λ 2 = Q ¯ 12 α 1 + Q ¯ 22 α 2 + Q ¯ 26 α 12 ; λ 12 = Q ¯ 16 α 1 + Q ¯ 26 α 2 + Q ¯ 66 α 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW McdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLbsacqGH9aqpceWG rbGbaebakmaaBaaajyaGbaqcLbmacaaIXaGaaGymaaqcfayabaqcLb sacqaHXoqykmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaajugibiab gUcaRiqadgfagaqeaOWaaSbaaKqbagaajugWaiaaigdacaaIYaaaju aGbeaajugibiabeg7aHPWaaSbaaKqbagaajugWaiaaikdaaKqbagqa aKqzGeGaey4kaSIabmyuayaaraGcdaWgaaqcfayaaKqzadGaaGymai aaiAdaaKqbagqaaKqzGeGaeqySdeMcdaWgaaqcfayaaKqzadGaaGym aiaaikdaaKqbagqaaKqzGeGaai4oaiaaysW7caaMe8UaaGjbVlabeU 7aSPWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaKqzGeGaeyypa0Ja bmyuayaaraGcdaWgaaqcfayaaKqzadGaaGymaiaaikdaaKqbagqaaK qzGeGaeqySdeMcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLbsa cqGHRaWkceWGrbGbaebakmaaBaaajuaGbaqcLbmacaaIYaGaaGOmaa qcfayabaqcLbsacqaHXoqykmaaBaaajuaGbaqcLbmacaaIYaaajuaG beaajugibiabgUcaRiqadgfagaqeaOWaaSbaaKGbagaajugWaiaaik dacaaI2aaajuaGbeaajugibiabeg7aHPWaaSbaaKqbagaajugWaiaa igdacaaIYaaajuaGbeaajugibiaacUdacaaMe8UaaGjbVlaaysW7cq aH7oaBkmaaBaaajuaGbaqcLbmacaaIXaGaaGOmaaqcfayabaqcLbsa cqGH9aqpceWGrbGbaebakmaaBaaajuaGbaqcLbmacaaIXaGaaGOnaa qcfayabaqcLbsacqaHXoqykmaaBaaajuaGbaqcLbmacaaIXaaajuaG beaajugibiabgUcaRiqadgfagaqeaOWaaSbaaKqbagaajugWaiaaik dacaaI2aaajuaGbeaajugibiabeg7aHPWaaSbaaKqbagaajugWaiaa ikdaaKqbagqaaKqzGeGaey4kaSIabmyuayaaraGcdaWgaaqcfayaaK qzadGaaGOnaiaaiAdaaKqbagqaaKqzGeGaeqySdeMcdaWgaaqcfaya aKqzadGaaGymaiaaikdaaKqbagqaaKqzGeGaaGjbVlaaysW7aaa@C124@

where, { Q ¯ } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsaceWGrbGbaebaaKqbakaawUhacaGL9baakmaaBaaajuaGbaqc LbmacaWGRbaajuaGbeaaaaa@3E17@ , { σ } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacqaHdpWCaKqbakaawUhacaGL9baakmaaBaaajuaGbaqcLbma caWGRbaajuaGbeaaaaa@3EEC@ and { ε } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacqaH1oqzaKqbakaawUhacaGL9baakmaaBaaajuaGbaqcLbma caWGRbaajuaGbeaaaaa@3ED0@ are transformed stiffness matrix,, stress and strain vectors of the k t h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgak8aadaWgaaWcbaqcLbmapeGaamiDaiaadIgaaSWd aeqaaaaa@3D21@ lamina, respectively and α x , α y ,   α x y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHPWdamaaBaaaleaajugWa8qacaWG4bGaaiilaaWc paqabaqcLbsapeGaeqySdeMcpaWaaSbaaSqaaKqzadWdbiaadMhaaS WdaeqaaKqzGeWdbiaacYcacaqGGaGaeqySdeMcpaWaaSbaaSqaaKqz adWdbiaadIhacaWG5baal8aabeaaaaa@4999@ are the thermal expansion coefficients along x, y, z, direction, respectively which can be obtained from the thermal coefficients in the longitudinal ( α l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibabaaaaaaaaapeGaeqySdeMcpaWaaSbaaSqaaKqzadWdbiaadYga aSWdaeqaaaGccaGLOaGaayzkaaaaaa@3E6E@ and transverse ( α t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibabaaaaaaaaapeGaeqySdeMcpaWaaSbaaSqaaKqzadWdbiaadsha aSWdaeqaaaGccaGLOaGaayzkaaaaaa@3E76@ directions of the fibers using transformation matrix. T ( X , Y , Z ) = T 0 [ 1 + z h ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GcdaqadaqcfayaaKqzGeGaamiwaiaacYcacaaMe8UaamywaiaacYca caaMe8UaamOwaaqcfaOaayjkaiaawMcaaKqzGeGaeyypa0JaamivaO WaaSbaaKqbagaajugWaiaaicdaaKqbagqaaOWaamWaaKqbagaajugi biaaigdacqGHRaWkkmaalaaajuaGbaqcLbsacaWG6baajuaGbaqcLb sacaWGObaaaaqcfaOaay5waiaaw2faaaaa@52E3@ is the uniform temperature [UT] and combined uniform temperature with linearly varying transverse temperature [TT] rise. Δ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadsfaaaa@3AED@ is the non-uniform tent-like temperature distribution. The non-uniform tent like temperature rise is assumed to be

Δ T ( X , Y , Z ) = { T 0 + 2 T 1 Y / b T 0 + 2 T 1 ( 1 Y / b ) 0 Y b / 2 b / 2 Y b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq KaamivaOWaaeWaaKqbagaajugibiaadIfacaGGSaGaaGjbVlaadMfa caGGSaGaaGjbVlaadQfaaKqbakaawIcacaGLPaaajugibiabg2da9O WaaiqaaKqbagaajugibuaabeqaceaaaKqbagaajugibiaadsfakmaa BaaajuaGbaqcLbmacaaIWaaajuaGbeaajugibiabgUcaROWaaSGbaK qbagaajugibiaaikdacaWGubGcdaWgaaqcfayaaKqzadGaaGymaaqc fayabaqcLbsacaWGzbaajuaGbaqcLbsacaWGIbaaaaqcfayaaKqzGe GaamivaOWaaSbaaKGbagaajugWaiaaicdaaKqbagqaaKqzGeGaey4k aSIaaGOmaiaadsfakmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaakm aabmaajuaGbaqcLbsacaaIXaGaeyOeI0IcdaWcgaqcfayaaKqzGeGa amywaaqcfayaaKqzGeGaamOyaaaaaKqbakaawIcacaGLPaaaaaaaca GL7baajugibiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7caaMe8UaaGjbVlaaysW7faqabeGabaaajuaGbaqcLbsacaaIWa GaeyizImQaamywaiabgsMiJQWaaSGbaKqbagaajugibiaadkgaaKqb agaajugibiaaikdaaaaajuaGbaGcdaWcgaqcfayaaKqzGeGaamOyaa qcfayaaKqzGeGaaGOmaaaacqGHKjYOcaWGzbGaeyizImQaamOyaaaa aaa@8F49@ (5)

where T0 is the uniform temperature rise, and T1 is the temperature gradient, as shown in Figure 2. The constitutive relationship between stress resultants per unit length and mid-plain strains and curvatures can be written in matrix form.

Figure 2 Geometry of non-uniform tent-like temperature distribution.

{ N i M i P i } = [ A i j B i j E i j B i j D i j F i j E i j F i j H i j ] { ε j 0 k j 0 k j 2 } { N i T M i T P i T } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsafaqabeWabaaajuaGbaqcLbsacaWGobGcdaWgaaqcfayaaKqz adGaamyAaaqcfayabaaabaqcLbsacaWGnbGcdaWgaaqcfayaaKqzad GaamyAaaqcfayabaaabaqcLbsacaWGqbGcdaWgaaqcfayaaKqzadGa amyAaaqcfayabaaaaaGaay5Eaiaaw2haaKqzGeGaeyypa0JcdaWada qcfayaaKqzGeqbaeqabmWaaaqcfayaaKqzGeGaamyqaOWaaSbaaKqb agaajugWaiaadMgacaWGQbaajuaGbeaaaeaajugibiaadkeakmaaBa aajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaaabaqcLbsacaWGfbGc daWgaaqcfayaaKqzadGaamyAaiaadQgaaKqbagqaaaqaaKqzGeGaam OqaOWaaSbaaKqbagaajugWaiaadMgacaWGQbaajuaGbeaaaeaajugi biaadseakmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaaaba qcLbsacaWGgbGcdaWgaaqcfayaaKqzadGaamyAaiaadQgaaKqbagqa aaqaaKqzGeGaamyraOWaaSbaaKqbagaajugWaiaadMgacaWGQbaaju aGbeaaaeaajugibiaadAeakmaaBaaajuaGbaqcLbmacaWGPbGaamOA aaqcfayabaaabaqcLbsacaWGibGcdaWgaaqcfayaaKqzadGaamyAai aadQgaaKqbagqaaaaaaiaawUfacaGLDbaakmaacmaajuaGbaqcLbsa faqabeWabaaajuaGbaqcLbsacqaH1oqzkmaaDaaajuaGbaqcLbmaca WGQbaajuaGbaqcLbmacaaIWaaaaaqcfayaaKqzGeGaam4AaOWaa0ba aKqbagaajugWaiaadQgaaKqbagaajugWaiaaicdaaaaajuaGbaqcLb sacaWGRbGcdaqhaaqcfayaaKqzadGaamOAaaqcfayaaKqzadGaaGOm aaaaaaaajuaGcaGL7bGaayzFaaqcLbsacqGHsislkmaacmaajuaGba qcLbsafaqabeWabaaajuaGbaqcLbsacaWGobGcdaqhaaqcfayaaKqz adGaamyAaaqcfayaaKqzadGaamivaaaaaKqbagaajugibiaad2eakm aaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmacaWGubaaaaqcfaya aKqzGeGaamiuaSWaa0baaKqbagaajugWaiaadMgaaKqbagaajugWai aadsfaaaaaaaqcfaOaay5Eaiaaw2haaaaa@B6B3@ (i, j=1, 2, 6)

(6)

{ Q 2 Q 1 } = [ A 4 j D 4 j A 5 j D 5 j ] { ε j 0 k j 2 } ; { R 2 R 1 } = [ D 4 j F 4 j D 5 j F 5 j ] { ε j 0 k j 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsafaqabeGabaaajuaGbaqcLbsacaWGrbGcdaWgaaqcfayaaKqz adGaaGOmaaqcfayabaaabaqcLbsacaWGrbGcdaWgaaqcfayaaKqzad GaaGymaaqcfayabaaaaaGaay5Eaiaaw2haaKqzGeGaeyypa0JcdaWa daqcfayaaKqzGeqbaeqabiGaaaqcfayaaKqzGeGaamyqaOWaaSbaaK qbagaajugWaiaaisdacaWGQbaajuaGbeaaaeaajugibiaadseakmaa BaaajuaGbaqcLbmacaaI0aGaamOAaaqcfayabaaabaqcLbsacaWGbb GcdaWgaaqcfayaaKqzadGaaGynaiaadQgaaKqbagqaaaqaaKqzGeGa amiraOWaaSbaaKqbagaajugWaiaaiwdacaWGQbaajuaGbeaaaaaaca GLBbGaayzxaaGcdaGadaqcfayaaKqzGeqbaeqabiqaaaqcfayaaKqz GeGaeqyTdu2cdaqhaaqcfayaaKqzadGaamOAaaqcfayaaKqzadGaaG imaaaaaKqbagaajugibiaadUgalmaaDaaajuaGbaqcLbmacaWGQbaa juaGbaqcLbmacaaIYaaaaaaaaKqbakaawUhacaGL9baajugibiaacU dacaaMe8UaaGjbVRWaaiWaaKqbagaajugibuaabeqaceaaaKqbagaa jugibiaadkfakmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaaeaaju gibiaadkfakmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaaaacaGL 7bGaayzFaaqcLbsacqGH9aqpkmaadmaajuaGbaqcLbsafaqabeGaca aajuaGbaqcLbsacaWGebWcdaWgaaqcfayaaKqzadGaaGinaiaadQga aKqbagqaaaqaaKqzGeGaamOraSWaaSbaaKqbagaajugWaiaaisdaca WGQbaajuaGbeaaaeaajugibiaadseakmaaBaaajuaGbaqcLbmacaaI 1aGaamOAaaqcfayabaaabaqcLbsacaWGgbGcdaWgaaqcfayaaKqzad GaaGynaiaadQgaaKqbagqaaaaaaiaawUfacaGLDbaakmaacmaajuaG baqcLbsafaqabeGabaaajuaGbaqcLbsacqaH1oqzlmaaDaaajuaGba qcLbmacaWGQbaajuaGbaqcLbmacaaIWaaaaaqcfayaaKqzGeGaam4A aSWaa0baaKqbagaajugWaiaadQgaaKqbagaajugWaiaaikdaaaaaaa qcfaOaay5Eaiaaw2haaaaa@B1B4@ (j=4, 5)

(7)

Where A i j , B i j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeak8aadaWgaaWcbaqcLbmapeGaamyAaiaadQgaaSWd aeqaaKqzGeWdbiaacYcacaaMc8UaamOqaOWdamaaBaaaleaajugWa8 qacaWGPbGaamOAaaWcpaqabaqcLbsapeGaaiilaaaa@4558@ etc., are the plate stiffness’s defined in appendix . Thermal stress resultants

N i T = [ N t x N t y N t x y ] T , M i T = [ M t x M t y M t x y ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob WcdaqhaaqcfayaaKqzadGaamyAaaqcfayaaKqzadGaamivaaaajugi biabg2da9OWaamWaaKqbagaajugibuaabeqabmaaaKqbagaajugibi aad6eakmaaBaaajuaGbaqcLbmacaWG0bGaamiEaaqcfayabaaabaqc LbsacaWGobGcdaWgaaqcfawaaKqzadGaamiDaiaadMhaaKqbagqaaa qaaKqzGeGaamOtaOWaaSbaaKqbagaajugWaiaadshacaWG4bGaamyE aaqcfayabaaaaaGaay5waiaaw2faaOWaaWbaaKqbagqabaqcLbmaca WGubaaaKqzGeGaaiilaiaaysW7caaMe8UaamytaOWaa0baaKGbagaa jugWaiaadMgaaKqbagaajugWaiaadsfaaaqcLbsacqGH9aqpkmaadm aajuaGbaqcLbsafaqabeqadaaajuaGbaqcLbsacaWGnbGcdaWgaaqc fayaaKqzadGaamiDaiaadIhaaKqbagqaaaqaaKqzGeGaamytaOWaaS baaKqbagaajugWaiaadshacaWG5baajuaGbeaaaeaajugibiaad2ea kmaaBaaajuaGbaqcLbmacaWG0bGaamiEaiaadMhaaKqbagqaaaaaai aawUfacaGLDbaakmaaCaaajuaGbeqaaKqzadGaamivaaaaaaa@7BFC@ and P i T = [ P t x P t y P t x y ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaMe8 UaamiuaSWaa0baaKqbagaajugWaiaadMgaaKqbagaajugWaiaadsfa aaqcLbsacqGH9aqpkmaadmaajuaGbaqcLbsafaqabeqadaaajuaGba qcLbsacaWGqbGcdaWgaaqcfayaaKqzadGaamiDaiaadIhaaKqbagqa aaqaaKqzGeGaamiuaOWaaSbaaKqbagaajugWaiaadshacaWG5baaju aGbeaaaeaajugibiaadcfakmaaBaaajuaGbaqcLbmacaWG0bGaamiE aiaadMhaaKqbagqaaaaaaiaawUfacaGLDbaakmaaCaaajuaGbeqaaK qzadGaamivaaaaaaa@58AB@ are calculated by

[ N i T , M i T , P i T ] = k = 1 N Z k 1 Z k { Q ¯ 11 α x + Q ¯ 12 α y + Q ¯ 16 α x y Q ¯ 12 α x + Q ¯ 22 α y + Q ¯ 26 α x y Q ¯ 16 α x + Q ¯ 16 α y + Q ¯ 66 α x y } ( 1 , z , z 3 ) Δ T d z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aajugibiaad6ealmaaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbma caWGubaaaKqzGeGaaiilaiaaysW7caWGnbWcdaqhaaqcfayaaKqzad GaamyAaaqcfayaaKqzadGaamivaaaajugibiaacYcacaaMe8Uaamiu aSWaa0baaKqbagaajugWaiaadMgaaKqbagaajugWaiaadsfaaaaaju aGcaGLBbGaayzxaaqcLbsacqGH9aqpjuaGdaWfWaqaaKqzGeGaeyye IuoajuaGbaqcLbmacaWGRbGaeyypa0JaaGymaaqcfayaaKqzadGaam OtaaaajuaGdaWdXbqaamaacmaabaqcLbsafaqabeWabaaajuaGbaqc LbsaceWGrbGbaebajuaGdaWgaaqaaKqzadGaaGymaiaaigdaaKqbag qaaKqzGeGaeqySdewcfa4aaSbaaeaajugibiaadIhaaKqbagqaaKqz GeGaey4kaSIabmyuayaaraqcfa4aaSbaaeaajugWaiaaigdacaaIYa aajuaGbeaajugibiabeg7aHLqbaoaaBaaabaqcLbmacaWG5baajuaG beaajugibiabgUcaRiqadgfagaqeaKqbaoaaBaaabaqcLbmacaaIXa GaaGOnaaqcfayabaqcLbsacqaHXoqyjuaGdaWgaaqaaKqzadGaamiE aiaadMhaaKqbagqaaaqaaKqzGeGabmyuayaaraqcfa4aaSbaaeaaju gWaiaaigdacaaIYaaajuaGbeaajugibiabeg7aHLqbaoaaBaaabaqc LbmacaWG4baajuaGbeaajugibiabgUcaRiqadgfagaqeaKqbaoaaBa aabaqcLbmacaaIYaGaaGOmaaqcfayabaqcLbsacqaHXoqyjuaGdaWg aaqaaKqzadGaamyEaaqcfayabaqcLbsacqGHRaWkceWGrbGbaebaju aGdaWgaaqaaKqzadGaaGOmaiaaiAdaaKqbagqaaKqzGeGaeqySdewc fa4aaSbaaeaajugWaiaadIhacaWG5baajuaGbeaaaeaajugibiqadg fagaqeaKqbaoaaBaaabaqcLbmacaaIXaGaaGOnaaqcfayabaqcLbsa cqaHXoqyjuaGdaWgaaqaaKqzadGaamiEaaqcfayabaqcLbsacqGHRa WkceWGrbGbaebajuaGdaWgaaqaaKqzadGaaGymaiaaiAdaaKqbagqa aKqzGeGaeqySdewcfa4aaSbaaeaajugWaiaadMhaaKqbagqaaKqzGe Gaey4kaSIabmyuayaaraqcfa4aaSbaaeaajugWaiaaiAdacaaI2aaa juaGbeaajugibiabeg7aHLqbaoaaBaaabaqcLbmacaWG4bGaamyEaa qcfayabaaaaaGaay5Eaiaaw2haamaabmaabaqcLbsacaaIXaGaaiil aiaaysW7caWG6bGaaiilaiaaysW7caWG6bqcfa4aaWbaaeqabaqcLb macaaIZaaaaaqcfaOaayjkaiaawMcaaKqzGeGaeuiLdqKaamivaiaa dsgacaWG6baajuaGbaqcLbmacaWGAbWcdaWgaaqcfayaaKqzadGaam 4AaiabgkHiTiaaigdaaKqbagqaaaqaaKqzadGaamOwaSWaaSbaaKqb agaajugWaiaadUgaaKqbagqaaaqcLbsacqGHRiI8aaaa@ECFA@ (8)

Strain Energy of the Plate

The potential energy  of the laminated composite plates can be expressed as

Π 1 = 1 2 R [ N i ε x x + N i ε y y + N i γ x y + Q 1 γ x z + Q 2 γ y z ] d x d y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiOda LcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLbsacqGH9aqpkmaa laaajuaGbaqcLbsacaaIXaaajuaGbaqcLbsacaaIYaaaaOWaa8GeaK qbagaakmaadmaajuaGbaqcLbsacaWGobGcdaWgaaqcfayaaKqzadGa amyAaaqcfayabaqcLbsacqaH1oqzlmaaBaaajuaGbaqcLbmacaWG4b GaamiEaaqcfayabaqcLbsacqGHRaWkcaWGobGcdaWgaaqcfayaaKqz adGaamyAaaqcfayabaqcLbsacqaH1oqzkmaaBaaajuaGbaqcLbmaca WG5bGaamyEaaqcfayabaqcLbsacqGHRaWkcaWGobGcdaWgaaqcfaya aKqzadGaamyAaaqcfayabaqcLbsacqaHZoWzkmaaBaaajuaGbaqcLb macaWG4bGaamyEaaqcfayabaqcLbsacqGHRaWkcaWGrbGcdaWgaaqc fayaaKqzadGaaGymaaqcfayabaqcLbsacqaHZoWzkmaaBaaajuaGba qcLbmacaWG4bGaamOEaaqcfayabaqcLbsacqGHRaWkcaWGrbGcdaWg aaqcfayaaKqzadGaaGOmaaqcfayabaqcLbsacqaHZoWzkmaaBaaaju aGbaqcLbmacaWG5bGaamOEaaqcfayabaaacaGLBbGaayzxaaaabaqc LbmacaWGsbaajuaGbeqcLbsacqGHRiI8cqGHRiI8aiaaysW7caWGKb GaamiEaiaaysW7caWGKbGaamyEaaaa@8DB2@ (9)

Potential Energy due to Thermal Stresses

Due to uniform change in temperature, non-uniform tent like temperature distribution, pre-buckling stresses in the plate are generated. These stress resultants are the reason for the buckling. The potential energy due to the in plane thermal stress resultants is expressed as

Π 2 = 1 2 A [ N x ( w , x ) 2 + N y ( w , y ) 2 + 2 N x y ( w , x ) ( w , y ) ] d A = 1 2 A { w , x w , y } T [ N x N x y N x y N y ] { w , x w , y } d A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfc6aqPWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaKqzGeGaeyyp a0JcdaWcaaqcfayaaKqzGeGaaGymaaqcfayaaKqzGeGaaGOmaaaakm aapebajuaGbaGcdaWadaqcfayaaKqzGeGaamOtaOWaaSbaaKqbagaa jugWaiaadIhaaKqbagqaaOWaaeWaaKqbagaajugibiaadEhacaGGSa GcdaWgaaqcfayaaKqzGeGaamiEaaqcfayabaaacaGLOaGaayzkaaGc daahaaqcfayabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGobGcda WgaaqcfayaaKqzadGaamyEaaqcfayabaGcdaqadaqcfayaaKqzGeGa am4DaiaacYcakmaaBaaajuaGbaqcLbsacaWG5baajuaGbeaaaiaawI cacaGLPaaakmaaCaaajuaGbeqaaKqzadGaaGOmaaaajugibiabgUca RiaaikdacaWGobGcdaWgaaqcfayaaKqzadGaamiEaiaadMhaaKqbag qaaOWaaeWaaKqbagaajugibiaadEhacaGGSaGcdaWgaaqcfayaaKqz GeGaamiEaaqcfayabaaacaGLOaGaayzkaaGcdaqadaqcfayaaKqzGe Gaam4DaiaacYcakmaaBaaajuaGbaqcLbsacaWG5baajuaGbeaaaiaa wIcacaGLPaaaaiaawUfacaGLDbaaaeaajugWaiaadgeaaKqbagqaju gibiabgUIiYdGaaGjbVlaadsgacaWGbbaakeaajugibiaaysW7caaM e8UaaGjbVlaaysW7cqGH9aqpkmaalaaajuaGbaqcLbsacaaIXaaaju aGbaqcLbsacaaIYaaaaOWaa8qeaKqbagaakmaacmaajuaGbaqcLbsa faqabeGabaaajuaGbaqcLbsacaWG3bGaaiilaOWaaSbaaKqbagaaju gibiaadIhaaKqbagqaaaqaaKqzGeGaam4DaiaacYcakmaaBaaajuaG baqcLbsacaWG5baajuaGbeaaaaaacaGL7bGaayzFaaaabaqcLbmaca WGbbaajuaGbeqcLbsacqGHRiI8aOWaaWbaaKqbagqabaqcLbmacaWG ubaaaOWaamWaaKqbagaajugibuaabeqaciaaaKqbagaajugibiaad6 eakmaaBaaajuaGbaqcLbsacaWG4baajuaGbeaaaeaajugibiaad6ea kmaaBaaajuaGbaqcLbmacaWG4bGaamyEaaqcfayabaaabaqcLbsaca WGobGcdaWgaaqcfayaaKqzadGaamiEaiaadMhaaKqbagqaaaqaaKqz GeGaamOtaOWaaSbaaKqbagaajugWaiaadMhaaKqbagqaaaaaaiaawU facaGLDbaakmaacmaajuaGbaqcLbsafaqabeGabaaajuaGbaqcLbsa caWG3bGaaiilaOWaaSbaaKqbagaajugibiaadIhaaKqbagqaaaqaaK qzGeGaam4DaiaacYcakmaaBaaajuaGbaqcLbsacaWG5baajuaGbeaa aaaacaGL7bGaayzFaaqcLbsacaWGKbGaamyqaaaaaa@CB14@ (10)

Where, N x ,   N y a n d N x y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6eak8aadaWgaaWcbaqcLbmapeGaamiEaaWcpaqabaqc LbsapeGaaiilaiaabccacaWGobGcpaWaaSbaaSqaaKqzadWdbiaadM haaSWdaeqaaKqzGeGaaGPaV=qacaWGHbGaamOBaiaadsgacaaMc8Ua amOtaOWdamaaBaaaleaajugWa8qacaWG4bGaamyEaaWcpaqabaaaaa@4C5D@ are in plane applied thermal compressive stress resultants per unit length.

Strain energy due to foundation

The strain energy ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaaGPaVlaaykW7kmaaraaajyaGbaGcdaWgaaqcgayaaKqzadGaaG4m aaqcgayabaaabeqabKqzGeGaey4dIunacaGGPaaaaa@4304@ due to elastic foundation having foundation layers can be written as:  

Π 3 = 1 2 A { K 1 ( w , x ) 2 + K 2 [ ( w , x ) 2 + ( w , x ) 2 ] } d A = 1 2 A { w w , x w , y } T [ K 1 0 0 0 K 2 0 0 0 K 2 ] { w w , x w , y } d A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfc6aqPWaaSbaaKqbagaajugWaiaaiodaaKqbagqaaKqzGeGaeyyp a0JcdaWcaaqcfayaaKqzGeGaaGymaaqcfayaaKqzGeGaaGOmaaaakm aapebajuaGbaGcdaGadaqcfayaaKqzGeGaam4saOWaaSbaaKqbagaa jugWaiaaigdaaKqbagqaaOWaaeWaaKqbagaajugibiaadEhacaGGSa GcdaWgaaqcfayaaKqzGeGaamiEaaqcfayabaaacaGLOaGaayzkaaGc daahaaqcfayabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGlbGcda WgaaqcfayaaKqzadGaaGOmaaqcfayabaGcdaWadaqcfayaaOWaaeWa aKqbagaajugibiaadEhacaGGSaGcdaWgaaqcfayaaKqzGeGaamiEaa qcfayabaaacaGLOaGaayzkaaGcdaahaaqcfayabeaajugWaiaaikda aaqcLbsacqGHRaWkkmaabmaajuaGbaqcLbsacaWG3bGaaiilaOWaaS baaKqbagaajugibiaadIhaaKqbagqaaaGaayjkaiaawMcaaOWaaWba aKqbagqabaqcLbmacaaIYaaaaaqcfaOaay5waiaaw2faaaGaay5Eai aaw2haaaqaaKqzadGaamyqaaqcfayabKqzGeGaey4kIipacaaMe8Ua amizaiaadgeaaOqaaKqzGeGaaGjbVlaaysW7caaMe8UaaGjbVlabg2 da9OWaaSaaaKqbagaajugibiaaigdaaKqbagaajugibiaaikdaaaGc daWdraqcfayaaOWaaiWaaKqbagaajugibuaabeqaceaaaqaabeqcfa yaaKqzGeGaam4DaaqcfayaaKqzGeGaam4DaiaacYcakmaaBaaajuaG baqcLbsacaWG4baajuaGbeaaaaqaaKqzGeGaam4DaiaacYcakmaaBa aajuaGbaqcLbsacaWG5baajuaGbeaaaaaacaGL7bGaayzFaaaabaqc LbmacaWGbbaajuaGbeqcLbsacqGHRiI8aOWaaWbaaKqbagqabaqcLb macaWGubaaaOWaamWaaKqbagaajugibuaabeqadmaaaKqbagaajugi biaadUeakmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaeaajugibi aaicdaaKqbagaajugibiaaicdaaKqbagaajugibiaaicdaaKqbagaa jugibiaadUeakmaaBaaajyaGbaqcLbmacaaIYaaajuaGbeaaaeaaju gibiaaicdaaKqbagaajugibiaaicdaaKqbagaajugibiaaicdaaKqb agaajugibiaadUeakmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaaa aacaGLBbGaayzxaaGcdaGadaqcfayaaKqzGeqbaeqabiqaaaabaeqa juaGbaqcLbsacaWG3baajuaGbaqcLbsacaWG3bGaaiilaOWaaSbaaK qbagaajugibiaadIhaaKqbagqaaaaabaqcLbsacaWG3bGaaiilaOWa aSbaaKqbagaajugibiaadMhaaKqbagqaaaaaaiaawUhacaGL9baaju gibiaadsgacaWGbbaaaaa@CBAA@ (11)

 Finite element model

Strain energy of the plate element

In the present study a C0 nine-noded is oparametric finite element with 7 DOFs per node is employed. For this type of element, the displacement vector and the element geometry are expressed as

{ Λ } = i = 1 N N φ i { Λ } i ; x = i = 1 N N φ i x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacqqHBoataKqbakaawUhacaGL9baajugibiabg2da9OWaaabC aKqbagaajugibiabeA8aQPWaaSbaaKqbagaajugWaiaadMgaaKqbag qaaaqaaKqzadGaamyAaiabg2da9iaaigdaaKqbagaajugWaiaad6ea caWGobaajugibiabggHiLdGcdaGadaqcfayaaKqzGeGaeu4MdWeaju aGcaGL7bGaayzFaaGcdaWgaaqcfayaaKqzadGaamyAaaqcfayabaqc LbsacaaMc8UaaGPaVlaacUdacaaMe8UaamiEaiabg2da9OWaaabCaK qbagaajugibiabeA8aQPWaaSbaaKqbagaajugWaiaadMgaaKqbagqa aaqaaKqzadGaamyAaiabg2da9iaaigdaaKqbagaajugWaiaad6eaca WGobaajugibiabggHiLdGaamiEaOWaaSbaaKqbagaajugWaiaadMga aKqbagqaaaaa@725E@ and y = i = 1 N N φ i y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyEai abg2da9OWaaabCaKqbagaajugibiabeA8aQPWaaSbaaKqbagaajugW aiaadMgaaKqbagqaaaqaaKqzadGaamyAaiabg2da9iaaigdaaKqbag aajugWaiaad6eacaWGobaajugibiabggHiLdGaamyEaOWaaSbaaKqb GfaajugWaiaadMgaaKqbagqaaaaa@4CFC@ (12)

Where φ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA8aQT WaaSbaaKqbagaajugWaiaadMgaaKqbagqaaaaa@3BB7@ is the interpolation function for the t h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaK qzadaeaaaaaaaaa8qacaWG0bGaamiAaaWcpaqabaaaaa@3B76@ node, { Λ } i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajyaGba qcLbsacqqHBoataKGbakaawUhacaGL9baakmaaBaaajyaGbaqcLbma caWGPbaajyaGbeaaaaa@3EA1@ is the vector of unknown displacements for the ith node, NN is the number of nodes per element and xi and yi are Cartesian Coordinate of the t h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaK qzadaeaaaaaaaaa8qacaWG0bGaamiAaaWcpaqabaaaaa@3B76@ node.

Total potential energy which can be expressed as

Π 1 = e = 1 N E [ 1 2 { Λ ( e ) } T [ K * ( e ) + K f ( e ) ] { Λ } ( e ) { Λ ( e ) } T [ F t ( e ) ] ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiOda LcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLbsacqGH9aqpkmaa qahajuaGbaGcdaWadaqcfayaaOWaaSaaaKqbagaajugibiaaigdaaK qbagaajugibiaaikdaaaGcdaGadaqcfayaaKqzGeGaeu4MdWKcdaah aaqcfayabeaalmaabmaajuaGbaqcLbmacaWGLbaajuaGcaGLOaGaay zkaaaaaaGaay5Eaiaaw2haaOWaaWbaaKqbagqabaqcLbmacaWGubaa aOWaamWaaKqbagaajugibiaadUeakmaaCaaajuaGbeqaaKqzadGaai OkaaaakmaaCaaajuaGbeqaaOWaaWbaaKqbagqabaWcdaqadaqcfaya aKqzadGaamyzaaqcfaOaayjkaiaawMcaaaaaaaqcLbsacqGHRaWkca WGlbGcdaWgaaqcfayaaKqzadGaamOzaaqcfayabaGcdaahaaqcfaya beaakmaaCaaajuaGbeqaaSWaaeWaaKqbagaajugWaiaadwgaaKqbak aawIcacaGLPaaaaaaaaaGaay5waiaaw2faaOWaaiWaaKqbagaajugi biabfU5ambqcfaOaay5Eaiaaw2haaOWaaWbaaKqbagqabaWcdaqada qcfayaaKqzadGaamyzaaqcfaOaayjkaiaawMcaaaaajugibiabgkHi TOWaaiWaaKqbagaajugibiabfU5amPWaaWbaaKqbagqabaWcdaqada qcfayaaKqzadGaamyzaaqcfaOaayjkaiaawMcaaaaaaiaawUhacaGL 9baakmaaCaaajuaGbeqaaKqzadGaamivaaaakmaadmaajuaGbaqcLb sacaWGgbGcdaqhaaqcfayaaKqzGeGaamiDaaqcfayaaOWaaWbaaKqb agqabaWcdaqadaqcfayaaKqzadGaamyzaaqcfaOaayjkaiaawMcaaa aaaaaacaGLBbGaayzxaaaacaGLBbGaayzxaaaabaqcLbmacaWGLbGa eyypa0JaaGymaaqcfayaaKqzadGaamOtaiaadweaaKqzGeGaeyyeIu oaaaa@98D9@

= 1 2 { q } T [ K + K f ] { q } { q } T [ F T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyypa0 JcdaWcaaqcfayaaKqzGeGaaGymaaqcfayaaKqzGeGaaGOmaaaakmaa cmaajuaGbaqcLbsacaWGXbaajuaGcaGL7bGaayzFaaGcdaahaaqcfa yabeaajugWaiaadsfaaaGcdaWadaqcfayaaKqzGeGaam4saiabgUca RiaadUeakmaaBaaajyaGbaqcLbmacaWGMbaajuaGbeaaaiaawUfaca GLDbaakmaacmaajuaGbaqcLbsacaWGXbaajuaGcaGL7bGaayzFaaqc LbsacqGHsislkmaacmaajuaGbaqcLbsacaWGXbaajuaGcaGL7bGaay zFaaGcdaahaaqcfayabeaajugWaiaadsfaaaGcdaWadaqcfayaaKqz GeGaamOraOWaaWbaaKqbagqabaqcLbmacaWGubaaaaqcfaOaay5wai aaw2faaaaa@6109@ (13)

With [ K ] = [ K b ] + [ K s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaajuaGba qcLbsacaWGlbaajuaGcaGLBbGaayzxaaqcLbsacqGH9aqpkmaadmaa juaGbaqcLbsacaWGlbGcdaWgaaqcfayaaKqzadGaamOyaaqcfayaba aacaGLBbGaayzxaaqcLbsacqGHRaWkkmaadmaajuaGbaqcLbsacaWG lbGcdaWgaaqcfayaaKqzadGaam4CaaqcfayabaaacaGLBbGaayzxaa aaaa@4BF6@

Where global bending stiffness matrix [ K b ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaju gibabaaaaaaaaapeGaam4saOWdamaaBaaaleaajugWa8qacaWGIbaa l8aabeaaaOGaay5waiaaw2faaKqzGeWdbiaacYcaaaa@3F4A@ shear stiffness matrix [ K s ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaju gibabaaaaaaaaapeGaam4saOWdamaaBaaaleaajugWa8qacaWGZbaa l8aabeaaaOGaay5waiaaw2faaKqzGeWdbiaacYcaaaa@3F5B@ foundation stiffness matrix [ K f ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaju gibabaaaaaaaaapeGaam4saOWdamaaBaaaleaajugWa8qacaWGMbaa l8aabeaaaOGaay5waiaaw2faaKqzGeWdbiaacYcaaaa@3F4E@ , global displacement vector {q} and thermal load vector [F] are defined in the appendix.

Thermal buckling analysis

Using finite element model Eq. (13), Eq. (11) after summing over the entire element can be written as

Π 2 = e = 1 N E Π 2 ( e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHGo aukmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaajugibiabg2da9OWa aabCaKqbagaajugibiabfc6aqPWaaSbaaKqbagaajugWaiaaikdaaK qbagqaaOWaaWbaaKqbagqabaWcdaqadaqcfayaaKqzadGaamyzaaqc faOaayjkaiaawMcaaaaaaeaajugWaiaadwgacqGH9aqpcaaIXaaaju aGbaqcLbmacaWGobGaamyraaqcLbsacqGHris5aaaa@5267@

= 1 2 e = 1 N E { Λ } T ( e ) λ [ K g ] ( e ) { Λ } ( e ) d A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH9a qpkmaalaaajuaGbaqcLbsacaaIXaaajuaGbaqcLbsacaaIYaaaaOWa aabCaKqbagaakmaacmaajuaGbaqcLbsacqqHBoataKqbakaawUhaca GL9baakmaaCaaajuaGbeqaaKqzadGaamivaSWaaeWaaKqbagaajugW aiaadwgaaKqbakaawIcacaGLPaaaaaqcLbsacqaH7oaBkmaadmaaju aGbaqcLbsacaWGlbGcdaWgaaqcfayaaKqzGeGaam4zaaqcfayabaaa caGLBbGaayzxaaGcdaahaaqcfayabeaalmaabmaajuaGbaqcLbmaca WGLbaajuaGcaGLOaGaayzkaaaaaOWaaiWaaKqbagaajugibiabfU5a mbqcfaOaay5Eaiaaw2haaOWaaWbaaKqbagqabaWcdaqadaqcfayaaK qzadGaamyzaaqcfaOaayjkaiaawMcaaaaajugibiaadsgacaWGbbaa juaGbaqcLbmacaWGLbGaeyypa0JaaGymaaqcfayaaKqzadGaamOtai aadweaaKqzGeGaeyyeIuoaaaa@6F31@

= 1 2 λ { q } T [ K g ] { q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH9a qpkmaalaaajuaGbaqcLbsacaaIXaaajuaGbaqcLbsacaaIYaaaaiab eU7aSPWaaiWaaKqbagaajugibiaadghaaKqbakaawUhacaGL9baakm aaCaaajuaGbeqaaKqzadGaamivaaaakmaadmaajuaGbaqcLbsacaWG lbGcdaWgaaqcfayaaKqzadGaam4zaaqcfayabaaacaGLBbGaayzxaa GcdaGadaqcfayaaKqzGeGaamyCaaqcfaOaay5Eaiaaw2haaaaa@5127@ (14)

where, λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWzcjugibi abeU7aSbaa@393C@ and [ K g ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaKqbag aajugibiaadUeakmaaBaaajuaGbaqcLbmacaWGNbaajuaGbeaaaiaa wUfacaGLDbaaaaa@3D91@ are defined as the thermal buckling load parameters and the global geometric stiffness matrix, respectively.

 Foundation analysis

Using finite element model

3 = e = 1 N E ( 3 ( e ) ) = 1 2 A { q ( e ) } T [ K f ] ( e ) { q ( e ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaey4dIu TcdaWgaaqcfayaaKqzadGaaG4maaqcfayabaqcLbsacqGH9aqpkmaa qahajuaGbaGcdaqadaqcfayaaKqzGeGaey4dIuTcdaqhaaqcfayaaK qzadGaaG4maaqcfayaaSWaaeWaaKqbagaajugWaiaadwgaaKqbakaa wIcacaGLPaaaaaaacaGLOaGaayzkaaaabaqcLbmacaWGLbGaeyypa0 JaaGymaaqcfayaaKqzadGaamOtaiaadweaaKqzGeGaeyyeIuoacqGH 9aqpkmaalaaajuaGbaqcLbsacaaIXaaajuaGbaqcLbsacaaIYaaaaO Waa8qeaKqbagaakmaacmaajuaGbaqcLbsacaWGXbGcdaahaaqcfaya beaalmaabmaajuaGbaqcLbmacaWGLbaajuaGcaGLOaGaayzkaaaaaa Gaay5Eaiaaw2haaaqaaKqzadGaamyqaaqcfayabKqzGeGaey4kIipa kmaaCaaajuaGbeqaaKqzadGaamivaaaakmaadmaajuaGbaqcLbsaca WGlbGcdaWgaaqcfayaaKqzadGaamOzaaqcfayabaaacaGLBbGaayzx aaGcdaahaaqcfayabeaalmaabmaajuaGbaqcLbmacaWGLbaajuaGca GLOaGaayzkaaaaaOWaaiWaaKqbagaajugibiaadghakmaaCaaajuaG beqaaSWaaeWaaKqbagaajugWaiaadwgaaKqbakaawIcacaGLPaaaaa aacaGL7bGaayzFaaqcLbsacaaMe8oaaa@8344@ (15)

Where, [ K f ] ( e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaajuaGba qcLbsacaWGlbGcdaWgaaqcfayaaKqzadGaamOzaaqcfayabaaacaGL BbGaayzxaaGcdaahaaqcfayabeaalmaabmaajuaGbaqcLbmacaWGLb aajuaGcaGLOaGaayzkaaaaaaaa@42AA@ are the elemental linear foundation stiffness matrixes for the eth element.

Adopting Gauss quadrature integration numerical rule, the element linear and non-linear stiffness matrices, foundation stiffness matrix and geometric stiffness matrix respectively can be obtained by transforming expression in x, y coordinate system to natural coordinate system ξ , η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabe67a4jaacYcacqaH3oaAaaa@3CCA@ .

 Governing equations

The governing equation for thermal buckling of laminated composite plate can be derived using Variational principle, which is generalization of the principle of virtual displacement. For the prebuckling analysis, the first variation of total potential energy  must be zero. By using Eq. 13 and Eq. 15

[ K l + K n l { q } ] { q } = [ F T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaKqbag aajugibiaadUeakmaaBaaajuaGbaqcLbmacaWGSbaajuaGbeaajugi biabgUcaRiaadUeakmaaBaaajuaGbaqcLbmacaWGUbGaamiBaaqcfa yabaGcdaGadaqcfayaaKqzGeGaamyCaaqcfaOaay5Eaiaaw2haaaGa ay5waiaaw2faaOWaaiWaaKqbagaajugibiaadghaaKqbakaawUhaca GL9baajugibiabg2da9OWaamWaaKqbagaajugibiaadAeakmaaCaaa juaGbeqaaKqzadGaamivaaaaaKqbakaawUfacaGLDbaaaaa@56AF@ (16)

Eq.16. can be rewritten as [ K ] { q } = λ [ K g ] { q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaKqbag aajugibiaadUeaaKqbakaawUfacaGLDbaakmaacmaajuaGbaqcLbsa caWGXbaajuaGcaGL7bGaayzFaaqcLbsacqGH9aqpcqaH7oaBkmaadm aajuaGbaqcLbsacaWGlbGcdaWgaaqcfayaaKqzadGaam4zaaqcfaya baaacaGLBbGaayzxaaGcdaGadaqcfayaaKqzGeGaamyCaaqcfaOaay 5Eaiaaw2haaaaa@4F08@

Where [ K ] = [ K l + K n l { q } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaKqbag aajugibiaadUeaaKqbakaawUfacaGLDbaajugibiabg2da9OWaamWa aKqbagaajugibiaadUeakmaaBaaajuaGbaqcLbmacaWGSbaajuaGbe aajugibiabgUcaRiaadUeakmaaBaaajuaGbaqcLbmacaWGUbGaamiB aaqcfayabaGcdaGadaqcfayaaKqzGeGaamyCaaqcfaOaay5Eaiaaw2 haaaGaay5waiaaw2faaaaa@4F17@

For the critical buckling state corresponding to the neutral equilibrium condition, the second variation of total potential energy ( = 1 + 2 + 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gcdaqeaaqcfayaaaqabeqajugibiabg+GivdGaeyypa0Jcdaqeaaqa amaaBaaaleaajugWaiaaigdaaSqabaaabeqabKqzGeGaey4dIunacq GHRaWkkmaaraaabaWaaSbaaKqaGfaajugWaiaaikdaaSqabaqcLbsa cqGHRaWkkmaaraaabaWaaSbaaKqaGfaajugWaiaaiodaaSqabaqcLb sacaGGPaaaleqabeqcLbsacqGHpis1aaWcbeqabKqzGeGaey4dIuna aaa@4EA1@ must be zero. Following this conditions, ones obtains as standard eigenvalue problem

{ [ K + K f ] + λ [ K g ] } { q } = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaKqbag aakmaadmaajuaGbaqcLbsacaWGlbGaey4kaSIaam4saOWaaSbaaKqb GeaajugWaiaadAgaaKqbagqaaaGaay5waiaaw2faaKqzGeGaey4kaS Iaeq4UdWMcdaWadaqcfayaaKqzGeGaam4saOWaaSbaaKqbGeaajugW aiaadEgaaKqbagqaaaGaay5waiaaw2faaaGaay5Eaiaaw2haaOWaai WaaKqbagaajugibiaadghaaKqbakaawUhacaGL9baajugibiabg2da 9iaaicdaaaa@52E4@ (17)

The stiffness matrix [K], foundation stiffness matrix [Kf] and geometric stiffness matrix [Kg] are random in nature, being dependent on the system geometric and thermo-elastic properties. Therefore the eigenvalues and eigenvectors also become random. The (Eq. 17) can be solved with the help probabilistic FEM in conjunction with perturbation technique or Monte Carlo simulation (MCS) to compute the mean and variance of the thermal post buckling load.

Solution technique: random thermal post buckling problem

Direct iterative method in conjunction with perturbation technique

Steps for the direct iterative technique

The nonlinear eigenvalue problem as given in (eq. 15), is solved by employing a direct iterative method in conjunction with the mean centered first order perturbation technique assuming that the random changes in eigenvector during iterations does not affect the nonlinear stiffness matrices with the following steps.

  1. By setting amplitude to zero, the random linear eigen value problem [ [ K l ] { q } = λ [ K g ] ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaajuaGba qcLbsacaGGBbGaam4saOWaaSbaaKqbGeaajugWaiaadYgaaKqbagqa aKqzGeGaaiyxaOWaaiWaaKqbagaajugibiaadghaaKqbakaawUhaca GL9baajugibiabg2da9iabeU7aSPWaamWaaKqbagaajugibiaadUea kmaaBaaajuaibaqcLbmacaWGNbaajuaGbeaaaiaawUfacaGLDbaaai aawUfacaGLDbaaaaa@4E2B@ is obtained from the (Eq. 15), by assuming that the system vibrates in its principal mode. Then the random linear eigenvalue problem is broken up into zeroth and first order equations using perturbation technique by neglecting higher order equations. The zeroth order linear eigenvalue problem is solved by normal Eigen solution procedure to obtain the linear critical load parameters λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBaaa@3A3F@ and the linear Eigen vector { q l } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacaWGXbGcdaWgaaqcfasaaKqzadGaamiBaaqcfayabaaacaGL 7bGaayzFaaaaaa@3D32@ . The first order perturbation equation is used to obtain the standard deviation of the thermal post buckling which is presented in next sub-section 6. 2. of perturbation technique.
  2. For a specified maximum deflection C at a center of the plate, the linear normalized eigenvector is scaled up by C times, so that resultant vector will have a displacement C at the maximum deflection point.
  3. Using the scale-up eigenvector, the nonlinear terms in the stiffness matrix [K] can be obtained. The problem may now be treated as linear eigenvalue problem with a new updated stiffness matrix. The random eigenvalue problem can again be broken up into zeroth and first order equation using perturbation technique. The deterministic zeroth order can be used to obtain nonlinear critical load λ n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBkmaaBaaaleaajugWaiaad6gacaWGSbaaleqaaaaa@3D92@ and eigenvector { q n l } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaGaam yCamaaBaaaleaacaWGUbGaamiBaaqabaaakiaawUhacaGL9baaaaa@3B29@ and the random first order equations can be used to obtain the standard deviation (SD) of the Eigen solutions using the first order perturbation technique as presented in the next section.
  4. Steps (ii)-(iii) are repeated by replacing { q l } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacaWGXbGcdaWgaaWcbaqcLbmacaWGSbaaleqaaaGccaGL7bGaayzF aaaaaa@3C08@ by { q n l } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacaWGXbGcdaWgaaqcbasaaKqzadGaamOBaiaadYgaaSqabaaakiaa wUhacaGL9baaaaa@3D1A@ in the step (ii) to obtain the converged mean and standard deviation of the nonlinear critical buckling load lnl to a prescribed accuracy (≈10-3)
  5. Steps (i) to (iv) are repeated for various value of C.

Solution technique: perturbation technique

In the present analysis, the lamina material properties, thermal expansion coefficients and the geometric properties are treated as independent random variables (RVs). In general, without any loss of generality any arbitrary random variable can be represented as the sum of its mean and zero mean random part, denoted by superscripts ‘d’ and ‘r’, respectively.21

K = K d + K r , K g = K g d + K g r , λ i = λ i d + λ i r , q i = q i d + q i r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4sai abg2da9iaadUeajuaGdaahaaqabKqbGeaajugWaiaadsgaaaqcLbsa cqGHRaWkcaWGlbqcfa4aaWbaaeqajuaibaqcLbmacaWGYbaaaKqzGe GaaiilaiaaysW7caaMe8Uaam4saKqbaoaaBaaajuaibaqcLbmacaWG NbaajuaGbeaajugibiabg2da9iaadUeajuaGdaqhaaqcfasaaiaadE gaaeaacaWGKbaaaKqzGeGaey4kaSIaam4saKqbaoaaDaaajuaibaGa am4zaaqaaiaadkhaaaqcLbsacaGGSaGaaGjbVlaaysW7cqaH7oaBju aGdaWgaaqaaKqzGeGaamyAaaqcfayabaqcLbsacqGH9aqpcqaH7oaB juaGdaqhaaqcfasaaiaadMgaaeaacaWGKbaaaKqzGeGaey4kaSIaeq 4UdWwcfa4aaSbaaKqbGeaajugWaiaadMgaaKqbGeqaaKqbaoaaCaaa juaibeqaaKqzadGaamOCaaaajugibiaacYcacaaMe8UaaGjbVlaadg hajuaGdaWgaaqcfasaaKqzadGaamyAaaqcfayabaqcLbsacqGH9aqp caWGXbqcfa4aaSbaaKqbGeaajugWaiaadMgaaKqbGeqaaKqbaoaaCa aajuaibeqaaKqzadGaamizaaaajugibiabgUcaRiaadghajuaGdaWg aaqcfasaaKqzadGaamyAaaqcfasabaqcfa4aaWbaaKqbGeqabaqcLb macaWGYbaaaaaa@8660@ (18)

Taylor’s series keeping the first order terms and neglecting the second and higher order terms, collecting same order of the magnitude term, one obtains as37

Zeroth order:

[ K d ] { q i d } = λ i d [ K g ] { q i d } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaajuaGba qcLbsacaWGlbGcdaahaaqcfayabeaajugWaiaadsgaaaaajuaGcaGL BbGaayzxaaGcdaGadaqcfayaaKqzGeGaamyCaOWaaSbaaKqbagaaju gWaiaadMgaaKqbagqaaOWaaWbaaKqbagqabaqcLbmacaWGKbaaaaqc faOaay5Eaiaaw2haaKqzGeGaeyypa0Jaeq4UdWMcdaWgaaqcfayaaK qzadGaamyAaaqcfayabaGcdaahaaqcfayabeaajugWaiaadsgaaaGc daWadaqcfayaaKqzGeGaam4saOWaaSbaaKqbagaajugWaiaadEgaaK qbagqaaaGaay5waiaaw2faaOWaaiWaaKqbagaajugibiaadghakmaa BaaajuaGbaqcLbmacaWGPbaajuaGbeaakmaaCaaajuaGbeqaaKqzad GaamizaaaaaKqbakaawUhacaGL9baaaaa@640D@ (19)

First order:          

[ K d ] { q i r } + [ K r ] { q i d } = λ i d [ K g r ] { q i d } + λ i d [ K g d ] { q i r } + λ i r [ K g d ] { q i d } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaypWaamWaae aajugibiaadUeakmaaCaaaleqabaqcLbmacaWGKbaaaaGccaGLBbGa ayzxaaWaaiWaaeaajugibiaadghakmaaBaaaleaajugWaiaadMgaaS qabaGcdaahaaWcbeqaaKqzadGaamOCaaaaaOGaay5Eaiaaw2haaKqz GeGaey4kaSIcdaWadaqaaKqzGeGaam4saOWaaWbaaSqabeaajugWai aadkhaaaaakiaawUfacaGLDbaadaGadaqaaKqzGeGaamyCaOWaaSba aSqaaKqzadGaamyAaaWcbeaakmaaCaaaleqabaqcLbmacaWGKbaaaa GccaGL7bGaayzFaaqcLbsacqGH9aqpcqaH7oaBkmaaBaaaleaajugW aiaadMgaaSqabaGcdaahaaWcbeqaaKqzadGaamizaaaakmaadmaaba qcLbsacaWGlbGcdaWgaaWcbaqcLbmacaWGNbaaleqaaOWaaWbaaSqa beaajugWaiaadkhaaaaakiaawUfacaGLDbaadaGadaqaaKqzGeGaam yCaOWaaSbaaSqaaKqzadGaamyAaaWcbeaakmaaCaaaleqabaqcLbma caWGKbaaaaGccaGL7bGaayzFaaqcLbsacqGHRaWkcqaH7oaBkmaaBa aaleaajugWaiaadMgaaSqabaGcdaahaaqcfayabeaajugWaiaadsga aaGcdaWadaqaaKqzGeGaam4saOWaaSbaaSqaaKqzadGaam4zaaWcbe aakmaaCaaaleqabaqcLbmacaWGKbaaaaGccaGLBbGaayzxaaWaaiWa aeaajugibiaadghakmaaBaaaleaajugWaiaadMgaaSqabaGcdaahaa WcbeqaaKqzadGaamOCaaaaaOGaay5Eaiaaw2haaKqzGeGaey4kaSIa eq4UdWMcdaWgaaWcbaqcLbmacaWGPbaaleqaaOWaaWbaaKqbagqaba qcLbmacaWGYbaaaOWaamWaaeaajugibiaadUeakmaaBaaaleaajugW aiaadEgaaSqabaGcdaahaaWcbeqaaKqzadGaamizaaaaaOGaay5wai aaw2faamaacmaabaqcLbsacaWGXbGcdaWgaaWcbaqcLbmacaWGPbaa leqaaOWaaWbaaSqabeaajugWaiaadsgaaaaakiaawUhacaGL9baaaa a@9EB4@ (20)

Eq. 19 is the deterministic equation relating to the mean eigenvalues and corresponding mean eigenvectors, which can be determined by conventional eigensolution procedures (eq. 20) is the random equation, defining the stochastic nature of the thermal buckling which cannot be solved using conventional method. For this a further analysis is required.

{ q i d } T [ K g d ] { q i d } = δ i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacaWGXbWcdaqhaaqcbasaaKqzadGaamyAaaWcbaqcLbmacaWG KbaaaaqcfaOaay5Eaiaaw2haaOWaaWbaaKqbagqajuaibaqcLbmaca WGubaaaOWaamWaaKqbagaajugibiaadUealmaaDaaajeaybaqcLbma caWGNbaajeaybaqcLbmacaWGKbaaaaqcfaOaay5waiaaw2faaOWaai WaaKqbagaajugibiaadghalmaaDaaabaqcLbmacaWGPbaaleaajugW aiaadsgaaaaajuaGcaGL7bGaayzFaaqcLbsacqGH9aqpcqaH0oazkm aaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaaaaa@5CBA@ (21)

{ q i d } T [ K d ] { q i d } = δ i j λ i d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacaWGXbWcdaqhaaqaaKqzadGaamyAaaWcbaqcLbmacaWGKbaa aaqcfaOaay5Eaiaaw2haaOWaaWbaaKqbagqabaqcLbmacaWGubaaaO WaamWaaKqbagaajugibiaadUeakmaaCaaajuaGbeqaaKqzadGaamiz aaaaaKqbakaawUfacaGLDbaakmaacmaajuaGbaqcLbsacaWGXbWcda WgaaqcfayaaKqzadGaamyAaaqcfayabaWcdaahaaqcfayabeaajugW aiaadsgaaaaajuaGcaGL7bGaayzFaaqcLbsacqGH9aqpcqaH0oazkm aaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaqcLbsacqaH7oaB lmaaBaaajuaGbaqcLbmacaWGPbaajuaGbeaalmaaCaaajuaGbeqaaK qzadGaamizaaaaaaa@6445@ , (22) ( i , j ) = 1 , 2 , . . . , p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqcLb sacaWGPbGaaiilaiaadQgaaOGaayjkaiaawMcaaKqzGeGaeyypa0Ja aGymaiaacYcacaaMe8UaaGOmaiaacYcacaaMe8UaaiOlaiaaysW7ca GGUaGaaGjbVlaac6cacaGGSaGaamiCaaaa@48F2@

Where δ i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azjuaGdaWgaaqaaKqzadGaamyAaiaadQgaaKqbagqaaaaa@3C72@ is the Kronecker delta.

The eigenvectors, which meet orthogonality, conditions after being properly, normalized form a complete orthonormal set and any vector in the space can be expressed as their linear combination of these eigenvectors. Hence, the ith random part of the eigenvectors can be expressed as

{ q i r } = j = 1 p C i j r { q i d } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacaWGXbWcdaWgaaqcfayaaKqzadGaamyAaaqcfayabaWcdaah aaqcfayabeaajugWaiaadkhaaaaajuaGcaGL7bGaayzFaaqcLbsacq GH9aqpkmaaqahajuaGbaqcLbsacaWGdbGcdaWgaaqcfasaaKqzadGa amyAaiaadQgaaKqbagqaaOWaaWbaaKqbagqajuaibaqcLbmacaWGYb aaaaqcfasaaKqzadGaamOAaiabg2da9iaaigdaaKqbGeaajugWaiaa dchaaKqzGeGaeyyeIuoakmaacmaajuaGbaqcLbsacaWGXbGcdaWgaa qcfasaaKqzadGaamyAaaqcfayabaGcdaahaaqcfayabKqbGeaajugW aiaadsgaaaaajuaGcaGL7bGaayzFaaaaaa@5F75@ , i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai abgcMi5kaadQgaaaa@3A1B@ , C i i r = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO WaaSbaaKqbGeaajugWaiaadMgacaWGPbaajuaGbeaakmaaCaaajuaG beqcfasaaKqzadGaamOCaaaajugibiabg2da9iaaicdaaaa@408C@ , i=1, 2, …. , p

(23)

Where C i j r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO WaaSbaaKqbGeaajugWaiaadMgacaWGQbaajuaGbeaakmaaCaaajuaG beqcfasaaKqzadGaamOCaaaaaaa@3E3E@ ’s are small random coefficients to be determined.

Substituting eq. 23 in eq. 20, premultiplying, the first by { q i d } T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaaba qcLbsacaWGXbWcdaWgaaqcfasaaKqzadGaamyAaaqcfasabaWcdaah aaqcfasabeaajugWaiaadsgaaaaajuaGcaGL7bGaayzFaaWcdaahaa qcfayabeaajugWaiaadsfaaaaaaa@42B2@ and second by { q j d } T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacaWGXbWcdaWgaaqcfasaaKqzadGaamOAaaqcfasabaWcdaah aaqcfasabeaajugWaiaadsgaaaaajuaGcaGL7bGaayzFaaWcdaahaa qcfayabeaajugWaiaadsfaaaaaaa@4293@ , ( j i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaajaayba qcLbsacaWGQbGaeyiyIKRaamyAaaqcaaMaayjkaiaawMcaaaaa@3C76@ respectively and making use of orthogonality (eq. 22), one obtains as

λ i r = { q i d } T [ K r ] { q i d } λ i d { q i d } T [ K g r ] { q i d } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW 2cdaWgaaqcfasaaKqzadGaamyAaaqcfasabaWcdaahaaqcfasabeaa jugWaiaadkhaaaqcLbsacqGH9aqpkmaacmaajuaGbaqcLbsacaWGXb WcdaWgaaqcfasaaKqzadGaamyAaaqcfasabaWcdaahaaqcfasabeaa jugWaiaadsgaaaaajuaGcaGL7bGaayzFaaGcdaahaaqcfayabKqbGe aajugWaiaadsfaaaGcdaWadaqcfayaaKqzGeGaam4saSWaaWbaaKqb GeqabaqcLbmacaWGYbaaaaqcfaOaay5waiaaw2faaOWaaiWaaKqbag aajugibiaadghalmaaBaaajuaibaqcLbmacaWGPbaajuaibeaalmaa CaaajuaibeqaaKqzadGaamizaaaaaKqbakaawUhacaGL9baajugibi abgkHiTiabeU7aSTWaaSbaaKqbGeaajugWaiaadMgaaKqbGeqaaSWa aWbaaKqbGeqabaqcLbmacaWGKbaaaOWaaiWaaKqbagaajugibiaadg halmaaBaaajuaibaqcLbmacaWGPbaajuaibeaalmaaCaaajuaibeqa aKqzadGaamizaaaaaKqbakaawUhacaGL9baakmaaCaaajuaGbeqcfa saaKqzadGaamivaaaakmaadmaajuaGbaqcLbsacaWGlbWcdaWgaaqc fasaaKqzadGaam4zaaqcfasabaWcdaahaaqcfasabeaajugWaiaadk haaaaajuaGcaGLBbGaayzxaaGcdaGadaqcfayaaKqzGeGaamyCaSWa aSbaaKqbGeaajugWaiaadMgaaKqbGeqaaSWaaWbaaKqbGeqabaqcLb macaWGKbaaaaqcfaOaay5Eaiaaw2haaaaa@8560@ (24)

C i j r = { q j d } [ K r ] { q i d } λ i d { q j d } [ K g r ] { q i d } ( λ i d λ j d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaS WaaSbaaKqbGeaajugWaiaadMgacaWGQbaajuaibeaalmaaCaaajuai beqaaKqzadGaamOCaaaajugibiabg2da9OWaaSaaaKqbagaakmaacm aajuaGbaqcLbsacaWGXbWcdaWgaaqcfasaaKqzadGaamOAaaqcfasa baWcdaahaaqcfasabeaajugWaiaadsgaaaaajuaGcaGL7bGaayzFaa GcdaWadaqcfayaaKqzGeGaam4saOWaaWbaaKqbagqajuaibaqcLbma caWGYbaaaaqcfaOaay5waiaaw2faaOWaaiWaaKqbagaajugibiaadg halmaaBaaajuaibaqcLbmacaWGPbaajuaibeaalmaaCaaajuaibeqa aKqzadGaamizaaaaaKqbakaawUhacaGL9baajugibiabgkHiTiabeU 7aSTWaaSbaaKqbGeaajugWaiaadMgaaKqbGeqaaSWaaWbaaKqbGeqa baqcLbmacaWGKbaaaOWaaiWaaKqbagaajugibiaadghalmaaBaaaju aibaqcLbmacaWGQbaajuaibeaalmaaCaaajuaibeqaaKqzadGaamiz aaaaaKqbakaawUhacaGL9baakmaadmaajuaGbaqcLbsacaWGlbWcda WgaaqcfasaaKqzadGaam4zaaqcfasabaWcdaahaaqcfasabeaajugW aiaadkhaaaaajuaGcaGLBbGaayzxaaGcdaGadaqcfayaaKqzGeGaam yCaSWaaSbaaKqbGeaajugWaiaadMgaaKqbGeqaaSWaaWbaaKqbGeqa baqcLbmacaWGKbaaaaqcfaOaay5Eaiaaw2haaaqaaOWaaeWaaKqbag aajugibiabeU7aSTWaaSbaaKqbGeaajugWaiaadMgaaKqbGeqaaSWa aWbaaKqbGeqabaqcLbmacaWGKbaaaKqzGeGaeyOeI0Iaeq4UdW2cda WgaaqcfasaaKqzadGaamOAaaqcfasabaWcdaahaaqcfasabeaajugW aiaadsgaaaaajuaGcaGLOaGaayzkaaaaaaaa@930B@ ,
(25)

Substituting eq. 25 into eq. 23, we obtain

{ q i r } = j = 1 p { q i d } { q j d } T [ K r ] { q i d } λ i d { q j d } T [ K g r ] { q i d } λ i d λ j d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaajuaGba qcLbsacaWGXbWcdaWgaaqcfasaaKqzadGaamyAaaqcfasabaWcdaah aaqcfasabeaajugWaiaadkhaaaaajuaGcaGL7bGaayzFaaqcLbsacq GH9aqpkmaaqahajuaGbaGcdaGadaqcfayaaKqzGeGaamyCaSWaaSba aKqbGeaajugWaiaadMgaaKqbGeqaaSWaaWbaaKqbGeqabaqcLbmaca WGKbaaaaqcfaOaay5Eaiaaw2haaaqcfasaaKqzadGaamOAaiabg2da 9iaaigdaaKqbGeaajugWaiaadchaaKqzGeGaeyyeIuoakmaalaaaju aGbaGcdaGadaqcfayaaKqzGeGaamyCaSWaaSbaaKqbGeaajugWaiaa dQgaaKqbGeqaaSWaaWbaaKqbGeqabaqcLbmacaWGKbaaaaqcfaOaay 5Eaiaaw2haaOWaaWbaaKqbagqajuaibaqcLbmacaWGubaaaOWaamWa aKqbagaajugibiaadUeakmaaCaaajuaGbeqcfasaaKqzadGaamOCaa aaaKqbakaawUfacaGLDbaakmaacmaajuaGbaqcLbsacaWGXbWcdaWg aaqcfasaaKqzadGaamyAaaqcfasabaWcdaahaaqcfasabeaajugWai aadsgaaaaajuaGcaGL7bGaayzFaaqcLbsacqGHsislcqaH7oaBlmaa BaaajuaibaqcLbmacaWGPbaajuaibeaalmaaCaaajuaibeqaaKqzad GaamizaaaakmaacmaajuaGbaqcLbsacaWGXbWcdaWgaaqcfasaaKqz adGaamOAaaqcfasabaWcdaahaaqcfasabeaajugWaiaadsgaaaaaju aGcaGL7bGaayzFaaGcdaahaaqcfayabKqbGeaajugWaiaadsfaaaGc daWadaqcfayaaKqzGeGaam4saSWaaSbaaKqbGeaajugWaiaadEgaaK qbGeqaaSWaaWbaaKqbGeqabaqcLbmacaWGYbaaaaqcfaOaay5waiaa w2faaOWaaiWaaKqbagaajugibiaadghalmaaBaaajuaibaqcLbmaca WGPbaajuaibeaalmaaCaaajuaibeqaaKqzadGaamizaaaaaKqbakaa wUhacaGL9baaaeaajugibiabeU7aSTWaaSbaaKqbGeaajugWaiaadM gaaKqbGeqaaSWaaWbaaKqbGeqabaqcLbmacaWGKbaaaKqzGeGaeyOe I0Iaeq4UdW2cdaWgaaqcfasaaKqzadGaamOAaaqcfasabaWcdaahaa qcfasabeaajugWaiaadsgaaaaaaaaa@AC66@ , i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacqGHGj sUcaWGQbaaaa@398C@ (26)

For the present case λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW gaaa@382B@ , { q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacaWGXbaakiaawUhacaGL9baaaaa@39A8@ , [ K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGlbaakiaawUfacaGLDbaaaaa@3943@ and [ K g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGlbGcdaWgaaqcbasaaKqzadGaam4zaaWcbeaaaOGaay5waiaa w2faaaaa@3BBD@ are random because of random geometric and material properties. Let b 1 R , b 2 R , b 3 R ... , b q R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GcdaqhaaqcfauaaKqzadGaaGymaaqcfayaaKqzadGaamOuaaaajugi biaacYcacaWGIbGcdaqhaaqcfauaaKqzadGaaGOmaaqcfauaaKqzad GaamOuaaaajugibiaacYcacaWGIbGcdaqhaaqcfauaaKqzadGaaG4m aaqcfauaaKqzadGaamOuaaaajugibiaac6cacaGGUaGaaiOlaiaacY cacaWGIbGcdaqhaaqcfauaaKqzadGaamyCaaqcfauaaKqzadGaamOu aaaaaaa@5550@ denote random variables (system properties).

The FEM in conjunction with FOPT has been found to be accurate and efficient [31-33]. According to this method, the random variables are expressed by Taylor’s series expansion. The expression only up to the first-order terms and neglecting the second- and higher-order terms are

λ i r = j = 1 p λ i d , j h j r ; { q i r } = j = 1 p { q i d , j } h j r ; [ K r ] = j = 1 p [ K d , j ] h j r ; [ K g r ] = j = 1 p [ K g d , j ] h j r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq aH7oaBlmaaBaaajuaibaqcLbmacaWGPbaajuaibeaalmaaCaaajuai beqaaKqzadGaamOCaaaajugibiabg2da9KqbaoaaqahabaqcLbsacq aH7oaBlmaaBaaajuaibaqcLbmacaWGPbaajuaibeaalmaaDaaajuai baaabaqcLbmacaWGKbaaaiaacYcajuaGdaWgaaqaaKqzGeGaamOAaa qcfayabaaajuaibaqcLbmacaWGQbGaeyypa0JaaGymaaqcfasaaKqz adGaamiCaaqcLbsacqGHris5aiaadIgalmaaBaaajuaibaqcLbmaca WGQbaajuaibeaalmaaCaaajuaibeqaaKqzadGaamOCaaaajugibiaa cUdacaaMe8UaaGjbVlaaysW7juaGdaGadaqaaKqzGeGaaGjbVlaadg halmaaBaaajuaibaqcLbmacaWGPbaajuaibeaalmaaCaaajuaibeqa aKqzadGaamOCaaaaaKqbakaawUhacaGL9baajugibiabg2da9Kqbao aaqahabaWaaiWaaeaajugibiaadghajuaGdaWgaaqcfasaaKqzadGa amyAaaqcfayabaWaaWbaaeqajuaibaqcLbmacaWGKbaaaKqbaoaaBa aabaqcLbsacaGGSaaajuaGbeaadaWgaaqaaKqzGeGaamOAaaqcfaya baaacaGL7bGaayzFaaaajuaibaqcLbmacaWGQbGaeyypa0JaaGymaa qcfasaaKqzadGaamiCaaqcLbsacqGHris5aiaadIgalmaaBaaajuai baqcLbmacaWGQbaajuaibeaalmaaCaaajuaibeqaaKqzadGaamOCaa aajugibiaacUdacaaMe8UaaGjbVlaaysW7aOqaaKqzGeGaaGjbVNqb aoaadmaabaqcLbsacaWGlbqcfa4aaWbaaeqajuaibaqcLbmacaWGYb aaaaqcfaOaay5waiaaw2faaKqzGeGaeyypa0tcfa4aaabCaeaadaWa daqaaKqzGeGaam4saKqbaoaaCaaabeqaaKqzGeGaamizaaaajuaGda WgaaqaaKqzGeGaaiilaaqcfayabaWaaSbaaeaajugibiaadQgaaKqb agqaaaGaay5waiaaw2faaaqcfasaaKqzadGaamOAaiabg2da9iaaig daaKqbGeaajugWaiaadchaaKqzGeGaeyyeIuoacaWGObqcfa4aaSba aKqbGeaajugWaiaadQgaaKqbagqaamaaCaaabeqcfasaaKqzadGaam OCaaaajugibiaacUdacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVNqb aoaadmaabaqcLbsacaWGlbWcdaWgaaqcfasaaKqzadGaam4zaaqcfa sabaWcdaahaaqcfasabeaajugWaiaadkhaaaaajuaGcaGLBbGaayzx aaqcLbsacqGH9aqpjuaGdaaeWbqaamaadmaabaqcLbsacaWGlbqcfa 4aaSbaaKqbGeaajugWaiaadEgaaKqbagqaamaaCaaabeqcfasaaKqz adGaamizaaaajuaGdaWgaaqaaKqzGeGaaiilaaqcfayabaWaaSbaae aajugibiaadQgaaKqbagqaaaGaay5waiaaw2faaaqcfasaaKqzadGa amOAaiabg2da9iaaigdaaKqbGeaajugWaiaadchaaKqzGeGaeyyeIu oacaWGObWcdaWgaaqcfasaaKqzadGaamOAaaqcfasabaWcdaahaaqc fasabeaajugWaiaadkhaaaaaaaa@E834@ (27)

Where (, j) denotes the partial differentiation with respect to b j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaaaaa@3A6D@ .

On substitution of eq. 27 into eq. 24, one obtain as

λ i , d j = { q i d } T [ K d , j ] { q i d } λ i d { q i d } T [ K g d , j ] { q i d } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW McdaWgaaqcfasaaKqzadGaamyAaaqcfayabaGcdaqhaaqcfayaaKqz GeGaaiilaaqcfasaaKqzadGaamizaaaakmaaBaaajuaibaqcLbmaca WGQbaajuaGbeaajugibiabg2da9OWaaiWaaKqbagaajugibiaadgha kmaaBaaajuaibaqcLbmacaWGPbaajuaGbeaakmaaCaaajuaGbeqcfa saaKqzadGaamizaaaaaKqbakaawUhacaGL9baakmaaCaaajuaGbeqc fasaaKqzadGaamivaaaakmaadmaajuaGbaqcLbsacaWGlbGcdaahaa qcfayabKqbGeaajugWaiaadsgaaaGcdaWgaaqcfayaaKqzGeGaaiil aaqcfayabaGcdaWgaaqcfayaaKqzGeGaamOAaaqcfayabaaacaGLBb GaayzxaaGcdaGadaqcfayaaKqzGeGaamyCaOWaaSbaaKGbGeaajugW aiaadMgaaKGbagqaaOWaaWbaaKGbagqajyaibaqcLbmacaWGKbaaaa qcfaOaay5Eaiaaw2haaKqzGeGaeyOeI0Iaeq4UdWMcdaWgaaqcfasa aKqzadGaamyAaaqcfayabaGcdaahaaqcfayabKqbGeaajugWaiaads gaaaGcdaGadaqcfayaaKqzGeGaamyCaOWaaSbaaKqbGeaajugWaiaa dMgaaKqbagqaaOWaaWbaaKqbagqajuaibaqcLbmacaWGKbaaaaqcfa Oaay5Eaiaaw2haaOWaaWbaaKqbagqajuaibaqcLbmacaWGubaaaOWa amWaaKqbagaajugibiaadUeakmaaBaaajuaibaqcLbmacaWGNbaaju aGbeaakmaaCaaajuaGbeqcfasaaKqzadGaamizaaaakmaaBaaajuaG baqcLbsacaGGSaaajuaGbeaakmaaBaaajuaibaqcLbmacaWGQbaaju aGbeaaaiaawUfacaGLDbaakmaacmaajuaGbaqcLbsacaWGXbGcdaWg aaqcfasaaKqzadGaamyAaaqcfayabaGcdaahaaqcfayabKqbGeaaju gWaiaadsgaaaaajuaGcaGL7bGaayzFaaaaaa@9A37@ (28)

The variance of the eigenvalues can now be expressed as [21]

V a r ( λ i ) = j = 1 q k = 1 q λ i , j d λ i , k d C o v ( b j r , b k r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvai aadggacaWGYbGcdaqadaqcfayaaKqzGeGaeq4UdWMcdaWgaaqcfasa aKqzadGaamyAaaqcfayabaaacaGLOaGaayzkaaqcLbsacqGH9aqpkm aaqahajuaGbaGcdaaeWbqcfayaaKqzGeGaeq4UdWMcdaqhaaqcfasa aKqzadGaamyAaiaacYcacaWGQbaajuaibaqcLbmacaWGKbaaaaqcfa saaKqzadGaam4Aaiabg2da9iaaigdaaKqbGeaajugWaiaadghaaKqz GeGaeyyeIuoaaKqbGeaajugWaiaadQgacqGH9aqpcaaIXaaajuaiba qcLbmacaWGXbaajugibiabggHiLdGaeq4UdWMcdaqhaaqcfasaaKqz adGaamyAaiaacYcacaWGRbaajuaibaqcLbmacaWGKbaaaKqzGeGaam 4qaiaad+gacaWG2bGcdaqadaqcfayaaKqzGeGaamOyaOWaaSbaaKqb GeaajugWaiaadQgaaKqbagqaaOWaaWbaaKqbagqajuaibaqcLbmaca WGYbaaaKqzGeGaaiilaiaadkgakmaaBaaajuaibaqcLbmacaWGRbaa juaGbeaakmaaCaaajuaGbeqcfasaaKqzadGaamOCaaaaaKqbakaawI cacaGLPaaaaaa@7BEA@ (29)

Where C o v ( b j r , b k r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qai aad+gacaWG2bGcdaqadaqcfayaaKqzGeGaamOyaOWaaSbaaKqbGeaa jugWaiaadQgaaKqbagqaaOWaaWbaaKqbagqajuaibaqcLbmacaWGYb aaaKqzGeGaaiilaiaadkgakmaaBaaajuaibaqcLbmacaWGRbaajuaG beaakmaaCaaajuaGbeqcfasaaKqzadGaamOCaaaaaKqbakaawIcaca GLPaaaaaa@4B9C@ is the covariance between b j r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOyaS WaaSbaaKqbGeaajugWaiaadQgaaKqbGeqaaSWaaWbaaKqbGeqabaqc LbmacaWGYbaaaaaa@3C83@ and b k r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOyaS WaaSbaaKqbGeaajugWaiaadUgaaKqbGeqaaSWaaWbaaKqbGeqabaqc LbmacaWGYbaaaaaa@3C84@ . The standard deviation (SD) is obtained by the square root of the variance.

Numerical examples and discussion

In present work a program in mat lab has been developed to find out Second-order statistics of the thermal buckling and thermal post buckling temperature for laminated composite plates subjected to uniform temperature (U.T.) distribution and combined uniform temperature with linearly varying temperature along transverse direction (T. T) and non-uniform tent like temperature distribution with random system properties. A nine noded Lagrange isoparamatric element with 63 DOFs per element for the present HSDT model has been used for discretizing the laminate and (5×5) mesh has been used throughout the study. The mean and standard deviation of the thermal buckling temperature are obtained considering the random material input variables, thermal expansion coefficients, foundation parameters and lamina plate thickness taking combined as well as separately as basic random variables (RVs) as stated earlier. However, the results are only presented taking SD/mean of the system property equal to 0.10 as the nature of the SD (Standard deviation) variation is linear and passing through the origin. However the obtained results revealed that the stochastic approach would be valid upto SD/mean=0.20 [32]. Moreover, the presented results would be sufficient to extrapolate the results for other SD/mean value keeping in mind the limitation of the FOPT. The basic random variables such as E1, E2, G12, G13, G23, υ12, α1, α2, k1, k2, and h are sequenced and defined as

b 1 = E 11 , b 2 = E 22 , b 3 = G 12 , b 4 = G 13 , b 5 = G 23 , b 6 = ν 12 , b 7 = α 1 , b 8 = α 2 , b 9 = k 1 , b 10 = k 10 , b 11 = h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadkgakmaaBaaajuaibaqcLbmacaaIXaaajuaGbeaajugibiabg2da 9iaadweakmaaBaaajuaibaqcLbmacaaIXaGaaGymaaqcfayabaqcLb sacaGGSaGaaGjbVlaaysW7caaMe8UaamOyaOWaaSbaaKqbGeaajugW aiaaikdaaKqbagqaaKqzGeGaeyypa0JaamyraOWaaSbaaKqbGeaaju gWaiaaikdacaaIYaaajuaGbeaajugibiaacYcacaaMe8UaaGjbVlaa ysW7caWGIbGcdaWgaaqcfasaaKqzadGaaG4maaqcfayabaqcLbsacq GH9aqpcaWGhbGcdaWgaaqcfasaaKqzadGaaGymaiaaikdaaKqbagqa aKqzGeGaaiilaiaaysW7caaMe8UaaGjbVlaadkgakmaaBaaajuaiba qcLbmacaaI0aaajuaGbeaajugibiabg2da9iaadEeakmaaBaaajuai baqcLbmacaaIXaGaaG4maaqcfayabaqcLbsacaGGSaGaaGjbVlaays W7caaMe8UaamOyaOWaaSbaaKqbGeaajugWaiaaiwdaaKqbagqaaKqz GeGaeyypa0Jaam4raOWaaSbaaSqaaKqzadGaaGOmaiaaiodaaSqaba qcLbsacaGGSaGaaGjbVlaaysW7caaMe8UaamOyaOWaaSbaaKqbGeaa jugWaiaaiAdaaKqbagqaaKqzGeGaaGjbVlabg2da9iaaysW7cqaH9o GBkmaaBaaajuaibiqaaOL=jugWaiaaigdacaaIYaaajuaGbeaajugi biaacYcacaaMe8UaaGjbVlaaysW7caWGIbGcdaWgaaqcfasaaKqzad GaaG4naaqcfayabaqcLbsacaaMe8Uaeyypa0JaaGjbVlabeg7aHPWa aSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGaaiilaiaaysW7ca aMe8UaaGjbVlaaygW7caWGIbGcdaWgaaqcfasaaKqzadGaaGioaaqc fayabaqcLbsacaaMe8Uaeyypa0JaaGjbVlabeg7aHPWaaSbaaKqbGe aajugWaiaaikdaaKqbagqaaKqzGeGaaiilaiaaysW7aOqaaKqzGeGa aGjbVlaaysW7caWGIbGcdaWgaaqcfasaaKqzadGaaGyoaaqcfayaba qcLbsacaaMe8Uaeyypa0JaaGjbVlaadUgakmaaBaaajuaibaqcLbma caaIXaaajuaGbeaajugibiaacYcacaaMe8UaaGjbVlaadkgakmaaBa aajuaibaqcLbmacaaIXaGaaGimaaqcfayabaqcLbsacaaMe8Uaeyyp a0JaaGjbVlaadUgakmaaBaaajuaibaqcLbmacaaIXaGaaGimaaqcfa yabaqcLbsacaGGSaGaaGjbVlaaysW7caWGIbGcdaWgaaqcfasaaKqz adGaaGymaiaaigdaaKqbagqaaKqzGeGaaGjbVlabg2da9iaaysW7ca WGObaaaaa@ED1A@

The following dimensionless thermal buckling temperature, foundation parameters and post buckling temperature have been used in this study.

T c r = λ c r T α o 1000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Jh9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GcdaWgaaqcfayaaKqzadGaam4yaiaadkhaaKqbagqaaKqzGeGaeyyp a0Jaeq4UdWMcdaWgaaqcfayaaKqzadGaam4yaiaadkhaaKqbagqaaK qzGeGaamivaiabeg7aHPWaaSbaaKqbagaajugWaiaad+gaaKqbagqa aKqzGeGaey4fIOIaaGymaiaaicdacaaIWaGaaGimaaaa@4E39@ ; k 1 = K 1 b / E 22 h 3 ; k 2 = K 2 b 2 / E 23 h 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Jh9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb GcdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsacqGH9aqpcaWG lbGcdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsacaWGIbGcda ahaaqcfayabKqbGeaajugWaiaaysW7aaqcLbsacaGGVaGaamyraOWa aSbaaKqbGeaajugWaiaaikdacaaIYaaajuaGbeaajugibiaadIgakm aaCaaajuaGbeqcfasaaKqzadGaaG4maaaajugibiaacUdacaaMe8Ua aGjbVlaadUgakmaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugibi abg2da9iaadUeakmaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugi biaadkgakmaaCaaajuaGbeqcfasaaKqzadGaaGOmaaaajugibiaac+ cacaWGfbGcdaWgaaWcbaqcLbmacaaIYaGaaG4maaWcbeaajugibiaa dIgakmaaCaaajuaGbeqcfasaaKqzadGaaG4maaaaaaa@6978@ ; and T c r = λ c r T α o 1000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Jh9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GcdaWgaaqcfayaaKqzadGaam4yaiaadkhaaKqbagqaaKqzGeGaeyyp a0Jaeq4UdWMcdaWgaaqcfayaaKqzadGaam4yaiaadkhaaKqbagqaaK qzGeGaamivaiabeg7aHPWaaSbaaKqbagaajugWaiaad+gaaKqbagqa aKqzGeGaey4fIOIaaGymaiaaicdacaaIWaGaaGimaaaa@4E39@

where λ c r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBkmaaBaaajuaqbaqcLbmacaWGJbGaamOCaaqcfayabaaaaa@3E53@ , α 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHPWaaSbaaSqaaKqzadGaaGimaaWcbeaaaaa@3C73@ , T, k1 and k2 are the dimensional mean thermal buckling load, the initial thermal expansion coefficient and the initial guessed temperature, Dimensionless Winkler and Pasternak foundation parameters, and λ c r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBkmaaBaaajuaqbaqcLbmacaWGJbGaamOCaaqcfayabaaaaa@3E53@ , α 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crpepeea0xh9q8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHPWaaSbaaSqaaKqzadGaaGimaaWcbeaaaaa@3C73@ and T, are dimensionless mean thermal post buckling temperature, initial thermal expansion coefficient and the initial guessed dimensionless temperature (980) applied in x and y direction respectively. In the present study various combination of edge support conditions such as all edges simply support conditions (SSSS) (S1 and S2), Clamped conditions (CCCC) and simply support and clamped condition (CSCS) have been used for the analysis .

The following relative numerical values and relationship between the mean valves of the material properties and thermal expansion coefficients for graphite/epoxy composite have been used in the present investigation.

E 11 d = 5.0 E 22 d ,   G 12 d = G 13 d = 0.6 E 22 d ,   G 23 d = 0.5 E 22 d ,   ν 12 d = 0.25 , α 1 d = α 0 d ,   α 2 d / α 1 d = 2 * α o ,   α 0 d = 1 * 10 - 6 ,   E 22 d = 1 * 10 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadweakmaaDaaajyaGbaqcLbmacaaIXaGaaGymaaqcgayaaKqzadGa amizaaaajugibiabg2da9iaaiwdacaGGUaGaaGimaiaadwealmaaDa aajuaibaqcLbmacaaIYaGaaGOmaaqcfasaaKqzadGaamizaaaajugi biaacYcacaqGGaGaam4raSWaa0baaKqbGeaajugWaiaaigdacaaIYa aajuaibaqcLbmacaWGKbaaaKqzGeGaeyypa0Jaam4raSWaa0baaKqb GeaajugWaiaaigdacaaIZaaajuaibaqcLbmacaWGKbaaaKqzGeGaey ypa0JaaGimaiaac6cacaaI2aGaamyraSWaa0baaKqbGeaajugWaiaa ikdacaaIYaaajuaibaqcLbmacaWGKbaaaKqzGeGaaiilaiaabccaca WGhbWcdaqhaaqcfasaaKqzadGaaGOmaiaaiodaaKqbGeaajugWaiaa dsgaaaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaiwdacaWGfbWcdaqhaa qcfasaaKqzadGaaGOmaiaaikdaaKqbGeaajugWaiaadsgaaaqcLbsa caGGSaGaaeiiaiabe27aUTWaa0baaKqbGeaajugWaiaaigdacaaIYa aajuaibaqcLbmacaWGKbaaaKqzGeGaeyypa0JaaGimaiaac6cacaaI YaGaaGynaiaacYcaaOqaaKqzGeGaeqySde2cdaqhaaqcfasaaKqzad GaaGymaaqcfasaaKqzadGaamizaaaajugibiabg2da9iabeg7aHPWa a0baaKqbGeaajugWaiaaicdaaKqbGeaajugWaiaadsgaaaGcdaWgaa qcfayaaKqzGeGaaiilaaqcfayabaqcLbsacaqGGaGcdaWcgaqcfaya aKqzGeGaeqySdeMcdaqhaaqcfasaaKqzadGaaGOmaaqcfasaaKqzad GaamizaaaaaKqbagaajugibiabeg7aHPWaa0baaKqbGeaajugWaiaa igdaaKqbGeaajugWaiaadsgaaaaaaKqzGeGaeyypa0JaaGOmaiaacQ cacqaHXoqylmaaBaaajuaibaqcLbmacaWGVbGaaiilaaqcfasabaqc LbsacaqGGaGaeqySde2cdaqhaaqcfasaaKqzadGaaGimaaqcfasaaK qzadGaamizaaaajugibiabg2da9iaaigdacaGGQaGaaGymaiaaicda kmaaCaaajuaGbeqaaKqzadGaaiylaiaaiAdaaaqcLbsacaGGSaGaae iiaiaadwealmaaDaaajuaibaqcLbmacaaIYaGaaGOmaaqcfasaaKqz adGaamizaaaajugibiabg2da9iaaigdacaGGQaGaaGymaiaaicdakm aaCaaajuaGbeqcfasaaKqzadGaaGynaaaajugibiaac6caaaaa@C8BB@

The plate geometry supported with elastic foundation used is characterized by various aspect ratios, side to thickness ratios, lamination scheme and number of layers.

The plate geometry used is characterized by aspect ratios (a/b) = 1 and 2, side to thickness ratios (a/h) = 20, 30, 40, 50, 60, 80 and 100. The only exception is the Poisson’s ratio, which can reasonably be assumed as constant deterministic due to weakly dependency on temperature change. The relation among elastic constants for the plate having all plies of equal thickness and temperature dependent material properties is given as [12,13]. For the temperature independent material properties (TID) E 111 , E 221 , G 121 , G 131 , G 231 , α 111 a n d α 221 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGym aiaaigdaaSWdaeqaaKqzGeWdbiaacYcacaWGfbqcfa4damaaBaaaje aibaqcLbmapeGaaGOmaiaaikdacaaIXaaal8aabeaajugib8qacaGG SaGaam4raKqba+aadaWgaaqcbasaaKqzadWdbiaaigdacaaIYaGaaG ymaaWcpaqabaqcLbsapeGaaiilaiaadEeajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaG4maiaaigdaaSWdaeqaaKqzGeWdbiaacYcaca WGhbqcfa4damaaBaaajeaibaqcLbmapeGaaGOmaiaaiodacaaIXaaa l8aabeaajugib8qacaGGSaGaeqySdewcfa4damaaBaaajeaibaqcLb mapeGaaGymaiaaigdacaaIXaaal8aabeaajugib8qacaWGHbGaamOB aiaadsgacqaHXoqyjuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaGaaG OmaiaaigdaaSWdaeqaaaaa@66E8@ quantities are equal to zero. The material properties for non-uniform tent like and parabolic distribution are used as:

Validation study

Validation for mean buckling temperature for composite plate

The dimensionless mean thermal post buckling loads ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGubqcfa4damaaBaaajeaibaqcLbma peGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaakiaawIcacaGLPa aaaaa@3FAC@ of angle-ply ( ± 45 0 ) 2 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqGHXcqScaaI0aGaaGynaKqba+aadaah aaWcbeqcbasaaKqzadWdbiaaicdaaaaak8aacaGLOaGaayzkaaqcfa 4aaSbaaKqaGeaajugWa8qacaaIYaGaamivaaWcpaqabaqcfa4aaSba aSqaaaqabaaaaa@43B6@ square laminated composite plate, temperature independent (TID) and temperature dependent (TD) material properties, without foundations (k1=0, k2=0), subjected to uniform constant temperature rise (U.T), ( T c r l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacaWGubqcLbmacaWGJbGaamOCaiaadYgajugib8aa caGGPaaaaa@3D73@ - linear solution , plate thickness ratio (a/h)=30, amplitude ratios ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ with simply supported (S2) boundary conditions are compared for validation in Figure 4 with the results of available literature given in Shen [8]. Clearly, it is seen that the present results are in good agreement. The difference of the two results is due to the HSDT employed in present result whereas semi analytical approach used by Shen [12].

The dimensionless mean thermal post buckling load of angle-ply ( ± 45 0 ) 6 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqGHXcqScaaI0aGaaGynaKqba+aadaah aaWcbeqcbasaaKqzadWdbiaaicdaaaaak8aacaGLOaGaayzkaaqcfa 4aaSbaaKqaGeaajugWa8qacaaI2aGaamivaaWcpaqabaaaaa@4300@ square laminated composite thin plate with temperature-dependent thermo material properties and subjected to uniform temperature rise. Amplitude ratio ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ , random input variables E 111 ( 0.0 , 0.5 x 10 4 ,   0.2 x 10 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaSqaaKqzadWdbiaaigdacaaIXaGa aGymaaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaaicdacaGGUaGaaG imaiaacYcacqGHsislcaaIWaGaaiOlaiaaiwdacaWG4bGaaGymaiaa icdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqGHsislcaaI0aaaaK qzGeGaaiilaiaabccacqGHsislcaaIWaGaaiOlaiaaikdacaWG4bGa aGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqGHsislca aIZaaaaaGcpaGaayjkaiaawMcaaaaa@561C@ where E111 is assumed to be function of temperature, plate thickness ratio (a/h) =100. Material properties are

E 110 /   E 220 = 40 , G 120 / E 220 = G 130 /   E 220 = 0.2 , υ 12 = 0.25 ,   α 110 = α 220 = 1.0 x 10 6 / 0 C , E 221 = G 121 = G 131 = G 231 = α 111 = α 221 =   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaiGc9yrVq0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaqa aaaaaaaaWdbiaadweak8aadaWgaaqcbauaaKqzadWdbiaaigdacaaI XaGaaGimaaWcpaqabaqcLbsapeGaai4laiaabccacaWGfbGcpaWaaS baaKqaafaajugWa8qacaaIYaGaaGOmaiaaicdaaSWdaeqaaKqzGeWd biabg2da9iaaisdacaaIWaGaaiilaiaadEeak8aadaWgaaqcbauaaK qzadWdbiaaigdacaaIYaGaaGimaaWcpaqabaqcLbsapeGaai4laiaa dweak8aadaWgaaqcbauaaKqzadWdbiaaikdacaaIYaGaaGimaaWcpa qabaqcLbsapeGaeyypa0Jaam4raOWdamaaBaaajeaqbaqcLbmapeGa aGymaiaaiodacaaIWaaal8aabeaajugib8qacaGGVaGaaeiiaiaadw eak8aadaWgaaqcbauaaKqzadWdbiaaikdacaaIYaGaaGimaaWcpaqa baqcLbsapeGaeyypa0JaaGimaiaac6cacaaIYaGaaiilaiaaykW7ca aMc8+daiabew8a1PWaaSbaaKqaafaajugWaiaaigdacaaIYaaaleqa aKqzGeGaeyypa0ZdbiaaicdacaGGUaGaaGOmaiaaiwdacaGGSaGaae iiaiabeg7aHPWdamaaBaaajeaqbaqcLbmapeGaaGymaiaaigdacaaI Waaal8aabeaajugib8qacqGH9aqpcqaHXoqyk8aadaWgaaqcbauaaK qzadWdbiaaikdacaaIYaGaaGimaaWcpaqabaqcLbsapeGaeyypa0Ja aGymaiaac6cacaaIWaGaamiEaiaaigdacaaIWaGcpaWaaWbaaSqabK qaafaajugWa8qacqGHsislcaaI2aaaaKqzGeGaai4laOWdamaaCaaa leqabaqcLbsapeGaaGimaaaacaWGdbGaaiilaaGcbaqcLbsacaWGfb GcpaWaaSbaaKqaafaajugWa8qacaaIYaGaaGOmaiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaadEeak8aadaWgaaqcbauaaKqzadWdbiaaig dacaaIYaGaaGymaaWcpaqabaqcLbsapeGaeyypa0Jaam4raOWdamaa BaaajeaqbaqcLbmapeGaaGymaiaaiodacaaIXaaal8aabeaajugib8 qacqGH9aqpcaWGhbGcpaWaaSbaaKqaafaajugWa8qacaaIYaGaaG4m aiaaigdaaSWdaeqaaKqzGeWdbiabg2da9iabeg7aHPWdamaaBaaaje aqbaqcLbmapeGaaGymaiaaigdacaaIXaaal8aabeaakmaaBaaaleaa aeqaaKqzGeWdbiabg2da9iabeg7aHPWdamaaBaaajeaqbaqcLbmape GaaGOmaiaaikdacaaIXaaal8aabeaajugib8qacqGH9aqpcaqGGaGa aGimaaaaaa@B8D9@

with simple support SSSS (S1) boundary conditions are compared for validation in Figure 5. It is observed the present results are good in agreements and validated with semi analytical approach by Shen [12].

The present theoretical model is validated by comparing the mean dimensionless results with those available in literature [9] (Figure 3). Compares the results obtained from present FEM with existing results for a two layer and four layer anti-symmetric [ 45 0 / 45 0 ] a n d [ 45 0 / 45 0 ] 2 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeaeaaaaaaaaa8qacaaI0aGaaGynaKqba+aadaahaaWcbeqc basaaKqzadWdbiaaicdaaaqcLbsacaGGVaGaeyOeI0IaaGinaiaaiw dajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaaGcpaGaay5w aiaaw2faaKqbaoaaBaaaleaaaeqaaKqzGeWdbiaadggacaWGUbGaam izaKqba+aadaWgaaWcbaaabeaajuaGdaWadaGcbaqcLbsapeGaaGin aiaaiwdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGe Gaai4laiabgkHiTiaaisdacaaI1aqcfa4damaaCaaaleqajeaibaqc LbmapeGaaGimaaaaaOWdaiaawUfacaGLDbaajuaGdaWgaaqcbasaaK qzadWdbiaaikdacaWGubaal8aabeaaaaa@5B36@ square laminate, (a/h=20), for all edges CCCC supported boundary condition respectively. The results obtained HSDT are excellent agreement with FSDT results of literature [9].

Figure 3 Validation study for analytical results.

Figure 4 Validation study for analytical results.

Thermal post buckling response of angle-ply ( ± 45 0 ) 6 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqGHXcqScaaI0aGaaGynaKqba+aadaah aaWcbeqcbasaaKqzadWdbiaaicdaaaaak8aacaGLOaGaayzkaaqcfa 4aaSbaaKqaGeaajugWa8qacaaI2aGaamivaaWcpaqabaaaaa@4300@ square laminated composite thin plates with amplitude ratios having temperature-dependent thermo-elastic properties and subjected to a uniform temperature rise with simple support SSSS (S1). Where E111 is assumed to be function of temperature and E 111 =   0.5 x 10 4 , 0.1 x 10 3 a n d 0.2 x 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGym aiaaigdaaSWdaeqaaKqzGeWdbiabg2da9iaabccacqGHsislcaaIWa GaaiOlaiaaiwdacaWG4bGaaGymaiaaicdajuaGpaWaaWbaaSqabKqa GeaajugWa8qacqGHsislcaaI0aaaaKqzGeGaaiilaiabgkHiTiaaic dacaGGUaGaaGymaiaadIhacaaIXaGaaGimaKqba+aadaahaaWcbeqc basaaKqzadWdbiabgkHiTiaaiodaaaqcfa4damaaCaaaleqabaaaaK qzGeWdbiaadggacaWGUbGaamizaiabgkHiTiaaicdacaGGUaGaaGOm aiaadIhacaaIXaGaaGimaKqba+aadaahaaWcbeqcbasaaKqzadWdbi abgkHiTiaaiodaaaqcfa4damaaCaaaleqabaaaaaaa@6088@ respectively, b/h=100, material properties are

Figure 5 Validation study for analytical results.

E 110 /   E 220 =   40 , G 120 / E 220 = G 130 /   E 220 =   0.2 , υ 12 0.25 , α 110 =   α 220 = 1.0 x 10 6 / 0 C , E 221 = G 121 = G 131 = G 231 = α 111 = α 221 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamyraKqba+aadaWgaaWcbaqcLbmapeGaaGymaiaa igdacaaIWaaal8aabeaajugib8qacaGGVaGaaeiiaiaadweajuaGpa WaaSbaaSqaaKqzadWdbiaaikdacaaIYaGaaGimaaWcpaqabaqcLbsa peGaeyypa0JaaeiiaiaaisdacaaIWaGaaiilaiaadEeajuaGpaWaaS baaSqaaKqzadWdbiaaigdacaaIYaGaaGimaaWcpaqabaqcLbsapeGa ai4laiaadweajuaGpaWaaSbaaSqaaKqzadWdbiaaikdacaaIYaGaaG imaaWcpaqabaqcLbsapeGaeyypa0Jaam4raKqba+aadaWgaaWcbaqc LbmapeGaaGymaiaaiodacaaIWaaal8aabeaajugib8qacaGGVaGaae iiaiaadweajuaGpaWaaSbaaSqaaKqzadWdbiaaikdacaaIYaGaaGim aaWcpaqabaqcfa4aaSbaaSqaaaqabaqcLbsapeGaeyypa0Jaaeiiai aaicdacaGGUaGaaGOmaiaacYcacaaMc8UaaGPaVlabew8a1Lqbaoaa BaaabaqcLbmacaaIXaGaaGOmaaqcfayabaqcLbsacaaIWaGaaiOlai aaikdacaaI1aGaaiilaiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGa aGymaiaaigdacaaIWaaal8aabeaajugib8qacqGH9aqpcaqGGaGaeq ySdewcfa4damaaBaaajeaibaqcLbmapeGaaGOmaiaaikdacaaIWaaa l8aabeaajuaGdaWgaaWcbaaabeaajugib8qacqGH9aqpcaaIXaGaai OlaiaaicdacaWG4bGaaGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaa jugWa8qacqGHsislcaaI2aaaaKqzGeGaai4laiaaykW7k8aadaahaa WcbeqcbasaaKqzadWdbiaaicdaaaGccaWGdbqcLbsacaGGSaaakeaa jugibiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaGaaGOmai aaigdaaSWdaeqaaKqbaoaaBaaaleaaaeqaaKqzGeWdbiabg2da9iaa dEeajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGOmaiaaigdaaS WdaeqaaKqzGeWdbiabg2da9iaadEeajuaGpaWaaSbaaKqaGeaajugW a8qacaaIXaGaaG4maiaaigdaaSWdaeqaaKqzGeWdbiabg2da9iaadE eajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaGaaG4maiaaigdaaSWd aeqaaKqzGeWdbiabg2da9iabeg7aHLqba+aadaWgaaqcbasaaKqzad WdbiaaigdacaaIXaGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaeqyS dewcfa4damaaBaaajeaibaqcLbmapeGaaGOmaiaaikdacaaIXaaal8 aabeaajugib8qacqGH9aqpcaaIWaaaaaa@C0D8@

The post buckling temperature results are compared in Figure 6 with9 of FSDT results and13 of HSDT results.

Figure 6 Validation study for analytical results.

Thermal post buckling response of angle-ply ( ± 45 0 ) 6 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqGHXcqScaaI0aGaaGynaKqba+aadaah aaWcbeqcbasaaKqzadWdbiaaicdaaaaak8aacaGLOaGaayzkaaqcfa 4aaSbaaKqaGeaajugWa8qacaaI2aGaamivaaWcpaqabaaaaa@4300@ square laminated composite thin plates with amplitude ratios having temperature-dependent thermo-elastic properties and subjected to a uniform temperature rise with simple support SSSS (S2). Where E111 is assumed to be function of temperature and E 111 = 0.5 x 10 4 , 0.1 x 10 3 a n d 0.2 x 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGym aiaaigdaaSWdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaicdacaGGUa GaaGynaiaadIhacaaIXaGaaGimaKqba+aadaahaaWcbeqcbasaaKqz adWdbiabgkHiTiaaisdaaaqcLbsacaGGSaGaeyOeI0IaaGimaiaac6 cacaaIXaGaamiEaiaaigdacaaIWaqcfa4damaaCaaaleqajeaibaqc LbmapeGaeyOeI0IaaG4maaaajugibiaadggacaWGUbGaamizaiabgk HiTiaaicdacaGGUaGaaGOmaiaadIhacaaIXaGaaGimaKqba+aadaah aaWcbeqcbasaaKqzadWdbiabgkHiTiaaiodaaaqcfa4damaaCaaale qabaaaaaaa@5F0B@ respectively, b/h=100, material properties are

E 110 /   E 220 =   40 , G 120 / E 220 = G 130 /   E 220 0.2 , υ 12 =   0.25 , α 110 = α 220 = 1.0 x 10 6 / 0 C , E 221 = G 121 = G 131 = G 231 = α 111 = α 221 =   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamyraKqba+aadaWgaaqcbasaaKqzadWdbiaaigda caaIXaGaaGimaaWcpaqabaqcLbsapeGaai4laiaabccacaWGfbqcfa 4damaaBaaajeaibaqcLbmapeGaaGOmaiaaikdacaaIWaaal8aabeaa jugib8qacqGH9aqpcaqGGaGaaGinaiaaicdacaGGSaGaam4raKqba+ aadaWgaaqcbasaaKqzadWdbiaaigdacaaIYaGaaGimaaWcpaqabaqc fa4aaSbaaSqaaaqabaqcLbsapeGaai4laiaadweajuaGpaWaaSbaaK qaGeaajugWa8qacaaIYaGaaGOmaiaaicdaaSWdaeqaaKqzGeWdbiab g2da9iaadEeajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaG4mai aaicdaaSWdaeqaaKqbaoaaBaaaleaaaeqaaKqzGeWdbiaac+cacaqG GaGaamyraKqba+aadaWgaaqcbasaaKqzadWdbiaaikdacaaIYaGaaG imaaWcpaqabaqcLbsacaqG9aWdbiaabccacaaIWaGaaiOlaiaaikda caGGSaWdaiabew8a1LqbaoaaBaaajuaibaqcLbmacaaIXaGaaGOmaa qcfayabaqcLbsapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGOmaiaa iwdacaGGSaGaeqySdewcfa4damaaBaaajeaibaqcLbmapeGaaGymai aaigdacaaIWaaal8aabeaajuaGdaWgaaWcbaaabeaajugib8qacqGH 9aqpcqaHXoqyjuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaGaaGOmai aaicdaaSWdaeqaaKqbaoaaBaaaleaaaeqaaKqzGeWdbiabg2da9iaa igdacaGGUaGaaGimaiaadIhacaaIXaGaaGimaKqba+aadaahaaWcbe qcbasaaKqzadWdbiabgkHiTiaaiAdaaaqcLbsacaGGVaqcfa4damaa CaaaleqajeaibaqcLbmapeGaaGimaaaajugibiaadoeacaGGSaaake aajugibiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaGaaGOm aiaaigdaaSWdaeqaaKqbaoaaBaaaleaaaeqaaKqzGeWdbiabg2da9i aadEeajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGOmaiaaigda aSWdaeqaaKqbaoaaBaaaleaaaeqaaKqzGeWdbiabg2da9iaadEeaju aGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaG4maiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaadEeajuaGpaWaaSbaaKqaGeaajugWa8qaca aIYaGaaG4maiaaigdaaSWdaeqaaKqzGeWdbiabg2da9iabeg7aHLqb a+aadaWgaaqcbasaaKqzadWdbiaaigdacaaIXaGaaGymaaWcpaqaba qcfa4aaSbaaSqaaaqabaqcLbsapeGaeyypa0JaeqySdewcfa4damaa BaaajeaibaqcLbmapeGaaGOmaiaaikdacaaIXaaal8aabeaajugib8 qacqGH9aqpcaqGGaaaaaa@C168@

The post buckling temperature results are compared in (Figure 7) with Shen [13] of HSDT results. To validate the present method, the results for thermal post buckling of a simply supported thin (b/h=20) square plate under non-uniform loading and resting on two parameters elastic foundation are listed in Figure 8 and compared with these given by Shen [3]. Clearly results obtained from present HSDT approach are in good agreement with the solution obtained from Riser midline plate theory approach.

Figure 7 Validation study for analytical results.

Figure 8 Validation study for analytical results.

Figure 9 examines the thermal post buckling load of 4-ply anti-symmetric angle-ply ( ± 45 0 ) 2 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqGHXcqScaaI0aGaaGynaKqba+aadaah aaWcbeqcbasaaKqzadWdbiaaicdaaaaak8aacaGLOaGaayzkaaqcfa 4aaSbaaKqaGeaajugWa8qacaaIYaGaamivaaWcpaqabaqcfa4aaSba aSqaaaqabaaaaa@43B6@ laminated composite square plate under non-uniform temperature distribution, b/h=10 with simply supported S2 boundary conditions and are compared with those of Shen [4] and Shen & Lin [5]. Clearly, the results obtained from the present method accord quite well with the existing ones.

Figure 9 Validation study for analytical results.

Validation Study for random material and geometric properties

The present results of thermal buckling and post buckling load of laminated composite plates obtained from present FOPT approach have been compared and validated with an independent MCS approach.

Validation result for random material and geometric properties (TID)

Figure 10 & 11 plot the normalized standard deviation, SD/mean (i.e. the ratio of the standard deviation (SD) to the mean value), of the thermal buckling load versus the SD/mean of the random material constant and geometric parameter for an all simply supported cross-ply [00/900] and angle-ply [450/-450] square laminated composite plate subjected to non-uniform tent-like temperature distribution changing from 0 to 20% respectively. It is assumed that one of the material property (i.e., E22) and lamina plate thickness h changing at a time keeping other as a deterministic, with their mean values. The dashed line is the present [FOPT] result that is obtained by using FOPT and the solid line is independent MCS approach. For the MCS approach, the samples are generated using Mat Lab to fit the desired mean and SD. The number of samples used for MCS approach is 10,000 for material properties and 12,000 for lamina plate thickness based on satisfactory convergence of the results. The normal distribution has been assumed for random number generations in MCS.

Figure 10 Validation of results the present FOPT approach from the independent MCS approach.

Figure 11 Validation of results the present FOPT approach from the independent MCS approach.

Validation result for random material and geometric properties (TD)

Figure 12,13 plots the normalized standard deviation, SD (i.e. the ratio of the standard deviation (SD) to the mean value), of thermal post buckling load versus the SD to the mean value of the random material property (E11) and geometric properties such as plate thickness (h) for an all simply supported (S2) angle-ply and cross-ply anti-symmetric [00/900] square laminated composite plate a/h=20 with amplitude ratio (Wmax/h=0.2) and uniform temperature distribution changing from 0 to 20% subjected to biaxial compression with TD thermo-material properties. It is assumed that one of the material property (i.e., E11) and geometric property (i.e., h) change at a time keeping others as deterministic, with their mean values of the material and geometric properties. From the Figure 12,13 it is clear that, close correlation is achieved between two results subjected to TD thermo-material properties.

Figure 12 Validation of results the present DISFEM approach from the independent MCS approach.

Figure 13 Validation of results the present DISFEM approach from the independent MCS approach.

Numerical results: second order statistics of thermal bucking and post buckling temperature

Parametric analysis of second order statistics (TD)

  1. Table 1: It is observed that increase in amplitude ratio ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ increases the mean thermal post buckling load and COV. Random input variable thickness (h) effects are significant where as shear modulus G(12) effects are least for uniform temperature (U.T) as well as combined uniform with transverse temperature (T.T) distribution. However for (T.T) temperature distribution, individual random input variables E11, E22,, G12 and h have fever effects whereas the other random input variables have no effects compared to uniform temperature distribution.
  2. bi

    W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

    (TD), COV, λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBjuaGdaWgaaqcbasaaKqzadaeaaaaaaaaa8qacaWHJbGaaCOCaiaa h6gacaWHSbaal8aabeaaaaa@3E4D@

    (T.T)

    (U.T)

    M e a n T c r n l   =   0.7869 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGLbGaamyyaiaad6gacaaMc8UaamivaKqba+aa daWgaaqcbasaaKqzadWdbiaadogacaWGYbGaamOBaiaadYgacaGGGc aal8aabeaajugib8qacqGH9aqpcaqGGaGaaGimaiaac6cacaaI3aGa aGioaiaaiAdacaaI5aaaaa@4A7F@

    M e a n T c r n l   =  80 .8726 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGLbGaamyyaiaad6gacaaMc8UaamivaKqba+aa daWgaaqcbasaaKqzadWdbiaadogacaWGYbGaamOBaiaadYgacaGGGc aal8aabeaajugib8qacqGH9aqpcaqGGaGaaeioaiaabcdacaqGUaGa aeioaiaabEdacaqGYaGaaeOnaaaa@4B0F@

    E 11 ( i = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGym aaWcpaqabaqcfaOaaiikaiaadMgacqGH9aqpcaaIXaGaaiykaaaa@3FBB@

    0.2

    (0.8160) 0.0064

    (0.8161) 0.0061

    0.4

    (0.8917) 0.0073

    (0.8918) 0.0063

    0.6

    (0.9872) 0.0084

    (0.9872) 0.0068

    E 22 ( i = 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIYaGaaiykaaaa@3F71@

    0.2

    0.0135

    0.0135

    0.4

    0.0115

    0.0117

    0.6

    0.0086

    0.0088

    G 12 ( i = 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIZaGaaiykaaaa@3F73@

    0.2

    1.50e-04

    1.32e-04

    0.4

    2.27e-04

    1.73e-04

    0.6

    3.17e-04

    2.30e-04

    G 13 ( i = 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI0aGaaiykaaaa@3F75@

    0.2

    0.0059

    0.0059

    0.4

    0.0057

    0.0057

    0.6

    0.0057

    0.0057

    G 23 ( i = 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI1aGaaiykaaaa@3F77@

    0.2

    0.0024

    0.0024

    0.4

    0.0023

    0.0023

    0.6

    0.0023

    0.0023

    V 12 ( i = 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSbaaKqbGeaacaaIXaGaaGOmaaqcfayabaqcLbsacaGGOaGa amyAaiabg2da9iaaiAdacaGGPaaaaa@3EDE@

    0.2

    0.0815

    0.0815

    0.4

    0.0749

    0.0749

    0.6

    0.0682

    0.0682

    α 11 ( i = 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaigdacaaIXaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaG4naiaacMcaaaa@3FA2@

    0.2

    0.079

    0.079

    0.4

    0.0723

    0.0723

    0.6

    0.0653

    0.0653

    α 22 ( i = 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaikdacaaIYaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaGioaiaacMcaaaa@3FA5@

    0.2

    0.0017

    0.0017

    0.4

    0.0016

    0.0016

    0.6

    0.0014

    0.0014

    h ( i = 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GaaGPaVlaacIcacaWGPbGaeyypa0JaaGyoaiaacMcaaaa@3D0D@

    0.2

    0.2183

    0.2175

    0.4

    0.2102

    0.2094

    0.6

    0.2031

    0.2024

    Table 1 Effects of Individual Random Variables [bi (i =1 to 9) = 0.10], Keeping Others as Deterministic with Amplitude Ratio ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ on the Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGubqcfa4damaaBaaajeaibaqcLbma peGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaakiaawIcacaGLPa aaaaa@3FAC@ in Brackets and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcLbsacaGGPaaaaa@4025@ of Thermal Post Buckling Load of Angle Ply [±450]3T Square Laminated Composite Plates under Combination of Uniform and Transverse Temperature (T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h) =30 with Simple Support SSSS (S2) Boundary Conditions. Tcrl= Dimensionless Linear Mean Thermal Buckling Load

  3. Table 2: The thermal buckling temperature is most affected by random change in the E11 and h in the case of plate supported without foundation (k1=0, k2=0) while k1 and h for Winkler elastic foundation (k1=100, k2=0) and k2 and h for Pasternak elastic foundation (k1=100, k2=10) respectively, and the least affected by α2 in all the foundation cases. From the table it is clear that the dimensionless mean thermal buckling temperature increases when the plate supported with elastic foundation as the stiffness of the plate increases.
  4. bi

    (k1=0, k2=0)

    (k1=100, k2=0)

    (k1=100, k2=10)

    M e a n T c r n l   =  17 .9472 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGLbGaamyyaiaad6gacaaMc8UaamivaKqba+aa daWgaaqcbasaaKqzadWdbiaadogacaWGYbGaamOBaiaadYgacaGGGc aal8aabeaajugib8qacqGH9aqpcaqGGaGaaeymaiaabEdacaqGUaGa aeyoaiaabsdacaqG3aGaaeOmaaaa@4B0E@

    M e a n T c r n l   =  39 .0972 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGLbGaamyyaiaad6gacaaMc8UaamivaKqba+aa daWgaaqcbasaaKqzadWdbiaadogacaWGYbGaamOBaiaadYgacaGGGc aal8aabeaajugib8qacqGH9aqpcaqGGaGaae4maiaabMdacaqGUaGa aeimaiaabMdacaqG3aGaaeOmaaaa@4B0E@

    M e a n T c r n l   =  80 .8726 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGLbGaamyyaiaad6gacaaMc8UaamivaKqba+aa daWgaaqcbasaaKqzadWdbiaadogacaWGYbGaamOBaiaadYgacaGGGc aal8aabeaajugib8qacqGH9aqpcaqGGaGaaeioaiaabcdacaqGUaGa aeioaiaabEdacaqGYaGaaeOnaaaa@4B0F@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    E 11 ( i = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGym aaWcpaqabaqcfaOaaiikaiaadMgacqGH9aqpcaaIXaGaaiykaaaa@3FBB@

    0.0697

    0.032

    0.0155

    E 22 ( i = 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIYaGaaiykaaaa@3F71@

    0.051

    0.0234

    0.0113

    G 12 ( i = 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIZaGaaiykaaaa@3F73@

    3.29e-04

    1.54e-04

    7.42e-05

    G 13 ( i = 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI0aGaaiykaaaa@3F75@

    0.0056

    0.0026

    0.0012

    G 23 ( i = 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI1aGaaiykaaaa@3F77@

    0.0046

    0.0021

    0.001

    V 12 ( i = 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSbaaKqbGeaacaaIXaGaaGOmaaqcfayabaqcLbsacaGGOaGa amyAaiabg2da9iaaiAdacaGGPaaaaa@3EDE@

    0.0142

    0.0065

    0.0031

    α 11 ( i = 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaigdacaaIXaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaG4naiaacMcaaaa@3FA2@

    0.0011

    5.20e-04

    2.51e-04

    α 22 ( i = 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaikdacaaIYaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaGioaiaacMcaaaa@3FA5@

    1.35e-04

    6.19e-05

    2.99e-05

    k 1   ( i = 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaiiO aaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadMgacqGH9aqpcaaI5a aak8aacaGLOaGaayzkaaaaaa@4144@

    0

    0.0541

    0.0261

    k 2   ( i = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaGaaiiO aaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadMgacqGH9aqpcaaIXa GaaGimaaGcpaGaayjkaiaawMcaaaaa@41F7@

    0

    0

    0.0517

    h   ( i = 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIgacaqGGaqcfa4damaabmaakeaajugib8qacaWGPbGa eyypa0JaaGymaiaaigdaaOWdaiaawIcacaGLPaaaaaa@3E87@

    0.0488

    0.1332

    0.213

    Table 2 Effects of Individual Random Input Variables {bi, (i =1 to 11) = 0.10} Keeping Other as Deterministic at a Time with Various Foundation Stiffness Parameters on the Dimensionless Mean and Dispersion of Thermal Buckling Temperature of Anti-Symmetric, Angle-Ply [450/-450/450/-450] Square Laminates with SSSS Boundary Conditions Subjected Non-Uniform Tent Like Structures

  5. Table 3: It is expected that the thermal post buckling temperature increases as the amplitude ratio increases. It is observed that thermal post buckling strength is more pronounced when the plate becomes relatively thick. The COV of the thermal buckling temperature increases as the plate thickness ratio increases for all random system parameters bi, {i = (1,…,8), (7, 8) and (9)} varying simultaneously or individual.
  6. Table 4: For the fixed foundation parameters, the thermal buckling temperature increases as the plate thickness ratio decreases and vice versa for the case of dispersion. The thin plate (a/h=20) supported on Pasternak elastic foundation shows the highest dispersion with random change in all material properties and lamina plate thickness. However no definite trend is observed with random change in foundation parameters.
  7. Table 5: It is observed that increase of amplitude ratio increases the mean thermal post buckling temperature in both (U.T) and (T.T) temperature distribution. The effects of aspect ratios decreases the mean thermal post buckling temperature and dispersion significantly increases. If lay-up is changed then for square plate the mean thermal post buckling temperature decreases and for rectangular plate increases. The COV is significantly increased by increase of aspect ratio. The difference in results of (U.T) and (T.T) temperature distribution is insignificant.
  8. a/h

    W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

    (TD), T.T

    (TD), U.T

    M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    bi

    bi

    (i=1,...,8)

    i=7,8)

    (i=9)

    (i=1,...,8)

    i=7,8)

    (i=9)

    30

    0.2

    0.441

    0.2153

    0.1462

    0.1855

    0.441

    0.2156

    0.1462

    0.1855

    0.4

    0.5399

    0.1753

    0.1194

    0.1765

    0.5399

    0.176

    0.1194

    0.1765

    0.6

    0.6516

    0.145

    0.099

    0.1706

    0.6516

    0.146

    0.099

    0.1706

    Tcrl

    -0.4003

    -0.4003

    40

    0.2

    0.2536

    0.3519

    0.2542

    0.1856

    0.2536

    0.3523

    0.2542

    0.1856

    0.4

    0.3121

    0.2843

    0.2066

    0.1752

    0.3121

    0.2855

    0.2066

    0.1752

    0.6

    0.3886

    0.2266

    0.1659

    0.1678

    0.3886

    0.2283

    0.1659

    0.1676

    Tcrl

    -0.2303

    -0.2303

    Table 3 The Comparison of Variation of Plate Thickness Ratios (a/h) with Amplitude Ratios ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ = (0. 2, 0.4, 0.6) on the Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling load of 4-Layers Anti-Symmetric Cross-Ply [0/90]2s Square Plate with Simply Supported SSSS (S2) Condition for COV, {bi, i = (1,…,8), (7, 8) and (9) = 0.10} under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution, with Simple Support SSSS (S2) Boundary Conditions. Tcrl – Dimensionless Linear Mean Thermal Buckling Load

    a/h

    Foundation parameters

    M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    bi

    i=1,.., 8

    i=7, 8

    i=9, 10

    i=11

    5

    ( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

    49.5857

    0.0996

    4.1267e-004

    0

    0.0414

    ( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

    112.851

    0.0763

    1.7990e-004

    0.0296

    0.0494

    ( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

    278.6206

    0.0308

    7.2826e-005

    0.0607

    0.1837

    10

    ( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

    15.4511

    0.1022

    0.0013

    0

    0.0318

    ( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

    36.4957

    0.0442

    5.6071e-004

    0.0574

    0.1514

    ( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

    78.2641

    0.0206

    2.6143e-004

    0.0597

    0.224

    20

    ( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

    4.1756

    0.1028

    0.0049

    0

    0.0261

    ( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

    9.4379

    0.0462

    0.0022

    0.0556

    0.1517

    ( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

    19.8818

    0.0219

    0.0010

    0.0588

    0.2263

    Table 4 Effects of Plate Thickness Ratios(a/h) with Foundation Parameters on the Dimensionless Mean and the Dispersion of Thermal Buckling Temperature for Angle-Ply Anti-Symmetric [450/-450] Laminated Composite Square Plate Resting on Elastic Foundation Subjected to Non-Uniform Tent-Like Temperature Distribution for COV, {bi, i =(1,...,8), (7,8), (9, 10) and (11) = 0.10 }with SSSS Boundary Conditions

    No. of Layers

    a/b

    W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

    (TD), T.T

    (TD), U.T

    M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

    C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

    bi

    bi

    (i=1,...,8)

    (i=7,8)

    (i=9)

    (i=1,...,8)

    (i=7,8)

    (i=9)

    [00/900/00]

    1

    0.2

    0.0478

    1.911

    1.2972

    0.1859

    0.0478

    1.9113

    1.2972

    0.1859

    0.4

    0.0531

    1.6958

    1.1077

    0.234

    0.0531

    1.6965

    1.1077

    0.234

    0.6

    0.0551

    1.6901

    1.1684

    0.1423

    0.0551

    1.6912

    1.1684

    0.1423

    Tcrl

    0.0446

    -0.0446

    2

    0.2

    0.0136

    6.4749

    4.1785

    0.2436

    0.0136

    6.476

    4.1785

    0.2436

    0.4

    0.0196

    4.485

    2.8901

    0.2313

    0.0196

    4.4872

    2.8901

    0.2313

    0.6

    0.0199

    4.4345

    2.8642

    0.2116

    0.0199

    4.4372

    2.8642

    0.2116

    Tcrl

    -0.0111

    -0.0111

    [00/900]2T

    1

    0.2

    0.0423

    2.2174

    1.5254

    0.1852

    0.0423

    2.218

    1.5254

    0.1852

    0.4

    0.0516

    1.8138

    1.2495

    0.1731

    0.0516

    1.8154

    1.2495

    0.1731

    0.6

    0.0636

    1.4682

    1.0133

    0.1629

    0.0636

    1.4706

    1.0133

    0.1629

    Tcrl

    -0.0383

    -0.0383

    2

    0.2

    0.0333

    2.7309

    1.8726

    0.2318

    0.0344

    2.7315

    1.8726

    0.2318

    0.4

    0.0408

    2.2275

    1.5597

    0.2124

    0.0413

    2.2731

    1.5597

    0.2124

    0.6

    0.0465

    1.9735

    1.3575

    0.1922

    0.0475

    1.9743

    1.3585

    0.1926

    Tcrl

    -0.03

    -0.0311

    Table 5 Effects of Number of Layers, Aspect Ratios (a/b) , Amplitude Ratios ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of Symmetric Cross-ply [00/900/00] and Ant-Symmetric [00/900]2T Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=100), with Simple Support SSSS (S2) Boundary Conditions

  9. Table 6: For the fixed foundation parameters and number of layers, rectangular plate shows higher dispersion to random change in material properties plus thermal expansion coefficients and vice versa for random change in thermal expansion coefficients, foundation parameters and lamina plate thickness. For the same aspect ratio and foundation parameters, as the number of layer increases the dimensionless mean and dispersion increases for random change in all system properties.
  10. Table 7: It is observed the increase of amplitude ratio increases the mean thermal post buckling temperature and decreases the dispersion for both (U.T) and (T.T) temperature distribution. Clamp support (CCCC) conditions significantly affect the thermal post buckling temperature and lowers the dispersions where as simple support conditions have least effects. It shows that for CCCC boundary conditions can withstand higher thermal post buckling temperature. On comparing uniform temperature and combined uniform with transverse temperature distribution the difference in parameters is very less.
  11. Table 8: For the three cases of support conditions, the plate with CCCC boundary condition shows the highest thermal buckling temperature and its scattering, while the SSSS plate shows the least for the fixed foundation parameters considered. For the fixed support conditions, the thermal buckling temperature is greatest for plate resting on Pasternak elastic foundation, while least for plate without elastic foundation. From the table it can be seen that the scattering in the thermal buckling temperature is strongest to random change in all eight system parameters in the case of plates resting on Winkler elastic foundation with SSSS and CCCC support conditions, while strongest for plate without elastic foundation in case of CSCS support condition. The dispersion in the plates resting on Pasternak elastic foundation is highest with random change in foundation parameters and lamina plate thickness, while plate without foundation shows highest dispersion with the random change in thermal expansion coefficients.
  12. Table 9: It is noticed that on rise in temperature the mean thermal post buckling temperature decreases for TID material properties, however the coefficient of variations for combination of input random variables and considering only thermal coefficients or geometric property plate thickness also decreases. For the TD material properties there is further decrease of expected mean thermal post buckling temperature while the COV for all input random variables increases which is an important parameter when the rise of temperature is taken into consideration.
  13. Table 10: For the TD material properties there is further decrease of expected mean thermal post buckling temperature while the COV for all input random variables increases which is an important parameter when the rise of temperature is taken into consideration.
  14. Table 11: For the fixed foundation parameters, an anti-symmetric plate shows higher dispersion to random change in all system properties. However the mean thermal buckling temperature of symmetric cross-ply plate is higher than anti-symmetric cross-ply plate.
  15. Table 12 & 13: The effects of amplitude ratios increases the mean thermal post buckling temperature and decreases the COV in both uniaxial and biaxial compression with TD and TID thermo-material properties, however the effects are more dominant in uniaxial TID for mean thermal post buckling load and dispersion in biaxial TD compression respectively. Among invidual random variation in material properties, thermal expansion coefficients and plate thickness the COV is significant decreases for plate thickness in uniaxial as well as in biaxial for TD and TID material properties. As a matter of facts the COV for temperature dependent thermo material properties is of significant nature.
  16. Table 14: It can be sheen that the laminated plate under non-uniform tent-like temperature distribution has higher initial buckling load and post buckling load than non-uniform parabolic temperature distribution for the same thermal load ratio. It can also be seen that thermal post buckling strength under non-uniform tent like temperature distribution is more pronounced when the plate becomes heavily loaded thermal load as compared to parabolic temperature distribution. The dispersion of thermal post buckling temperature are same for both of the non-uniform tent-like and parabolic temperature distribution are almost same for all random system parameters bi, {i = (1,…,8) and (7, 8)} varying simultaneously. However, dispersion of thermal post buckling temperature of the plate subjected to non-uniform tent-like distribution is higher than parabolic temperature distribution having random lamina propertiesbi, {i = (9)}.

a/b

Lamination scheme

Foundation parameters

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

i=1,.., 8

i=7, 8

i=9, 10

i=11

1

 

[ 45 0 / 45 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeaeaaaaaaaaa8qacaaI0aGaaGynaKqba+aadaahaaWcbeqc basaaKqzadWdbiaaicdaaaqcLbsacaGGVaGaeyOeI0IaaGinaiaaiw dajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaaGcpaGaay5w aiaaw2faaaaa@4449@

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

0.1739

0.1554

0.1177

0

0.0213

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

0.3843

0.0707

0.0533

0.0547

0.1534

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

0.8021

0.0339

0.0255

0.0583

0.2291

 

[ 45 0 / 45 0 / 45 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeaeaaaaaaaaa8qacaaI0aGaaGynaKqba+aadaahaaWcbeqc basaaKqzadWdbiaaicdaaaqcLbsacaGGVaGaeyOeI0IaaGinaiaaiw dajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaai4l aiaaisdacaaI1aqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGimaa aaaOWdaiaawUfacaGLDbaaaaa@49F4@

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

0.1847

0.1446

0.1081

0

0.0369

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

0.3935

0.0689

0.0504

0.0527

0.1389

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

0.8213

0.0325

0.0243

0.0579

0.2234

2

[ 45 0 / 45 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeaeaaaaaaaaa8qacaaI0aGaaGynaKqba+aadaahaaWcbeqc basaaKqzadWdbiaaicdaaaqcLbsacaGGVaGaeyOeI0IaaGinaiaaiw dajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaaGcpaGaay5w aiaaw2faaaaa@4449@

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

0.2052

0.1358

0.0992

0

0.0193

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

0.2472

0.1128

0.0823

0.017

0.0348

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

0.4561

0.0612

0.0446

0.0467

0.156

[ 45 0 / 45 0 / 45 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeaeaaaaaaaaa8qacaaI0aGaaGynaKqba+aadaahaaWcbeqc basaaKqzadWdbiaaicdaaaqcLbsacaGGVaGaeyOeI0IaaGinaiaaiw dajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaai4l aiaaisdacaaI1aqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGimaa aaaOWdaiaawUfacaGLDbaaaaa@49F4@

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

0.2197

0.1256

0.091

0

0.0317

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

0.2616

0.1055

0.0764

0.016

0.0212

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

0.4736

0.0582

0.0423

0.0456

0.1459

Table 6 Effects of Aspect Ratios (a/b) , Number of Layers with Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=100), with Simple Support SSSS (S2) Boundary Conditions

BCs

W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

(TD), T.T

(TD), U.T

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

bi

(i=1,...,8)

(i=7,8)

(i= 9)

(i=1,...,8)

(i=7,8)

(i= 9)

SSSS (S1)

0.2

0.2989

0.2813

0.2156

0.1801

0.299

0.2815

0.2157

0.1791

0.4

0.3277

0.2557

0.1967

0.1736

0.3277

0.2563

0.1967

0.1726

0.6

0.3706

0.2249

0.1739

0.1658

0.3707

0.2259

0.174

0.1648

Tcrl

-0.2883

-0.2884

SSSS

0.2

0.2956

0.2861

0.218

0.1821

0.2957

0.2863

0.2181

0.1809

0.4

0.324

0.2602

0.1989

0.1752

0.324

0.2608

0.199

0.1741

0.6

0.3665

0.2291

0.1759

0.1668

0.3665

0.23

0.1759

0.1657

Tcrl

-0.2851

-0.2851

CCCC(1)

0.2

0.5721

0.1741

0.1126

0.1919

0.5724

0.1742

0.1127

0.1906

0.4

0.6249

0.159

0.1031

0.1879

0.625

0.1593

0.1032

0.1866

0.6

0.7023

0.1409

0.0917

0.1834

0.7023

0.1414

0.0918

0.1822

Tcrl

-0.5531

-0.5533

CSCS(2)

0.2

0.408

0.2165

0.158

0.1976

0.4079

0.2167

0.1581

0.1962

0.4

0.4594

0.1921

0.1404

0.1885

0.4594

0.1925

0.1404

0.1871

0.6

0.5329

0.165

0.121

0.1796

0.5328

0.1658

0.121

0.1783

Tcrl

0.3896)

-0.3895

Table 7 Effects of Boundary Conditions(BCs) , Amplitude Ratios ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of Angle-Ply Antisymmetric [450/-450]2T Square Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=50)

BCs

Foundation Parameters

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

i=1,.., 8

i=7, 8

i=9, 10

i=11

SSSS

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

14.1382

0.0719

0.0014

0

0.0461

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

33.0055

0.0935

6.1642e-004

0.0255

0.021

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

74.7823

0.0413

2.7206e-004

0.057

0.17

CCCC

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

37.3257

0.0794

5.4764e-004

0

0.0475

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

51.7059

0.1284

3.9341e-004

0.0124

0.0227

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

93.4827

0.071

2.1760e-004

0.0452

0.1161

CSCS

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

23.1902

0.0742

8.8186e-004

0

0.0464

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

38.1211

0.0721

5.3461e-004

0.0296

0.0429

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

79.8979

0.0344

2.5507e-004

0.0542

0.171

Table 8 Effects of Three Different Support Conditions, SSSS, CCCC and CSCS with Various Foundation Parameters) and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9, 10) and (11) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of Cross-Ply Symmetric [00/900/900/00] Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=10)

(ΔT)

W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

(TID)

 

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

(i=1,...,8)

(i=7,8)

(i= 9)

50

0.2

0.0459

0.0733

0.0016

0.0755

0.4

0.051

0.0677

0.0015

0.0718

0.6

0.0524

0.0662

0.0014

0.0679

Tcrl

-0.0439

100

0.2

0.0229

0.0717

0.0033

0.0755

0.4

0.0255

0.0663

0.0029

0.0718

0.6

0.0287

0.0615

0.0026

0.0679

Tcrl

-0.0219

150

0.2

0.0153

0.0702

0.0049

0.0755

0.4

0.017

0.0649

0.0044

0.0718

0.6

0.0191

0.0602

0.0039

0.0679

Tcrl

-0.0146

200

0.2

0.0115

0.0687

0.0065

0.0755

0.4

0.0127

0.0636

0.0059

0.0718

0.6

0.0143

0.0591

0.0052

0.0679

Tcrl

-0.011

Table 9 Effects of Temperature Change (ΔT), Amplitude Ratios and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of angle-ply [±45]2T square Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=20)

(ΔT)

W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

(TD)

 

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

(i=1,...,8)

(i=7,8)

(i= 9)

50

0.2

0.0306

0.0884

0.0022

0.077

0.4

0.034

0.0823

0.002

0.072

0.6

0.0386

0.0785

0.0017

0.067

Tcrl

-0.0294

100

0.2

0.0153

0.0861

0.0044

0.077

0.4

0.017

0.0802

0.004

0.072

0.6

0.0193

0.0767

0.0035

0.067

Tcrl

-0.0147

150

0.2

0.0102

0.0838

0.0066

0.077

0.4

0.0113

0.0782

0.0059

0.072

0.6

0.0129

0.0749

0.0052

0.067

Tcrl

-0.0098

200

0.2

0.0077

0.0817

0.0088

0.077

0.4

0.0085

0.0763

0.0079

0.072

0.6

0.0097

0.0731

0.007

0.067

Tcrl

-0.0073

Table 10 Effects of Temperature Change (ΔT), Amplitude Ratios and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of angle-ply [±45]2T square Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=20)

Lamination Scheme

Foundation Parameters

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

i=1,.., 8

i=7, 8

i=9, 10

i=11

 

[0/90]2T

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

0.3265

0.1026

0.0689

0

0.0419

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

0.7915

0.0423

0.0284

0.0587

0.1574

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

1.7098

0.0196

0.1457

0.0602

0.2325

 

[0/90]2s

( k 1 = 0 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcacaqGGa Gaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaaaaa@46C7@

0.3473

0.0978

0.0648

0

0.0379

( k 1 = 100 ,   k 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaaicdacaaIWa GaaiilaiaabccacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyypa0JaaGimaaGcpaGaayjkaiaawMcaaa aa@483C@

0.8123

0.0418

0.0277

0.0572

0.154

( k 1 = 100 ,   k 2 = 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimai aaicdacaGGSaGaaeiiaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaaGcpaGaay jkaiaawMcaaaaa@4915@

1.7306

0.0196

0.013

0.0595

0.23

Table 11 Effects of Lamination Scheme with Foundation Parameters and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=50)

Material Properties

W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

Uni-Axial Compression

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

(i=1,..,8)

(i=7, 8)

(i=9)

TD

0.2

0.1316

1.4007

0.9774

0.3417

0.4

0.1487

1.2385

0.8655

0.3226

0.6

0.1676

0.9928

0.6984

0.2833

Tcrl

(0.1254)

TID

0.2

0.2024

0.9505

0.6977

0.351

0.4

0.2293

0.8378

0.6161

0.3307

0.6

0.2533

0.6754

0.5027

0.2909

Tcrl

(0.1925)

Table 12 Effects of Material Properties, Amplitude Ratios ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of of angle-ply symmetric [45/-45]2T square Laminated Composite Plates under Combination of Uniform and Transverse Temperature (T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=100)

Material Properties

W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

Bi-Axial Compression

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

(i=1,..,8)

(i=7, 8)

(i=9)

TD

0.2

0.0659

1.4024

0.9786

0.2422

0.4

0.0745

1.2386

0.8656

0.2228

0.6

0.0871

1.0565

0.74

0.2023

Tcrl

(0.0628)

TID

0.2

0.1014

0.952

0.6987

0.2515

0.4

0.1149

0.8379

0.6161

0.2307

0.6

0.1347

0.7129

0.5258

0.2092

Tcrl

(0.0964)

Table 13 Effects of Material Properties, Amplitude Ratios ( W m a x / h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamyBaiaadggacaWG4baal8aabeaajugib8qacaGGVaGaamiAaa GcpaGaayjkaiaawMcaaaaa@410F@ and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on Dimensionless Mean ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Coefficient of Variations ( λ c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaeq4UdWwcfa4aaSbaaKqaGeaajugWaabaaaaaaaaapeGaam4yaiaa dkhacaWGUbGaamiBaaWcpaqabaqcfaOaaiykaaaa@4024@ of Thermal Post Buckling Load of of angle-ply symmetric [45/-45]2T square Laminated Composite Plates under Combination of Uniform and Transverse Temperature(T.T), Uniform Temperature (U.T) Distribution., Plate Thickness Ratio (a/h=100)

T 0 / T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjugiba baaaaaaaaapeGaaCivaKqba+aadaWgaaqcbasaaKqzadWdbiaahcda aSWdaeqaaKqzGeWdbiaac+cacaWHubqcfa4damaaBaaajeaibaqcLb mapeGaaCymaaWcpaqabaaaaa@3FC2@

 

W m a x / h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWHTbGaaCyy aiaahIhaaSWdaeqaaKqzGeWdbiaac+cacaWHObaaaa@3EE9@

Tent-Like

Parabolic

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

M e a n ,   T c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah2eacaWHLbGaaCyyaiaah6gacaGGSaGaaeiiaiaahsfa juaGpaWaaSbaaKqaGeaajugWa8qacaWHJbGaaCOCaiaah6gacaWHSb aal8aabeaaaaa@428D@

C O V , λ c r n l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4taiaadAfacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaaba aaaaaaaapeGaam4yaiaadkhacaWGUbGaamiBaaWcpaqabaaaaa@4164@

bi

bi

i=1,.., 8

i=7, 8

i=9

i=1,.., 8

i=7, 8

i=9

0

0.2

3.8831

0.0796

0.0059

0.0438

2.0885

0.0795

0.00588

0.041

0.4

4.2161

0.0747

0.0054

0.0429

2.266

0.0746

0.00538

0.0402

0.6

4.5643

0.0705

0.005

0.0424

2.4533

0.0704

0.005

0.0398

Tcrl

(3.7319)

(2.0076)

0.5

0.2

1.9411

0.0802

0.0118

0.0438

1.114

0.0802

0.0118

0.0412

0.4

2.1061

0.0754

0.0109

0.0429

1.2116

0.0752

0.0108

0.0402

0.6

2.2802

0.0711

0.01

0.0425

1.3147

0.071

0.01

0.0394

Tcrl

(1.8659)

(1.0708)

1

0.2

1.294

0.0813

0.0177

0.0438

1.006

0.0813

0.0177

0.0424

0.4

1.4041

0.0763

0.0163

0.0429

1.0942

0.0763

0.0163

0.0415

0.6

1.519

0.072

0.0151

0.0426

1.1873

0.072

0.0151

0.0406

Tcrl

(1.244)

(0.9671)

Table 14 The Effect of Thermal Load Ratio T0/T1 ( = 0.0, 0.5, 1.0) with Amplitude Ratios Wmax/h ( = 0. 2, 0.4, 0.6) and Random Input Variables [bi, (i =1 to 8), (7, 8) and (9) = 0.10] on the Dimensionless Mean ( ( T c r n l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaXcjuaGda qadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGJbGaamOCaiaad6gacaWGSbaal8aabeaaaOGaayjkai aawMcaaaaa@3FCA@ and Dispersion(lcrnl ) of Thermal Post Buckling Load of 4-Layers Anti-Symmetric Angle-ply [450/-450]2T Square Plate with Simply Supported SSSS (S2) Condition and a/h=20 under Non-Uniform Tent Like and Parabolic Temperature Distribution

A i j ,   B i j ,   e t c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaalmaa BaaajeaibaqcLbmacaWGQbaajeaibeaajugibiaacYcacaqGGaGaam OqaKqbaoaaBaaajeaibaqcLbmacaWGPbaajeaibeaajuaGdaWgaaqc basaaKqzadGaamOAaaWcbeaajugibiaacYcacaqGGaGaamyzaiaads hacaWGJbaaaa@4A1A@

Laminate stiffnesses

a, b

Plate length and breadth

h

Thickness of the plate

E f ,   E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaajugi biaacYcacaqGGaGaamyraKqbaoaaBaaajeaibaqcLbmacaWGTbaale qaaaaa@401C@

Elastic moduli of fiber and matrix, respectively.

G f ,  G m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaajugi biaacYcacaqGGaGaae4raKqbaoaaBaaajeaibaqcLbmacaWGTbaale qaaaaa@401E@

Shear moduli of fiber and matrix, respectively.

v f ,  v m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bWaaSbaaKqaGeaajugWaiaadAgaaSqabaqcLbsacaGG SaGaaeiiaiaabAhajuaGdaWgaaqcbasaaKqzadGaamyBaaWcbeaaaa a@3FED@

Poisson’s ratio of fiber and matrix, respectively.

V f ,  V m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaajugi biaacYcacaqGGaGaaeOvaKqbaoaaBaaajeaibaqcLbmacaWGTbaale qaaaaa@403C@

Volume fraction of fiber and matrix, respectively.

α f ,   α m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHLqzadGaamOzaKqzGeGaaiilaiaabccacqaHXoqy jugWaiaad2gaaaa@3FFE@

Coefficient of thermal expansion of fiber and matrix, respectively.

bi

Basic random material properties

E11, E22

Longitudinal and Transverse elastic moduli

G12, G13, G23

Shear moduli

Kl,

Linear bending stiffness matrix

Kg

Thermal geometric stiffness matrix

D

Elastic stiffness matrices

M α β , m α β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2 eakmaaBaaajeaibaqcLbmacqaHXoqycqaHYoGyaSqabaqcLbsacaGG SaGaamyBaOWaaSbaaKqaGeaajugWaiabeg7aHjabek7aIbWcbeaaaa a@432A@

Mass and inertia matrices

ne, n

Number of elements, number of layers in the laminated plate

Nx, Ny, Nxy

In-plane thermal buckling loads

nn

Number of nodes per element

Ni

Shape function of ith node

C ¯ p i j k l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaaK qzGeGaam4qaaaakmaaBaaaleaakmaaCaaameqabaGcdaahaaadbeqa aOWaaWbaaWqabKGaafaajugWaiaadchaaaaaaaaajugibiaadMgaca WGQbGaam4AaiaadYgaaSqabaaaaa@3F08@

Reduced elastic material constants

f ,   { f } ( e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgacaGGSaGaaeiiaKqba+aadaGadaGcbaqcLbsapeGa amOzaaGcpaGaay5Eaiaaw2haaKqbaoaaCaaaleqajeaibaWcdaqada qcbasaaKqzadWdbiaadwgaaKqaG8aacaGLOaGaayzkaaaaaaaa@4262@

Vector of unknown displacements, displacement vector of eth element

u, v, w

Displacements of a point on the mid plane of plate

u ¯ 1 , u ¯ 2 , u ¯ 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aaraqcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGaaiil aiaaykW7ceWG1bGbaebajuaGdaWgaaqcfasaaKqzadGaaGOmaaqcfa yabaqcLbsacaGGSaGaaGPaVlqadwhagaqeaKqbaoaaBaaajuaibaqc LbmacaaIZaaajuaGbeaajugibiaacYcaaaa@49FF@

Displacement of a point (x, y, z)

σ ¯ i j , ε ¯ i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqcfa yaaKqzGeGaeq4WdmhaaOWaaSbaaKqbGeaajugWaiaadMgacaWGQbaa juaGbeaajugibiaacYcakmaanaaajuaGbaqcLbsacqaH1oqzaaGcda WgaaqcfasaaKqzadGaamyAaaqcfayabaGcdaWgaaqcfasaaKqzadGa amOAaaqcfayabaaaaa@4704@

Stress vector, Strain vector

ψ y ,   ψ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeI8a5LqzadGaamyEaKqzGeGaaiilaiaabccacqaHipqE jugWaiaadIhaaaa@407A@

Rotations of normal to mid plane about the x and y axis respectively

θx, θy, θk

Two slopes and angle of fiber orientation wrt x-axis for kth layer

x, y, z

Cartesian coordinates

ρ ,   λ ,   V a r ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae qabaaakeaajugibabaaaaaaaaapeGaeqyWdiNaaiilaiaabccacqaH 7oaBcaGGSaGaaeiiaiaadAfacaWGHbGaamOCaKqba+aadaqadaGcba qcLbsapeGaaiOlaaGcpaGaayjkaiaawMcaaaaaaaa@43B4@

Mass density, eigenvalue, variance

ω , ϖ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaai ilaiabeA9a2baa@3A4C@

Fundamental frequency and its dimensionless form

RVs

DT, DC,

Difference in temperatures and moistures

α 1 ,   α 2 ,   β 1 ,   β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHLqzadGaaGymaKqzGeGaaiilaiaabccacqaHXoqy jugWaiaaikdajugibiaacYcacaGGGcGaeqOSdiwcLbmacaaIXaqcLb sacaGGSaGaaiiOaiabek7aILqzadGaaGOmaaaa@4B73@

Thermal expansion and hygroscopic coefficients along x and y direction, respectively.

Table 15 Nomenclature

Conclusion

A C0 FEM and direct iterative method in conjunction with FOPT is employed to compute the mean and standard deviation of the thermal post buckling load of the laminated composite plate with thermo-mechanical properties, random change in all input variables, aspect ratios, amplitude ratios and plate thickness. The following conclusion can be drawn from this limited study:

  1. The characteristics of the thermal buckling load of plates are significantly influenced by various support conditions, plate thickness ratios, aspect ratios, number of layers, lamination scheme and foundation parameters. The first order perturbation technique gives acceptable results for the range of dispersion (SD/mean) taken in the study. The characteristics of the thermal post buckling temperature of plates are significantly influenced by various support conditions, plate thickness ratios, aspect ratios and temperature changes. The mean and dispersion of thermal post buckling temperature of laminated composite plates is higher when the plates are subjected to temperature dependent (TD) thermo-material properties.
  2. The thermal buckling load strongly depends on the foundation parameters and increases with increase the foundation parameters. The clamp supported plates buckle at slightly higher temperature compared to other supports as mean thermal post buckling temperature is higher and COV is lower for clamped support when compared with other types of support conditions. Post buckling is more dominant in plates of (TD) thermo-material properties. The random change in input variables thickness (h) has more impact on thermal post buckling temperature scattering compared to individual random changes in material properties and thermal expansion coefficients.
  3. The dispersion in thermal buckling is the greatest with scatter in E11and h in the case of the plate supported without foundation, k1 and h for Winkler elastic foundation and k2 and h for Pasternak elastic foundation respectively. This means that the care should be taken during fabrication process so as to allow less variation in these system properties with various foundation parameters. The sensitivity of thermal post buckling temperature and COV due to variation in temperature dependent thermo-material properties is dependent mainly on thickness ratio, and boundary conditions besides other parameters of the laminate. The COV in the thermal post buckling temperature is most affected with random change in lamina thickness h and least affected with scatter in G12. In general the plate is more sensitive to individual random change in E 11 , V 12 a n d α 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIXaaaleqaaKqzGeGaaiil aiaacAfajuaGdaWgaaqcbasaaKqzadGaaGymaiaaikdaaSqabaqcLb sacaWGHbGaamOBaiaadsgacaaMc8UaeqySdewcfa4aaSbaaKqaGeaa jugWaiaaigdacaaIXaaaleqaaaaa@4A7C@ . The strict control of these random parameters is therefore required for reliable design if high reliability of laminated composite plate is required
  4. In general, the square plate is more sensitive as compared to rectangular plate. The thermal post buckling temperature for square plate is more compared to rectangular plate. The thermal post buckling temperature is more prone to SSSS (S2) boundary conditions while it is least for clamped support CCCC boundary conditions.
  5. The plate with all edges clamed support condition is less desirable in comparison with other support conditions from scattering point of view. The impact of randomness in all random system variables is more for thin plate as compared to thick and moderately thick plate.

Acknowledgement

None.

Conflicts of Interest

Author declares that there is no conflict of interest.

References

  1. Chen WS, Lin PD, Chen LW. Thermal buckling behavior of thick composite laminated plates under non-uniform temperature distribution. Comput Struct. 1991;41(4):637‒645.
  2. Shen HS. Thermal post-buckling analysis of imperfect shear-deformable plates on two-parameter elastic foundations. Computers & Structures. 1997;63(6):1187‒1193.
  3. Shen HS. Thermal post-buckling analysis of imperfect laminated plates using higher order shear deformation theory. Int J Non-Linear mechanics. 1997;32(6):1035‒1050.
  4. Shen HS, Zhu XG. Thermal post-buckling analysis of moderately thick plates. Applied Mathematics and Mechanics. 1995;16(5):475‒484.
  5. Shen HS, Lin Zhong-Qin. Thermal post-buckling analysis of imperfect laminated plates. Computer & Structures. 1995;57(3):533‒540.
  6. Shen HS. Nonlinear analysis of composite laminated thin plates subjected to lateral loading and resting on elastic foundation. Composite Structures. 2000;49(2):115‒128.
  7. Shen HS. Thermal post-buckling analysis of imperfect Reissne-Mindlin plates on softening nonlinear foundation. J Engineering Mathematics. 1998;33(3):259‒270.
  8. Chen LW, Chen LY. Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Composite Structures. 1989;13(4):275‒287.
  9. Chen LW, Chen LY. Thermal post buckling behaviors of laminated composite plates with temperature-dependent properties. Composite Structures. 1991;19:267‒283.
  10. Huang A, Tauchert TR. Post buckling response of antisymmetric angle-ply laminates to uniform temperature loading. Acta Mechanica. 1988;72(1):173‒183.
  11. Pandey Ramesh, Shukla KK, Jain Anuj. Thermoelastic stability analysis of laminated composite plates, An analytical approach. Communications in Nonlinear Science and Numerical Simulation. 2009;14(4):1679‒1699.
  12. Shariyat M. Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layer wise theory. Thin-Walled Structures. 2007;45(4):439‒452.
  13. Shen HS. Thermal post buckling behaviors of imperfect shear deformable laminated composite plates with temperature-dependent properties. Comput Methods Appl Mech Engg. 2001;190:5377‒5390.
  14. Thankam Sita V, Singh G, Venkateswara Rao G, et al. Thermal Post buckling Behaviors of Laminated Composite Plates using shear flexible element based on coupled-displacement field. Composite Structures. 2003;59(3):351‒359.
  15. Nigam NC, Narayan S. Application of Random vibrations. Narosa Publishing House, New Delhi; 1994. p. 557.
  16. Zang Z, Chen S. The standard deviations of the eigensolutions for random MDOF systems. Comp Struct. 1991;39(6):603‒607.
  17. Zhang J, Ellingwood B. Effects of uncertain material properties on structural stability. J Struct Engrg. 1995;121(4):705‒716.
  18. Graham LL, Deodatis G. Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties. Probt Engrg Mech. 2001;16(1):11‒29.
  19. Van den, Nieuwenhof B, Coyette JP. Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties. Comput Methods Appl Mech Engrg. 2003;192(33‒34):3705‒3729.
  20. Stefanou G, Papadrakakis M. Stochastic finite element analysis of shell with combined random material and geometric properties. Comput Methods Appl Mech Engrg. 2004;193:139‒160.
  21. Singh BN, Iyengar NGR, Yadav D. Effects of random material properties on buckling of composite plates. J Engrg Mech. 2001;127(9):873‒879.
  22. Singh BN, Iyengar NGR. Yadav D. A C0 finite element investigation for buckling analysis of composite plates with random material properties. Struct Engrg and Mech. 2002;13(1):53‒74.
  23. Onkar AK, Upadhyay CS, Yadav D. Generalized buckling analysis of laminated plates with random material properties using stochastic finite elements. Int J Mech Sci. 2006;48(7):780‒798.
  24. Onkar AK, Upadhyay CS, Yadav D. Stochastic finite element buckling analysis of laminated plates with circular cutout under uniaxial compression. J Appld Mech. 2007;74(4):789‒809.
  25. Shakhar A, Abedelrahman WG, Tawfik Mohammad, et al. Stochastic finite element analysis of the free vibration of laminated composite plates. Comput Mech. 2008;41(4):493‒503.
  26. Shankara CA, Iyenger NGR. A C0 element for the free vibration analysis of laminated composite plates. J Sound and Vibration. 1996;191(5):721‒738.
  27. Lal A, Singh BN, Kumar R. Effect of random system properties on the initial buckling of laminated composite plate resting on an elastic foundation. Int J Struct stability Dyn. 2008;8(1):1‒28.
  28. Jones RM. Mechanics of Composite Materials. MC Graw-Hill Book Company, MC Graw Hill, New York USA; 1975.
  29. Franklin JN. Matrix theory. Englewood Cliff, Prentice Hall, USA; 1968. p. 292.
  30. Reddy JN. Mechanics of Laminated Composite Plate. CRC Press, Florida, USA; 1996.
  31. Graham LL, Siragy EF. Stochastic finite element analysis for elastic buckling of stiffend panels. J Engg Mech. 2001;127(1):91‒97.
  32. Liu WK, Belytschko T, Mani A. Random field finite elements. Int J Numer Meth Engrg. 1986;23:1831‒1845.
  33. Klieber M, Hien TD. The Stochastic Finite Element Method. Wiley, Chichester, UK; 1992.
  34. Reddy JN. A simple higher order theory for laminated composite plates. J Appld Mech. 1984;51(4):745‒752.
  35. Chia CY. Nonlinear analysis of plates. McGraw-Hill, New York USA; 1980.
  36. Reddy JN. Energy and variational methods in applied mechanics. Wiley, New York, USA; 1981. p. 560.
  37. Yamin Z, Chen S, Lue Q. Stochastic perturbation finite elements. Comp and Struct. 1996;59(3):425‒429.
Creative Commons Attribution License

©2017 Kumar. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.