Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 5 Issue 1

An analytical computation of aircraft’s longitudinal trimmed conditions considering its fuel mass flow rate

Laurent Bovet

ELISA-Aerospace, France

Correspondence: Laurent Bovet, MINES ParisTech, Center for Materials Forming (CEMEF), UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis, France

Received: November 25, 2020 | Published: January 28, 2021

Citation: Bovet L. An analytical computation of aircraft’s longitudinal trimmed conditions considering its fuel mass flow rate. Aeron Aero Open Access J. 2021;5(1):1-7. DOI: 10.15406/aaoaj.2021.05.00121

Download PDF

Abstract

The aim of this article is to give simple expressions of aircraft’s longitudinal trimmed conditions taking into account the instantaneous fuel mass flow rate, i.e. the variation of total mass. The computation of aircraft trim points is not a new problem. Nevertheless, current analytical computations are classically performed with a constant total weight of the aircraft, hence assuming that the rate of decrease of the weight due to the fuel mass flow rate has insignificant effects on the results. Thus, the goal of this study has been to assess the effect of weight variation on aircraft trimmed condition and to compute correctly “extended trimmed conditions” defined as the equilibrated conditions in flight considering the weight decrease of the aircraft. It has been demonstrated that the weight variation must have an ad-hoc form to lead to extended trimmed conditions. Moreover, extended trimmed conditions do not correspond to a perfect level flight as it is the case at constant weight, but must present a slightly positive flight path angle leading to a regular increase in altitude. And the corrected longitudinal commands including throttle and elevator positions at a given airspeed and altitude have been computed for extended trimmed conditions and compared to the basic case at constant weight. Finally, all the analytical expressions given in this article have been verified through a numerical simulation performed in the case of a twin-engine aircraft representative of the Airbus wide-body family.

Keywords: longitudinal flight, trimmed conditions, fuel mass flow rate, flight dynamics

Introduction

The computation of the aircraft steady-state or trimmed conditions is of importance in many flight dynamics problems. Indeed, trimmed conditions are the starting points to flight simulations1 and are used for further operations performed by pilots or engineers.2 Furthermore, linear models used for handling qualities analysis are derived from trim points,3 and performance analysis requires flight conditions to be as close as possible to the equilibrium.4 Finally, finding the general solution of trim states corresponding to given flight conditions can become non-trivial5 and lead to complex algorithms which aim at minimizing ad-hoc cost functions.6

Nevertheless, these analyses are always performed considering that the aircraft has a constant weight, assuming that the fuel mass flow rate–which is the airplane mass loss–has insignificant effects on trim. If this makes sense for short to medium term analyses, for long term, the weight decrease turns out in conflict with the initial trim assumptions. One of these concerns the well-known cruise at constant airspeed and angle of attack. In that case, the equilibrated states are computed assuming a constant altitude, but a simple analysis shows that the weight decrease automatically implies a gain of altitude and a residual flight path angle during the cruise.7

Indeed, a simple numerical computation of the longitudinal aircraft dynamics shows that the introduction of a weight decrease leads the aircraft to reach a slightly different equilibrated condition from the case computed at constant weight. Moreover, the well-known Bréguet equation predicting the range of an aircraft flying at constant airspeed and angle of attack has to be corrected by a small factor to take into account the mass variation in flight.8 Here this study makes a focus on the trimmed conditions taking into account the mass variation in flight and a simple way to compute these analytically by correcting the current flight dynamics expressions.

Definition of the equilibrium

Condition on the state parameters

The equilibrium of a mechanical system is reached when the sum of the forces and moments are equal to zero. This leads to write that the acceleration of the body and the rate of change of angular momentum are null. Thus, considering a body with 6 Degree of Freedom (DoF) described by the 12 state parameters including:

  • The velocity (3 coordinates);
  • The angular rate (3 coordinates);
  • The position (3 coordinates);
  • The orientation or attitude (3 coordinates).

The equilibrium is reached when the time derivative of each parameter is equal to zero, except for the 3 position coordinates for which the second time derivative is equal to zero. Thus, the 12 state parameters have been divided into two complementary vectors:

  • The first vector, noted Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadMfagaWcaa aa@3919@ , gathers the 3 position coordinates;
  • The second vector, noted X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaWcaa aa@3918@ , gathers the 9 other state parameters.

With this notation, the equilibrium is defined by:

Equilibrium{ X ˙ = 0 Y ¨ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadweacaWGXb GaamyDaiaadMgacaWGSbGaamyAaiaadkgacaWGYbGaamyAaiaadwha caWGTbGaeyO0H49aaiqaaeaafaqabeGabaaabaGabmiwayaalyaaca Gaeyypa0JabGimayaalaaabaGabmywayaalyaadaGaeyypa0JabGim ayaalaaaaaGaay5Eaaaaaa@4B80@   (1)

Case of a variable mass system

Let us assume that each coordinate xi of the vector X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaWcaa aa@3918@ is described by a first order differential equation gi function of the state variables and mass of the system. In addition, each position coordinate yi of the vector Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadMfagaWcaa aa@3919@ is described by a first order differential equation hi coming from the kinematics equations and function of the state variables only but not mass:

{ x ˙ i = g i ( x 1 ,..., x n , y 1 ,..., y k ,m) y ˙ i = h i ( x 1 ,..., x n , y 1 ,..., y k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaiqadIhagaGaamaaBaaaleaacaWGPbaabeaakiabg2da 9iaadEgadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamiEamaaBaaale aacaaIXaaabeaakiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiE amaaBaaaleaacaWGUbaabeaakiaacYcacaWG5bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG5bWaaSba aSqaaiaadUgaaeqaaOGaaiilaiaad2gacaGGPaaabaGabmyEayaaca WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamiAamaaBaaaleaacaWG PbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilai aac6cacaGGUaGaaiOlaiaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqa aOGaaiilaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaiOlai aac6cacaGGUaGaaiilaiaadMhadaWgaaWcbaGaam4AaaqabaGccaGG PaaaaaGaay5Eaaaaaa@67AC@   (2)

The equations gi and hi are gathered in the vectors G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadEeagaWcaa aa@3907@ and H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaWcaa aa@3908@ resp., which leads to write:

{ X ˙ = G Y ˙ = H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaiqadIfagaWcgaGaaiabg2da9iqadEeagaWcaaqaaiqa dMfagaWcgaGaaiabg2da9iqadIeagaWcaaaaaiaawUhaaaaa@3F08@   (3)

Considering that a variation of mass affects the equations gi only, a variation dm during dt leads to a variation d x ˙ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadsgaceWG4b GbaiaadaWgaaWcbaGaamyAaaqabaaaaa@3B32@ and dxi given by:

d x ˙ i = g i x 1 d x 1 +...+ g i x n d x n + g i y 1 d y 1 +...+ g i y k d y k + g i m dm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadsgaceWG4b GbaiaadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcaaqaaiabgkGi 2kaadEgadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWaaS baaSqaaiaaigdaaeqaaaaakiaadsgacaWG4bWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSYaaSaaaeaacq GHciITcaWGNbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiE amaaBaaaleaacaWGUbaabeaaaaGccaWGKbGaamiEamaaBaaaleaaca WGUbaabeaakiabgUcaRmaalaaabaGaeyOaIyRaam4zamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaaGymaaqaba aaaOGaamizaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaGG UaGaaiOlaiaac6cacqGHRaWkdaWcaaqaaiabgkGi2kaadEgadaWgaa WcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadUga aeqaaaaakiaadsgacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaS YaaSaaaeaacqGHciITcaWGNbWaaSbaaSqaaiaadMgaaeqaaaGcbaGa eyOaIyRaamyBaaaacaWGKbGaamyBaaaa@7515@

i.e.:

x ¨ i = g i x 1 x ˙ 1 +...+ g i x n x ˙ n + g i y 1 y ˙ 1 +...+ g i y k y ˙ k + g i m m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaWaam aaBaaaleaacaWGPbaabeaakiabg2da9maalaaabaGaeyOaIyRaam4z amaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaaGymaaqabaaaaOGabmiEayaacaWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSYaaSaaaeaacqGHciITca WGNbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaWGUbaabeaaaaGcceWG4bGbaiaadaWgaaWcbaGaamOBaaqaba GccqGHRaWkdaWcaaqaaiabgkGi2kaadEgadaWgaaWcbaGaamyAaaqa baaakeaacqGHciITcaWG5bWaaSbaaSqaaiaaigdaaeqaaaaakiqadM hagaGaamaaBaaaleaacaaIXaaabeaakiabgUcaRiaac6cacaGGUaGa aiOlaiabgUcaRmaalaaabaGaeyOaIyRaam4zamaaBaaaleaacaWGPb aabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaam4AaaqabaaaaOGa bmyEayaacaWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSYaaSaaaeaacq GHciITcaWGNbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamyB aaaaceWGTbGbaiaaaaa@6FCD@

which can also be written in the matrix form:

X ¨ = G x X ˙ + G y Y ˙ + G m m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaWcga Waaiabg2da9iaadEeadaWgaaWcbaGaamiEaaqabaGcceWGybGbaSGb aiaacqGHRaWkcaWGhbWaaSbaaSqaaiaadMhaaeqaaOGabmywayaaly aacaGaey4kaSYaaSaaaeaacqGHciITceWGhbGbaSaaaeaacqGHciIT caWGTbaaaiqad2gagaGaaaaa@4780@

with:

G x =[ G x 1 ;... G x n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadEeadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWadaqaamaalaaabaGaeyOaIyRa bm4rayaalaaabaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaa GccaGG7aGaaiOlaiaac6cacaGGUaWaaSaaaeaacqGHciITceWGhbGb aSaaaeaacqGHciITcaWG4bWaaSbaaSqaaiaad6gaaeqaaaaaaOGaay 5waiaaw2faaaaa@4B7D@

and:

G y =[ G y 1 ;... G y k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadEeadaWgaa WcbaGaamyEaaqabaGccqGH9aqpdaWadaqaamaalaaabaGaeyOaIyRa bm4rayaalaaabaGaeyOaIyRaamyEamaaBaaaleaacaaIXaaabeaaaa GccaGG7aGaaiOlaiaac6cacaGGUaWaaSaaaeaacqGHciITceWGhbGb aSaaaeaacqGHciITcaWG5bWaaSbaaSqaaiaadUgaaeqaaaaaaOGaay 5waiaaw2faaaaa@4B7D@

The traditional equilibrium condition (EQ. (1)) gives in this case:

X ¨ = G y Y ˙ + G m m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaWcga Waaiabg2da9iaadEeadaWgaaWcbaGaamyEaaqabaGcceWGzbGbaSGb aiaacqGHRaWkdaWcaaqaaiabgkGi2kqadEeagaWcaaqaaiabgkGi2k aad2gaaaGabmyBayaacaaaaa@43A8@

This expression means that the equilibrated condition X ˙ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaWcga Gaaiabg2da9iqaicdagaWcaaaa@3AF2@ is generally not kept in time with a mass variation. Thus, another condition must be introduced to keep the equilibrium conditions (EQ. (1)) when the mass varies. This leads to the definition of an “extended trimmed conditions” given by:

Extended trimmed conditions{ X ˙ = 0 Y ¨ = 0 X ¨ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadweacaWG4b GaamiDaiaadwgacaWGUbGaamizaiaadwgacaWGKbaeaaaaaaaaa8qa caGGGcGaamiDaiaadkhacaWGPbGaamyBaiaad2gacaWGLbGaamizai aacckacaWGJbGaam4Baiaad6gacaWGKbGaamyAaiaadshacaWGPbGa am4Baiaad6gacaWGZbGaeyO0H49aaiqaaeaafaqabeWabaaabaWdai qadIfagaWcgaGaaiabg2da9iqaicdagaWcaaWdbeaapaGabmywayaa lyaadaGaeyypa0JabGimayaalaaapeqaa8aaceWGybGbaSGbamaacq GH9aqpceaIWaGbaSaaaaaapeGaay5Eaaaaaa@5E2C@   (4)

Considering that Y ¨ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadMfagaWcga Waaiabg2da9iqaicdagaWcaaaa@3AF4@ , the vectoris a constant noted C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4qayaalaaaaa@3923@ . Then, (EQ. (4)) can also be written as:

Extended trimmed conditions{ X ˙ = G = 0 Y ¨ = H = C G y Y ˙ + G m m ˙ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadweacaWG4b GaamiDaiaadwgacaWGUbGaamizaiaadwgacaWGKbaeaaaaaaaaa8qa caGGGcGaamiDaiaadkhacaWGPbGaamyBaiaad2gacaWGLbGaamizai aacckacaWGJbGaam4Baiaad6gacaWGKbGaamyAaiaadshacaWGPbGa am4Baiaad6gacaWGZbGaeyO0H49aaiqaaeaafaqabeWabaaabaWdai qadIfagaWcgaGaaiabg2da9iqadEeagaWcaiabg2da9iqaicdagaWc aaWdbeaapaGabmywayaalyaadaGaeyypa0JabmisayaalaGaeyypa0 ZdbiqadoeagaWcaaqaa8aacaWGhbWaaSbaaSqaaiaadMhaaeqaaOGa bmywayaalyaacaGaey4kaSYaaSaaaeaacqGHciITceWGhbGbaSaaae aacqGHciITcaWGTbaaaiqad2gagaGaaiabg2da9iqaicdagaWcaaaa a8qacaGL7baaaaa@6A8C@   (5)

Application to the longitudinal flight

The theoretical framework of the definition of the extended equilibrium is now applied to the case of a pure longitudinal flight, i.e. a flight in the vertical plane only. In this case, the airplane has 3 DoF, i.e. 1 in rotation (pitch) and 2 in the vertical plane (horizontal and vertical movement), and 6 state variables describe the motion of the aircraft in this case.

Assumptions and models

In this application, the atmosphere state parameters are given by the International Standard Atmosphere (ISA) model.9 For analytical computations, an exponential model of air density is defined:10

ρ= ρ ref e a h (z z ref ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkhacaWGLbGaamOz aaqabaGccaWGLbWaaWbaaSqabeaacaWGHbWaaSbaaWqaaiaadIgaae qaaSGaaiikaiaadQhacqGHsislcaWG6bWaaSbaaWqaaiaadkhacaWG LbGaamOzaaqabaWccaGGPaaaaaaa@4A3B@   (6)

where ρref and zref denote reference air density and altitude depending on the atmosphere layer.

In the troposphere, i.e. from sea level to 11km of altitude where the temperature decreases linearly, ah is approximated by a least-squares curve fit of the actual evolution of the air density vs. altitude, i.e.:

a h =1/9042 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaWGObaabeaakiabg2da9iabgkHiTiaaigda caGGVaGaaGyoaiaaicdacaaI0aGaaGOmaiaad2gadaahaaWcbeqaai abgkHiTiaaigdaaaaaaa@4371@

In the lower stratosphere, i.e. from 11 km to 25 km of altitude where the temperature is constant, ah is directly

computed with the ideal gas law, i.e.:

a h = 1.577710 4 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaWGObaabeaakiabg2da9iabgkHiTiaaigda caGGUaGaaGynaiaaiEdacaaI3aGaaG4naiaaigdacaaIWaWaaWbaaS qabeaacqGHsislcaaI0aaaaOGaamyBamaaCaaaleqabaGaeyOeI0Ia aGymaaaaaaa@46D2@

Drag and lift are the result of the projection of the aerodynamic force acting on the aircraft on the longitudinal

aerodynamic axes:11

{ D= 1 2 ρS V 2 C D L= 1 2 ρS V 2 C L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiqaaeaafaqabeGabaaabaGaamiraiabg2da9maalaaabaGaaGym aaqaaiaaikdaaaGaeqyWdiNaam4uaiaadAfadaahaaWcbeqaaiaaik daaaGccaWGdbWaaSbaaSqaaiaadseaaeqaaaGcbaGaamitaiabg2da 9maalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdiNaam4uaiaadAfada ahaaWcbeqaaiaaikdaaaGccaWGdbWaaSbaaSqaaiaadYeaaeqaaaaa aOGaay5Eaaaaaa@4C86@   (7)

In these expressions, V denotes the True Air Speed (TAS), S corresponds to the aircraft’s reference area and the coefficients CD and CL are the drag and lift coefficient resp. The drag coefficient CD is modeled as:15

C D = C D o +K C L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaaBaaaleaacaWGebaabeaakiabg2da9iaadoeadaWgaaWc baGaamiramaaBaaameaacaWGVbaabeaaaSqabaGccqGHRaWkcaWGlb Gaam4qamaaDaaaleaacaWGmbaabaGaaGOmaaaaaaa@423D@   (8)

where K corresponds the induced drag factor and CDo denotes the parasite drag coefficient.

Considering simple static models, the lift coefficient CL is a function of the angle of attack α only:

C L = C Lα (α α o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaaBaaaleaacaWGmbaabeaakiabg2da9iaadoeadaWgaaWc baGaamitaiabeg7aHbqabaGccaGGOaGaeqySdeMaeyOeI0IaeqySde 2aaSbaaSqaaiaad+gaaeqaaOGaaiykaaaa@453A@

Concerning the aerodynamic pitching moment M, we have:

M= 1 2 ρS V 2 c C m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiytaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdiNa am4uaiaadAfadaahaaWcbeqaaiaaikdaaaGccaWGJbGaam4qamaaBa aaleaacaWGTbaabeaaaaa@42DB@   (9)

The pitching moment coefficient Cm is expressed in terms of angle of attack α, pitch rate q and elevator deflection δe:13

Cm=C m o +C m α (α α o )+C m q qc V +C m δe δe MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaad2gacqGH9aqpcaWGdbGaamyBamaaBaaaleaacaWGVbaa beaakiabgUcaRiaadoeacaWGTbWaaSbaaSqaaiabeg7aHbqabaGcca GGOaGaeqySdeMaeyOeI0IaeqySde2aaSbaaSqaaiaad+gaaeqaaOGa aiykaiabgUcaRiaadoeacaWGTbWaaSbaaSqaaiaadghaaeqaaOWaaS aaaeaacaWGXbGaam4yaaqaaiaadAfaaaGaey4kaSIaam4qaiaad2ga daWgaaWcbaGaeqiTdqMaamyzaaqabaGccqaH0oazcaWGLbaaaa@578D@   (10)

The thrust is assumed to be proportional to the air density and throttle lever δx:14

T= T SL ρ ρ SL δx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfadaWgaaWcbaGaam4uaiaadYeaaeqaaOWa aSaaaeaacqaHbpGCaeaacqaHbpGCdaWgaaWcbaGaam4uaiaadYeaae qaaaaakiabes7aKjaadIhaaaa@44F1@   (11)

In this expression, TSL denotes the total thrust of the aircraft at sea level.

Longitudinal equations of motion

As said above, it’s necessary to take into account 6 state variables to describe the motion of a pure longitudinal flight. The first 2 state variables concern the position of the aircraft in the vertical plane, i.e. the horizontal distance x and altitude z.

Each variable is given by a first order differential equation coming from the kinematics:

{ x ˙ =Vcosγ z ˙ =Vsinγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiqaaeaafaqabeGabaaabaGabmiEayaacaGaeyypa0JaamOvaiGa cogacaGGVbGaai4Caiabeo7aNbqaaiqadQhagaGaaiabg2da9iaadA faciGGZbGaaiyAaiaac6gacqaHZoWzaaaacaGL7baaaaa@4839@   (12)

where γ denotes the Flight Path Angle (FPA) of the aircraft.

With these equations, it is possible to define the vectors Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadMfagaWcaa aa@3919@ and, i.e.:

Y =( x z ) and  H =( Vcosγ Vsinγ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadMfagaWcai abg2da9maabmaabaqbaeqabiqaaaqaaiaadIhaaeaacaWG6baaaaGa ayjkaiaawMcaaabaaaaaaaaapeGaaiiOa8aacaWGHbGaamOBaiaads gapeGaaiiOa8aaceWGibGbaSaacqGH9aqpdaqadaqaauaabeqaceaa aeaapeGaamOvaiGacogacaGGVbGaai4Caiabeo7aNbWdaeaapeGaam OvaiGacohacaGGPbGaaiOBaiabeo7aNbaaa8aacaGLOaGaayzkaaaa aa@5171@

Considering a symmetric aircraft with the thrust aligned with the fuselage reference line, the longitudinal equations of motion are the projections of the Newton’s second law on the aerodynamic axes:15

{ V ˙ = 1 m (TcosαDmgsinγ) γ ˙ = 1 mV (Tsinα+Lmgcosγ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaiqadAfagaGaaiabg2da9maalaaabaGaaGymaaqaaiaa d2gaaaGaaiikaabaaaaaaaaapeGaamivaiGacogacaGGVbGaai4Cai abeg7aHjabgkHiTiaadseacqGHsislcaWGTbGaam4zaiGacohacaGG PbGaaiOBaiabeo7aNjaacMcaa8aabaGafq4SdCMbaiaacqGH9aqpda WcaaqaaiaaigdaaeaacaWGTbGaamOvaaaacaGGOaWdbiaadsfaciGG ZbGaaiyAaiaac6gacqaHXoqycqGHRaWkcaWGmbGaeyOeI0IaamyBai aadEgaciGGJbGaai4BaiaacohacqaHZoWzcaGGPaaaaaWdaiaawUha aaaa@61D8@   (13)

Assuming that the thrust is located at the aircraft center of gravity, the pitch rate comes from the aerodynamic pitching moment only16 and we have:

q ˙ = M I YY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadghagaGaai abg2da9maalaaabaGaamytaaqaaiaadMeadaWgaaWcbaGaamywaiaa dMfaaeqaaaaaaaa@3DC6@   (14)

This set is completed by the kinematic equations in pitch:

α ˙ =q 1 mV (Tsinα+Lmgcosγ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaca Gaeyypa0JaamyCaiabgkHiTmaalaaabaGaaGymaaqaaiaad2gacaWG wbaaaiaacIcaqaaaaaaaaaWdbiaadsfaciGGZbGaaiyAaiaac6gacq aHXoqycqGHRaWkcaWGmbGaeyOeI0IaamyBaiaadEgaciGGJbGaai4B aiaacohacqaHZoWzcaGGPaaaaa@4F13@   (15)

With these equations, it’s possible to define the vectors X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaWcaa aa@3918@ and G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadEeagaWcaa aa@3907@ :

X =( V γ α q )and  G =( 1 m (Fcosα 1 2 ρS V 2 C D mgsinγ) 1 mV ( 1 2 ρS V 2 C L +Fsinαmgcosγ) q 1 mV ( 1 2 ρS V 2 C L +Fsinαmgcosγ) 1 I YY 1 2 ρS V 2 c C m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadIfagaWcai abg2da9maabmaabaqbaeqabqqaaaaabaGaamOvaaqaaiabeo7aNbqa aiabeg7aHbqaaiaadghaaaaacaGLOaGaayzkaaGaamyyaiaad6gaca WGKbaeaaaaaaaaa8qacaGGGcWdaiqadEeagaWcaiabg2da9maabmaa baqbaeqabqqaaaaabaWaaSaaaeaacaaIXaaabaGaamyBaaaacaGGOa WdbiaadAeaciGGJbGaai4BaiaacohacqaHXoqycqGHsisldaWcaaqa aiaaigdaaeaacaaIYaaaaiabeg8aYjaadofacaWGwbWaaWbaaSqabe aacaaIYaaaaOGaam4qamaaBaaaleaacaWGebaabeaakiabgkHiTiaa d2gacaWGNbGaci4CaiaacMgacaGGUbGaeq4SdCMaaiykaaWdaeaada WcaaqaaiaaigdaaeaacaWGTbGaamOvaaaacaGGOaWdbmaalaaabaGa aGymaaqaaiaaikdaaaGaeqyWdiNaam4uaiaadAfadaahaaWcbeqaai aaikdaaaGccaWGdbWaaSbaaSqaaiaadYeaaeqaaOGaey4kaSIaamOr aiGacohacaGGPbGaaiOBaiabeg7aHjabgkHiTiaad2gacaWGNbGaci 4yaiaac+gacaGGZbGaeq4SdCMaaiykaaWdaeaacaWGXbGaeyOeI0Ya aSaaaeaacaaIXaaabaGaamyBaiaadAfaaaGaaiika8qadaWcaaqaai aaigdaaeaacaaIYaaaaiabeg8aYjaadofacaWGwbWaaWbaaSqabeaa caaIYaaaaOGaam4qamaaBaaaleaacaWGmbaabeaakiabgUcaRiaadA eaciGGZbGaaiyAaiaac6gacqaHXoqycqGHsislcaWGTbGaam4zaiGa cogacaGGVbGaai4Caiabeo7aNjaacMcaa8aabaWaaSaaaeaacaaIXa aabaGaamysamaaBaaaleaacaWGzbGaamywaaqabaaaaOWdbmaalaaa baGaaGymaaqaaiaaikdaaaGaeqyWdiNaam4uaiaadAfadaahaaWcbe qaaiaaikdaaaGccaWGJbGaam4qamaaBaaaleaacaWGTbaabeaaaaaa k8aacaGLOaGaayzkaaaaaa@A17B@

Definition of the extended trimmed conditions

The first condition coming from the definition of the extended equilibrium (EQ. (5)), i.e. G = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadEeagaWcai abg2da9iqaicdagaWcaaaa@3AD9@ , leads to:

{ Fcosα 1 2 ρS V 2 C D =mgsinγ 1 2 ρS V 2 C L +Fsinα=mgcosγ q=0 Cm=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabqqaaaaabaaeaaaaaaaaa8qacaWGgbGaci4yaiaac+gacaGGZbGa eqySdeMaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHbpGCca WGtbGaamOvamaaCaaaleqabaGaaGOmaaaakiaadoeadaWgaaWcbaGa amiraaqabaGccqGH9aqpcaWGTbGaam4zaiGacohacaGGPbGaaiOBai abeo7aNbWdaeaapeWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHbpGC caWGtbGaamOvamaaCaaaleqabaGaaGOmaaaakiaadoeadaWgaaWcba GaamitaaqabaGccqGHRaWkcaWGgbGaci4CaiaacMgacaGGUbGaeqyS deMaeyypa0JaamyBaiaadEgaciGGJbGaai4BaiaacohacqaHZoWza8 aabaGaamyCaiabg2da9iaaicdaaeaapeGaam4qaiaad2gacqGH9aqp caaIWaaaaaWdaiaawUhaaaaa@6A70@   (16)

The second condition from (EQ. (5)), i.e. Y ˙ = C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadMfagaWcga Gaaiabg2da9abaaaaaaaaapeGabm4qayaalaaaaa@3B21@ , gives:

{ x ˙ = C 1 z ˙ = C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiqaaeaafaqabeGabaaabaGabmiEayaacaGaeyypa0Jaam4qamaa BaaaleaacaaIXaaabeaaaOqaaiqadQhagaGaaiabg2da9iaadoeada WgaaWcbaGaaGOmaaqabaaaaaGccaGL7baaaaa@40FD@

where C1 and C2 denote the 2 coordinates of C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4qayaalaaaaa@3923@ .

For the third condition from (EQ. (5)), it’s necessary to compute the matrix Gy:

G y =[ G x ; G z ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaGaamyEaaqabaGccqGH9aqpdaWadaqaamaa laaabaGaeyOaIyRabm4rayaalaaabaGaeyOaIyRaamiEaaaacaGG7a WaaSaaaeaacqGHciITceWGhbGbaSaaaeaacqGHciITcaWG6baaaaGa ay5waiaaw2faaaaa@477F@

i.e.:

G y =[ 0 a h m (Fcosα 1 2 ρS V 2 C D ) 0 a h mV ( 1 2 ρS V 2 C L +Fsinα) 0 a h mV ( 1 2 ρS V 2 C L +Fsinα) 0 a h I YY 1 2 ρS V 2 c C m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaGaamyEaaqabaGccqGH9aqpdaWadaqaauaa beqaeiaaaaqaaiaaicdaaeaadaWcaaqaaiaadggadaWgaaWcbaGaam iAaaqabaaakeaacaWGTbaaaiaacIcapeGaamOraiGacogacaGGVbGa ai4Caiabeg7aHjabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeq yWdiNaam4uaiaadAfadaahaaWcbeqaaiaaikdaaaGccaWGdbWaaSba aSqaaiaadseaaeqaaOWdaiaacMcaaeaacaaIWaaabaWaaSaaaeaaca WGHbWaaSbaaSqaaiaadIgaaeqaaaGcbaGaamyBaiaadAfaaaGaaiik a8qadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYjaadofacaWGwb WaaWbaaSqabeaacaaIYaaaaOGaam4qamaaBaaaleaacaWGmbaabeaa kiabgUcaRiaadAeaciGGZbGaaiyAaiaac6gacqaHXoqypaGaaiykaa qaaiaaicdaaeaacqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaamiA aaqabaaakeaacaWGTbGaamOvaaaacaGGOaWdbmaalaaabaGaaGymaa qaaiaaikdaaaGaeqyWdiNaam4uaiaadAfadaahaaWcbeqaaiaaikda aaGccaWGdbWaaSbaaSqaaiaadYeaaeqaaOGaey4kaSIaamOraiGaco hacaGGPbGaaiOBaiabeg7aH9aacaGGPaaabaGaaGimaaqaamaalaaa baGaamyyamaaBaaaleaacaWGObaabeaaaOqaaiaadMeadaWgaaWcba GaamywaiaadMfaaeqaaaaak8qadaWcaaqaaiaaigdaaeaacaaIYaaa aiabeg8aYjaadofacaWGwbWaaWbaaSqabeaacaaIYaaaaOGaam4yai aadoeadaWgaaWcbaGaamyBaaqabaaaaaGcpaGaay5waiaaw2faaaaa @87D5@

With (EQ. (16)), this leads to:

G y =[ 0 a h gsinγ 0 a h V gcosγ 0 a h V gcosγ 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaGaamyEaaqabaGccqGH9aqpdaWadaqaauaa beqaeiaaaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaadIgaaeqaaO Gaam4zaiGacohacaGGPbGaaiOBaiabeo7aNbqaaiaaicdaaeaadaWc aaqaaiaadggadaWgaaWcbaGaamiAaaqabaaakeaacaWGwbaaaiaadE gaciGGJbGaai4BaiaacohacqaHZoWzaeaacaaIWaaabaGaeyOeI0Ya aSaaaeaacaWGHbWaaSbaaSqaaiaadIgaaeqaaaGcbaGaamOvaaaaca WGNbGaci4yaiaac+gacaGGZbGaeq4SdCgabaGaaGimaaqaaiaaicda aaaacaGLBbGaayzxaaaaaa@5A1D@

We also have:

G m =( 1 m 2 (Fcosα 1 2 ρS V 2 C D mgsinγ) gsinγ m 1 m 2 V ( 1 2 ρS V 2 C L +Fsinαmgcosγ) gcosγ mV 1 m 2 V ( 1 2 ρS V 2 C L +Fsinαmgcosγ)+ gcosγ mV 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRabm4rayaalaaabaGaeyOaIyRaamyBaaaacqGH9aqpdaqadaqa auaabeqaeeaaaaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaad2gada ahaaWcbeqaaiaaikdaaaaaaOGaaiikaabaaaaaaaaapeGaamOraiGa cogacaGGVbGaai4Caiabeg7aHjabgkHiTmaalaaabaGaaGymaaqaai aaikdaaaGaeqyWdiNaam4uaiaadAfadaahaaWcbeqaaiaaikdaaaGc caWGdbWaaSbaaSqaaiaadseaaeqaaOGaeyOeI0IaamyBaiaadEgaci GGZbGaaiyAaiaac6gacqaHZoWzcaGGPaGaeyOeI0YaaSaaaeaacaWG NbGaci4CaiaacMgacaGGUbGaeq4SdCgabaGaamyBaaaaa8aabaGaey OeI0YaaSaaaeaacaaIXaaabaGaamyBamaaCaaaleqabaGaaGOmaaaa kiaadAfaaaGaaiika8qadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg 8aYjaadofacaWGwbWaaWbaaSqabeaacaaIYaaaaOGaam4qamaaBaaa leaacaWGmbaabeaakiabgUcaRiaadAeaciGGZbGaaiyAaiaac6gacq aHXoqycqGHsislcaWGTbGaam4zaiGacogacaGGVbGaai4Caiabeo7a NjaacMcacqGHsisldaWcaaqaaiaadEgaciGGJbGaai4Baiaacohacq aHZoWzaeaacaWGTbGaamOvaaaaa8aabaWaaSaaaeaacaaIXaaabaGa amyBamaaCaaaleqabaGaaGOmaaaakiaadAfaaaGaaiika8qadaWcaa qaaiaaigdaaeaacaaIYaaaaiabeg8aYjaadofacaWGwbWaaWbaaSqa beaacaaIYaaaaOGaam4qamaaBaaaleaacaWGmbaabeaakiabgUcaRi aadAeaciGGZbGaaiyAaiaac6gacqaHXoqycqGHsislcaWGTbGaam4z aiGacogacaGGVbGaai4Caiabeo7aNjaacMcacqGHRaWkdaWcaaqaai aadEgaciGGJbGaai4BaiaacohacqaHZoWzaeaacaWGTbGaamOvaaaa a8aabaGaaGimaaaaaiaawIcacaGLPaaaaaa@A768@

With (EQ. (16)), this leads to:

G m = 1 mV ( gVsinγ gcosγ gcosγ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRabm4rayaalaaabaGaeyOaIyRaamyBaaaacqGH9aqpdaWcaaqa aiaaigdaaeaacaWGTbGaamOvaaaadaqadaqaauaabeqaeeaaaaqaaa baaaaaaaaapeGaeyOeI0Iaam4zaiaadAfaciGGZbGaaiyAaiaac6ga cqaHZoWza8aabaWdbiabgkHiTiaadEgaciGGJbGaai4Baiaacohacq aHZoWza8aabaWdbiaadEgaciGGJbGaai4BaiaacohacqaHZoWza8aa baGaaGimaaaaaiaawIcacaGLPaaaaaa@5620@

Finally, the third condition from (EQ. (5)) gives the following vector equation:

( a h gsinγ a h V gcosγ a h V gcosγ 0 ) z ˙ + 1 mV ( gVsinγ gcosγ gcosγ 0 ) m ˙ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabqqaaaaabaGaamyyamaaBaaaleaacaWGObaabeaakiaadEgaciGG ZbGaaiyAaiaac6gacqaHZoWzaeaadaWcaaqaaiaadggadaWgaaWcba GaamiAaaqabaaakeaacaWGwbaaaiaadEgaciGGJbGaai4Baiaacoha cqaHZoWzaeaacqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaamiAaa qabaaakeaacaWGwbaaaiaadEgaciGGJbGaai4BaiaacohacqaHZoWz aeaacaaIWaaaaaGaayjkaiaawMcaaiqadQhagaGaaiabgUcaRmaala aabaGaaGymaaqaaiaad2gacaWGwbaaamaabmaabaqbaeqabqqaaaaa baaeaaaaaaaaa8qacqGHsislcaWGNbGaamOvaiGacohacaGGPbGaai OBaiabeo7aNbWdaeaapeGaeyOeI0Iaam4zaiGacogacaGGVbGaai4C aiabeo7aNbWdaeaapeGaam4zaiGacogacaGGVbGaai4Caiabeo7aNb WdaeaacaaIWaaaaaGaayjkaiaawMcaaiqad2gagaGaaiabg2da9iqa icdagaWcaaaa@708E@

This leads to a single condition on the evolution of the altitude in trimmed condition when the mass varies:

z ˙ = m ˙ a h m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadQhagaGaai abg2da9maalaaabaGabmyBayaacaaabaGaamyyamaaBaaaleaacaWG Obaabeaakiqad2gagaGaaaaaaaa@3E46@   (17)

Finally, the longitudinal trimmed condition of the aircraft taking into account the case m ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abgcMi5kaaicdaaaa@3BA5@ is defined as follows:

Extended trimmed conditions{ V ˙ =0 γ ˙ =0 α ˙ =0 q ˙ =0 x ¨ =0 z ˙ = m ˙ a h m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadweacaWG4b GaamiDaiaadwgacaWGUbGaamizaiaadwgacaWGKbaeaaaaaaaaa8qa caGGGcGaamiDaiaadkhacaWGPbGaamyBaiaad2gacaWGLbGaamizai aacckacaWGJbGaam4Baiaad6gacaWGKbGaamyAaiaadshacaWGPbGa am4Baiaad6gacaWGZbGaeyO0H49aaiqaaeaafaqabeGbbaaaaeaace WGwbGbaiaacqGH9aqpcaaIWaaabaGafq4SdCMbaiaacqGH9aqpcaaI WaaabaGafqySdeMbaiaacqGH9aqpcaaIWaaabaGabmyCayaacaGaey ypa0JaaGimaaqaaiqadIhagaWaaiabg2da9iaaicdaaeaapaGabmOE ayaacaGaeyypa0ZaaSaaaeaaceWGTbGbaiaaaeaacaWGHbWaaSbaaS qaaiaadIgaaeqaaOGabmyBayaacaaaaaaaa8qacaGL7baaaaa@6AB5@   (18)

Discussion of the results

In extended trimmed conditions when the mass varies, the equations (EQ. (18)) show that the altitude must increase ( z ˙ >0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaapaGabmOEayaacaGaeyOpa4JaaGimaaWdbiaawIcacaGL Paaaaaa@3CBB@ when the mass decreases ( m ˙ <0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiika8aaceWGTbGbaiaacqGH8aapcaaIWaWdbiaacMcaaaa@3C7A@ to keep the equilibrium.

These equations also show that the condition on altitude z ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadQhagaGaai abg2da9iaaicdaaaa@3AF1@ only apply to the case m ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaaicdaaaa@3AE4@ , i.e. at constant mass. Moreover, as no equation in G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadEeagaWcaa aa@3907@ depends on the horizontal distance x, i.e. G x = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRabm4rayaalaaabaGaeyOaIyRaamiEaaaacqGH9aqpceaIWaGb aSaaaaa@3EB2@ , it’s not possible to compute the constant C1 corresponding to x ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEayaacaaaaa@394F@ , and the only condition in this case is x ¨ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEayaadaGaeyypa0JaaGimaaaa@3B10@ .

In addition, as we also have z ˙ = C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadQhagaGaai abg2da9abaaaaaaaaapeGaam4qamaaBaaaleaacaaIYaaabeaaaaa@3C07@ , this gives the following expression of m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaaa aa@3924@ :

m ˙ = C 2 a h m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9abaaaaaaaaapeGaam4qamaaBaaaleaacaaIYaaabeaak8aa caWGHbWaaSbaaSqaaiaadIgaaeqaaOGaamyBaaaa@3F0E@   (19)

which means that the mass variationmust be proportional to the total mass m to get a trimmed condition in longitudinal flight. For an aircraft equipped with jet engines, this condition can be achieved through a very simple model with a fuel flow rate proportional to the thrust:

m ˙ = C T T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iabgkHiTabaaaaaaaaapeGaam4qamaaBaaaleaacaWGubaa beaakiaadsfaaaa@3DE7@   (20)

where cT denotes the thrust-specific fuel consumption (TSFC).

Indeed, considering the thrust given by the trimmed conditions, this leads to the following expression of the equilibrated thrust:

T=mg( sinγ+cosγ C D C L cosα+sinα C D C L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaad2gacaWGNbWaaeWaaeaadaWcaaqaaiGacoha caGGPbGaaiOBaiabeo7aNjabgUcaRiGacogacaGGVbGaai4Caiabeo 7aNnaalaaabaGaam4qamaaBaaaleaacaWGebaabeaaaOqaaiaadoea daWgaaWcbaGaamitaaqabaaaaaGcbaGaai4yaiaac+gacaGGZbGaeq ySdeMaey4kaSIaci4CaiaacMgacaGGUbGaeqySde2aaSaaaeaacaWG dbWaaSbaaSqaaiaadseaaeqaaaGcbaGaam4qamaaBaaaleaacaWGmb aabeaaaaaaaaGccaGLOaGaayzkaaaaaa@588F@

which gives:

m ˙ = C T g( sinγ+cosγ C D C L cosα+sinα C D C L )m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iabgkHiTabaaaaaaaaapeGaam4qamaaBaaaleaacaWGubaa beaakiaadEgadaqadaqaamaalaaabaGaci4CaiaacMgacaGGUbGaeq 4SdCMaey4kaSIaci4yaiaac+gacaGGZbGaeq4SdC2aaSaaaeaacaWG dbWaaSbaaSqaaiaadseaaeqaaaGcbaGaam4qamaaBaaaleaacaWGmb aabeaaaaaakeaacaGGJbGaai4BaiaacohacqaHXoqycqGHRaWkciGG ZbGaaiyAaiaac6gacqaHXoqydaWcaaqaaiaadoeadaWgaaWcbaGaam iraaqabaaakeaacaWGdbWaaSbaaSqaaiaadYeaaeqaaaaaaaaakiaa wIcacaGLPaaacaWGTbaaaa@5B75@

Assuming that the TSFC cT remains constant and as every parameter in this equation are constant in trimmed condition, including α and γ which are small, this leads to:

m ˙ = C T g C D C L m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iabgkHiTabaaaaaaaaapeGaam4qamaaBaaaleaacaWGubaa beaakiaadEgadaWcaaqaaiaadoeadaWgaaWcbaGaamiraaqabaaake aacaWGdbWaaSbaaSqaaiaadYeaaeqaaaaakiaad2gaaaa@4292@   (21)

Thus, this expression is equivalent to (EQ. (19)), which also gives the value of C2:

C 2 = z ˙ = C T g a h C D C L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaaBaaaleaacaaIYaaabeaakiabg2da98aaceWG6bGbaiaa cqGH9aqpcqGHsislpeGaam4qamaaBaaaleaacaWGubaabeaakmaala aabaGaam4zaaqaa8aacaWGHbWaaSbaaSqaaiaadIgaaeqaaaaak8qa daWcaaqaaiaadoeadaWgaaWcbaGaamiraaqabaaakeaacaWGdbWaaS baaSqaaiaadYeaaeqaaaaaaaa@46BA@   (22)

Analytical computation of the extended trimmed conditions

In this paragraph, the trimmed conditions in longitudinal flight at constant mass will be corrected to get the exact trimmed conditions when the mass varies.

To get this correction, the mass variation is assumed to be equivalent to the form given by (EQ. (19)), i.e.:

m ˙ = k m ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaadUgadaWgaaWcbaGabmyBayaacaaabeaakiaad2gaaaa@3D3D@   (23)

with k m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGabmyBayaacaaabeaaaaa@3A40@ constant.

To clarify the notations, the subscript e denotes an equilibrated parameter computed with m ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaaicdaaaa@3AE4@ , whereas the subscriptdenotes an equilibrated parameter computed with m ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abgcMi5kaaicdaaaa@3BA5@ .

In addition, the comparison between both cases will be performed at a given weight for the same case of altitude and True Airspeed, i.e.:

{ V e = V m ˙ z e = z m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaiaadAfadaWgaaWcbaGaamyzaaqabaGccqGH9aqpcaWG wbWaaSbaaSqaaiqad2gagaGaaaqabaaakeaacaWG6bWaaSbaaSqaai aadwgaaeqaaOGaeyypa0JaamOEamaaBaaaleaaceWGTbGbaiaaaeqa aaaaaOGaay5Eaaaaaa@43B2@

As z ˙ = m ˙ a h m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqadQhagaGaai abg2da9maalaaabaGabmyBayaacaaabaGaamyyamaaBaaaleaacaWG Obaabeaakiaad2gaaaaaaa@3E3D@ when the mass varies (EQ. (18)), by introducing both the kinematic equation in altitude (EQ. (12)) and the expression of m˙ (EQ. (23)), this leads to:

V e γ m ˙ = k m ˙ a h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamyzaaqabaGccqaHZoWzdaWgaaWcbaGabmyBayaacaaabeaa kiabg2da9maalaaabaGaam4AamaaBaaaleaaceWGTbGbaiaaaeqaaa GcbaGaamyyamaaBaaaleaacaWGObaabeaaaaaaaa@4232@

i.e.:

γ m ˙ = k m ˙ a h V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaaceWGTbGbaiaaaeqaaOGaeyypa0ZaaSaaaeaacaWGRbWaaSba aSqaaiqad2gagaGaaaqabaaakeaacaWGHbWaaSbaaSqaaiaadIgaae qaaOGaamOvamaaBaaaleaacaWGLbaabeaaaaaaaa@4232@   (24)

Moreover, the pitch rate is equal to zero in both cases, i.e.:

q e = q m ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamyzaaqabaGccqGH9aqpcaWGXbWaaSbaaSqaaiqad2gagaGa aaqabaGccqGH9aqpcaaIWaaaaa@3F2C@   (25)

The longitudinal trimmed equations are written at constant weight (lift and drag equations):

{ T e cos α e 1 2 ρ e S V e 2 C D e =0 T e sin α e + 1 2 ρ e S V e 2 C L e =mg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaabaaaaaaaaapeGaamivamaaBaaaleaacaWGLbaabeaa kiGacogacaGGVbGaai4Caiabeg7aHnaaBaaaleaacaWGLbaabeaaki abgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaSbaaSqa aiaadwgaaeqaaOGaam4uaiaadAfadaqhaaWcbaGaamyzaaqaaiaaik daaaGccaWGdbWaaSbaaSqaaiaadseadaWgaaadbaGaamyzaaqabaaa leqaaOGaeyypa0JaaGimaaWdaeaapeGaamivamaaBaaaleaacaWGLb aabeaakiGacohacaGGPbGaaiOBaiabeg7aHnaaBaaaleaacaWGLbaa beaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaS baaSqaaiaadwgaaeqaaOGaam4uaiaadAfadaqhaaWcbaGaamyzaaqa aiaaikdaaaGccaWGdbWaaSbaaSqaaiaadYeadaWgaaadbaGaamyzaa qabaaaleqaaOGaeyypa0JaamyBaiaadEgaaaaapaGaay5Eaaaaaa@64F4@   (26)

and with varying mass:

{ T m ˙ cos α m ˙ 1 2 ρ m ˙ S V m ˙ 2 C D m ˙ =mgsin γ m ˙ T m ˙ sin α m ˙ + 1 2 ρ m ˙ S V m ˙ 2 C L m ˙ =mgcos γ m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaabaaaaaaaaapeGaamivamaaBaaaleaapaGabmyBayaa caaapeqabaGcciGGJbGaai4BaiaacohacqaHXoqydaWgaaWcbaWdai qad2gagaGaaaWdbeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOm aaaacqaHbpGCdaWgaaWcbaWdaiqad2gagaGaaaWdbeqaaOGaam4uai aadAfadaqhaaWcbaWdaiqad2gagaGaaaWdbeaacaaIYaaaaOGaam4q amaaBaaaleaacaWGebWaaSbaaWqaa8aaceWGTbGbaiaaa8qabeaaaS qabaGccqGH9aqpcaWGTbGaam4zaiGacohacaGGPbGaaiOBaiabeo7a N9aadaWgaaWcbaGabmyBayaacaaabeaaaOqaa8qacaWGubWaaSbaaS qaa8aaceWGTbGbaiaaa8qabeaakiGacohacaGGPbGaaiOBaiabeg7a HnaaBaaaleaapaGabmyBayaacaaapeqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIYaaaaiabeg8aYnaaBaaaleaapaGabmyBayaacaaa peqabaGccaWGtbGaamOvamaaDaaaleaapaGabmyBayaacaaapeqaai aaikdaaaGccaWGdbWaaSbaaSqaaiaadYeadaWgaaadbaWdaiqad2ga gaGaaaWdbeqaaaWcbeaakiabg2da9iaad2gacaWGNbGaci4yaiaac+ gacaGGZbGaeq4SdC2damaaBaaaleaaceWGTbGbaiaaaeqaaaaaaOGa ay5Eaaaaaa@7353@   (27)

Assuming that the equilibrated FPA γ m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaaceWGTbGbaiaaaeqaaaaa@3B26@ is very small and considering that ρ m ˙ = ρ e , V ˙ m ˙ = V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaa8aaceWGTbGbaiaaa8qabeaakiabg2da9iab eg8aYnaaBaaaleaacaWGLbaabeaakiaacYcapaGabmOvayaacaWaaS baaSqaaiqad2gagaGaaaqabaGccqGH9aqpcaWGwbWaaSbaaSqaaiaa dwgaaeqaaaaa@450A@ and T m ˙ = T e δ x m ˙ δ x e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaaBaaaleaapaGabmyBayaacaaapeqabaGccqGH9aqpcaWG ubWaaSbaaSqaaiaadwgaaeqaaOWdamaalaaabaGaeqiTdq2dbiaadI hadaWgaaWcbaWdaiqad2gagaGaaaWdbeqaaaGcpaqaaiabes7aKjaa dIhadaWgaaWcbaGaamyzaaqabaaaaaaa@4559@ , this

leads to:

{ T e δ x m ˙ δ x e cos α m ˙ 1 2 ρ m ˙ S V m ˙ 2 C D m ˙ =mg γ m ˙ T e δ x m ˙ δ x e sin α m ˙ + 1 2 ρ m ˙ S V m ˙ 2 C L m ˙ =mg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaabaaaaaaaaapeGaamivamaaBaaaleaacaWGLbaabeaa k8aadaWcaaqaaiabes7aK9qacaWG4bWaaSbaaSqaa8aaceWGTbGbai aaa8qabeaaaOWdaeaacqaH0oazcaWG4bWaaSbaaSqaaiaadwgaaeqa aaaak8qaciGGJbGaai4BaiaacohacqaHXoqydaWgaaWcbaWdaiqad2 gagaGaaaWdbeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaa cqaHbpGCdaWgaaWcbaWdaiqad2gagaGaaaWdbeqaaOGaam4uaiaadA fadaqhaaWcbaWdaiqad2gagaGaaaWdbeaacaaIYaaaaOGaam4qamaa BaaaleaacaWGebWaaSbaaWqaa8aaceWGTbGbaiaaa8qabeaaaSqaba GccqGH9aqpcaWGTbGaam4zaiabeo7aN9aadaWgaaWcbaGabmyBayaa caaabeaaaOqaa8qacaWGubWaaSbaaSqaaiaadwgaaeqaaOWdamaala aabaGaeqiTdq2dbiaadIhadaWgaaWcbaWdaiqad2gagaGaaaWdbeqa aaGcpaqaaiabes7aKjaadIhadaWgaaWcbaGaamyzaaqabaaaaOWdbi GacohacaGGPbGaaiOBaiabeg7aHnaaBaaaleaapaGabmyBayaacaaa peqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYn aaBaaaleaapaGabmyBayaacaaapeqabaGccaWGtbGaamOvamaaDaaa leaapaGabmyBayaacaaapeqaaiaaikdaaaGccaWGdbWaaSbaaSqaai aadYeadaWgaaadbaWdaiqad2gagaGaaaWdbeqaaaWcbeaakiabg2da 9iaad2gacaWGNbaaaaWdaiaawUhaaaaa@7A74@

Assuming that αe and α m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2aaSbaaSqaa8aaceWGTbGbaiaaa8qabeaaaaa@3B2E@ are small, the difference between each drag equation gives:

T e ( δ x m ˙ δ x e 1 )=mg γ m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaaBaaaleaacaWGLbaabeaakmaabmaabaWdamaalaaabaGa eqiTdq2dbiaadIhadaWgaaWcbaWdaiqad2gagaGaaaWdbeqaaaGcpa qaaiabes7aKjaadIhadaWgaaWcbaGaamyzaaqabaaaaOGaeyOeI0Ia aGymaaWdbiaawIcacaGLPaaacqGH9aqpcaWGTbGaam4zaiabeo7aN9 aadaWgaaWcbaGabmyBayaacaaabeaaaaa@4B36@

which leads to:

ε δx = C L e C D e γ m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacqaH0oazcaWG4baabeaakiabg2da9maalaaabaaeaaaaaaaa a8qacaWGdbWaaSbaaSqaaiaadYeadaWgaaadbaWdaiaadwgaa8qabe aaaSqabaaak8aabaWdbiaadoeadaWgaaWcbaGaamiramaaBaaameaa paGaamyzaaWdbeqaaaWcbeaaaaGccqaHZoWzpaWaaSbaaSqaaiqad2 gagaGaaaqabaaaaa@46F2@   (28)

where ɛδx denotes the relative correction on the throttle lever δx to consider the mass variation, i.e.:

δ x m ˙ =δ x e ( 1+ ε δx ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hadaWgaaWcbaGabmyBayaacaaabeaakiabg2da9iabes7aKjaadIha daWgaaWcbaGaamyzaaqabaGcdaqadaqaaiaaigdacqGHRaWkcqaH1o qzdaWgaaWcbaGaeqiTdqMaamiEaaqabaaakiaawIcacaGLPaaaaaa@4869@

Moreover, the difference between each lift equation gives:

T e ( α e δ x m ˙ δ x e α m ˙ )+ 1 2 ρ e S V e 2 ( C Le C L m ˙ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaaBaaaleaacaWGLbaabeaakmaabmaabaGaeqySde2aaSba aSqaa8aacaWGLbaapeqabaGccqGHsislpaWaaSaaaeaacqaH0oazpe GaamiEamaaBaaaleaapaGabmyBayaacaaapeqabaaak8aabaGaeqiT dqMaamiEamaaBaaaleaacaWGLbaabeaaaaGcpeGaeqySde2aaSbaaS qaa8aaceWGTbGbaiaaa8qabeaaaOGaayjkaiaawMcaaiabgUcaRmaa laaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaSbaaSqaa8aacaWGLb aapeqabaGccaWGtbGaamOvamaaDaaaleaapaGaamyzaaWdbeaacaaI YaaaaOGaaiikaiaadoeadaWgaaWcbaGaamitaiaadwgaaeqaaOGaey OeI0Iaam4qa8aadaWgaaWcbaGaamitaiqad2gagaGaaaqabaGccaGG PaGaeyypa0JaaGimaaaa@5D36@

which finally leads to:

ε α = ε δx 1+ C L α C D e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacqaHXoqyaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacqaH1oqz daWgaaWcbaGaeqiTdqMaamiEaaqabaaakeaacaaIXaGaey4kaSYaaS aaaeaaqaaaaaaaaaWdbiaadoeadaWgaaWcbaGaamitamaaBaaameaa paGaeqySdegapeqabaaaleqaaaGcpaqaa8qacaWGdbWaaSbaaSqaai aadseadaWgaaadbaWdaiaadwgaa8qabeaaaSqabaaaaaaaaaa@4AD6@   (29)

where ɛα is the relative correction on α to consider the mass variation, i.e.:

α m ˙ = α e (1+ ε α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2aaSbaaSqaa8aaceWGTbGbaiaaa8qabeaakiabg2da9iab eg7aHnaaBaaaleaapaGaamyzaaWdbeqaaOGaaiikaiaaigdacqGHRa WkpaGaeqyTdu2aaSbaaSqaaiabeg7aHbqabaGccaGGPaaaaa@459D@

Considering that the longitudinal trimmed condition is also given by the condition Cm = 0 in both cases, we have:

{ C m o +C m α ( α e α o )+C m δe δ e e =0 C m o +C m α ( α m ˙ α o )+C m δe δ e m ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaabaaaaaaaaapeGaam4qaiaad2gadaWgaaWcbaGaam4B aaqabaGccqGHRaWkcaWGdbGaamyBamaaBaaaleaacqaHXoqyaeqaaO Gaaiikaiabeg7aHnaaBaaaleaacaWGLbaabeaakiabgkHiTiabeg7a HnaaBaaaleaacaWGVbaabeaakiaacMcacqGHRaWkcaWGdbGaamyBam aaBaaaleaacqaH0oazcaWGLbaabeaakiabes7aKjaadwgadaWgaaWc baGaamyzaaqabaGccqGH9aqpcaaIWaaapaqaa8qacaWGdbGaamyBam aaBaaaleaacaWGVbaabeaakiabgUcaRiaadoeacaWGTbWaaSbaaSqa aiabeg7aHbqabaGccaGGOaGaeqySde2aaSbaaSqaaiqad2gagaGaaa qabaGccqGHsislcqaHXoqydaWgaaWcbaGaam4BaaqabaGccaGGPaGa ey4kaSIaam4qaiaad2gadaWgaaWcbaGaeqiTdqMaamyzaaqabaGccq aH0oazcaWGLbWaaSbaaSqaaiqad2gagaGaaaqabaGccqGH9aqpcaaI WaaaaaWdaiaawUhaaaaa@6DA6@

The difference between both equations gives:

C m α ( α m ˙ α o )+C m δe (δ e m ˙ δ e e )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaad2gadaWgaaWcbaGaeqySdegabeaakiaacIcacqaHXoqy daWgaaWcbaGabmyBayaacaaabeaakiabgkHiTiabeg7aHnaaBaaale aacaWGVbaabeaakiaacMcacqGHRaWkcaWGdbGaamyBamaaBaaaleaa cqaH0oazcaWGLbaabeaakiaacIcacqaH0oazcaWGLbWaaSbaaSqaai qad2gagaGaaaqabaGccqGHsislcqaH0oazcaWGLbWaaSbaaSqaaiaa dwgaaeqaaOGaaiykaiabg2da9iaaicdaaaa@548D@

which leads to:

ε δe = C m α α e C m δe δ e e ε α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacqaH0oazcaWGLbaabeaakiabg2da9iabgkHiTmaalaaabaae aaaaaaaaa8qacaWGdbGaamyBamaaBaaaleaacqaHXoqyaeqaaOGaeq ySde2aaSbaaSqaaiaadwgaaeqaaaGcpaqaa8qacaWGdbGaamyBamaa BaaaleaacqaH0oazcaWGLbaabeaakiabes7aKjaadwgadaWgaaWcba GaamyzaaqabaaaaOWdaiabew7aLnaaBaaaleaacqaHXoqyaeqaaaaa @50D4@   (30)

where ɛδe denotes the relative correction on the elevator deflection δe to consider the mass variation, i.e.:

δ e m ˙ =δ e e (1+ ε δe ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaamyzamaaBaaaleaaceWGTbGbaiaaaeqaaOGaeyypa0Ja eqiTdqMaamyzamaaBaaaleaacaWGLbaabeaakiaacIcacaaIXaGaey 4kaSYdaiabew7aLnaaBaaaleaacqaH0oazcaWGLbaabeaakiaacMca aaa@482F@

Numerical verification

These results have been verified through a numerical simulation performed in the case of a twin-engine aircraft representative of the Airbus wide-body family:17

  • Total mass: m=130 103 kg
  • Reference area: Sref=260m2
  • Lift-slope derivative: C=5 rad−1
  • Induced drag factor: K=0.055
  • Parasite drag coefficient: CDo=0.02
  • Pitch stiffness: Cmα=−1 rad−1
  • Pitch control effectiveness: Cmδe=−1.46 rad−1
  • Total thrust at sea level: TSL=470 103N

The aircraft is assumed to fly in cruise at ze=30 000 ft and M=0.82, i.e. Ve=248.58 m/s, with=−10−5 kg/s which corresponds to a typical fuel consumption during the cruising phase. From initial conditions computed at ze and Ve, the mass variation m ˙ = k m ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaacUgadaWgaaWcbaGabiyBayaacaaabeaakiaad2gaaaa@3D3B@ has been applied abruptly, leading to the evolution of the longitudinal state vector computed with a numerical solver based on the Runge-Kutta algorithm.

Firstly, the computation is initialized with the trimmed condition with, i.e. γ0 = 0, α0 = αe, q0 = 0, δe = δee, δx = δxe. The figures (Figure 1) and (EQ. (2)) show that, after a transient including a classical “phugoïd mode” and a slow aperiodic mode, the TAS reaches a final state slightly different from the initial value. Moreover, the figure (Figure 2) shows that the FPA reaches a stabilized value γ m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaaceWGTbGbaiaaaeqaaaaa@3B26@ equal to its analytical expression, i.e..

γ m ˙ = k m ˙ a h V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaaceWGTbGbaiaaaeqaaOGaeyypa0ZaaSaaaeaacaWGRbWaaSba aSqaaiqad2gagaGaaaqabaaakeaacaWGHbWaaSbaaSqaaiaadIgaae qaaOGaamOvamaaBaaaleaacaWGLbaabeaaaaaaaa@4232@

Figure 1 Evolution of the TAS vs. time with m ˙ = k m ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaadUgadaWgaaWcbaGabmyBayaacaaabeaakiaad2gaaaa@3D3D@ initiated with the traditional equilibrium.

Figure 2 Evolution of the FPA vs. time with m ˙ = k m ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaadUgadaWgaaWcbaGabmyBayaacaaabeaakiaad2gaaaa@3D3D@ initiated with the traditional equilibrium.

The second step is to compute the evolution of the system with the simulation initiated with the corrected trimmed conditions with m ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abgcMi5kaaicdaaaa@3BA5@ , i.e. γ 0 = k m ˙ a h V e , α 0 = α m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaaIWaaabeaakiabg2da9maalaaabaGaam4AamaaBaaaleaa ceWGTbGbaiaaaeqaaaGcbaGaamyyamaaBaaaleaacaWGObaabeaaki aadAfadaWgaaWcbaGaamyzaaqabaaaaOGaaiilaiabeg7aHnaaBaaa leaacaaIWaaabeaakiabg2da9iabeg7aHnaaBaaaleaaceWGTbGbai aaaeqaaaaa@4906@ , q0=0, δe=δ e m ˙ ,δx=δ x m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw gacqGH9aqpcqaH0oazcaWGLbWaaSbaaSqaaiqad2gagaGaaaqabaGc caGGSaGaeqiTdqMaamiEaiabg2da9iabes7aKjaadIhadaWgaaWcba GabmyBayaacaaabeaaaaa@479F@ . The figure (Figure 3) shows that the TAS (red curve) is well stabilized in time and almost equal to Ve in these conditions (relative difference equal to 4 10−6). Concerning the FPA, the figure (Figure 4) shows the transient in this case is very small and γ= γ m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9iabeo7aNnaaBaaaleaaceWGTbGbaiaaaeqaaaaa@3DA4@ during the whole simulation.

Figure 3 Evolution of the TAS vs. time with m ˙ = k m ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaadUgadaWgaaWcbaGabmyBayaacaaabeaakiaad2gaaaa@3D3D@ initiated with the extended equilibrium.

Figure 4 Evolution of the FPA vs. time with m ˙ = k m ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaadUgadaWgaaWcbaGabmyBayaacaaabeaakiaad2gaaaa@3D3D@ initiated with the extended equilibrium.

This computation also shows that the correction ɛα and ɛδe can be considered as second order terms. Indeed, considering the simulation initiated with γ 0 = k m ˙ a h V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaaIWaaabeaakiabg2da9maalaaabaGaam4AamaaBaaaleaa ceWGTbGbaiaaaeqaaaGcbaGaamyyamaaBaaaleaacaWGObaabeaaki aadAfadaWgaaWcbaGaamyzaaqabaaaaaaa@41F1@ , α0 = αe, q0 = 0, δe = δee, δx=δ x m ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hacqGH9aqpcqaH0oazcaWG4bWaaSbaaSqaaiqad2gagaGaaaqabaaa aa@3F9A@ , i.e. without correcting the terms αe and δee, the evolution of the system (blue curve) is very close to the complete correction. In this case, the main difference lies in the transient which is slightly more pronounced.

Finally, the comparison between the trimmed conditions computed at a given altitude and airspeed considering a constant mass, i.e., vs. the trimmed conditions taking into account a mass variation given by m ˙ = k m ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaai abg2da9iaacUgadaWgaaWcbaGabiyBayaacaaabeaakiaad2gaaaa@3D3B@ , are gathered in the following tabular with the “first order” and “second order” corrections:

Correction

 

First order

Second order

Flight Path Angle

γe = 0

γ m ˙ = k m ˙ a h V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaaceWGTbGbaiaaaeqaaOGaeyypa0ZaaSaaaeaacaWGRbWaaSba aSqaaiqad2gagaGaaaqabaaakeaacaWGHbWaaSbaaSqaaiaadIgaae qaaOGaamOvamaaBaaaleaacaWGLbaabeaaaaaaaa@4232@ γ m ˙ = k m ˙ a h V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaaceWGTbGbaiaaaeqaaOGaeyypa0ZaaSaaaeaacaWGRbWaaSba aSqaaiqad2gagaGaaaqabaaakeaacaWGHbWaaSbaaSqaaiaadIgaae qaaOGaamOvamaaBaaaleaacaWGLbaabeaaaaaaaa@4232@

AoA

αe

α m ˙ = α e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaaceWGTbGbaiaaaeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaa dwgaaeqaaaaa@3EB4@ α m ˙ = α e (1+ ε α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaaceWGTbGbaiaaaeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaa dwgaaeqaaOGaaiikaiaaigdacqGHRaWkcqaH1oqzdaWgaaWcbaGaeq ySdegabeaakiaacMcaaaa@4530@

Pitching rate

qe = 0

q m ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGabmyBayaacaaabeaakiabg2da9iaaicdaaaa@3C10@ q m ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGabmyBayaacaaabeaakiabg2da9iaaicdaaaa@3C10@

Elevator deflection

δee

δ e m ˙ =δ e e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw gadaWgaaWcbaGabmyBayaacaaabeaakiabg2da9iabes7aKjaadwga daWgaaWcbaGaamyzaaqabaaaaa@4094@ δ e m ˙ =δ e e (1+ ε δe ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw gadaWgaaWcbaGabmyBayaacaaabeaakiabg2da9iabes7aKjaadwga daWgaaWcbaGaamyzaaqabaGccaGGOaGaaGymaiabgUcaRiabew7aLn aaBaaaleaacqaH0oazcaWGLbaabeaakiaacMcaaaa@4800@

Throttle position

δxe

δ x m ˙ =(1+ ε δx )δ x e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hadaWgaaWcbaGabmyBayaacaaabeaakiabg2da9iaacIcacaaIXaGa ey4kaSIaeqyTdu2aaSbaaSqaaiabes7aKjaadIhaaeqaaOGaaiykai abes7aKjaadIhadaWgaaWcbaGaamyzaaqabaaaaa@482F@ δ x m ˙ =(1+ ε δx )δ x e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hadaWgaaWcbaGabmyBayaacaaabeaakiabg2da9iaacIcacaaIXaGa ey4kaSIaeqyTdu2aaSbaaSqaaiabes7aKjaadIhaaeqaaOGaaiykai abes7aKjaadIhadaWgaaWcbaGaamyzaaqabaaaaa@482F@

Concluding remarks

In this article, it has been demonstrated that the fuel flow rate of the aircraft affects the trimmed conditions. This has led to the definition of extended trimmed conditions, which are the equilibrated conditions in flight considering the weight decrease of the aircraft. When considering these extended trimmed conditions, correcting factors have to be applied on the control commands computed at constant weight to get the exact equilibrated flight taking into account the fuel mass flow rate of the aircraft. Moreover, it has been demonstrated that the mass derivative vs. time itself must be proportional to the total mass of the aircraft to get correct trimmed conditions. As a conclusion, the correcting factors given in this article give a sharper computation of trim points to be used as the starting points of numerical simulation and erase undue transients due to the sudden application of in-flight fuel burn. Moreover, these corrections should be taken into account to compute analytically the performance of the aircraft (endurance, climb, . . . ) as it has been already done for the range given by the Bréguet range formula.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Allerton D. Principles of Flight Simulation. Aerospace Series: Wiley; 2009.
  2. McFarland RE. Trimming an aircraft model for flight simulation. National Aeronautics and Space Administration, Ames Research Center Moffett Field: Calif; 1987.
  3. Duke EL, Antoniewicz RF, Krambeer KD. Derivation and Definition of a Linear Aircraft Model. NASA reference publication. National Aeronautics and Space Administration, Scientific and Technical Information Division; 1988.
  4. Anderson JD. Aircraft performance and design. McGraw-Hill international editions: Aerospace science/technology series. WCB/McGraw-Hill; 1999.
  5. Chudoba B, Cook MV. Trim Equations of Motion For Aircraft Design: Steady State Straight-Line Flight. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit: Austin, Texas; 2003.
  6. De Marco A, Duke EL, Berndt JS. A general solution to the aircraft trim problem. In: AIAA Modeling and Simulation Technologies Conference and Exhibit; 2007. 6703 p.
  7. Ashkenas IL. Range performance of turbojet airplanes. Journal of the Aeronautical Sciences; 2012.
  8. Bovet L. How to correct the Breguet range equation taking into account the fuel flow rate of the aircraft? In: 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS): Madrid, Spain; 2019.
  9. Anon. U.S. Standard Atmosphere, 1976. Superintendent of Documents; 1976.
  10. Wellner M. Elements of Physics. Springer US; 2012.
  11. Phillips WF. Mechanics of Flight. Aerospace/Engineering: Wiley; 2004.
  12. Torenbeek E. Synthesis of Subsonic Airplane Design: An introduction to the preliminary design of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic design, propulsion and performance. Springer Netherlands; 1982.
  13. Etkin B, Reid LD. Dynamics of Flight: Stability and Control. Wiley; 1995.
  14. Wanner JC, George L, Vernet JF. La mécanique du vol. Performances des avions et des engins. Dunod; 1969.
  15. Stengel RF. Flight dynamics. Princeton University Press; 2004.
  16. Etkin B. Dynamics of Atmospheric Flight. Dover Books on Aeronautical Engineering. Dover Publications; 2012.
  17. Roux É. Avions civils à réaction: Plan 3 vues et données caractéristiques. Editions Elodie Roux; 2007.
Creative Commons Attribution License

©2021 Bovet. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.